1
|
Courjaret RJ, Wagner II LE, Ammouri RR, Yule DI, Machaca K. Ca2+ tunneling architecture and function are important for secretion. J Cell Biol 2025; 224:e202402107. [PMID: 39499286 PMCID: PMC11540855 DOI: 10.1083/jcb.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.
Collapse
Affiliation(s)
- Raphael J. Courjaret
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Larry E. Wagner II
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahaf R. Ammouri
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Khaled Machaca
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Cao N, Merchant W, Gautron L. Limited evidence for anatomical contacts between intestinal GLP-1 cells and vagal neurons in male mice. Sci Rep 2024; 14:23666. [PMID: 39390033 PMCID: PMC11467209 DOI: 10.1038/s41598-024-74000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The communication between intestinal Glucagon like peptide 1 (GLP-1)-producing cells and the peripheral nervous system has garnered renewed interest considering the availability of anti-obesity and anti-diabetic approaches targeting GLP-1 signaling. While it is well-established that intestinal GLP-1 cells can exert influence through paracrine mechanisms, recent evidence suggests the possible existence of synaptic-like connections between GLP-1 cells and peripheral neurons, including those of the vagus nerve. In this study, using a reporter Phox2b-Cre-Tomato mouse model and super-resolution confocal microscopy, we demonstrated that vagal axons made apparent contacts with less than 0.5% of GLP-1 cells. Moreover, immunohistochemistry combined with super-resolution confocal microscopy revealed abundant post-synaptic density 95 (PSD-95) immunoreactivity within the enteric plexus of the lower intestines of C57/BL6 mice, with virtually none in its mucosa. Lastly, utilizing RNAScope in situ hybridization in the lower intestines of mice, we observed that GLP-1 cells expressed generic markers of secretory cells such as Snap25 and Nefm, but neither synaptic markers such as Syn1 and Nrxn2, nor glutamatergic markers such as Slc17a7. Through theoretical considerations and a critical review of the literature, we concluded that intestinal GLP-1 cells primarily communicate with vagal neurons through paracrine mechanisms, rather than synaptic-like contacts.
Collapse
Affiliation(s)
- Newton Cao
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Warda Merchant
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Easter QT, Alvarado-Martinez Z, Kunz M, Matuck BF, Rupp BT, Weaver T, Ren Z, Tata A, Caballero-Perez J, Oscarson N, Hasuike A, Ghodke AN, Kimple AJ, Tata PR, Randell SH, Koo H, Ko KI, Byrd KM. Polybacterial Intracellular Macromolecules Shape Single-Cell Epikine Profiles in Upper Airway Mucosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617279. [PMID: 39416216 PMCID: PMC11482982 DOI: 10.1101/2024.10.08.617279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The upper airway, particularly the nasal and oral mucosal epithelium, serves as a primary barrier for microbial interactions throughout life. Specialized niches like the anterior nares and the tooth are especially susceptible to dysbiosis and chronic inflammatory diseases. To investigate host-microbial interactions in mucosal epithelial cell types, we reanalyzed our single-cell RNA sequencing atlas of human oral mucosa, identifying polybacterial signatures (20% Gram-positive, 80% Gram-negative) within both epithelial- and stromal-resident cells. This analysis revealed unique responses of bacterial-associated epithelia when compared to two inflammatory disease states of mucosa. Single-cell RNA sequencing, in situ hybridization, and immunohistochemistry detected numerous persistent macromolecules from Gram-positive and Gram-negative bacteria within human oral keratinocytes (HOKs), including bacterial rRNA, mRNA and glycolipids. Epithelial cells with higher concentrations of 16S rRNA and glycolipids exhibited enhanced receptor-ligand signaling in vivo. HOKs with a spectrum of polybacterial intracellular macromolecular (PIM) concentrations were challenged with purified exogenous lipopolysaccharide, resulting in the synergistic upregulation of select innate (CXCL8, TNFSF15) and adaptive (CXCL17, CCL28) epikines. Notably, endogenous lipoteichoic acid, rather than lipopolysaccharide, directly correlated with epikine expression in vitro and in vivo. Application of the Drug2Cell algorithm to health and inflammatory disease data suggested altered drug efficacy predictions based on PIM detection. Our findings demonstrate that PIMs persist within mucosal epithelial cells at variable concentrations, linearly driving single-cell effector cytokine expression and influencing drug responses, underscoring the importance of understanding host-microbe interactions and the implications of PIMs on cell behavior in health and disease at single-cell resolution.
