1
|
Kanamori K, Ahmad SM, Hamid A, Lutfy K. Chronic Exposure to E-Cigarettes Elevates CYP2A5 Activity, Protein Expression, and Cotinine-Induced Production of Reactive Oxygen Species in Mice. Drug Metab Dispos 2024; 52:171-179. [PMID: 38195520 DOI: 10.1124/dmd.123.001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Coumarin 7'-hydroxylase activity, a specific marker of CYP2A5 activity, and the protein level were measured in liver microsomes of male mice after chronic exposure to e-cigarettes (e-cigs) (2.4% nicotine). After exposure for 240 minutes per day for 5 days, the activity and the protein level in preproenkephalin (ppENK)-heterozygous [ppENK (+/-)] mice were significantly elevated (P <0.05) compared with the untreated control. This elevation was not due to deletion of the ppENK gene because the activity did not differ among untreated ppENK (+/-), ppENK (-/-), and wild-type ppENK (+/+) controls. Hence, the elevation can reasonably be attributed to nicotine exposure. The production of reactive oxygen species (ROS) upon incubation of the hepatic microsomes of these mice with cotinine was higher in microsomes from the e-cig-treated mice compared with the untreated controls (P < 0.01). Liquid chromatography mass spectrometry assay showed three oxidation products of cotinine, viz trans 3'-hydroxycotinine (3'-HC), 5'-hydroxycotinine (5'-HC), and cotinine N-oxide (CNO) in the plasma of these mice. The result identifies these three oxidation reactions as the source of the observed ROS and also shows that, in nicotine-treated mice, the appropriate "nicotine metabolite ratio" is (3'-HC + 5'-HC + CNO)/cotinine. The results suggest intriguing possibilities that 1) this metabolite ratio may correlate with plasma nicotine clearance and hence impact nicotine's psychoactive effects and 2) chronic e-cig treatment causes ROS-induced oxidative stress, which may play a major role in the regulation of CYP2A5 expression. Our present results clearly show that both the activity and the protein level of CYP2A5 are elevated by repeated exposure to nicotine. SIGNIFICANCE STATEMENT: Nicotine, the psychoactive ingredient of tobacco, is eliminated as the oxidation products of cotinine in reactions catalyzed by the enzymes CYP2A5 in mice and CYP2A6 in humans. This study shows that repeated exposure to e-cigarettes elevates the level of CYP2A5 and the formation of reactive oxygen species. The results suggest an intriguing possibility that CYP2A5 may be upregulated by chronic nicotine exposure due to oxidative stress caused by the oxidation of cotinine in this preclinical model of human smokers.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California (K.K., S.M.A., A.H., K.L.) and Lab Launch, Monrovia, California (K.K.)
| | - Syed M Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California (K.K., S.M.A., A.H., K.L.) and Lab Launch, Monrovia, California (K.K.)
| | - Abdul Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California (K.K., S.M.A., A.H., K.L.) and Lab Launch, Monrovia, California (K.K.)
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California (K.K., S.M.A., A.H., K.L.) and Lab Launch, Monrovia, California (K.K.)
| |
Collapse
|
2
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9020142. [PMID: 32041293 PMCID: PMC7070562 DOI: 10.3390/antiox9020142] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions, favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury, and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular levels of hydrogen peroxide (H2O2), superoxide (O2−), and nitric oxide (NO). The interaction of AGEs with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell metabolism under various pathological conditions. This short review will summarize all evidence that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the latest research about the use of natural compounds with antioxidant properties to prevent the harmful effects of AGEs on health.
Collapse
Affiliation(s)
- Vanesa Cepas
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy;
| | - Juan C. Mayo
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| | - Rosa M. Sainz
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| |
Collapse
|
4
|
Nicotine enhances alcoholic fatty liver in mice: Role of CYP2A5. Arch Biochem Biophys 2018; 657:65-73. [PMID: 30222954 DOI: 10.1016/j.abb.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023]
Abstract
Tobacco and alcohol are often co-abused. Nicotine can enhance alcoholic fatty liver, and CYP2A6 (CYP2A5 in mice), a major metabolism enzyme for nicotine, can be induced by alcohol. CYP2A5 knockout (cyp2a5-/-) mice and their littermates (cyp2a5+/+) were used to test whether CYP2A5 has an effect on nicotine-enhanced alcoholic fatty liver. The results showed that alcoholic fatty liver was enhanced by nicotine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Combination of ethanol and nicotine increased serum triglyceride in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Cotinine, a major metabolite of nicotine, also enhanced alcoholic fatty liver, which was also observed in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Nitrotyrosine and malondialdehyde (MDA), markers of oxidative/nitrosative stress, were induced by alcohol and were further increased by nicotine and cotinine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Reactive oxygen species (ROS) production during microsomal metabolism of nicotine and cotinine was increased in microsomes from cyp2a5+/+ mice but not in microsomes from cyp2a5-/- mice. These results suggest that nicotine enhances alcoholic fatty liver in a CYP2A5-dependent manner, which is related to ROS produced during the process of CYP2A5-dependent nicotine metabolism.
Collapse
|
5
|
Cieślak A, Kelly I, Trottier J, Verreault M, Wunsch E, Milkiewicz P, Poirier G, Droit A, Barbier O. Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry. Proteomics 2016; 16:2827-2837. [PMID: 27634100 DOI: 10.1002/pmic.201500386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/30/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
This study aimed at establishing a sensitive multiple reaction monitoring-mass spectrometry (MRM-MS) method for the quantification of the drug metabolizing cytochrome P450 (CYP)3A4 enzyme in human liver homogenates. Liver samples were subjected to trypsin digestion. MRM-MS analyses were performed using three transitions optimized on one purified synthetic peptide unique to CYP3A4 and the standardizing protein, calnexin. Coefficient of variations for the precision and reproducibility of the MRM-MS measurement were also determined. The method was applied to liver samples from ten non-cholestatic donors and 34 cholestatic patients with primary biliary cholangitis (n = 12; PBC), primary sclerosing cholangitis (n = 10; PSC) or alcoholic liver disease (n = 12; ALD). The established method presented high sensitivity with limit of detection lower than 5 fmol, and was successfully applied for the absolute and relative quantification of CYP3A4 in both whole liver homogenate and microsomal fractions. When all groups were analyzed together, a significant correlation was observed for the MRM-based CYP3A4 protein quantification in homogenates and microsomes (r = 0.49, p < 0.001). No statistically significant difference was detected between CYP3A4 levels in PSC, PBC, ALD and control samples. Finally, the MRM-MS quantification of CYP3A4 in homogenates also correlated (r = 0.44; p < 0.05) with the level of enzyme activity in the same samples, as determined by measuring the chenodeoxycholic to hyocholic acid conversion. The established method provides a sensitive tool to evaluate the CYP3A4 protein in human liver homogenates from patients with normal or chronic/severe hepatic injury.
