1
|
Kwon T, Artiaga BL, McDowell CD, Whitworth KM, Wells KD, Prather RS, Delhon G, Cigan M, White SN, Retallick J, Gaudreault NN, Morozov I, Richt JA. Gene editing of pigs to control influenza A virus infections. Emerg Microbes Infect 2024; 13:2387449. [PMID: 39083026 PMCID: PMC11346336 DOI: 10.1080/22221751.2024.2387449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Proteolytic activation of the haemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in a significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to wild-type pigs. Our findings support the commercial use of GE pigs to mitigate influenza A virus infection in pigs, as an alternative approach to prevent zoonotic influenza A transmissions from pigs to humans.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Kristin M. Whitworth
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Kevin D. Wells
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Randall S. Prather
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Zhirnov OP, Lvov DK. Avian flu: «for whom the bell tolls»? Vopr Virusol 2024; 69:101-118. [PMID: 38843017 DOI: 10.36233/10.36233/0507-4088-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/14/2024]
Abstract
The family Orthomyxoviridae consists of 9 genera, including Alphainfluenzavirus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus». The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.
Collapse
Affiliation(s)
- O P Zhirnov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
- The Russian-German Academy of Medical-Social and Biotechnological Sciences, Skolkovo Innovation Center
| | - D K Lvov
- The D.I. Ivaovsky Institute of Virology, The N.F. Gamaleya Research Center of Epidemiology and Microbiology, The Russian Ministry of Health
| |
Collapse
|
3
|
Heindl MR, Rupp AL, Schwerdtner M, Bestle D, Harbig A, De Rocher A, Schmacke LC, Staker B, Steinmetzer T, Stein DA, Moulton HM, Böttcher-Friebertshäuser E. ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells. J Virol 2024; 98:e0010224. [PMID: 38470058 PMCID: PMC11019950 DOI: 10.1128/jvi.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.
Collapse
Affiliation(s)
| | - Anna-Lena Rupp
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Anne Harbig
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Amy De Rocher
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Luna C. Schmacke
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
4
|
Dey S, Mondal A. Unveiling the role of host kinases at different steps of influenza A virus life cycle. J Virol 2024; 98:e0119223. [PMID: 38174932 PMCID: PMC10805039 DOI: 10.1128/jvi.01192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.
Collapse
Affiliation(s)
- Soumik Dey
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
5
|
Kwon T, Artiaga BL, McDowell CD, Whitworth KM, Wells KD, Prather RS, Delhon G, Cigan M, White SN, Retallick J, Gaudreault NN, Morozov I, Richt JA. Gene editing of pigs to control influenza A virus infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575771. [PMID: 38293027 PMCID: PMC10827075 DOI: 10.1101/2024.01.15.575771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Proteolytic activation of the hemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to WT pigs. Our findings could support the commercial use of GE pigs to minimize (i) the economic losses caused by IAV infection in pigs, and (ii) the emergence of novel IAVs with pandemic potential through genetic reassortment in the "mixing vessel", the pig.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Bianca L. Artiaga
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin M. Whitworth
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Kevin D. Wells
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Science & National Swine Resource and Research Center, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | - Jamie Retallick
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Cronk BD, Caserta LC, Laverack M, Gerdes RS, Hynes K, Hopf CR, Fadden MA, Nakagun S, Schuler KL, Buckles EL, Lejeune M, Diel DG. Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits ( Vulpes vulpes). Emerg Microbes Infect 2023; 12:2249554. [PMID: 37589241 PMCID: PMC10512766 DOI: 10.1080/22221751.2023.2249554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Avian influenza H5N1 is a highly pathogenic virus that primarily affects birds. However, it can also infect other animal species, including mammals. We report the infection of nine juvenile red foxes (Vulpes vulpes) with Highly Pathogenic Avian Influenza A type H5N1 (Clade 2.3.4.4b) in the spring of 2022 in the central, western, and northern regions of New York, USA. The foxes displayed neurologic signs, and examination of brain and lung tissue revealed lesions, with brain lesions ranging from moderate to severe meningoencephalitis. Analysis of tissue tropism using RT-PCR methods showed a comparatively lower Ct value in the brain, which was confirmed by in situ hybridization targeting Influenza A RNA. The viral RNA labelling was highly clustered and overlapped the brain lesions, observed in neurons, and grey matter. Whole viral genome sequences obtained from the affected foxes were subjected to phylogenetic and mutation analysis to determine influenza A clade, host specificity, and potential occurrence of viral reassortment. Infections in red foxes likely occurred due to preying on infected wild birds and are unlikely due to transmission between foxes or other mammals.
Collapse
Affiliation(s)
- Brittany D. Cronk
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Leonardo Cardia Caserta
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rhea S. Gerdes
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kevin Hynes
- New York State Department of Environmental Conservation, Wildlife Health Program, Albany, NY, USA
| | - Cynthia R. Hopf
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Melissa A. Fadden
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Shotaro Nakagun
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L. Schuler
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Elizabeth L. Buckles
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Meng X, Veit M. Palmitoylation of the hemagglutinin of influenza B virus by ER-localized DHHC enzymes 1, 2, 4, and 6 is required for efficient virus replication. J Virol 2023; 97:e0124523. [PMID: 37792001 PMCID: PMC10617437 DOI: 10.1128/jvi.01245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.