Collapse
Affiliation(s)
- Quinn T Easter
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Zabdiel Alvarado-Martinez
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Meik Kunz
- The Bioinformatics CRO, Orlando, FL, USA
| | - Bruno Fernandes Matuck
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Brittany T Rupp
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Theresa Weaver
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Nick Oscarson
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Akira Hasuike
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, JP
| | - Ameer N Ghodke
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Purushothama R Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin M Byrd
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
- UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Smith KE, Lezmy J, Arancibia-Cárcamo IL, Bullen A, Jagger DJ, Attwell D. Developmental shaping of node of Ranvier geometry contributes to spike timing maturation in primary auditory afferents. Cell Rep 2024; 43:114651. [PMID: 39178117 DOI: 10.1016/j.celrep.2024.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Sound is encoded by action potentials in spiral ganglion neurons (SGNs), the auditory afferents from the cochlea. Rapid action potential transmission along SGNs is crucial for quick reactions to sounds, and binaural differences in action potential arrival time at the SGN output synapses enable sound localization based on interaural time or phase differences. SGN myelination increases conduction speed but other cellular changes may contribute. We show that nodes of Ranvier along peripherally and centrally directed SGN neurites form around hearing onset, but peri-somatic nodes mature later. There follows an adjustment of nodal geometry, notably a decrease in length and increase in diameter. Computational modeling predicts this increases conduction speed by >4%, and that four additional myelin wraps would be required on internodes to achieve the same conduction speed increase. We propose that nodal geometry changes optimize signal conduction for mature sound coding and decrease the energy needed for myelination.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - I Lorena Arancibia-Cárcamo
- UK Dementia Research Institute, Institute of Neurology, London WC1N 3BG, UK; Francis Crick Institute, London NW1 1AT, UK
| | - Anwen Bullen
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
5
|
Shokrollahi M, Stanic M, Hundal A, Chan JNY, Urman D, Jordan CA, Hakem A, Espin R, Hao J, Krishnan R, Maass PG, Dickson BC, Hande MP, Pujana MA, Hakem R, Mekhail K. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat Struct Mol Biol 2024; 31:1319-1330. [PMID: 38632359 DOI: 10.1038/s41594-024-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly(ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anisha Hundal
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Defne Urman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chris A Jordan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Roderic Espin
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Hao
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Philipp G Maass
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Manoor P Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel A Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Razqallah Hakem
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
North AJ, Sharma VP, Pyrgaki C, Lim S Y J, Atwal S, Saharat K, Wright GD, Salje J. A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607698. [PMID: 39211076 PMCID: PMC11361006 DOI: 10.1101/2024.08.12.607698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conventional optical microscopy imaging of obligate intracellular bacteria is hampered by the small size of bacterial cells, tight clustering exhibited by some bacterial species and challenges relating to labelling such as background from host cells, a lack of validated reagents, and a lack of tools for genetic manipulation. In this study we imaged intracellular bacteria from the species Orientia tsutsugamushi (Ot) using five different fluorescence microscopy techniques: standard confocal, Airyscan confocal, instant Structured Illumination Microscopy (iSIM), three-dimensional Structured Illumination Microscopy (3D-SIM) and Stimulated Emission Depletion Microscopy (STED). We compared the ability of each to resolve bacterial cells in intracellular clumps in the lateral (xy) axis, using full width half maximum (FWHM) measurements of a labelled outer membrane protein (ScaA) and the ability to detect small, outer membrane vesicles external to the cells. We next compared the ability of each technique to sufficiently resolve bacteria in the axial (z) direction and found 3D-STED to be the most successful method for this. We then combined this approach with a custom 3D cell segmentation and analysis pipeline using the open-source, deep learning software, Cellpose to segment the cells and subsequently the commercial software Imaris to analyze their 3D shape and size. Using this combination, we demonstrated differences in bacterial shape, but not their size, when grown in different mammalian cell lines. Overall, we compare the advantages and disadvantages of different super-resolution microscopy techniques for imaging this cytoplasmic obligate intracellular bacterium based on the specific research question being addressed.
Collapse
|
7
|
Griffin H, Hanson J, Phelan KD, Baldini G. MC4R Localizes at Excitatory Postsynaptic and Peri-Postsynaptic Sites of Hypothalamic Neurons in Primary Culture. Cells 2024; 13:1235. [PMID: 39120267 PMCID: PMC11311852 DOI: 10.3390/cells13151235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain locations encompassing the hypothalamus and the brainstem, where the receptor controls several body functions, including metabolism. In a well-defined pathway to decrease appetite, hypothalamic proopiomelanocortin (POMC) neurons localized in the arcuate nucleus (Arc) project to MC4R neurons in the paraventricular nuclei (PVN) to release the natural MC4R agonist α-melanocyte-stimulating hormone (α-MSH). Arc neurons also project excitatory glutamatergic fibers to the MC4R neurons in the PVN for a fast synaptic transmission to regulate a satiety pathway potentiated by α-MSH. By using super-resolution microscopy, we found that in hypothalamic neurons in a primary culture, postsynaptic density protein 95 (PSD95) colocalizes with GluN1, a subunit of the ionotropic N-methyl-D-aspartate receptor (NMDAR). Thus, hypothalamic neurons form excitatory postsynaptic specializations. To study the MC4R distribution at these sites, tagged HA-MC4R under the synapsin promoter was expressed in neurons by adeno-associated virus (AAV) gene transduction. HA-MC4R immunofluorescence peaked at the center and in proximity to the PSD95- and NMDAR-expressing sites. These data provide morphological evidence that MC4R localizes together with glutamate receptors at postsynaptic and peri-postsynaptic sites.
Collapse
Affiliation(s)
- Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (H.G.); (J.H.)
| | - Jude Hanson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (H.G.); (J.H.)
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (H.G.); (J.H.)
| |
Collapse
|
8
|
Wang Y, Heymann F, Peiseler M. Intravital imaging: dynamic insights into liver immunity in health and disease. Gut 2024; 73:1364-1375. [PMID: 38777574 DOI: 10.1136/gutjnl-2023-331739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| |
Collapse
|
9
|
Wise DL, Escobedo-Lozoya Y, Valakh V, Gao EY, Bhonsle A, Lei QL, Cheng X, Greene SB, Van Hooser SD, Nelson SB. Prolonged Activity Deprivation Causes Pre- and Postsynaptic Compensatory Plasticity at Neocortical Excitatory Synapses. eNeuro 2024; 11:ENEURO.0366-23.2024. [PMID: 38777611 PMCID: PMC11163391 DOI: 10.1523/eneuro.0366-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Homeostatic plasticity stabilizes firing rates of neurons, but the pressure to restore low activity rates can significantly alter synaptic and cellular properties. Most previous studies of homeostatic readjustment to complete activity silencing in rodent forebrain have examined changes after 2 d of deprivation, but it is known that longer periods of deprivation can produce adverse effects. To better understand the mechanisms underlying these effects and to address how presynaptic as well as postsynaptic compartments change during homeostatic plasticity, we subjected mouse cortical slice cultures to a more severe 5 d deprivation paradigm. We developed and validated a computational framework to measure the number and morphology of presynaptic and postsynaptic compartments from super-resolution light microscopy images of dense cortical tissue. Using these tools, combined with electrophysiological miniature excitatory postsynaptic current measurements, and synaptic imaging at the electron microscopy level, we assessed the functional and morphological results of prolonged deprivation. Excitatory synapses were strengthened both presynaptically and postsynaptically. Surprisingly, we also observed a decrement in the density of excitatory synapses, both as measured from colocalized staining of pre- and postsynaptic proteins in tissue and from the number of dendritic spines. Overall, our results suggest that cortical networks deprived of activity progressively move toward a smaller population of stronger synapses.