Collapse
Affiliation(s)
- Anna Cieślak
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Isabelle Kelly
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Mélanie Verreault
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Ewa Wunsch
- Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Milkiewicz
- Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland.,Liver and Internal Medicine Unit, Department of Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Guy Poirier
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Arnaud Droit
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
6
|
Soy isoflavones reduce acetaminophen-induced liver injury by inhibiting cytochrome P-450-mediated bioactivation and glutathione depletion and increasing urinary drug excretion in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Zhang M, Wang Y, Wang X, Liu J, Zhang J, Gu Q. Roles of oxidative stress, apoptosis, and heme oxygenase-1 in ethylbenzene-induced renal toxicity in NRK-52E cells. Toxicol Ind Health 2016; 32:1952-1960. [DOI: 10.1177/0748233715602834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo. Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity.
Collapse
Affiliation(s)
- Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Yanrang Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Xiaojun Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jing Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jingshu Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Qing Gu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Kim GW, Hong JY, Yu SY, Ahn JJ, Kim Y, Son SW, Park JT, Hwang SY. Integrative analyses of differential gene expression and DNA methylation of ethylbenzene-exposed workers. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9310-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yao HT, Yang YC, Chang CH, Yang HT, Yin MC. Protective effects of (-)-epigallocatechin-3-gallate against acetaminophen-induced liver injury in rats). Biomedicine (Taipei) 2015; 5:15. [PMID: 26264479 PMCID: PMC4531855 DOI: 10.7603/s40681-015-0015-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin with various biological activities found in tea. In this study, the effects of EGCG on the metabolism and toxicity of acetaminophen in rat liver were investigated. Male Sprague-Dawley rats were fed a controlled diet without or with EGCG (0.54 %, w/w) for 1 week and were then intraperitoneally injected with acetaminophen (1 g/kg body weight) and killed after 12 h. Concentrations of acetaminophen and its conjugates in plasma and liver were then determined. The cytochrome P450 (CYP) and phase II enzymes activities were also evaluated. Rats fed the EGCG diet had lower plasma alanine aminotransferase and aspartate aminotransferase activities, as indices of hepatotoxicity, after acetaminophen treatment. Morphological damage by acetaminophen was lower in rats fed the EGCG diet. In addition, EGCG significantly reduced hepatic activities of midazolam 1-hydroxylation (CYP3A), nitrophenol 6-hydroxylase (CYP2E1), UDP-glucurosyltransferase, and sulfotransferase. Finally, EGCG feeding reduced acetaminophen-glucuronate and acetaminophen-glutathione contents in plasma and liver. These results indicate that EGCG feeding may reduce the metabolism and toxicity of acetaminophen in rats.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, 404, Taichung, Taiwan,
| | | | | | | | | |
Collapse
|
10
|
Chitosan oligosaccharides reduce acetaminophen-induced hepatotoxicity by suppressing CYP-mediated bioactivation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Zhang M, Wang Y, Yang D, Zhang J, Gu Q. Roles of oxidative damage and mitochondria-mediated apoptosis in ethylbenzene-induced hepatotoxic effects in rat. Inhal Toxicol 2014; 27:64-73. [DOI: 10.3109/08958378.2014.986314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. ACTA ACUST UNITED AC 2014; 66:225-34. [DOI: 10.1016/j.etp.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
|
13
|
Liu X, Hu L, Ge G, Yang B, Ning J, Sun S, Yang L, Pors K, Gu J. Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay. Proteomics 2014; 14:1943-51. [DOI: 10.1002/pmic.201400025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Xidong Liu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Lianghai Hu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Bo Yang
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| | - Jing Ning
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Shixin Sun
- Asia Pacific Application Support Center; Applied Biosystems; Shanghai P.R. China
| | - Ling Yang
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian P.R. China
| | - Klaus Pors
- Institute of Cancer Therapeutics; School of Life Sciences; University of Bradford; West Yorkshire UK
| | - Jingkai Gu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education; Jilin University; Changchun P.R. China
- Research Center for Drug Metabolism, School of Life Sciences; Jilin University; Changchun P.R. China
| |
Collapse
|
14
|
Segawa R, Hayashi H, Morita R, Ogawa T, Takimoto N, Hara S, Suzuki K, Shibutani M, Mitsumori K. Modifying effects of liver tumor promotion in rats subjected to co-administration of indole-3-carbinol and phenobarbital. J Toxicol Sci 2014; 39:129-40. [PMID: 24418717 DOI: 10.2131/jts.39.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Indole-3-carbinol (I3C) and phenobarbital (PB) are cytochrome P450 (CYP) 1A and CYP2B inducers, respectively, and have liver tumor-promoting effects in rats. In this study, we investigated the modifying effects on tumor promotion by I3C and PB co-administration. Six-week-old male F344 rats received a single intraperitoneal injection of N-diethylnitrosamine for initiation treatment. Two weeks after the initiation, rats were given no tumor-promoting agents (DEN alone), I3C (2,500 or 5,000 ppm in diet), PB (60 or 120 ppm in drinking water), or 2,500 ppm I3C + 60 ppm PB for 6 weeks. One week after the I3C/PB treatments, all animals underwent a two-thirds partial hepatectomy. The number and area of liver cell foci positive for glutathione S-transferase placental form (GST-P(+) foci) were not significantly fluctuated in the PB+I3C group in the isoadditive statistical model. On the contrary, the mRNA levels of Cyp2b1/2 and Nqo1 were suppressed and enhanced, respectively, in the PB+I3C group in the isoadditive model, but there was no enhancement in the microsomal reactive oxygen species (ROS) production, thiobarbituric acid-reactive substance levels, and Ki-67(+) cell ratio in this group. The results suggest that the co-administration of I3C and PB causes no modifying effects in liver tumor promotion in rats.