Collapse
Affiliation(s)
- Xiaorong Meng
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| | - Michael Veit
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
8
|
Foret-Lucas C, Figueroa T, Coggon A, Houffschmitt A, Dupré G, Fusade-Boyer M, Guérin JL, Delverdier M, Bessière P, Volmer R. In Vitro and In Vivo Characterization of H5N8 High-Pathogenicity Avian Influenza Virus Neurotropism in Ducks and Chickens. Microbiol Spectr 2023; 11:e0422922. [PMID: 36625654 PMCID: PMC9927090 DOI: 10.1128/spectrum.04229-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
9
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
10
|
Joseph JG, Mudgal R, Lin SS, Ono A, Liu AP. Biomechanical Role of Epsin in Influenza A Virus Entry. MEMBRANES 2022; 12:859. [PMID: 36135878 PMCID: PMC9505878 DOI: 10.3390/membranes12090859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Influenza A virus (IAV) utilizes clathrin-mediated endocytosis for cellular entry. Membrane-bending protein epsin is a cargo-specific adaptor for IAV entry. Epsin interacts with ubiquitinated surface receptors bound to IAVs via its ubiquitin interacting motifs (UIMs). Recently, epsin was shown to have membrane tension sensitivity via its amphiphilic H0 helix. We hypothesize this feature is important as IAV membrane binding would bend the membrane and clinical isolates of IAVs contain filamentous IAVs that may involve more membrane bending. However, it is not known if IAV internalization might also depend on epsin's H0 helix. We found that CALM, a structurally similar protein to epsin lacking UIMs shows weaker recruitment to IAV-containing clathrin-coated structures (CCSs) compared to epsin. Removal of the ENTH domain of epsin containing the N-terminus H0 helix, which detects changes in membrane curvature and membrane tension, or mutations in the ENTH domain preventing the formation of H0 helix reduce the ability of epsin to be recruited to IAV-containing CCSs, thereby reducing the internalization of spherical IAVs. However, internalization of IAVs competent in filamentous particle formation is not affected by the inhibition of H0 helix formation in the ENTH domain of epsin. Together, these findings support the hypothesis that epsin plays a biomechanical role in IAV entry.
Collapse
Affiliation(s)
- Jophin G. Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajat Mudgal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan-Shan Lin
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Genetic Determinants for Virulence and Transmission of the Panzootic Avian Influenza Virus H5N8 Clade 2.3.4.4 in Pekin Ducks. J Virol 2022; 96:e0014922. [PMID: 35670594 DOI: 10.1128/jvi.00149-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.
Collapse
|
12
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
13
|
Abstract
Emerging zoonotic viral pathogens threaten global health, and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, a component of the retromer complex, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic- and pandemic-threat coronaviruses, as well as ebolavirus. Notably, we observed a heightened requirement for VPS29 by the recently described Omicron variant of SARS-CoV-2 compared to the ancestral variant. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. Deficiency in VPS29 or other retromer components caused changes in endosome morphology and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence cellular susceptibility to viral infection and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases.
Collapse
|
14
|
Bessière P, Figueroa T, Coggon A, Foret-Lucas C, Houffschmitt A, Fusade-Boyer M, Dupré G, Guérin JL, Delverdier M, Volmer R. Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. J Virol 2022; 96:e0136621. [PMID: 34613804 PMCID: PMC8754203 DOI: 10.1128/jvi.01366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
15
|
Wu J, Zhang L, Wang X. Host Sex Steroids Interact With Virus Infection: New Insights Into Sex Disparity in Infectious Diseases. Front Microbiol 2021; 12:747347. [PMID: 34803967 PMCID: PMC8600311 DOI: 10.3389/fmicb.2021.747347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Sex hormones are steroid hormones synthesized from the gonads of animals and tissues such as the placenta and adrenocortical reticular zone. The physiological functions of sex hormones are complex. Sex hormones are not only pathologically correlated with many diseases of the reproductive system, but are etiological factors in some viral infectious diseases, including disease caused by infections of coronaviruses, herpesviruses, hepatitis viruses, and other kinds of human viruses, which either exhibit a male propensity in clinical practice, or crosstalk with androgen receptor (AR)-related pathways in viral pathogenesis. Due to the global pandemic of coronavirus disease 2019 (COVID-19), the role of androgen/AR in viral infectious disease is highlighted again, majorly representing by the recent advances of AR-responsive gene of transmembrane protease/serine subfamily member 2 (TMPRSS2), which proteolytically activates the receptor-mediated virus entry by many coronaviruses and influenza virus, along with the role of androgen-mediated signaling for the transcription of hepatitis B virus (HBV), and the role of sex hormone responsive genes during Zika virus (ZIKV) pathogenesis, et al. Collectively, we propose to provide a comprehensive overview of the role of male sex hormones during multiple phases in the life cycle of different human viruses, which may be partly responsible for the sex-specific prevalence, severity and mortality of some diseases, therefore, may provide clues to develop more efficient prevention and treatment strategies for high-risk populations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
17
|
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.
Collapse
Affiliation(s)
- Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
18
|
Hemagglutinins of avian influenza viruses are proteolytically activated by TMPRSS2 in human and murine airway cells. J Virol 2021; 95:e0090621. [PMID: 34319155 DOI: 10.1128/jvi.00906-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7 and H10 in mice. In contrast, additional proteases are involved in activation of certain H3 IAVs, indicating that HAs with monobasic cleavage site can differ in their sensitivity to host proteases. Here, we investigated the role of TMPRSS2 in proteolytic activation of avian HA subtypes H1 to H11 and H14 to H16 in human and mouse airway cell cultures. Using reassortant viruses carrying representative HAs, we analysed HA cleavage and multicycle replication in (i) lung cells of TMPRSS2-deficient mice and (ii) Calu-3 cells and primary human bronchial cells subjected to morpholino oligomer-mediated knockdown of TMPRSS2 activity. TMPRSS2 was found to be crucial for activation of H1 to H11, H14 and H15 in airway cells of human and mouse. Only H9 with an R-S-S-R cleavage site and H16 were proteolytically activated in the absence of TMPRSS2 activity, albeit with reduced efficiency. Moreover, a TMPRSS2-orthologous protease from duck supported activation of H1 to H11, H15 and H16 in MDCK cells. Together, our data demonstrate that in human and murine respiratory cells, TMPRSS2 is the major activating protease of almost all IAV HA subtypes with monobasic cleavage site. Furthermore, our results suggest that TMPRSS2 supports activation of IAV with monobasic cleavage site in ducks. Importance Human infections with avian influenza A viruses upon exposure to infected birds are frequently reported and have received attention as a potential pandemic threat. Cleavage of the envelope glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. In this study, we identify the transmembrane protease TMPRSS2 as the major activating protease of avian influenza virus HAs of subtypes H1 to H11, H14 and H15 in human and murine airway cells. Our data demonstrate that inhibition of TMPRSS2 activity may provide a useful approach for the treatment of human infections with avian influenza viruses that should be considered for pandemic preparedness as well. Additionally, we show that a TMPRSS2-orthologous protease from duck can activate avian influenza virus HAs with a monobasic cleavage site and thus represents a potential virus-activating protease in waterfowl, the primary reservoir for influenza A viruses.
