1
|
He J, Cui H, Jiang G, Fang L, Hao J. Knowledge mapping of trained immunity/innate immune memory: Insights from two decades of studies. Hum Vaccin Immunother 2024; 20:2415823. [PMID: 39434217 PMCID: PMC11497974 DOI: 10.1080/21645515.2024.2415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
This study employs knowledge mapping and bibliometric techniques to analyze the research landscape of trained immunity over the past 20 years and to identify current research hotspots and future development directions. The literature related to trained immunity was searched from the Web of Science Core Collection database, spanning 2004 to 2023. VOSViewer, CiteSpace and Bibliometrix were used for the knowledge mapping analysis. The foremost research institutions are Radboud University Nijmegen, University of Bonn, and Harvard University. Professor Netea MG of Radboud University Nijmegen has published the greatest number of articles. The current research focus encompasses immune memory, nonspecific effects, epigenetics, metabolic reprogramming, BCG vaccine, and the development of trained immunity-based vaccines. It is likely that research on trained immunity-based vaccines will become a major focus in the development of new vaccines in the future. It would be advantageous to observe a greater number of prospective clinical studies with robust evidence.
Collapse
Affiliation(s)
- Jiacheng He
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hongxia Cui
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Guoqian Jiang
- College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
2
|
Wang S, Zhang S, Li X, Li X, Zhao S, Guo J, Wang S, Wang R, Zhang M, Qiu W. HIGD1B, as a novel prognostic biomarker, is involved in regulating the tumor microenvironment and immune cell infiltration; its overexpression leads to poor prognosis in gastric cancer patients. Front Immunol 2024; 15:1415148. [PMID: 39108265 PMCID: PMC11300267 DOI: 10.3389/fimmu.2024.1415148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Background HIGD1B (HIG1 Hypoxia Inducible Domain Family Member 1B) is a protein-coding gene linked to the occurrence and progression of various illnesses. However, its precise function in gastric cancer (GC) remains unclear. Methods The expression of HIGD1B is determined through the TCGA and GEO databases and verified using experiments. The association between HIGD1B and GC patients' prognosis was analyzed via the Kaplan-Meier (K-M) curve. Subsequently, the researchers utilized ROC curves to assess the diagnostic capacity of HIGD1B and employed COX analysis to investigate risk factors for GC. The differentially expressed genes (DEGs) were then subjected to functional enrichment analysis, and a nomogram was generated to forecast the survival outcome and probability of GC patients. Additionally, we evaluated the interaction between HIGD1B and the immune cell infiltration and predicted the susceptibility of GC patients to therapy. Results HIGD1B is markedly elevated in GC tissue and cell lines, and patients with high HIGD1B expression have a poorer outcome. In addition, HIGD1B is related to distinct grades, stages, and T stages. The survival ROC curves of HIGD1B and nomogram for five years were 0.741 and 0.735, suggesting appropriate levels of diagnostic efficacy. According to Cox regression analysis, HIGD1B represents a separate risk factor for the prognosis of gastric cancer (p<0.01). GSEA analysis demonstrated that the HIGD1B is closely related to cancer formation and advanced pathways. Moreover, patients with high HIGD1B expression exhibited a higher level of Tumor-infiltration immune cells (TIICs) and were more likely to experience immune escape and drug resistance after chemotherapy and immunotherapy. Conclusion This study explored the potential mechanisms and diagnostic and prognostic utility of HIGD1B in GC, as well as identified HIGD1B as a valuable biomarker and possible therapeutic target for GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Choudhary P, Magloire D, Hamonic G, Wilson HL. Immune responses in the uterine mucosa: clues for vaccine development in pigs. Front Immunol 2023; 14:1171212. [PMID: 37483639 PMCID: PMC10361056 DOI: 10.3389/fimmu.2023.1171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The immune system in the upper reproductive tract (URT) protects against sexually transmitted pathogens, while at the same time providing immune tolerance responses against allogenic sperm and the developing fetus. The uterine environment is also responsive to hormonal variations during the estrus cycle, although the most likely timing of exposure to pathogens is during estrus and breeding when the cervix is semi-permissive. The goal for intrauterine immunization would be to induce local or systemic immunity and/or to promote colostral/lactogenic immunity that will passively protect suckling offspring. The developing fetus is not the vaccine target. This minireview article focuses on the immune response induced in the pig uterus (uterine body and uterine horns) with some comparative references to other livestock species, mice, and humans.