Collapse
Affiliation(s)
- Risa Segawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Absolute Quantification of Cytochrome P450 and Uridine-Diphosphate Glucuronosyl Transferase Isoforms by Proteomics-based Approach. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Morita R, Yafune A, Shiraki A, Itahashi M, Ishii Y, Akane H, Nakane F, Suzuki K, Shibutani M, Mitsumori K. Liver tumor promoting effect of orphenadrine in rats and its possible mechanism of action including CAR activation and oxidative stress. J Toxicol Sci 2013; 38:403-13. [PMID: 23665939 DOI: 10.2131/jts.38.403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Orphenadrine (ORPH), an anticholinergic agent, is a cytochrome P450 (CYP) 2B inducer. CYP2B inducers are known to have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of ORPH and to clarify its possible mechanism of action. Male rats were given a single intraperitoneal injection of N-diethylnitrosamine (DEN) as an initiation treatment. Two weeks after DEN administration, rats were fed a diet containing ORPH (0, 750, or 1,500 ppm) for 6 weeks. One week after the ORPH-administration rats were subjected to two-thirds partial hepatectomy for the acceleration of hepatocellular proliferation. The number and area of glutathione S-transferase placental form-positive foci significantly increased in the DEN-ORPH groups. Real-time RT-PCR revealed increased mRNA expression levels of Cyp2b1/2, Mrp2 and Cyclin D1 in the DEN-ORPH groups and of Gpx2 and Gstm3 in the DEN-High ORPH group. Microsomal reactive oxygen species (ROS) production and oxidative stress markers such as thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine were increased in the DEN-High ORPH group. Immunohistochemically, constitutively active/androstane receptor (CAR) were clearly localized in the nuclei of hepatocytes in the DEN-ORPH groups. These results suggest that ORPH causes nuclear translocation of CAR resulting in the induction of the liver tumor-promoting activity. Furthermore, oxidative stress resulting from ROS production is also involved in the liver tumor-promoting activity of ORPH.
Collapse
Affiliation(s)
- Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morita R, Yafune A, Shiraki A, Itahashi M, Akane H, Nakane F, Suzuki K, Shibutani M, Mitsumori K. Suppressive effect of liver tumor-promoting activities in rats subjected to combined administration of phenobarbital and piperonyl butoxide. J Toxicol Sci 2013; 38:679-88. [PMID: 24025784 DOI: 10.2131/jts.38.679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phenobarbital (PB) is a cytochrome P450 (CYP) 2B inducer, and piperonyl butoxide (PBO) is a CYP1A/2B inducer. These inducers have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of PB and PBO co-administration. Male rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) for initiation. Two weeks after DEN administration, rats were given PB (60 or 120 ppm in drinking water), PBO (1,250 or 2,500 ppm in diet) or 60 ppm PB+1,250 ppm PBO for 6 weeks. One week after the PB/PBO treatment, all rats were subjected to a two-thirds partial hepatectomy. To evaluate the effect of the combined administration, we used two statistical additive models. In the isoadditive model, the average values of the area of GST-P positive foci in the PB+PBO group were significantly lower than those in the High PB or High PBO groups. In the heteroadditive model, the net values of Cyp1a1 mRNA level and microsomal reactive oxygen species (ROS) production in the PB+PBO group were significantly lower than the sum of those in the Low PB or Low PBO groups. On the contrary, there was no interactive effect in the PCNA-positive hepatocyte ratio, mRNA levels of Cyp2b1/2, Gstm3, Gpx2 and Nqo1, and the level of thiobarbituric acid-reactive substances in the PB+PBO group. These results suggest that PB and PBO co-administration causes suppressive effects in liver tumor-promoting activity in rats resulting from inhibited microsomal ROS production because of suppression of CYP1A induction.
Collapse
Affiliation(s)
- Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nesnow S. Integration of toxicological approaches with “omic” and related technologies to elucidate mechanisms of carcinogenic action: Propiconazole, an example. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Morita R, Yafune A, Shiraki A, Itahashi M, Akane H, Nakane F, Suzuki K, Shibutani M, Mitsumori K. Enhanced liver tumor promotion activity in rats subjected to combined administration of phenobarbital and orphenadrine. J Toxicol Sci 2013; 38:415-24. [PMID: 23665940 DOI: 10.2131/jts.38.415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phenobarbital (PB) and orphenadrine (ORPH) are cytochrome P450 (CYP) 2B inducers and have liver tumor-promoting effects in rats. In this study, we performed a rat two-stage liver carcinogenesis bioassay to examine the tumor-promoting effect of PB and ORPH co-administration. Twelve male rats per group were given an intraperitoneal injection of N-diethylnitrosamine (DEN) for initiation. Two-week after DEN administration, rats were given PB (60 or 120 ppm in drinking water), ORPH (750 or 1,500 ppm in diet) or 60 ppm PB+750 ppm ORPH for 6-week. One-week after the PB/ORPH treatment, all rats were subjected to two-thirds partial hepatectomy. To evaluate the effect of the combined administration, we used two statistical models: a heteroadditive model and an isoadditive model. In the heteroadditive model, the net values of the number and area of glutathione S-transferase placental form (GST-P) positive foci, Cyp2b1/2, Gstm3 and Gpx2 mRNA levels, microsomal reactive oxygen species (ROS) production and thiobarbituric acid-reactive substances level in the PB+ORPH group were significantly higher than the sum of the net values of those in the Low PB and Low ORPH groups. In the isoadditive model, the average values of the area of GST-P positive foci and PCNA positive hepatocyte ratio and Gstm3 mRNA level in the PB+ORPH group were significantly higher than the average values of those in the High PB and High ORPH groups. These results suggest that PB and ORPH co-administration causes synergistic effects in liver tumor-promoting activity in rats resulting from oxidative stress due to enhanced microsomal ROS production.