Collapse
Affiliation(s)
- Derek L Wise
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | | | - Vera Valakh
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | - Emma Y Gao
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | - Aishwarya Bhonsle
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | - Qian L Lei
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | - Xinyu Cheng
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | - Samuel B Greene
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 9110
| |
Collapse
|
10
|
van der Graaf K, Srivastav S, Nishad R, Stern M, McNew JA. The Drosophila Nesprin-1 homolog MSP300 is required for muscle autophagy and proteostasis. J Cell Sci 2024; 137:jcs262096. [PMID: 38757366 PMCID: PMC11213522 DOI: 10.1242/jcs.262096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.
Collapse
Affiliation(s)
| | | | - Rajkishor Nishad
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
11
|
Puapatanakul P, Isaranuwatchai S, Chanakul A, Surintrspanont J, Iampenkhae K, Kanjanabuch T, Suphapeetiporn K, Charu V, Suleiman HY, Praditpornsilpa K, Miner JH. Quantitative assessment of glomerular basement membrane collagen IV α chains in paraffin sections from patients with focal segmental glomerulosclerosis and Alport gene variants. Kidney Int 2024; 105:1049-1057. [PMID: 38401706 PMCID: PMC11032260 DOI: 10.1016/j.kint.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suramath Isaranuwatchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Nephrology, Department of Internal Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ankanee Chanakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Special Task Force for Activating Research, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kroonpong Iampenkhae
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Division of Medical Genetics and Metabolism, Center of Excellence for Medical Genomics, Department of Pediatrics, Medical Genomic Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vivek Charu
- Department of Pathology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hani Y Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
12
|
Macias-Rodriguez BA, Gouzy R, Coulais C, Velikov KP. Thermoresponsive oil-continuous gels based on double-interpenetrating colloidal-particle networks. SOFT MATTER 2024; 20:3033-3043. [PMID: 38389496 DOI: 10.1039/d3sm01582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Gels composed of multicomponent building blocks offer promising opportunities for the development of novel soft materials with unique and useful structures. While interpenetrating polymer networks have been extensively studied and applied in the creation of these gels, equivalent strategies utilizing colloidal particles have received limited scientific and technological attention. This study presents a novel class of thermo-responsive apolar double gels from interpenetrating networks of attractive colloidal silica and lipid particles. These double gels are easily assembled and suitable for the fabrication of 3D-printed edible soft constructs. Emphasis is focused on the rheological properties and structure emerging on the dilute regime (ϕ ≲ 0.1). Rheological investigations demonstrate that double gels exhibit greater stiffness and resilience to yielding compared to their single lipid gel counterparts. The scaling behavior of the oscillatory linear shear moduli and the critical strain for yielding with volume fraction remain comparable between single and double gels. Creep yielding in double gels exhibits two exponential decay regimes, suggesting the presence of thicker gel strands undergoing flow. Visualization and quantification of the quiescent microstructure confirms the existence of such denser aggregates devoid of larger clusters due to steric hindrance of interpenetrating networks in double gels. This is in stark contrast to lipid single gels where aggregates grow unrestrictedly into larger clusters. Our study constitutes the first demonstration on the assembly of apolar double gel networks as a promising avenue for the design of novel soft materials and foods with tailored structure and mechanics.
Collapse
Affiliation(s)
- Braulio A Macias-Rodriguez
- Unilever Innovation Center Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands.
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Roland Gouzy
- Unilever Innovation Center Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands.
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Corentin Coulais
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Krassimir P Velikov
- Unilever Innovation Center Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands.
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
13
|
Woo J, Jung S, Kim S, Li Y, Chung H, Roubtsova TV, Zhang H, Caseys C, Kliebenstein D, Kim KN, Bostock RM, Lee YH, Dickman MB, Choi D, Park E, Dinesh-Kumar SP. Attenuation of phytofungal pathogenicity of Ascomycota by autophagy modulators. Nat Commun 2024; 15:1621. [PMID: 38424448 PMCID: PMC10904834 DOI: 10.1038/s41467-024-45839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.
Collapse
Affiliation(s)
- Jongchan Woo
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yurong Li
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Corteva Agriscience, Johnston, IA, USA
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tatiana V Roubtsova
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Honghong Zhang
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Celine Caseys
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Dan Kliebenstein
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Kyung-Nam Kim
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Richard M Bostock
- Department of Plant Pathology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A & M University, College Station, TX, USA
| | - Doil Choi
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eunsook Park
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY, USA.