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Kerr AW, Efron PA, Larson SD, Rincon JC. T-Cell Activation and LPS: A Dangerous Duo for Organ Dysfunction. J Leukoc Biol 2022; 112:219-220. [PMID: 35481682 DOI: 10.1002/jlb.3ce0122-019r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS), one of the main components of cell membranes in gram-negative bacteria, is commonly used to promote inflammation-induced organ dysfunction. In the TLR4/LPS pathway, LPS binding protein and CD14 enable lipid A of LPS to be recognized by the TLR4-MD2 receptor complex. The intracellular domain of the TLR4/LPS complex stimulates MyD88-dependent/independent and TRIF-dependent pathways, which in turn activate NF-B and IRF3, leading to subsequent production of pro-inflammatory mediators. LPS has been demonstrated to induce microcirculatory disturbances via promotion of leukocyte adhesion to the vascular endothelium and the release of reactive oxygen species (ROS), damaging the vessels and causing vascular dysfunction. Thus, LPS is frequently used as a systemic model of inflammation as LPS administration increases circulating pro-inflammatory mediators, which triggers leukocyte adhesion and leads to multi-organ failure and death.
Collapse
Affiliation(s)
- Austin W Kerr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
6
|
Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021; 12:808527. [PMID: 34970279 PMCID: PMC8712562 DOI: 10.3389/fimmu.2021.808527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
Yearly administration of influenza vaccines is our best available tool for controlling influenza virus spread. However, both practical and immunological factors sometimes result in sub-optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within the field has led to development of pre-clinical and clinical vaccine candidates that aim to address limitations of current influenza vaccine approaches. Here, we consider the route of immunization as a critical factor in eliciting tissue resident memory (Trm) populations that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has the potential to boost tissue resident B and T cell populations that reside within specific niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised to respond rapidly to pathogen re-encounter by nature of their anatomic localization and their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal immunity in the upper and lower respiratory tracts suggest that antigen localized to these regions is required for the elicitation of protective B and T cell immunity at these sites and will need to be considered as an important attribute of a rationally designed intranasal vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of lung mucosal immunity.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
7
|
Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. J Virol 2021; 95:e0084121. [PMID: 34076479 DOI: 10.1128/jvi.00841-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung-localized CD4 T cells play a critical role in the control of influenza virus infection and can provide broadly protective immunity. However, current influenza vaccination strategies primarily target influenza hemagglutinin (HA) and are administered peripherally to induce neutralizing antibodies. We have used an intranasal vaccination strategy targeting the highly conserved influenza nucleoprotein (NP) to elicit broadly protective lung-localized CD4 T cell responses. The vaccine platform consists of a self-assembling nanolipoprotein particle (NLP) linked to NP with an adjuvant. We have evaluated the functionality, in vivo localization, and persistence of the T cells elicited. Our study revealed that intranasal vaccination elicits a polyfunctional subset of lung-localized CD4 T cells that persist long term. A subset of these lung CD4 T cells localize to the airway, where they can act as early responders following encounter with cognate antigen. Polyfunctional CD4 T cells isolated from airway and lung tissue produce significantly more effector cytokines IFN-γ and TNF-α, as well as cytotoxic functionality. When adoptively transferred to naive recipients, CD4 T cells from NLP:NP-immunized lung were sufficient to mediate 100% survival from lethal challenge with H1N1 influenza virus. IMPORTANCE Exploiting new, more efficacious strategies to potentiate influenza virus-specific immune responses is important, particularly for at-risk populations. We have demonstrated the promise of direct intranasal protein vaccination to establish long-lived immunity in the lung with CD4 T cells that possess features and positioning in the lung that are associated with both immediate and long-term immunity, as well as demonstrating direct protective potential.