Collapse
|
19
|
You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomol Ther (Seoul) 2021; 29:249-262. [PMID: 33875625 PMCID: PMC8094071 DOI: 10.4062/biomolther.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/05/2022] Open
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Collapse
Affiliation(s)
- Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Pusan 50612, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Schön J, Breithaupt A, Höper D, King J, Pohlmann A, Parvin R, Behr KP, Schwarz BA, Beer M, Stech J, Harder T, Grund C. Neuraminidase-associated plasminogen recruitment enables systemic spread of natural avian Influenza viruses H3N1. PLoS Pathog 2021; 17:e1009490. [PMID: 33891662 PMCID: PMC8118554 DOI: 10.1371/journal.ppat.1009490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/13/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Repeated outbreaks due to H3N1 low pathogenicity avian influenza viruses (LPAIV) in Belgium were associated with unusually high mortality in chicken in 2019. Those events caused considerable economic losses and prompted restriction measures normally implemented for eradicating high pathogenicity avian influenza viruses (HPAIV). Initial pathology investigations and infection studies suggested this virus to be able to replicate systemically, being very atypical for H3 LPAIV. Here, we investigate the pathogenesis of this H3N1 virus and propose a mechanism explaining its unusual systemic replication capability. By intravenous and intracerebral inoculation in chicken, we demonstrate systemic spread of this virus, extending to the central nervous system. Endoproteolytic viral hemagglutinin (HA) protein activation by either tissue-restricted serine peptidases or ubiquitous subtilisin-like proteases is the functional hallmark distinguishing (H5 or H7) LPAIV from HPAIV. However, luciferase reporter assays show that HA cleavage in case of the H3N1 strain in contrast to the HPAIV is not processed by intracellular proteases. Yet the H3N1 virus replicates efficiently in cell culture without trypsin, unlike LPAIVs. Moreover, this trypsin-independent virus replication is inhibited by 6-aminohexanoic acid, a plasmin inhibitor. Correspondingly, in silico analysis indicates that plasminogen is recruitable by the viral neuraminidase for proteolytic activation due to the loss of a strongly conserved N-glycosylation site at position 130. This mutation was shown responsible for plasminogen recruitment and neurovirulence of the mouse brain-passaged laboratory strain A/WSN/33 (H1N1). In conclusion, our findings provide good evidence in natural chicken strains for N1 neuraminidase-operated recruitment of plasminogen, enabling systemic replication leading to an unusual high pathogenicity phenotype. Such a gain of function in naturally occurring AIVs representing an established human influenza HA-subtype raises concerns over potential zoonotic threats.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Greifswald–Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Rokshana Parvin
- Department of Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Greifswald–Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| |
Collapse
|
21
|
Telwatte S, Kumar N, Vallejo-Gracia A, Kumar GR, Lu CM, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR Assays for determining the transcriptional profile of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.12.425991. [PMID: 33469579 PMCID: PMC7814816 DOI: 10.1101/2021.01.12.425991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The exact mechanism of coronavirus replication and transcription is not fully understood; however, a hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of specially designed SARS-CoV-2 ddPCR-based assays to map the viral transcription profile. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 replication and transcription and may also inform the development of improved diagnostic tools and therapeutics.
Collapse
Affiliation(s)
- Sushama Telwatte
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | | | - G. Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Infectious Diseases, San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
22
|
Blaurock C, Scheibner D, Landmann M, Vallbracht M, Ulrich R, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. Non-basic amino acids in the hemagglutinin proteolytic cleavage site of a European H9N2 avian influenza virus modulate virulence in turkeys. Sci Rep 2020; 10:21226. [PMID: 33277593 PMCID: PMC7718272 DOI: 10.1038/s41598-020-78210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
H9N2 avian influenza virus (AIV) is the most widespread low pathogenic (LP) AIV in poultry and poses a serious zoonotic risk. Vaccination is used extensively to mitigate the economic impact of the virus. However, mutations were acquired after long-term circulation of H9N2 virus in poultry, particularly in the hemagglutinin (HA) proteolytic cleavage site (CS), a main virulence determinant of AIV. Compared to chickens, little is known about the genetic determinants for adaptation of H9N2 AIV to turkeys. Here, we describe 36 different CS motifs in Eurasian H9N2 viruses identified from 1966 to 2019. The European H9N2 viruses specify unique HACS with particular polymorphism by insertion of non-basic amino acids at position 319. Recombinant viruses carrying single HACS mutations resembling field viruses were constructed (designated G319, A319, N319, S319, D319 and K319). Several viruses replicated to significantly higher titers in turkey cells than in chicken cells. Serine proteases were more efficient than trypsin to support multicycle replication in mammalian cells. Mutations affected cell-to-cell spread and pH-dependent HA fusion activity. In contrast to chickens, mutations in the HACS modulated clinical signs in inoculated and co-housed turkeys. G319 exhibited the lowest virulence, however, it replicated to significantly higher titers in contact-turkeys and in vitro. Interestingly, H9N2 viruses, particularly G319, replicated in brain cells of turkeys and to a lesser extent in mammalian brain cells independent of trypsin. Therefore, the silent circulation of potentially zoonotic H9N2 viruses in poultry should be monitored carefully. These results are important for understanding the adaptation of H9N2 in poultry and replication in mammalian cells.