Collapse
Affiliation(s)
- Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hojo Y, Shiraki A, Tsuchiya T, Shimamoto K, Ishii Y, Suzuki K, Shibutani M, Mitsumori K. Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. J Toxicol Sci 2012; 37:297-306. [PMID: 22467020 DOI: 10.2131/jts.37.297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To investigate the liver tumor-promoting effects of etofenprox (ETF), a pyrethroid-like insecticide, 6 week-old male F344 rats were given an intraperitoneal injection of N-diethylnitrosamine (DEN). After 2 weeks from the DEN treatment, 12 rats per group received a powdered diet containing 0, 0.25, 0.50, or 1.0% ETF for 8 weeks. At the time of 2nd week of ETF administration, all animals were subjected to two-thirds partial hepatectomy (PH). One rat per group except for the 0.25% ETF group died due to surgical operation of PH. The number and area of glutathione S-transferase placental form (GST-P) positive foci significantly increased in the livers of DEN-initiated rats given 0.50% and 1.0% ETF compared with the DEN-alone group. Quantitative real-time RT-PCR analysis revealed that the mRNA expression of phase I enzymes Cyp2b1/2, phase II enzymes such as Akr7a3, Gsta5, Ugt1a6, Nqo1 significantly increased in the DEN+ETF groups. The immunohistochemistry showed the translocation of CAR from the cytoplasm to the nuclei of hepatocytes in the ETF-treated groups. Reactive oxygen species (ROS) production increased in microsomes isolated from the livers of ETF-treated rats, and thiobarbituric acid-reactive substances (TBARS) levels and 8- hydroxy-2-deoxyguanosine (8-OHdG) content significantly increased in all of the ETF-treated groups and DEN+1.0% ETF group, respectively. The results of the present study indicate that ETF has a liver tumor-promoting activity in rats, and suggest that ETF activates the constitutive active/androstane receptor (CAR) and enhances microsomal ROS production, resulting in the upregulation of Nrf2 gene batteries; such an oxidative stress subsequently induces liver tumor-promoting effects by increased cellular proliferation.
Collapse
Affiliation(s)
- Yuri Hojo
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yao HT, Luo MN, Hung LB, Chiang MT, Lin JH, Lii CK, Huang CY. Effects of chitosan oligosaccharides on drug-metabolizing enzymes in rat liver and kidneys. Food Chem Toxicol 2012; 50:1171-7. [PMID: 22386817 DOI: 10.1016/j.fct.2012.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/25/2012] [Accepted: 02/13/2012] [Indexed: 01/10/2023]
Abstract
To investigate the effect of chitosan oligosaccharides (COS) on drug-metabolizing enzymes in rat liver and kidneys, male Spraque-Dawley rats were fed a diet containing 1% or 3% COS for 5 weeks. The activities of cytochrome P450 (CYP) enzymes, UDP-glucurosyltransferase (UGT) and glutathione S-transferase (GST) in the liver and kidneys were determined. Significant decreases in microsomal CYP3A-catalyzed testosterone 6β-hydroxylation, CYP2C-catalyzed diclofenac 4-hydroxylation, and CYP4A-catalyzed lauric acid 12-hydroxylation in the liver of rats fed the COS diets were observed compared with those rats fed the control diet. Immunoblot analyses of CYP proteins showed the same trend as with enzyme activities. Increased glutathione content in liver was found in rats fed the 1% COS diet. Increased hepatic NADPH: quinone oxidoreductase 1 (NQO1) activity was found in rats fed the COS diets. In kidneys, COS had little or no effect on CYP enzyme activities. However, increased GST activity was observed in rats fed the COS diets. Moreover, a higher UGT activity was found in rats fed the 1% COS diet. Our results indicate that COS may suppress hepatic CYP enzymes and induce phase II detoxifying reactions in the liver and kidneys of rats.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mechanistic study on liver tumor promoting effects of flutamide in rats. Arch Toxicol 2011; 86:497-507. [DOI: 10.1007/s00204-011-0776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022]
|
23
|
Nesnow S, Grindstaff RD, Lambert G, Padgett WT, Bruno M, Ge Y, Chen PJ, Wood CE, Murphy L. Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process. Chem Biol Interact 2011; 194:79-89. [DOI: 10.1016/j.cbi.2011.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 01/14/2023]
|
24
|
Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats. Arch Toxicol 2011; 85:1475-84. [PMID: 21445586 DOI: 10.1007/s00204-011-0696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/10/2011] [Indexed: 02/06/2023]
Abstract
To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.
Collapse
|
25
|
Chang FK, Mao IF, Chen ML, Cheng SF. Urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to ethylbenzene. ACTA ACUST UNITED AC 2011; 55:519-25. [PMID: 21430133 DOI: 10.1093/annhyg/mer010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study assessed the relationships between ethylbenzene exposure and levels of 8-hydroxydeoxyguanosine (8-OHdG) among spray painters. Sixty-four male workers employed at a large shipyard were recruited for this investigation. Fifteen spray painters exposed to paint, together with two non-exposed groups, namely 19 sandblasting workers and 30 office staffs were selected as the subjects. Personal exposure to xylene and ethylbenzene in air were collected using diffusive samplers. Urine samples of the spray painters were collected after a month-long holiday leave and during the pre- and post-workshifts. Urine samples of sandblasting workers and office staffs were gathered after their shift. Urinary mandelic acid and methyl hippuric acid were used as biological indices of dose of ethylbenzene and xylene, respectively. Urinary 8-OHdG was used as biomarker of oxidative DNA damage. The post-workshift concentration of urinary 8-OHdG for 10 spray painters (30.3 ± 9.28 μg g(-1) creatinine) significantly exceeded that of holiday leave (7.20 ± 1.08 μg g(-1) creatinine; P = 0.001). The post-workshift concentration of urinary 8-OHdG was higher among 15 spray painters (29.0 ± 6.52 μg g(-1) creatinine) than sandblasting workers (9.14 ± 2.05 μg g(-1) creatinine; P = 0.01) and office staffs (8.35 ± 0.84 μg g(-1) creatinine; P = 0.007). A stepwise regression model revealed an 8.11 μg g(-1) creatinine increase per 1 p.p.m. increase in ethylbenzene [95% confidence interval (CI) 4.13-12.1]. A stepwise regression model revealed an increase of 6.04 μg g(-1) creatinine (95% CI 2.23-9.84) per 1 p.p.m. in ethylbenzene after adjustment of age (95% CI 2.23-9.84). This pilot study suggests that occupational exposure to paint increases oxidative DNA injury. Moreover, urinary 8-OHdG levels displayed greater DNA damage in spray painters compared to other unexposed groups and their holiday leave samples. A significant correlation was found between urinary 8-OHdG and the exposure to ethylbenzene. The ethylbenzene exposure could not explain all urinary 8-OHdG measured. Other components of paint deserve further investigation.