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Murphy TR, Amidon RF, Donohue JD, Li L, Anderson GR. Synaptic cell-adhesion molecule latrophilin-2 is differentially directed to dendritic domains of hippocampal neurons. iScience 2024; 27:108799. [PMID: 38318388 PMCID: PMC10839266 DOI: 10.1016/j.isci.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Hippocampal pyramidal cells possess elaborate dendritic arbors with distinct domains that are targeted with input-specific synaptic sites. This synaptic arrangement is facilitated by synaptic cell-adhesion molecules that act as recognition elements to connect presynaptic and postsynaptic neurons. In this study, we investigate the organization of the synaptic recognition molecule latrophilin-2 at the surface of pyramidal neurons classified by spatial positioning and action potential firing patterns. Surveying two hippocampal neurons that highly express latrophilin-2, late-bursting CA1 pyramidal cells and early-bursting subiculum pyramidal cells, we found the molecule to be differentially positioned on their respective dendritic compartments. Investigating this latrophilin-2 positioning at the synaptic level, we found that the molecule is not present within either the pre- or postsynaptic terminal but rather is tightly coupled to synapses at a perisynaptic location. Together these findings indicate that hippocampal latrophilin-2 distribution patterning is cell-type specific, and requires multiple postsynaptic neurons for its synaptic localization.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ryan F. Amidon
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jordan D. Donohue
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Libo Li
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Garret R. Anderson
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Dong PT, Tian J, Kobayashi-Kirschvink KJ, Cen L, McLean JS, Bor B, Shi W, He X. Episymbiotic Saccharibacteria induce intracellular lipid droplet production in their host bacteria. THE ISME JOURNAL 2024; 18:wrad034. [PMID: 38366018 PMCID: PMC10939385 DOI: 10.1093/ismejo/wrad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
Saccharibacteria (formerly TM7) are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to Candidate Phyla Radiation, a large monophyletic lineage with poorly understood biology. Nanosynbacter lyticus type strain TM7x is the first Saccharibacteria member isolated from the human oral microbiome. With restrained metabolic capacities, TM7x lives on the surface of, and forms an obligate episymbiotic relationship with its bacterial host, Schaalia odontolytica strain XH001. The symbiosis allows TM7x to propagate but presents a burden to host bacteria by inducing stress response. Here, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We showed that the binding with TM7x led to a substantial alteration in the membrane fluidity of XH001. We also revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature that has not been reported in oral bacteria. The TM7x-induced lipid droplets accumulation in XH001 was confirmed by label-free Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing XH001 under various stress conditions showed that lipid droplets accumulation was a general response to stress. A survival assay demonstrated that the presence of lipid droplets plays a protective role in XH001, enhancing its survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and their host bacteria, highlighting the potential benefit conferred by TM7x to its host and further emphasizing the context-dependent nature of symbiotic relationships.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA 02142, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Jing Tian
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA 02142, United States
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA 98195, United States
| | - Batbileg Bor
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA 02142, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA 02142, United States
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Boston, MA 02142, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| |
Collapse
|
16
|
Iyer M, Kantarci H, Cooper MH, Ambiel N, Novak SW, Andrade LR, Lam M, Jones G, Münch AE, Yu X, Khakh BS, Manor U, Zuchero JB. Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nat Commun 2024; 15:265. [PMID: 38177161 PMCID: PMC10767123 DOI: 10.1038/s41467-023-44238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-, Champaign, IL, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
18
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. Proc Natl Acad Sci U S A 2023; 120:e2318274120. [PMID: 38127982 PMCID: PMC10756265 DOI: 10.1073/pnas.2318274120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Isara Laothamatas
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - S. K. Tahajjul Taufique
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Joseph Takahashi
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
19
|
Saffer AM, Baskin TI, Verma A, Stanislas T, Oldenbourg R, Irish VF. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:855-870. [PMID: 37548081 PMCID: PMC10592269 DOI: 10.1111/tpj.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, 611 N. Pleasant St, Amherst, Massachusetts, 01003, USA
| | - Amitabh Verma
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
20
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563153. [PMID: 37961341 PMCID: PMC10634710 DOI: 10.1101/2023.10.19.563153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro or in cells that overexpress protein, the physiological relevance of LLPS is unclear. PERIOD proteins are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Here we show that when transgene was stably expressed, PER2 formed nuclear phosphorylation-dependent LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins is a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isara Laothamatas
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - S K Tahajjul Taufique
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Joseph Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Sprenkeler EGG, Goetschalckx I, Fernández Hermira S, Tool ATJ, Hoogenboezem M, van Bruggen R, Kuijpers TW. Lack of eosinophil extracellular trap formation due to failure of plasma membrane breakdown in the absence of elastase. Blood Adv 2023; 7:5868-5876. [PMID: 37428870 PMCID: PMC10558608 DOI: 10.1182/bloodadvances.2022009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
Activated eosinophils are described to release eosinophil extracellular traps (EETs), which consist of the cell's DNA covered with granule-derived antimicrobial peptides. Upon stimulation of eosinophils with the known EET-inducers phorbol 12-myristate 13-acetate, monosodium urate crystals, or Candida albicans, we observed that their plasma membrane became compromised, resulting in accessibility of the nuclear DNA for staining with the impermeable DNA dye Sytox Green. However, we did not observe any DNA decondensation or plasma membrane rupture by eosinophils, which sharply contrasts with neutrophil extracellular trap (NET) formation and the subsequent cell death known as NETosis. Neutrophil elastase (NE) activity is thought to be essential for the cleavage of histones and chromatin decondensation during NETosis. We observed that the neutrophils of a patient with a mutation in ELANE, leading to congenital neutropenia and NE deficiency, were unable to undergo NETosis. Taken together, we may suggest that the natural absence of any NE-like proteolytic activity in human eosinophils explains why EET formation is not observed, even when eosinophils become positive for an impermeable DNA dye in response to stimuli that induce NETosis in neutrophils.
Collapse
Affiliation(s)
- Evelien G. G. Sprenkeler
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara Fernández Hermira
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anton T. J. Tool
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Research Facilities, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research and Laboratory Services and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Zhu K, Celwyn IJ, Guan D, Xiao Y, Wang X, Hu W, Jiang C, Cheng L, Casellas R, Lazar MA. An intrinsically disordered region controlling condensation of a circadian clock component and rhythmic transcription in the liver. Mol Cell 2023; 83:3457-3469.e7. [PMID: 37802023 PMCID: PMC10575687 DOI: 10.1016/j.molcel.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Circadian gene transcription is fundamental to metabolic physiology. Here we report that the nuclear receptor REV-ERBα, a repressive component of the molecular clock, forms circadian condensates in the nuclei of mouse liver. These condensates are dictated by an intrinsically disordered region (IDR) located in the protein's hinge region which specifically concentrates nuclear receptor corepressor 1 (NCOR1) at the genome. IDR deletion diminishes the recruitment of NCOR1 and disrupts rhythmic gene transcription in vivo. REV-ERBα condensates are located at high-order transcriptional repressive hubs in the liver genome that are highly correlated with circadian gene repression. Deletion of the IDR disrupts transcriptional repressive hubs and diminishes silencing of target genes by REV-ERBα. This work demonstrates physiological circadian protein condensates containing REV-ERBα whose IDR is required for hub formation and the control of rhythmic gene expression.