Collapse
|
8
|
Jones E, Sheng J, Carlson J, Wang S. Aging-induced fragility of the immune system. J Theor Biol 2021; 510:110473. [PMID: 32941914 PMCID: PMC7487974 DOI: 10.1016/j.jtbi.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
The adaptive and innate branches of the vertebrate immune system work in close collaboration to protect organisms from harmful pathogens. As an organism ages its immune system undergoes immunosenescence, characterized by declined performance or malfunction in either immune branch, which can lead to disease and death. In this study we develop a mathematical framework of coupled innate and adaptive immune responses, namely the integrated immune branch (IIB) model. This model describes dynamics of immune components in both branches, uses a shape-space representation to encode pathogen-specific immune memory, and exhibits three steady states - health, septic death, and chronic inflammation - qualitatively similar to clinically-observed immune outcomes. In this model, the immune system (initialized in the health state) is subjected to a sequence of pathogen encounters, and we use the number of prior pathogen encounters as a proxy for the "age" of the immune system. We find that repeated pathogen encounters may trigger a fragility in which any encounter with a novel pathogen will cause the system to irreversibly switch from health to chronic inflammation. This transition is consistent with the onset of "inflammaging", a condition observed in aged individuals who experience chronic low-grade inflammation even in the absence of pathogens. The IIB model predicts that the onset of chronic inflammation strongly depends on the history of encountered pathogens; the timing of onset differs drastically when the same set of infections occurs in a different order. Lastly, the coupling between the innate and adaptive immune branches generates a trade-off between rapid pathogen clearance and a delayed onset of immunosenescence. Overall, by considering the complex feedback between immune compartments, our work suggests potential mechanisms for immunosenescence and provides a theoretical framework at the system level and on the scale of an organism's lifetime to account for clinical observations.
Collapse
Affiliation(s)
- Eric Jones
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Jiming Sheng
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Jean Carlson
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| | - Shenshen Wang
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun 2021; 538:211-217. [PMID: 33190827 PMCID: PMC7584424 DOI: 10.1016/j.bbrc.2020.10.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 first emerged in the human population in late 2019 in Wuhan, China, and in a matter of months, spread across the globe resulting in the Coronavirus Disease 19 (COVID-19) pandemic and substantial economic fallout. SARS-CoV-2 is transmitted between humans via respiratory particles, with infection presenting a spectrum of clinical manifestations ranging from asymptomatic to respiratory failure with multiorgan dysfunction and death in severe cases. Prior experiences with human pathogenic coronaviruses and respiratory virus diseases in general have revealed an important role for cellular immunity in limiting disease severity. Here, we review some of the key mechanisms underlying cell-mediated immunity to respiratory viruses and summarize our current understanding of the functional capacity and role of SARS-CoV-2-specific T cells following natural infection and vaccination.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
10
|
Singh L, Singh MK, Rizvi MA, Pushker N, Bakhshi S, Sen S, Kashyap S. Prognostic significance of immune checkpoints in the tumour-stromal microenvironment of sebaceous gland carcinoma. Br J Ophthalmol 2020; 105:48-56. [PMID: 32277010 DOI: 10.1136/bjophthalmol-2019-315490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Immune checkpoint blockade strategies have gained attention in the treatment/prognosis of cancers by targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway alone or in combination with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) blockade and are currently in clinical trials. The present study investigated the expression of the PD-1, PD-L1, CTLA-4, CD4 and CD8 proteins and their prognostic value in the tumour microenvironment of sebaceous gland carcinoma (SGC). METHODS The expression levels of PD-1, PD-L1, CTLA-4, CD4 and CD8 proteins were assessed in 52 cases of SGC by immunohistochemistry and validated by western blotting. mRNA expression was measured by quantitative real-time PCR. Kaplan-Meier curves and Cox proportional hazard models were used to analyse the correlation of protein expression with clinicopathological parameters and disease-free survival. RESULTS The expression of PD-L1 was found to be higher in tumour cells than in stromal cells. In univariate analysis, the expression of PD-1 in tumour-infiltrating lymphocytes (tPD-1) and PD-L1 in tumour cells was associated with reduced disease-free survival, whereas PD-L1 expression in stromal lymphocyte infiltration (sPD-L1) was associated with the increased survival of patients (p<0.05). However, by multivariate analysis, the expression of tPD-1 was found to be an independent prognostic factor for poor survival. CONCLUSION Our study highlights the prognostic outcome of PD-1 and PD-L1 protein expression in cells of tumour-stromal compartments. These results indicate that the PD-1/PD-L1 pathway mediates important interactions within the tumour microenvironment in SGC.