Collapse
Affiliation(s)
- Fu-Kuei Chang
- Department of Health Management, College of Medical Science, I-Shou University, Yanchao Township, Kaohsiung County, Taiwan.
| | | | | | | |
Collapse
|
26
|
Yao HT, Lii CK, Chou RH, Lin JH, Yang HT, Chiang MT. Effect of chitosan on hepatic drug-metabolizing enzymes and oxidative stress in rats fed low- and high-fat diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5187-5193. [PMID: 20334365 DOI: 10.1021/jf903857m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chitosan is sold worldwide as a lipid-lowering functional food and may be taken with certain medications. To investigate the effect of chitosan on drug-metabolizing enzymes and oxidative stress in the liver, male Wistar rats were fed a low- or high-fat diet with cellulose or chitosan for 4 weeks. A significant decrease in cytochrome P450 (CYP) 3A-catalyzed testosterone 6beta-hydroxylation in liver microsomes was observed in rats fed the chitosan with low- and high-fat diets. The expression of CYP 3A1 and 3A2, however, was suppressed by chitosan in rats fed the low-fat diet only. Furthermore, rats fed the low-fat diet with chitosan had lower hepatic glutathione S-transferase (GST) activity and superoxide dismutase activity and higher total tissue and microsomal lipid hydroperoxides. Hepatic alpha-tocopherol was lower in rats fed the chitosan-containing diet. The results suggest that chitosan is likely to modulate CYP 3A activity and protein expression and GST activity partially in a dietary fat-dependent manner. This change may cause a decrease in the metabolism of drugs catalyzed by these enzymes in liver tissues. Moreover, decrease of alpha-tocopherol level and SOD activity by chitosan partly accounts for the increase of hepatic lipid peroxidation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
27
|
Jin M, Dewa Y, Kawai M, Nishimura J, Saegusa Y, Kemmochi S, Harada T, Shibutani M, Mitsumori K. The threshold dose for liver tumor promoting effects of dicyclanil in ICR mice. J Toxicol Sci 2010; 35:69-78. [DOI: 10.2131/jts.35.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Meilan Jin
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences
| | - Yasuaki Dewa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Masaomi Kawai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Yukie Saegusa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Sayaka Kemmochi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Tomoaki Harada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
28
|
Nishimura J, Saegusa Y, Dewa Y, Jin M, Kawai M, Kemmochi S, Harada T, Hayashi SM, Shibutani M, Mitsumori K. Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats. Arch Toxicol 2009; 84:143-53. [DOI: 10.1007/s00204-009-0497-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 12/02/2009] [Indexed: 02/06/2023]
|
29
|
Fucic A, Markovic D, Herceg Z, Gamulin M, Katic J, Stojkovic R, Ferencic Z, Mildner B, Jazbec AM, Dobranic T. Developmental and transplacental genotoxicology: Fluconazole. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:43-7. [DOI: 10.1016/j.mrgentox.2008.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/01/2008] [Indexed: 12/17/2022]
|
30
|
Threshold dose of piperonyl butoxide that induces reactive oxygen species-mediated hepatocarcinogenesis in rats. Arch Toxicol 2008; 83:183-93. [DOI: 10.1007/s00204-008-0340-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 07/03/2008] [Indexed: 01/30/2023]
|
31
|
Nishimura J, Dewa Y, Okamura T, Muguruma M, Jin M, Saegusa Y, Umemura T, Mitsumori K. Possible involvement of oxidative stress in fenofibrate-induced hepatocarcinogenesis in rats. Arch Toxicol 2008; 82:641-54. [PMID: 18253720 DOI: 10.1007/s00204-007-0278-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/20/2007] [Indexed: 12/16/2022]
Abstract
To clarify whether oxidative stress is involved in the development of hepatocellular preneoplastic foci induced by fenofibrate (FF), a peroxisome proliferator-activated receptor alpha agonist, male F344/N rats were fed a diet containing 6,000, 3,000, or 0 ppm of FF for 13 weeks after N-diethylnitrosamine initiation. Two-third partial hepatectomy was performed 1 week after the FF treatment. Histopathologically, the number of hepatocellular altered foci significantly increased in the FF-treated groups with a concomitant increase in the number of hepatocytes positive for anti-Ki-67 antibody, but the number and area of glutathione S-transferase placental form (GST-P)-positive foci decreased in these groups, as compared to those in the controls. Microarray analysis or quantitative real-time reverse transcription-polymerase chine reaction demonstrated the significant up-regulations of Aco and Cyp4a1 (genes related to lipid metabolism); Gpx2, Yc2, Cat, Cyp2b15, and Ugt1a6 (metabolic oxidative stress-related genes); Apex1, Mgmt, Xrcc5, Nbn, and Gadd45a (DNA repair-related genes); and Ccnd1 (cell cycle-related genes) in the FF-treated groups, and the significant down-regulations of Cyp1a2, Gsta2, Gstm2, and Gstm3 (phase I or II metabolism-related genes); Mlh1 and Top1 (DNA repair-related genes); and Cdkn1a, Cdkn1b, Chek2, and Gadd45b (cell cycle/apoptosis-related genes) in these rats. FF-treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver, but not superoxide dismutase in the liver. In addition, 8-OHdG level in liver DNA, lipofuscin deposition in hepatocytes, and in vitro reactive oxygen species production in microsomes significantly increased due to FF treatment. These results suggest that oxidative stress is involved in the development of FF-induced hepatocellular preneoplastic foci in rats.
Collapse
Affiliation(s)
- Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Muguruma M, Unami A, Kanki M, Kuroiwa Y, Nishimura J, Dewa Y, Umemura T, Oishi Y, Mitsumori K. Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 2007; 236:61-75. [PMID: 17498859 DOI: 10.1016/j.tox.2007.03.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 12/20/2022]
Abstract
To clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by piperonyl butoxide (PBO), male F344 rats were administered an i.p. injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Two weeks later, the rats were administered a PBO-containing (0, 1, or 2%) diet for 6 weeks and subjected to a two-third partial hepatectomy 1 week later. After sacrificing them on week 8, their livers were histopathologically examined and analyzed for gene expression using a microarray and real-time RT-PCR. Reactive oxygen species (ROS) products were also measured using liver microsomes. Hepatocytes exhibited centrilobular hypertrophy and increased glutathione S-transferase placental form (GST-P) positive foci formation. ROS products increased significantly in liver microsomes. In the microarray analysis, the expressions of genes related to metabolism and oxidative stress - NAD(P)H dehydrogenase, quinone 1 (Nqo1), UDP-glucuronosyltransferase (UDPGTR-2), glutathione peroxidase 2 (Gpx2), glutathione reductase (GRx) - multidrug resistance associated protein 3 (Abcc3), and solute carrier family 7 (cationic amino acid transporter, y+ system) member 5 (Slc7a5) were up-regulated in the PBO group in comparison to the 0% PBO group; this was confirmed by real-time RT-PCR. Additionally, a significant up-regulation of stress response related genes such as CYP1A1 was observed in PBO-treated groups in real-time RT-PCR. HPLC analysis revealed that the level of 8-OHdG in the 2% PBO group was significantly higher than that in the 0% PBO group. This suggests that PBO has the potential to generate ROS via metabolic pathways and induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in rats.