Collapse
Affiliation(s)
- Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Isaac J Celwyn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiang Wang
- Laboratory of Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Basic Research, Guangzhou Laboratory, Guangdong 510005, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Wang T, Shi S, Shi Y, Jiang P, Hu G, Ye Q, Shi Z, Yu K, Wang C, Fan G, Zhao S, Ma H, Chang ACY, Li Z, Bian Q, Lin CP. Chemical-induced phase transition and global conformational reorganization of chromatin. Nat Commun 2023; 14:5556. [PMID: 37689690 PMCID: PMC10492836 DOI: 10.1038/s41467-023-41340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Chemicals or drugs can accumulate within biomolecular condensates formed through phase separation in cells. Here, we use super-resolution imaging to search for chemicals that induce phase transition within chromatin at the microscale. This microscopic screening approach reveals that adriamycin (doxorubicin) - a widely used anticancer drug that is known to interact with chromatin - specifically induces visible local condensation and global conformational change of chromatin in cancer and primary cells. Hi-C and ATAC-seq experiments systematically and quantitatively demonstrate that adriamycin-induced chromatin condensation is accompanied by weakened chromatin interaction within topologically associated domains, compartment A/B switching, lower chromatin accessibility, and corresponding transcriptomic changes. Mechanistically, adriamycin complexes with histone H1 and induces phase transition of H1, forming fibrous aggregates in vitro. These results reveal a phase separation-driven mechanism for a chemotherapeutic drug.
Collapse
Affiliation(s)
- Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Lingang Laboratory, 200031, Shanghai, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Peipei Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhan Shi
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Kexin Yu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201010, Shanghai, China
| | - Chenguang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoping Fan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201010, Shanghai, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Alex C Y Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
24
|
Dong PT, Tian J, Kobayashi-Kirschvink KJ, Cen L, McLean JS, Bor B, Shi W, He X. Episymbiotic bacterium induces intracellular lipid droplet production in its host bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556576. [PMID: 37732248 PMCID: PMC10508740 DOI: 10.1101/2023.09.06.556576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Saccharibacteria (formerly TM7) Nanosynbacter lyticus type strain TM7x exhibits a remarkably compact genome and an extraordinarily small cell size. This obligate epibiotic parasite forms a symbiotic relationship with its bacterial host, Schaalia odontolytica, strain XH001 (formerly Actinomyces odontolyticus strain XH001). Due to its limited genome size, TM7x possesses restrained metabolic capacities, predominantly living on the surface of its bacterial host to sustain this symbiotic lifestyle. To comprehend this intriguing, yet understudied interspecies interaction, a thorough understanding of the physical interaction between TM7x and XH001 is imperative. In this study, we employed super-resolution fluorescence imaging to investigate the physical association between TM7x and XH001. We found that the binding with TM7x led to a substantial alteration in the membrane fluidity of the host bacterium XH001. Unexpectedly, we revealed the formation of intracellular lipid droplets in XH001 when forming episymbiosis with TM7x, a feature not commonly observed in oral bacteria cells. The TM7x-induced LD accumulation in XH001 was further confirmed by label-free non-invasive Raman spectroscopy, which also unveiled additional phenotypical features when XH001 cells are physically associated with TM7x. Further exploration through culturing host bacterium XH001 alone under various stress conditions showed that LD accumulation was a general response to stress. Intriguingly, a survival assay demonstrated that the presence of LDs likely plays a protective role in XH001, enhancing its overall survival under adverse conditions. In conclusion, our study sheds new light on the intricate interaction between Saccharibacteria and its host bacterium, highlighting the potential benefit conferred by TM7x to its host, and further emphasizing the context-dependent nature of symbiotic relationships.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, the Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jing Tian
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Koseki J. Kobayashi-Kirschvink
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lujia Cen
- Department of Microbiology, the Forsyth Institute, Boston, MA 02142, USA
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA 98195, USA
| | - Batbileg Bor
- Department of Microbiology, the Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Wenyuan Shi
- Department of Microbiology, the Forsyth Institute, Boston, MA 02142, USA
| | - Xuesong He
- Department of Microbiology, the Forsyth Institute, Boston, MA 02142, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
25
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
26
|
Avard RC, Broad ML, Zandkarimi F, Devanny AJ, Hammer JL, Yu K, Guzman A, Kaufman LJ. DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids. Sci Rep 2023; 13:12383. [PMID: 37524722 PMCID: PMC10390472 DOI: 10.1038/s41598-023-38699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Multicellular tumor spheroids embedded in collagen I matrices are common in vitro systems for the study of solid tumors that reflect the physiological environment and complexities of the in vivo environment. While collagen I environments are physiologically relevant and permissive of cell invasion, studying spheroids in such hydrogels presents challenges to key analytical assays and to a wide array of imaging modalities. While this is largely due to the thickness of the 3D hydrogels that in other samples can typically be overcome by sectioning, because of their highly porous nature, collagen I hydrogels are very challenging to section, especially in a manner that preserves the hydrogel network including cell invasion patterns. Here, we describe a novel method for preparing and cryosectioning invasive spheroids in a two-component (collagen I and gelatin) matrix, a technique we term dual-hydrogel in vitro spheroid cryosectioning of three-dimensional samples (DISC-3D). DISC-3D does not require cell fixation, preserves the architecture of invasive spheroids and their surroundings, eliminates imaging challenges, and allows for use of techniques that have infrequently been applied in three-dimensional spheroid analysis, including super-resolution microscopy and mass spectrometry imaging.
Collapse
Affiliation(s)
- Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Megan L Broad
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | | | | | - Joseph L Hammer
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Karen Yu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
27
|
Ikelle L, Makia M, Lewis T, Crane R, Kakakhel M, Conley SM, Birtley JR, Arshavsky VY, Al-Ubaidi MR, Naash MI. Comparative study of PRPH2 D2 loop mutants reveals divergent disease mechanism in rods and cones. Cell Mol Life Sci 2023; 80:214. [PMID: 37466729 PMCID: PMC10356684 DOI: 10.1007/s00018-023-04851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.