Collapse
Affiliation(s)
- Claudia Blaurock
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Maria Landmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Melina Vallbracht
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | | | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
23
|
Zamorano Cuervo N, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9:e61390. [PMID: 33164751 PMCID: PMC7652413 DOI: 10.7554/elife.61390] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.
Collapse
Affiliation(s)
| | - Nathalie Grandvaux
- CRCHUM - Centre Hospitalier de l’Université de MontréalQuébecCanada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de MontréalQuébecCanada
| |
Collapse
|
24
|
Controlling Avian Influenza Virus in Bangladesh: Challenges and Recommendations. Viruses 2020; 12:v12070751. [PMID: 32664683 PMCID: PMC7412482 DOI: 10.3390/v12070751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
Avian influenza virus (AIV) remains a huge challenge for poultry production with negative repercussions for micro- and macro-economy and public health in Bangladesh. High (HP) H5N1 and low pathogenicity (LP) H9N2 AIV are currently endemic in poultry, and both have been reported to infect humans sporadically. Multiple virus introductions of different clades of HPAIV H5N1, reassorted genotypes, and on-going diversification of LPAIV H9N2 create a highly volatile virological environment which potentially implicates increased virulence, adaptation to new host species, and subsequent zoonotic transmission. Allotropy of poultry rearing systems and supply chains further increase the risk of virus spreading, which leads to human exposure and fosters the emergence of new potentially pre-pandemic virus strains. Here, we review the epidemiology, focusing on (i) risk factors for virus spreading, (ii) viral genetic evolution, and (iii) options for AIV control in Bangladesh. It is concluded that improved control strategies would profit from the integration of various intervention tools, including effective vaccination, enhanced biosecurity practice, and improved awareness of producers and traders, although widespread household poultry rearing significantly interferes with any such strategies. Nevertheless, continuous surveillance associated with rapid diagnosis and thorough virus characterization is the basis of such strategies.
Collapse
|
25
|
Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O, Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ, Georgiev G, Quiroz J, Barnhill J, Pirofski LA, Daily JP, Dye JM, Lai JR, Herbert AS, Chandran K, Jangra RK. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe 2020; 28:486-496.e6. [PMID: 32738193 PMCID: PMC7332447 DOI: 10.1016/j.chom.2020.06.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition. Highly infectious recombinant VSV expressing SARS-CoV-2 spike (S) was generated rVSV-SARS-CoV-2 S resembles SARS-CoV-2 in entry and inhibitor or antibody sensitivity rVSV-SARS-CoV-2 S affords rapid screens and forward-genetic analyses of antivirals
Collapse
Affiliation(s)
- M Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shawn A Abbasi
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catalina Florez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Amanda Mengotto
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Duncan Kimmel
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - George Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose Quiroz
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Liise-Anne Pirofski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Lambertz RLO, Gerhauser I, Nehlmeier I, Gärtner S, Winkler M, Leist SR, Kollmus H, Pöhlmann S, Schughart K. H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virol J 2020; 17:56. [PMID: 32321537 PMCID: PMC7178614 DOI: 10.1186/s12985-020-01323-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
The host cell protease TMPRSS2 cleaves the influenza A virus (IAV) hemagglutinin (HA). Several reports have described resistance of Tmprss2−/− knock-out (KO) mice to IAV infection but IAV of the H2 subtype have not been examined yet. Here, we demonstrate that TMPRSS2 is able to cleave H2-HA in cell culture and that Tmprss2−/− mice are resistant to infection with a re-assorted PR8_HA(H2) virus. Infection of KO mice did not cause major body weight loss or death. Furthermore, no significant increase in lung weights and no virus replication were observed in Tmprss2−/− mice. Finally, only minor tissue damage and infiltration of immune cells were detected and no virus-positive cells were found in histological sections of Tmprss2−/− mice. In summary, our studies indicate that TMPRSS2 is required for H2 IAV spread and pathogenesis in mice. These findings extend previous results pointing towards a central role of TMPRSS2 in IAV infection and validate host proteases as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Ruth Lydia Olga Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah Rebecca Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current Address: Department of Epidemiology, University of North Carolina, Chapel Hill, USA
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.,Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
27
|
Harbig A, Mernberger M, Bittel L, Pleschka S, Schughart K, Steinmetzer T, Stiewe T, Nist A, Böttcher-Friebertshäuser E. Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airways. J Biol Chem 2020; 295:11388-11407. [PMID: 32303635 DOI: 10.1074/jbc.ra120.012635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.