Collapse
Affiliation(s)
- Masako Muguruma
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Henderson L, Brusick D, Ratpan F, Veenstra G. A review of the genotoxicity of ethylbenzene. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:81-89. [PMID: 17482506 DOI: 10.1016/j.mrrev.2007.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 11/19/2022]
Abstract
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.
Collapse
Affiliation(s)
- Leigh Henderson
- Henderson Scientific Consultancy, Cuddington, Cheshire CW82UT, UK.
| | | | - Flora Ratpan
- NOVA Chemicals, Inc. 1300 Wilson Blvd., Arlington, VA 22209, USA.
| | | |
Collapse
|
34
|
Mellert W, Deckardt K, Kaufmann W, van Ravenzwaay B. Ethylbenzene: 4- and 13-week rat oral toxicity. Arch Toxicol 2006; 81:361-70. [PMID: 17058104 DOI: 10.1007/s00204-006-0154-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Ethylbenzene was administered to groups of male and female Wistar rats by gavage for 4 (n = 5/dose/sex) and 13 weeks (n = 10/dose/sex) (OECD 408) at doses of 0 (vehicle control), 75, 250, and 750 mg/kg bodyweight/day (mg/kg bw/day), administered am/pm as half doses. In the 4-week study, > or =250 mg/kg increased serum alanine aminotransferase, total bilirubin and cholesterol, liver weights and centrilobular hepatocyte hypertrophy, and kidney weights; males also had post-dose salivation, increased urinary epithelial cell casts and cells, and hyaline droplet nephropathy. In the 13-week study, > or =250 mg/kg increased water consumption and produced post-dose salivation. Liver-related effects: increased serum alanine aminotransferase, gamma-glutamyltransferase, bilirubin, total protein, albumin and globulins, cholesterol, liver weights and centrilobular hepatocyte hypertrophy, and reduced prothrombin times. Kidney-related effects: increased serum potassium, calcium, magnesium, kidney weights, and (males only) urea and hyaline droplets in renal tubular epithelium, and reduced sodium (females only); creatinine was reduced in 750 mg/kg males. The NOAEL of ethylbenzene in these studies, based on hepatocyte hypertrophy and liver- and kidney-related clinical chemistry changes, was 75 mg/kg bw/day.
Collapse
Affiliation(s)
- Werner Mellert
- BASF Aktiengesellschaft, Department of Product Safety, Z 470, Ludwigshafen, Germany
| | | | | | | |
Collapse
|
35
|
Saillenfait AM, Gallissot F, Sabaté JP, Bourges-Abella N, Cadot R, Morel G, Lambert AM. Developmental toxicity of combined ethylbenzene and methylethylketone administered by inhalation to rats. Food Chem Toxicol 2006; 44:1287-98. [PMID: 16624470 DOI: 10.1016/j.fct.2006.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 12/13/2005] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Pregnant Sprague-Dawley rats were exposed to ethylbenzene (EB; 0, 250, or 1000 ppm) and methylethylketone (MEK; 0, 1000, or 3000 ppm), alone and in combination, by inhalation, for 6h/day, during days 6-20 of gestation. Maternal toxicity, evidenced by decreased in body weight gain and food consumption, tended to be greater after simultaneous exposures to the high concentrations of 1000 ppm EB and 3000 ppm MEK, when compared to the treatments with individual compounds. No significant increase in embryo/fetal lethality or incidence of malformations and variations was observed in any of the treatment groups. Fetal body weight was significantly reduced after individual treatment with 1000 ppm EB or 3000 ppm MEK, and in the combined groups. There was no evidence of interaction between EB and MEK in causing developmental toxicity.