Collapse
Affiliation(s)
- Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Mustafa Makia
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Tylor Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd. Room 2027, Houston, TX, 77204-5060, USA.
| |
Collapse
|
28
|
Baldera D, Baxendale S, van Hateren NJ, Marzo M, Glendenning E, Geng F, Yokoya K, Knight RD, Whitfield TT. Enhancer trap lines with GFP driven by smad6b and frizzled1 regulatory sequences for the study of epithelial morphogenesis in the developing zebrafish inner ear. J Anat 2023; 243:78-89. [PMID: 36748120 PMCID: PMC10273346 DOI: 10.1111/joa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.
Collapse
Affiliation(s)
- Davide Baldera
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
CeSASt, University of CagliariCagliariItaly
| | | | | | - Mar Marzo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Fan‐Suo Geng
- Brain and Mind Research Institute, University of SydneySydneyNew South WalesAustralia
- Present address:
Data Science Institute, The University of Technology SydneySydneyAustralia
| | - Kazutomo Yokoya
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | | |
Collapse
|
29
|
Yang M, Dong PT, Cen L, Shi W, He X, Li J. Targeting Fusobacterium nucleatum through chemical modifications of host-derived transfer RNA fragments. THE ISME JOURNAL 2023; 17:880-890. [PMID: 37005460 PMCID: PMC10202947 DOI: 10.1038/s41396-023-01398-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
Host mucosal barriers possess an arsenal of defense molecules to maintain host-microbe homeostasis such as antimicrobial peptides and immunoglobulins. In addition to these well-established defense molecules, we recently reported small RNAs (sRNAs)-mediated interactions between human oral keratinocytes and Fusobacterium nucleatum (Fn), an oral pathobiont with increasing implications in extra-oral diseases. Specifically, upon Fn infection, oral keratinocytes released Fn-targeting tRNA-derived sRNAs (tsRNAs), an emerging class of noncoding sRNAs with gene regulatory functions. To explore potential antimicrobial activities of tsRNAs, we chemically modify the nucleotides of the Fn-targeting tsRNAs and demonstrate that the resultant tsRNA derivatives, termed MOD-tsRNAs, exhibit growth inhibitory effect against various Fn type strains and clinical tumor isolates without any delivery vehicle in the nanomolar concentration range. In contrast, the same MOD-tsRNAs do not inhibit other representative oral bacteria. Further mechanistic studies uncover the ribosome-targeting functions of MOD-tsRNAs in inhibiting Fn. Taken together, our work provides an engineering approach to targeting pathobionts through co-opting host-derived extracellular tsRNAs.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Pu-Ting Dong
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Lujia Cen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, USA.
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Biomedical Engineering, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
| |
Collapse
|
30
|
Daetwyler S, Fiolka RP. Light-sheets and smart microscopy, an exciting future is dawning. Commun Biol 2023; 6:502. [PMID: 37161000 PMCID: PMC10169780 DOI: 10.1038/s42003-023-04857-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Light-sheet fluorescence microscopy has transformed our ability to visualize and quantitatively measure biological processes rapidly and over long time periods. In this review, we discuss current and future developments in light-sheet fluorescence microscopy that we expect to further expand its capabilities. This includes smart and adaptive imaging schemes to overcome traditional imaging trade-offs, i.e., spatiotemporal resolution, field of view and sample health. In smart microscopy, a microscope will autonomously decide where, when, what and how to image. We further assess how image restoration techniques provide avenues to overcome these tradeoffs and how "open top" light-sheet microscopes may enable multi-modal imaging with high throughput. As such, we predict that light-sheet microscopy will fulfill an important role in biomedical and clinical imaging in the future.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Paul Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, Lwigale P, Nagasaki K, Correa AMS. Visualization of RNA virus infection in a marine protist with a universal biomarker. Sci Rep 2023; 13:5813. [PMID: 37037845 PMCID: PMC10086069 DOI: 10.1038/s41598-023-31507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.
Collapse
Affiliation(s)
- Samantha R Coy
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Oceanography, Texas A&M University, College Station, TX, USA.
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James W Spurlin
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Julia G Kim
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | | |
Collapse
|
32
|
Wilmerding A, Espana-Bonilla P, Giakoumakis NN, Saade M. Expansion microscopy of the chick embryo neural tube to overcome molecular crowding at the centrosomes-cilia. STAR Protoc 2023; 4:101997. [PMID: 36609151 PMCID: PMC9850183 DOI: 10.1016/j.xpro.2022.101997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
We describe an optimized protocol for application of expansion microscopy (ExM) on chick neural tube (NT) which enables different oriented nanoscale resolution imaging of the centrosomes/cilia. We explain embryo NT transversal sections and open-book preparations, immunohistochemistry for labeling, and sample preparation for 5-fold tissue expansion. Further, we detail sample orientation and Fast Airyscan confocal acquisition and show that NT-ExM retains fluorescence signals and overcomes biomolecules crowding in structural features that to date were only imaged with electron microscopy on tissues.