Collapse
Affiliation(s)
- Anne Harbig
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany
| | - Linda Bittel
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, 35390 Giessen, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,University of Veterinary Medicine Hannover, 30559 Hannover, Germany.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany.,Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | | |
Collapse
|
28
|
Beerens N, Heutink R, Harders F, Bossers A, Koch G, Peeters B. Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. J Virol 2020; 94:e01818-19. [PMID: 31969434 PMCID: PMC7108855 DOI: 10.1128/jvi.01818-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
Low-pathogenicity avian influenza (LPAI) viruses of subtypes H5 and H7 have the ability to spontaneously mutate to highly pathogenic (HPAI) virus variants, causing high mortality in poultry. The highly pathogenic phenotype is caused by mutation of the hemagglutinin (HA) cleavage site, but additional mutations may play a role. Evidence from the field for the switch to high pathogenicity remains scarce. This study provides direct evidence for LPAI-to-HPAI virus mutation during H7N3 infection of a turkey farm in the Netherlands. No severe clinical symptoms were reported at the farm, but deep sequencing of isolates from the infected turkeys revealed a minority of HPAI virus sequences (0.06%) in the virus population. The HPAI virus contained a 12-nucleotide insertion in the HA cleavage site that was likely introduced by a single event as no intermediates with shorter inserts were identified. This suggests nonhomologous recombination as the mechanism of insertion. Analysis of different organs of the infected turkeys showed the largest amount of HPAI virus in the lung (4.4%). The HPAI virus was rapidly selected in experimentally infected chickens after both intravenous and intranasal/intratracheal inoculation with a mixed virus preparation. Full-genome sequencing revealed that both pathotypes contained a deletion in the stalk region of the neuraminidase protein. We identified additional mutations in HA and polymerase basic protein 1 (PB1) in the HPAI virus, which were already present as minority variants in the LPAI virus population. Our findings provide more insight into the molecular changes and mechanisms involved in the emergence and selection of HPAI viruses.IMPORTANCE Low-pathogenicity avian influenza (LPAI) viruses circulate in wild birds and can be transmitted to poultry. LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses causing severe disease and death in poultry. Little is known about this switch to high pathogenicity. We isolated an LPAI H7N3 virus from an infected turkey farm and showed that this contains small amounts of HPAI virus. The HPAI virus rapidly outcompeted the LPAI virus in chickens that were experimentally infected with this mixture of viruses. We analyzed the genome sequences of the LPAI and HPAI viruses and identified several changes that may be important for a virus to become highly pathogenic. This knowledge may be used for timely identification of LPAI viruses that pose a risk of becoming highly pathogenic in the field.
Collapse
Affiliation(s)
- Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Guus Koch
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ben Peeters
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
29
|
Dreier C, Resa-Infante P, Thiele S, Stanelle-Bertram S, Walendy-Gnirß K, Speiseder T, Preuss A, Müller Z, Klenk HD, Stech J, Gabriel G. Mutations in the H7 HA and PB1 genes of avian influenza a viruses increase viral pathogenicity and contact transmission in guinea pigs. Emerg Microbes Infect 2020; 8:1324-1336. [PMID: 31503518 PMCID: PMC6746284 DOI: 10.1080/22221751.2019.1663131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Avian influenza A viruses (AIV) of the H7 subtype continue to evolve posing a pandemic threat. However, molecular markers of H7N7 AIV pathogenicity and transmission in mammals remain poorly understood. In this study, we performed a systematic in vitro and in vivo analysis by comparing an H7N7 highly pathogenic AIV and its ferret adapted variant. Passaging an H7N7 AIV in ferrets led to six mutations in genes encoding the viral polymerase complex and the viral surface proteins. Here, we show that mutations in the H7 hemagglutinin gene cause increased pathogenicity in mice. Contact transmission between guinea pigs required additional mutations in the gene encoding the polymerase subunit PB1. Thus, particular vigilance is required with respect to HA and PB1 mutations as predictive molecular markers to assess the pandemic risk posed by emerging H7 avian influenza viruses.
Collapse
Affiliation(s)
- Carola Dreier
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Current address: University of Ulm , Ulm , Germany
| | - Patricia Resa-Infante
- Institute of Virology, University of Veterinary Medicine , Hannover , Germany.,Current address: IrsiCaixa AIDS Research Institute , Barcelona , Spain
| | - Swantje Thiele
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Stephanie Stanelle-Bertram
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Kerstin Walendy-Gnirß
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Thomas Speiseder
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Annette Preuss
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Zacharias Müller
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Hans-Dieter Klenk
- Institute for Virology, Philipps University of Marburg , Marburg , Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute , Greifswald , Germany
| | - Gülsah Gabriel
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Institute of Virology, University of Veterinary Medicine , Hannover , Germany
| |
Collapse
|
30
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
31
|
TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J Virol 2019; 93:JVI.00649-19. [PMID: 31391268 DOI: 10.1128/jvi.00649-19] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.
Collapse
|
32
|
Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 2019; 9:11556. [PMID: 31399610 PMCID: PMC6689016 DOI: 10.1038/s41598-019-47938-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys and ducks.
Collapse
|
33
|
Lambertz RLO, Gerhauser I, Nehlmeier I, Leist SR, Kollmus H, Pöhlmann S, Schughart K. Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis. J Gen Virol 2019; 100:1073-1078. [PMID: 31099738 DOI: 10.1099/jgv.0.001274] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The surface protein haemagglutinin (HA) of influenza A viruses (IAV) needs to be cleaved by a host protease to become functional. Here, we investigated if IAV of the H10 subtype also requires TMPRSS2 for replication and pathogenesis in mice. We first showed in cell culture that TMPRSS2 is able to cleave H10-HA. When Tmprss2-/- deficient mice were infected with a re-assorted virus H10-HA, they did not lose body weight and no viral replication was observed in contrast to wild-type mice. Histopathological analysis showed that inflammatory lesions in the lung of Tmprss2-/- mice were reduced compared to wild-type mice. In addition, no viral antigen was detected in the lungs of Tmprss2-/- mice and no evidence for HA cleavage was observed. We conclude from these studies that TMPRSS2 activity is also essential for in vivo replication and pathogenesis of H10 IAV.