Collapse
Affiliation(s)
- A M Saillenfait
- Institut National de Recherche et de Sécurité, 54501 Vandoeuvre, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Moto M, Umemura T, Okamura M, Muguruma M, Ito T, Jin M, Kashida Y, Mitsumori K. Possible involvement of oxidative stress in dicyclanil-induced hepatocarcinogenesis in mice. Arch Toxicol 2006; 80:694-702. [PMID: 16550380 DOI: 10.1007/s00204-006-0086-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Our previous study suggested the possibilities that dicyclanil (DC), a nongenotoxic carcinogen, produces oxidative stress in the liver of the two-stage hepatocarcinogenesis model of mice and the stress induced probably causes secondary oxidative DNA damage. However, clear evidences demonstrating the relationship between DC-induced hepatocarcinogenesis, oxidative stress, and oxidative DNA damage have not been obtained. To clarify the relationship, further investigations were performed in the liver of the partially hepatectomized (PH) mice maintained on diet containing 1,500 ppm of DC for 13 and 26 weeks after intraperitoneal injection of dimethylnitrosamine (DMN). Significant increases in mRNA expressions of some metabolism- and oxidative stress-related genes with a formation of gamma-glutamyltranspeptidase (GGT) positive foci were observed in the DMN + DC + PH group by the treatment of DC for 13 and 26 weeks. The levels of 8-hydroxy-deoxyguanosine (8-OHdG) in the liver DNA also significantly increased in mice of the DMN + DC + PH group at weeks 13 and 26 and mice given DC alone for 26 weeks. The in vitro measurement of reactive oxygen species (ROS) generation from the mouse liver microsomes showed a significant increase of ROS production in the presence of DC. These results suggest that DC induces oxidative stress which is probably derived from its metabolic pathway, partly, and support our previous speculation that oxidative stress plays one of the important roles in the DC-induced hepatocarcinogenesis in mice.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Animals
- Carcinogens/toxicity
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cytochrome P-450 CYP1A1/metabolism
- DNA Damage/drug effects
- DNA Glycosylases/metabolism
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Juvenile Hormones/toxicity
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred ICR
- Oxidative Stress/drug effects
- Oxidoreductases/metabolism
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Superoxide Dismutase/metabolism
- Superoxide Dismutase-1
- Thioredoxin Reductase 1
- Thioredoxin-Disulfide Reductase/metabolism
- Time Factors
- gamma-Glutamyltransferase/metabolism
Collapse
Affiliation(s)
- Mitsuyoshi Moto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ablise M, Leininger-Muller B, Wong CD, Siest G, Loppinet V, Visvikis S. Synthesis and in vitro antioxidant activity of glycyrrhetinic acid derivatives tested with the cytochrome P450/NADPH system. Chem Pharm Bull (Tokyo) 2005; 52:1436-9. [PMID: 15577240 DOI: 10.1248/cpb.52.1436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five glycyrrhetinic acid (Ib) derivatives have been synthesized to try to improve the antioxidant activity. Their in vitro antioxidant activities were studied using a cytochrome P450/NADPH reductase system from rat liver microsomes. The generation of microsomal free radicals was followed by oxidation of the DCFH-DA probe, while evaluating the capacity to inhibit reactive oxygen species (ROS) formation. Two hydroxylated derivatives, 18beta-olean-12-ene-3beta,11alpha,30-triol (II) and 18beta-olean-12-ene-3beta,11beta,30-triol (IV), exhibited strong antioxidant activities. At a concentration of 1.0 mg/ml, these derivatives inhibited ROS formation by 50% and 51%, respectively. Moreover, two homo- and heterocyclic diene derivatives, 18beta-olean-11,13(18)-diene-3beta,30-diol (III) and 18beta-olean-9(11),12-diene-3beta,30-diol (V), were also effective in ROS-scavenging activity (inhibition of 41% and 44% of ROS activity, respectively). In the same conditions, the lead compound (Ib) and the reference vitamin E inhibited ROS activity by 31% and 32%, respectively. Our results suggest that the chemical reduction of the 11-keto and 30-carboxyl groups into hydroxyl function (example, II, IV) can increase the antioxidant activity of Ib significantly. In view of these results, our study represents a further approach to the development of potential therapeutic agents from Ib derivatives for use in pathologic events in which, free radical damage could be involved.
Collapse
Affiliation(s)
- Mourboul Ablise
- INSERM Unité 525, Centre du Médicament, Faculté de Pharmacie, Université Henri Poincaré Nancy 1, Nancy, France
| | | | | | | | | | | |
Collapse
|
38
|
Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chem Rev 2005; 105:2253-77. [PMID: 15941214 DOI: 10.1021/cr0307143] [Citation(s) in RCA: 1530] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
39
|
Midorikawa K, Uchida T, Okamoto Y, Toda C, Sakai Y, Ueda K, Hiraku Y, Murata M, Kawanishi S, Kojima N. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage. Chem Biol Interact 2005; 150:271-81. [PMID: 15560893 DOI: 10.1016/j.cbi.2004.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 09/27/2004] [Accepted: 09/27/2004] [Indexed: 11/16/2022]
Abstract
Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene.
Collapse
Affiliation(s)
- Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choi DW, Leininger-Muller B, Wellman M, Kim YH, Siest G. Cytochrome p-450-mediated differential oxidative modification of proteins: albumin, apolipoprotein E, and CYP2E1 as targets. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:2061-2071. [PMID: 15513903 DOI: 10.1080/15287390490514895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although many studies established a role of cytochrome P-450s in metabolism of xenobiotics, few studies evaluating the ability of cytochrome P-450s to oxidize proteins have been reported. The ability of cytochrome P-450s to induce oxidative modification of albumin, apolipoprotein E, and CYP2E1 protein was investigated. Microsomal cytochrome P-450s induced production of reactive radical species, leading to differential modification of the proteins. Albumin remained unmodified, and CYP2E1 protein was degraded, whereas recombinant and endogenous apolipoprotein E was aggregated. The modification of apolipoprotein E was isoform independent. Cytochrome P-450 inhibitors or antioxidants inhibited the production of reactive radical species and protein modification. These results demonstrate that response of each protein to cytochrome P-450-mediated oxidative attack is different, and cytochrome P-450s can induce apolipoprotein E aggregation, a process that might be relevant to accumulation of altered protein in various abnormal conditions. In view of the ubiquitous expression of cytochrome P-450s, the present results may have important toxicological implications.
Collapse
Affiliation(s)
- Dal Woong Choi
- INSERM U525, Faculté de Pharmacie, Université Nancy, Nancy, France
| | | | | | | | | |
Collapse
|
41
|
Mishin VM, Thomas PE. Characterization of hydroxyl radical formation by microsomal enzymes using a water-soluble trap, terephthalate. Biochem Pharmacol 2004; 68:747-52. [PMID: 15276082 DOI: 10.1016/j.bcp.2004.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 05/04/2004] [Indexed: 11/18/2022]
Abstract
Using terephthalic acid as a water-soluble trap, we characterized hydroxyl radicals (HO?) formation by liver microsomal enzymes from isoniazid-treated rats. We found that HO? formation was entirely dependent on intact microsomal enzymes, the presence of NADPH, and iron complexed with EDTA. In contrast to the other radical traps, we found no evidence that terephthalate is a substrate for cytochrome P450. Cumene hydroperoxide, an artificial supporter of cytochrome P450-catalyzed oxidation, failed to maintain HO(.-) formation. HO(.-) formation in liver microsomes was inhibited by the HO(.-) radical scavengers: dimethyl sulfoxide (DMSO), mannitol, and citrulline. It was abolished by catalase, but not superoxide dismutase (SOD), indicating that hydrogen peroxide was the sole precursor of the HO(.-). Therefore, the generation of hydroxyl radicals by microsomal enzymes appears to be dependent on two processes: (1) the rate of hydrogen peroxide production; and (2) the availability of iron ions or other transition metals for Fenton type reactions.