Collapse
Affiliation(s)
- Axelle Wilmerding
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, 08028 Barcelona, Spain
| | - Paula Espana-Bonilla
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, 08028 Barcelona, Spain
| | - Nikolaos-Nikiforos Giakoumakis
- Advanced Digital Microscopy Facility Institute for Research in Biomedicine - IRB, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Spain.
| | - Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Mohammad S, Bhattacharjee J, Tzaneva V, Hutchinson KA, Shaikh M, Fernandes da Silva D, Burger D, Adamo KB. The Influence of Exercise-Associated Small Extracellular Vesicles on Trophoblasts In Vitro. Biomedicines 2023; 11:biomedicines11030857. [PMID: 36979835 PMCID: PMC10045992 DOI: 10.3390/biomedicines11030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Exercise induces the release of small extracellular vesicles (sEVs) into circulation that are postulated to mediate tissue cross-talk during exercise. We previously reported that pregnant individuals released greater levels of sEVs into circulation after exercise compared to matched non-pregnant controls, but their biological functions remain unknown. In this study, sEVs isolated from the plasma of healthy pregnant and non-pregnant participants after a single bout of moderate-intensity exercise were evaluated for their impact on trophoblasts in vitro. Exercise-associated sEVs were found localized within the cytoplasm of BeWo choriocarcinoma cells, used to model trophoblasts in vitro. Exposure to exercise-associated sEVs did not significantly alter BeWo cell proliferation, gene expression of angiogenic growth factors VEGF and PLGF, or the release of the hormone human chorionic gonadotropin. The results from this pilot study support that exercise-associated sEVs could interact with trophoblasts in vitro, and warrant further investigation to reveal their potential role in communicating the effects of exercise to the maternal–fetal interface.
Collapse
Affiliation(s)
- Shuhiba Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kelly Ann Hutchinson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Madeeha Shaikh
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Danilo Fernandes da Silva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dylan Burger
- Kidney Research Centre, Department of Cellular and Molecular Medicine, The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Kristi B. Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
34
|
Yu J, Yang X, Zheng J, Sgobio C, Sun L, Cai H. Deficiency of Perry syndrome-associated p150 Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities. NPJ Parkinsons Dis 2023; 9:35. [PMID: 36879021 PMCID: PMC9988887 DOI: 10.1038/s41531-023-00478-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.
Collapse
Affiliation(s)
- Jia Yu
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China.
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xuan Yang
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Jiayin Zheng
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Abstract
Dendritic cells (DCs) are key regulators of both innate and adaptive immunity via varied functions, including cytokine production and antigen presentation. Plasmacytoid DC (pDC) is a DC subset specialized in the production of type I and III interferons (IFNs). They are thus pivotal players of the host antiviral response during the acute phase of infection by genetically distant viruses. The pDC response is primarily triggered by the endolysosomal sensors Toll-like receptors, which recognize nucleic acids from pathogens. In some pathologic contexts, pDC response can also be triggered by host nucleic acids, hereby contributing to the pathogenesis of autoimmune diseases, such as, e.g., systemic lupus erythematosus. Importantly, recent in vitro studies from our laboratory and others uncovered that pDCs sense viral infections when a physical contact is established with infected cells. This specialized synapse-like feature enables a robust type I and III IFN secretion at the infected site. Therefore, this concentrated and confined response likely limits the correlated deleterious impacts of excessive cytokine production to the host, notably due to tissue damages. Here we provide a pipeline of methods for ex vivo studies of pDC antiviral functions, designed to address how pDC activation is regulated by cell-cell contact with virally infected cells and the current approaches enabling to decipher the underlying molecular events leading to an efficient antiviral response.
Collapse
|
36
|
Torres-García E, Pinto-Cámara R, Linares A, Martínez D, Abonza V, Brito-Alarcón E, Calcines-Cruz C, Valdés-Galindo G, Torres D, Jabloñski M, Torres-Martínez HH, Martínez JL, Hernández HO, Ocelotl-Oviedo JP, Garcés Y, Barchi M, D’Antuono R, Bošković A, Dubrovsky JG, Darszon A, Buffone MG, Morales RR, Rendon-Mancha JM, Wood CD, Hernández-García A, Krapf D, Crevenna ÁH, Guerrero A. Extending resolution within a single imaging frame. Nat Commun 2022; 13:7452. [PMID: 36460648 PMCID: PMC9718789 DOI: 10.1038/s41467-022-34693-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.
Collapse
Affiliation(s)
- Esley Torres-García
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Raúl Pinto-Cámara
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alejandro Linares
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.144532.5000000012169920XAnalytical and Quantitative Light Microscopy, Marine Biological Laboratory, Woods Hole, MA USA
| | - Damián Martínez
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Víctor Abonza
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Eduardo Brito-Alarcón
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Carlos Calcines-Cruz
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gustavo Valdés-Galindo
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - David Torres
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Martina Jabloñski
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Héctor H. Torres-Martínez
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - José L. Martínez
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Haydee O. Hernández
- grid.9486.30000 0001 2159 0001Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José P. Ocelotl-Oviedo
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Yasel Garcés
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico ,grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Marco Barchi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ana Bošković
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Joseph G. Dubrovsky
- grid.9486.30000 0001 2159 0001Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Alberto Darszon
- grid.9486.30000 0001 2159 0001Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Mariano G. Buffone
- grid.464644.00000 0004 0637 7271Instituto de Biología y Medicina Experimental (IBYME‐CONICET), Buenos Aires, Argentina
| | - Roberto Rodríguez Morales
- grid.472559.80000 0004 0498 8706Instituto de Cibernética, Matemática y Física, Ciudad de la Habana, Cuba
| | - Juan Manuel Rendon-Mancha
- grid.412873.b0000 0004 0484 1712Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| | - Christopher D. Wood
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Armando Hernández-García
- grid.9486.30000 0001 2159 0001Departamento de Química de Biomacromoléculas, Instituto de Química. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diego Krapf
- grid.47894.360000 0004 1936 8083Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Álvaro H. Crevenna
- grid.418924.20000 0004 0627 3632Neurobiology and Epigenetics Unit, European Molecular Biology Laboratory, Monterotondo, Rome Italy
| | - Adán Guerrero
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| |
Collapse
|
37
|