Collapse
Affiliation(s)
- Ruth L O Lambertz
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Gerhauser
- 2 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Inga Nehlmeier
- 3 Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah R Leist
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Pöhlmann
- 3 Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.,4 Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Klaus Schughart
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,5 University of Veterinary Medicine Hannover, Hannover, Germany.,6 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Nieto A, Vasilijevic J, Santos NB, Zamarreño N, López P, Amorim MJ, Falcon A. Mutation S110L of H1N1 Influenza Virus Hemagglutinin: A Potent Determinant of Attenuation in the Mouse Model. Front Immunol 2019; 10:132. [PMID: 30787926 PMCID: PMC6372558 DOI: 10.3389/fimmu.2019.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 01/27/2023] Open
Abstract
Characterization of a pandemic 2009 H1N1 influenza virus isolated from a fatal case patient (F-IAV), showed the presence of three different mutations; potential determinants of its high pathogenicity that were located in the polymerase subunits (PB2 A221T and PA D529N) and the hemagglutinin (HA S110L). Recombinant viruses containing individually or in combination the polymerase mutations in the backbone of A/California/04/09 (CAL) showed that PA D529N was clearly involved in the increased pathogenicity of the F-IAV virus. Here, we have evaluated the contribution of HA S110L to F-IAV pathogenicity, through introduction of this point mutation in CAL recombinant virus (HA mut). The HA S110L protein has similar pH stability, comparable mobility, and entry properties both in human and mouse cultured cells that wild type HA. The change HA S110L leads to a non-significant trend to reduce the replication capacity of influenza virus in tissue culture, and HA mut is better neutralized than CAL virus by monoclonal and polyclonal antibodies against HA from CAL strain. In addition, recombinant viruses containing HA S110L alone or in combination with polymerase mutations considerably increased the LD50 in infected mice. Characterization of the lungs of HA mut infected animals showed reduced lung damage and inflammation compared with CAL infected mice. Accordingly, lower virus replication, decreased presence in bronchioli and parenchyma and lower leukocytes and epithelial infected cells were found in the lungs of HA mut-infected animals. Our results indicate that, mutation HA S110L constitutes a determinant of attenuation and suggest that its interaction with components of the respiratory tract mucus and lectins, that play an important role on influenza virus outcome, may constitute a physical barrier impeding the infection of the target cells, thus compromising the infection outcome.
Collapse
Affiliation(s)
- Amelia Nieto
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| | | | - Nuno Brito Santos
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Noelia Zamarreño
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| | - Pablo López
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maria Joao Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Falcon
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain.,Center for Biomedical Research (CIBER), Madrid, Spain
| |
Collapse
|
35
|
Graaf A, Ulrich R, Maksimov P, Scheibner D, Koethe S, Abdelwhab EM, Mettenleiter TC, Beer M, Harder T. A viral race for primacy: co-infection of a natural pair of low and highly pathogenic H7N7 avian influenza viruses in chickens and embryonated chicken eggs. Emerg Microbes Infect 2018; 7:204. [PMID: 30514922 PMCID: PMC6279742 DOI: 10.1038/s41426-018-0204-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/14/2018] [Accepted: 11/17/2018] [Indexed: 11/10/2022]
Abstract
Highly pathogenic avian influenza virus (HPAIV) infection in poultry caused devastating mortality and economic losses. HPAIV of subtypes H5 and H7 emerge from precursor viruses of low pathogenicity (LP) by spontaneous mutation associated with a shift in the susceptibility of the endoproteolytic cleavage site of the viral hemagglutinin protein from trypsin- to furin-like proteases. A recently described natural pair of LP/HP H7N7 viruses derived from two spatio-temporally linked outbreaks in layer chickens was used to study how a minority of mutated HP virions after de novo generation in a single host might gain primacy. Co-infection experiments in embryonated eggs and in chickens were conducted to investigate amplification, spread and transmissionof HPAIV within a poultry population that experiences concurrent infection by an antigenically identical LP precursor virus. Simultaneous LPAIV co-infection (inoculum dose of 106 egg-infectious dose 50% endpoint (EID50)/0.5 mL) withincreasing titers of HPAIV from 101 to 105.7 EID50/0.5 mL) had a significant impeding impact on HP H7 replication, viral excretion kinetics, clinical signs and histopathological lesions (in vivo) and on embryo mortality (in ovo). LP/HP co-infected chickens required a hundredfold higher virus dose (HPAIV inoculum of 105 EID50) compared to HPAIV mono-infection (HPAIV inoculum of 103 EID50) to develop overt clinical signs, mortality and virus spread to uninfected sentinels. Escape and spread of HP phenotypes after de novo generation in an index host may therefore be highly precarious due to significant competition with co-circulating LP precursor virus.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493, Greifswald, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Südufer 10, 17493, Greifswald, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Südufer 10, 17493, Greifswald, Germany
| | - Susanne Koethe
- Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Südufer 10, 17493, Greifswald, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Südufer 10, 17493, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Germany.
| |
Collapse
|
36
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
37
|
Petrova PA, Konovalova NI, Danilenko DM, Vasilieva AD, Eropkin MY. PROBLEMS OF ISOLATION, IDENTIFICATION AND ANTIGENIC CHARACTERIZATION OF RECENT HUMAN A(H3N2) INFLUENZA VIRUSES. Vopr Virusol 2018; 63:160-164. [PMID: 36494971 DOI: 10.18821/0507-4088-2018-63-4-160-164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Human A (H3N2) influenza viruses are distinguished by a high rate of evolution and regularly cause epidemics around the world. Their ability to adapt and to escape from the host's immune response and to change their receptor specificity is very high. Over the past 20 years, these viruses have lost the ability to agglutinate red blood cells of chickens and turkeys and have practically ceased to propagate in chicken embryos - the main source of influenza vaccines. Isolation of viruses in the MDCK cell culture led to the selection of strains that lose one of the potential glycosylation sites. Many of the A (H3N2) strains have acquired mutations in neuraminidase, which distort the results of antigenic analysis in the hemagglutination inhibition test - the cornerstone method for the analysis of the match between viral isolates circulating in human population to strains selected for the influenza vaccines. In this regard, the characteristics of the antigenic properties of influenza A (H3N2) viruses by traditional methods become poorly informative, and the selection of vaccine strains of this subtype is erroneous, which is reflected in the discrepancy between vaccine and circulating A (H3N2) viruses in recent years (2013-2014, 2014 -2015, 2015-2016). The search, development and implementation of new algorithms for the isolation and antigen analysis of influenza A (H3N2) viruses are extremely urgent.