Collapse
Affiliation(s)
- Vladimir M Mishin
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Liu H, Bigler SA, Henegar JR, Baliga R. Cytochrome P450 2B1 mediates oxidant injury in puromycin-induced nephrotic syndrome. Kidney Int 2002; 62:868-76. [PMID: 12164868 DOI: 10.1046/j.1523-1755.2002.00515.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reactive oxygen metabolites (ROM) are important mediators of puromycin aminonucleoside (PAN) induced minimal change nephrotic syndrome (NS) in rats. We have recently shown that cytochrome P450 (CYP) is a significant source of catalytic iron in this model of glomerular injury. The current study was designed to identify the CYP isozyme(s) in the rat glomeruli and explore the role of the specific isozyme(s) in PAN-induced minimal change NS. METHODS NS was induced in rats by a single intravenous injection of PAN. Animals were sacrificed at different time points for variety of biochemical assays including Western blot, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Ultrastructural histochemistry was utilized to study hydrogen peroxide (H2O2) generation in the kidney. RESULTS Several CYP isozymes were tested and CYP2B1 was localized exclusively in the rat glomeruli but not in the tubules. Treatment with PAN resulted in the generation of H2O2 in the glomerular basement membrane with significant loss of CYP2B1 content accompanied by a marked increase in the catalytic iron. CYP2B1 inhibitors cimetidine and piperine significantly reduced H2O2 generation, and prevented the loss of CYP2B1 content and the increase in the catalytic iron. CYP2B1 inhibitors also provided significant protection against PAN induced proteinuria. The induction of heme oxygenase and ferritin also was observed in the glomeruli in PAN-treated rats. Both cimetidine and piperine reduced the up-regulation of these proteins. CONCLUSION Our data indicate that CYP2B1 plays an important role in PAN induced NS by serving as a site for ROM generation and a significant source of catalytic iron.
Collapse
Affiliation(s)
- Hua Liu
- Department of Pediatrics, Division of Nephrology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
43
|
Stupans I, Kirlich A, Tuck KL, Hayball PJ. Comparison of radical scavenging effect, inhibition of microsomal oxygen free radical generation, and serum lipoprotein oxidation of several natural antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2464-2469. [PMID: 11929315 DOI: 10.1021/jf0112320] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Typical components of the Mediterranean diet, such as olive oil and red wine, contain high concentrations of complex phenols, which have been suggested to have an important antioxidant role. The aim of the present work was to determine the inhibitory potency of compounds such as oleuropein, hydroxytyrosol, and other structurally related compounds, such as gallic acid, toward reactive oxygen species generation and free radical scavenging ability. The potency of these compounds was also examined with respect to protecting in vitro low-density lipoprotein oxidation. These studies indicate that complex phenols, such as hydroxytyrosol, and gallic acid both inhibit free radical generation and act as free radical scavengers. The use of three different approaches to determine antioxidant potency demonstrates that activity in one test does not necessarily correlate with activity in another. It was also demonstrated that the presence of two phenolic groups is not always associated with antioxidant activity.
Collapse
Affiliation(s)
- Ieva Stupans
- Center for Pharmaceutical Research, School of Pharmaceutical, Molecular and Biomedical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | | | | | | |
Collapse
|
44
|
Siraki AG, Pourahmad J, Chan TS, Khan S, O'Brien PJ. Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic Biol Med 2002; 32:2-10. [PMID: 11755311 DOI: 10.1016/s0891-5849(01)00764-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species (ROS) formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous ROS formation was markedly increased in catalase-inhibited or GSH-depleted hepatocytes, and was inhibited by ROS scavengers or desferoxamine. Endogenous ROS formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor, or phenelzine, a monoamine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased ROS formation before cytotoxicity ensued. Furthermore, uncouplers of oxidative phosphorylation inhibited endogenous ROS formation. This suggests endogenous ROS formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and ROS formation before cytotoxicity ensued. Addition of peroxisomal substrates also increased antimycin A-resistant respiration but they were less effective at inducing ROS formation and were not cytotoxic. However, peroxisomal substrates readily induced ROS formation and were cytotoxic towards catalase-inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H(2)O(2) formed in the peroxisomes. Hepatocyte catalyzed dichlorofluorescin oxidation induced by oxidase substrates, e.g., benzylamine, was correlated with the cytotoxicity induced in catalase-inhibited hepatocytes.
Collapse
Affiliation(s)
- Arno G Siraki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario, Canada M5S 2S2
| | | | | | | | | |
Collapse
|
45
|
Paolini M, Potenza G, Biagi G, Cantelli-Forti G. Re: ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome p450 enzymes (toxicol. appl. pharmacol. 164, 305-311, 2000). Toxicol Appl Pharmacol 2001; 173:188-9. [PMID: 11437640 DOI: 10.1006/taap.2001.9196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Reply. Toxicol Appl Pharmacol 2001. [DOI: 10.1006/taap.2001.9197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001; 280:E685-94. [PMID: 11287350 DOI: 10.1152/ajpendo.2001.280.5.e685] [Citation(s) in RCA: 708] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engagement of the receptor for advanced glycation end products (RAGE) by products of nonenzymatic glycation/oxidation triggers the generation of reactive oxygen species (ROS), thereby altering gene expression. Because dissection of the precise events by which ROS are generated via RAGE is relevant to the pathogenesis of complications in AGE-related disorders, such as diabetes and renal failure, we tested the hypothesis that activation of NADPH oxidase contributed, at least in part, to enhancing oxidant stress via RAGE. Here we show that incubation of human endothelial cells with AGEs on the surface of diabetic red blood cells, or specific AGEs, (carboxymethyl)lysine (CML)-modified adducts, prompted intracellular generation of hydrogen peroxide, cell surface expression of vascular cell adhesion molecule-1, and generation of tissue factor in a manner suppressed by treatment with diphenyliodonium, but not by inhibitors of nitric oxide. Consistent with an important role for NADPH oxidase, although macrophages derived from wild-type mice expressed enhanced levels of tissue factor upon stimulation with AGE, macrophages derived from mice deficient in a central subunit of NADPH oxidase, gp91phox, failed to display enhanced tissue factor in the presence of AGE. These findings underscore a central role of NADPH oxidase in AGE-RAGE-mediated generation of ROS and provide a mechanism for altered gene expression in AGE-related disorders.
Collapse
Affiliation(s)
- M P Wautier
- Laboratoire de Biologie Vasculaire et Cellulaire, Hôpital Lariboisière, Paris, France 75475.
| | | | | | | | | | | |
Collapse
|