Hoang ON, Ermund A, Jaramillo AM, Fakih D, French CB, Flores JR, Karmouty-Quintana H, Magnusson JM, Fois G, Fauler M, Frick M, Braubach P, Hales JB, Kurten RC, Panettieri R, Vergara L, Ehre C, Adachi R, Tuvim MJ, Hansson GC, Dickey BF. Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. Am J Respir Crit Care Med 2022; 206:1081-1095. [PMID: 35776514 PMCID: PMC9704839 DOI: 10.1164/rccm.202202-0309oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1β and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Fakih
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cory B. French
- Washington University School of Medicine, St. Louis, Missouri
| | - Jose R. Flores
- Washington University School of Medicine, St. Louis, Missouri
| | - Harry Karmouty-Quintana
- Division of Critical Care, Pulmonary, and Sleep Medicine, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesper M. Magnusson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Joshua B. Hales
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M School of Medicine, Houston, Texas; and
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Guy CS, Tomás RMF, Tang Q, Gibson MI, Fullam E. Imaging of antitubercular dimeric boronic acids at the mycobacterial cell surface by click-probe capture. Chem Commun (Camb) 2022; 58:9361-9364. [PMID: 35917119 PMCID: PMC9387567 DOI: 10.1039/d2cc02407a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dimeric boronic acids kill Mycobacterium tuberculosis (Mtb) by targeting mycobacterial specific extracellular glycans, removing the requirement for a therapeutic agent to permeate the complex cell envelope. Here we report the successful development and use of new ‘clickable’ boronic acid probes as a powerful method to enable the direct detection and visualisation of this unique class of cell-surface targeting antitubercular agents. Antitubercular ‘clickable’ diboronic acid agents are directly incorporated into the mycobacterial cell envelope through glycan-targeting.![]()
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ruben M F Tomás
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Qiao Tang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
39
|
Payne-Dwyer AL, Leake MC. Single-Molecular Quantification of Flowering Control Proteins Within Nuclear Condensates in Live Whole Arabidopsis Root. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2476:311-328. [PMID: 35635712 DOI: 10.1007/978-1-0716-2221-6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we describe the coupled standardization of two complementary fluorescence imaging techniques and apply it to liquid-liquid phase-separated condensates formed from an EGFP fluorescent reporter of flowering control locus A (FCA), a protein that associates with chromosomal DNA in plants during epigenetic regulation of the flowering process. First, we use home-built single-molecule Slimfield microscopy to establish a fluorescent protein standard. This sample comprises live yeast cells expressing Mig1 protein, a metabolic regulator which localizes to the nucleus under conditions of high glucose, fused to the same type of EGFP label as for the FCA fusion construct. Then we employ commercial confocal AiryScan microscopy to study the same standard. Finally, we demonstrate how to quantify FCA-EGFP nuclear condensates in intact root tips at rapid timescales and apply this calibration. This method is a valuable approach to obtaining single-molecule precise stoichiometry and copy number estimates of protein condensates that are integrated into the chromosome architecture of plants, using confocal instrumentation that lacks de facto single-molecule detection sensitivity.
Collapse
Affiliation(s)
- Alex L Payne-Dwyer
- Department of Physics, University of York, York, UK.
- Departments of Physics and Biology, University of York, York, UK.
| | - Mark C Leake
- Departments of Physics and Biology, University of York, York, UK
| |
Collapse
|
40
|
Burlingham SR, Wong NF, Peterkin L, Lubow L, Dos Santos Passos C, Benner O, Ghebrial M, Cast TP, Xu-Friedman MA, Südhof TC, Chanda S. Induction of synapse formation by de novo neurotransmitter synthesis. Nat Commun 2022; 13:3060. [PMID: 35650274 PMCID: PMC9160008 DOI: 10.1038/s41467-022-30756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
A vital question in neuroscience is how neurons align their postsynaptic structures with presynaptic release sites. Although synaptic adhesion proteins are known to contribute in this process, the role of neurotransmitters remains unclear. Here we inquire whether de novo biosynthesis and vesicular release of a noncanonical transmitter can facilitate the assembly of its corresponding postsynapses. We demonstrate that, in both stem cell-derived human neurons as well as in vivo mouse neurons of purely glutamatergic identity, ectopic expression of GABA-synthesis enzymes and vesicular transporters is sufficient to both produce GABA from ambient glutamate and transmit it from presynaptic terminals. This enables efficient accumulation and consistent activation of postsynaptic GABAA receptors, and generates fully functional GABAergic synapses that operate in parallel but independently of their glutamatergic counterparts. These findings suggest that presynaptic release of a neurotransmitter itself can signal the organization of relevant postsynaptic apparatus, which could be directly modified to reprogram the synapse identity of neurons.
Collapse
Affiliation(s)
- Scott R Burlingham
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Nicole F Wong
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lindsay Peterkin
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lily Lubow
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Michael Ghebrial
- Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Thomas C Südhof
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Shah HP, Devergne O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J Vis Exp 2022:10.3791/63778. [PMID: 35662240 PMCID: PMC10325488 DOI: 10.3791/63778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
The basement membrane (BM) - a specialized sheet of extracellular matrix present at the basal side of epithelial cells - is critical for the establishment and maintenance of epithelial tissue morphology and organ morphogenesis. Moreover, the BM is essential for tissue modeling, serving as a signaling platform, and providing external forces to shape tissues and organs. Despite the many important roles that the BM plays during normal development and pathological conditions, the biological pathways controlling the intracellular trafficking of BM-containing vesicles and how basal secretion leads to the polarized deposition of BM proteins are poorly understood. The follicular epithelium of the Drosophila ovary is an excellent model system to study the basal deposition of BM membrane proteins, as it produces and secretes all major components of the BM. Confocal and super-resolution imaging combined with image processing in fixed tissues allows for the identification and characterization of cellular factors specifically involved in the intracellular trafficking and deposition of BM proteins. This article presents a detailed protocol for staining and imaging BM-containing vesicles and deposited BM using endogenously tagged proteins in the follicular epithelium of the Drosophila ovary. This protocol can be applied to address both qualitative and quantitative questions and it was developed to accommodate high-throughput screening, allowing for the rapid and efficient identification of factors involved in the polarized intracellular trafficking and secretion of vesicles during epithelial tissue development.
Collapse
Affiliation(s)
- Hemin P Shah
- Department of Biological Sciences, Northern Illinois University
| | - Olivier Devergne
- Department of Biological Sciences, Northern Illinois University;
| |
Collapse
|
42
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|