Collapse
Affiliation(s)
- P A Petrova
- Federal State Research Institute of Influenza
| | | | | | | | - M Y Eropkin
- Federal State Research Institute of Influenza
| |
Collapse
|
38
|
Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol 2018; 9:1581. [PMID: 30079062 PMCID: PMC6062596 DOI: 10.3389/fimmu.2018.01581] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses replicate within the nucleus of the host cell. This uncommon RNA virus trait provides influenza with the advantage of access to the nuclear machinery during replication. However, it also increases the complexity of the intracellular trafficking that is required for the viral components to establish a productive infection. The segmentation of the influenza genome makes these additional trafficking requirements especially challenging, as each viral RNA (vRNA) gene segment must navigate the network of cellular membrane barriers during the processes of entry and assembly. To accomplish this goal, influenza A viruses (IAVs) utilize a combination of viral and cellular mechanisms to coordinate the transport of their proteins and the eight vRNA gene segments in and out of the cell. The aim of this review is to present the current mechanistic understanding for how IAVs facilitate cell entry, replication, virion assembly, and intercellular movement, in an effort to highlight some of the unanswered questions regarding the coordination of the IAV infection process.
Collapse
Affiliation(s)
- Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
39
|
A Single Amino Acid in the Polymerase Acidic Protein Determines the Pathogenicity of Influenza B Viruses. J Virol 2018; 92:JVI.00259-18. [PMID: 29643248 PMCID: PMC6002706 DOI: 10.1128/jvi.00259-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) is one of the human respiratory viruses and one of the targets of seasonal vaccination. However, the bifurcation of two antigenically distinct lineages of IBVs makes it difficult to arrange proper medical countermeasures. Moreover, compared with pathogenicity-related molecular markers known for influenza A virus, little has been known for IBVs. To understand pathogenicity caused by IBVs, we investigated the molecular determinants of IBV pathogenicity in animal models. After serial lung-to-lung passages of Victoria lineage B/Brisbane/60/2008 (Vc_BR60) and Yamagata lineage B/Wisconsin/01/2010 (Ym_WI01) viruses in BALB/c mice, we identified the mouse-adapted Vc_BR60 (maVc_BR60) and Ym_WI01 (maYm_WI01) viruses, respectively. To find a molecular clue(s) to the increased pathogenicity of maVc_BR60 and maYm_WI01, we determined their genetic sequences. Several amino acid mutations were identified in the PB2, PB1, PA, BM2, and/or NS1 protein-coding regions, and one concurrent lysine (K)-to-arginine (R) mutation in PA residue 338 (PA K338R) was found in both maVc_BR60 and maYm_WI01 viruses. When analyzed using viruses rescued through reverse genetics, it was shown that PA K338R alone could increase the pathogenicity of both IBVs in mice and viral replication in the respiratory tracts of ferrets. In a subsequent minireplicon assay, the effect of PA K338R was highlighted by the enhancement of viral polymerase complex activity of both Vc_BR60 and Ym_WI01 viruses. These results suggest that the PA K338R mutation may be a molecular determinant of IBV pathogenicity via modulating the viral polymerase function of IBVs.IMPORTANCE To investigate molecular pathogenic determinants of IBVs, which are one of the targets of seasonal influenza vaccines, we adapted both Victoria and Yamagata lineage IBVs independently in mice. The recovered mouse-adapted viruses exhibited increased virulence, and of the various mutations identified from both mouse-adapted viruses, a concurrent amino acid mutation was found in the PA protein-coding region. When analyzed using viruses rescued through reverse genetics, the PA mutation alone appeared to contribute to viral pathogenicity in mice within the compatible genetic constellation between the IBV lineages and to the replication of IBVs in ferrets. Regarding the potential mechanism of increased viral pathogenicity, it was shown that the PA mutation could upregulate the viral polymerase complex activity of both IBV lineages. These results indicate that the PA mutation could be a newly defined molecular pathogenic determinant of IBVs that substantiates our understanding of the viral pathogenicity and public health risks of IBVs.
Collapse
|
40
|
Slomka MJ, Seekings AH, Mahmood S, Thomas S, Puranik A, Watson S, Byrne AMP, Hicks D, Nunez A, Brown IH, Brookes SM. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys. Sci Rep 2018; 8:7322. [PMID: 29743603 PMCID: PMC5943237 DOI: 10.1038/s41598-018-25062-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/11/2018] [Indexed: 11/23/2022] Open
Abstract
The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing. Surprisingly, mortality was observed in six of eight (75%) second-round contact turkeys which is unusual for LPAIV infection, with unexpected systemic dissemination to many organs beyond the respiratory and enteric tracts, but interestingly no accompanying mutation to highly pathogenic AIV. The intravenous pathogenicity index score for a turkey-derived isolate (0.39) affirmed the LPAIV phenotype. However, the amino acid change L235Q in the haemagglutinin gene occurred in directly-infected turkeys and transmitted to the contacts, including those that died and the two which resolved infection to survive to the end of the study. This polymorphism was indicative of a reversion from mammalian to avian adaptation for the H7N9 virus. This study underlined a new risk to poultry in the event of H7N9 spread beyond China.
Collapse
Affiliation(s)
- Marek J Slomka
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom.
| | - Amanda H Seekings
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sahar Mahmood
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Saumya Thomas
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anita Puranik
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Samantha Watson
- Animal Services Unit, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Alexander M P Byrne
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Alejandro Nunez
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ian H Brown
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Avian Virology and Mammalian Influenza Research, Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
41
|
Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells. Viruses 2018; 10:v10020083. [PMID: 29443887 PMCID: PMC5850390 DOI: 10.3390/v10020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.
Collapse
|
42
|
Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie 2017; 142:1-10. [PMID: 28778717 PMCID: PMC7116903 DOI: 10.1016/j.biochi.2017.07.016] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2.
Collapse
Affiliation(s)
- Li Wen Shen
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Juan Mao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
43
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
44
|
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 2017; 114:E8508-E8517. [PMID: 28923942 DOI: 10.1073/pnas.1712592114] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.
Collapse
|
45
|
Park S, Il Kim J, Lee I, Bae JY, Yoo K, Nam M, Kim J, Sook Park M, Song KJ, Song JW, Kee SH, Park MS. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci Rep 2017; 7:10928. [PMID: 28883554 PMCID: PMC5589767 DOI: 10.1038/s41598-017-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023] Open
Abstract
It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kirim Yoo
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Misun Nam
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juwon Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
46
|
Chen L, Wang C, Luo J, Li M, Liu H, Zhao N, Huang J, Zhu X, Ma G, Yuan G, He H. Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals. Front Microbiol 2017; 8:1308. [PMID: 28744280 PMCID: PMC5504190 DOI: 10.3389/fmicb.2017.01308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
H5N1 is a highly pathogenic influenza A virus (IAV) and poses a major threat to the public health. The nucleoprotein (NP) has a multiple functions during the viral life cycle, however, the precise role of NP mutants in viral replication and pathogenicity is not completely understood. Here, we attempted to identify five residues in NP that may contribute to viral replication or pathogenicity. Of these, K227R, K229R, and K470R viruses were successfully rescued by reverse genetic, but the K91R and K198R viruses were not viable. A mini-genome assay demonstrated that the NP mutations K91R and K198R significantly decreased the polymerase activity. Moreover, these two mutations resulted in disrupted cellular localization in mammalian cells. Importantly, mutation at position 470 of NP significantly increased its virulence in vitro and in vivo. These findings demonstrated that the NP protein plays a major role in influenza virulence and pathogenicity, which adds to the knowledge of IAV virulence determinants and may benefit IAV surveillance.
Collapse
Affiliation(s)
- Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Huimin Liu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Jingjing Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Xili Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of ScienceBeijing, China
| | - Guoyao Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China.,University of the Chinese Academy of SciencesBeijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
47
|
Laporte M, Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol 2017; 24:16-24. [PMID: 28414992 PMCID: PMC7102789 DOI: 10.1016/j.coviro.2017.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
To enter into airway epithelial cells, influenza, parainfluenza- and coronaviruses rely on host cell proteases for activation of the viral protein involved in membrane fusion. One protease, transmembrane protease serine 2 (TMPRSS2) was recently proven to be crucial for hemagglutinin cleavage of some human influenza viruses. Since the catalytic sites of the diverse serine proteases linked to influenza, parainfluenza- and coronavirus activation are structurally similar, active site inhibitors of these airway proteases could have broad therapeutic applicability against multiple respiratory viruses. Alternatively, superior selectivity could be achieved with allosteric inhibitors of TMPRSS2 or another critical protease. Though still in its infancy, airway protease inhibition represents an attractive host-cell targeting approach to combat respiratory viruses such as influenza.
Collapse
Affiliation(s)
- Manon Laporte
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
48
|
Tundup S, Kandasamy M, Perez JT, Mena N, Steel J, Nagy T, Albrecht RA, Manicassamy B. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species. PLoS Pathog 2017; 13:e1006270. [PMID: 28282445 PMCID: PMC5362246 DOI: 10.1371/journal.ppat.1006270] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/22/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections. In healthy individuals, the symptoms of seasonal influenza virus infection are mild and the infection is cleared within 4–7 days. However, infection with highly pathogenic avian influenza virus (H5N1) can be severe and often results in fatal pneumonia even in healthy adults. While it is known that both viral and host factors play a role in enhanced disease progression, the molecular mechanisms for the high virulence of H5N1 virus are not completely understood. In this study, we engineered avian influenza H5N1 viruses incapable of replicating in endothelial cells and evaluated disease symptoms in mice and ferrets. Our studies show that H5N1 infection of endothelial cells causes severe disease and death of infected animals in part due to the damage of endothelial cells lining the blood vessels, which results in leakage of fluid into the lungs (pneumonia).
Collapse
Affiliation(s)
- Smanla Tundup
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
| | - Matheswaran Kandasamy
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
| | - Nacho Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John Steel
- Department of Microbiology, Emory University, Atlanta, GA, United States of America
| | - Tamas Nagy
- Comparative Pathology Laboratory, University of Georgia, Athens, GA, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, Chicago, IL, United States of America
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, IL, United States of America
- * E-mail:
| |
Collapse
|
49
|
Guo H, de Vries E, McBride R, Dekkers J, Peng W, Bouwman KM, Nycholat C, Verheije MH, Paulson JC, van Kuppeveld FJM, de Haan CAM. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. Emerg Infect Dis 2017; 23:220-231. [PMID: 27869615 PMCID: PMC5324792 DOI: 10.3201/eid2302.161072] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses.
Collapse
|
50
|
Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses. Sci Rep 2016; 6:24154. [PMID: 27080193 PMCID: PMC4832183 DOI: 10.1038/srep24154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.
Collapse
|