Collapse
Affiliation(s)
- Lata Singh
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India.,Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | | | | | - Neelam Pushker
- Ophthalmology, Dr R P Centre, AIIMS, New Delhi, Delhi, India
| | | | - Seema Sen
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Seema Kashyap
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
11
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|
12
|
Xie L, Li W, Hersh J, Liu R, Yang SH. Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab 2019; 39:2268-2276. [PMID: 30092705 PMCID: PMC6827125 DOI: 10.1177/0271678x18792372] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mounting evidence has demonstrated that both innate and adaptive immune cells infiltrate into the brain after ischemic stroke. T cell invasion has been found in the ischemic region up to one month post experimental ischemic stroke and has been shown to persist for years in stroke patients. However, the function and phenotypic characteristics of the brain invading T cells after ischemic stroke have not been investigated. In the current study, we determined the function of brain invading T cells in the acute and chronic phase following experimental ischemic stroke induced by transient middle cerebral artery occlusion. We observed a significant increase of CD4+ and CD8+ T cells presented in the peri-infarct area at up to one month after experimental ischemic stroke. The brain invading T cells after ischemic stroke demonstrated close interaction with active astrocytes and a progressive proinflammatory phenotype as evidenced by the increased expression of T cell activation markers CD44 and CD25, proinflammatory cytokines INF-γ, IL-17, IL-10, TNF-α, and perforin, with corresponding transcriptional factors T-bet and RORc. Our results indicated a prolonged activation of brain invading CD4+ and CD8+ T cells after ischemic stroke which may play a role in the neural repair process after stroke.
Collapse
Affiliation(s)
- Luokun Xie
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wenjun Li
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jessica Hersh
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
13
|
Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, Shields J, Agopsowicz KC, Xu L, Tabana Y, Srivastava N, Zhang G, Moon TC, Belovodskiy A, Hena M, Kandadai AS, Hosseini SN, Hitt M, Walker J, Smylie M, West FG, Siraki AG, Lemieux MJ, Elahi S, Nieman JA, Tyrrell DL, Houghton M, Barakat K. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep 2019; 9:12392. [PMID: 31455818 PMCID: PMC6712002 DOI: 10.1038/s41598-019-48826-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blockade of the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction has emerged as a powerful strategy in cancer immunotherapy. Recently, there have been enormous efforts to develop potent PD-1/PD-L1 inhibitors. In particular, Bristol-Myers Squibb (BMS) and Aurigene Discovery Technologies have individually disclosed several promising PD-1/PD-L1 inhibitors, whose detailed experimental data are not publicly disclosed. In this work, we report the rigorous and systematic in vitro characterization of a selected set of potent PD-1/PD-L1 macrocyclic peptide (BMSpep-57) and small-molecule inhibitors (BMS-103, BMS-142) from BMS and a peptidomimetic small-molecule inhibitor from Aurigene (Aurigene-1) using a series of biochemical and cell-based assays. Our results confirm that BMS-103 and BMS-142 are strongly active in biochemical assays; however, their acute cytotoxicity greatly compromised their immunological activity. On the other hand, Aurigene-1 did not show any activity in both biochemical and immunological assays. Furthermore, we also report the discovery of a small-molecule immune modulator, whose mode-of-action is not clear; however, it exhibits favorable drug-like properties and strong immunological activity. We hope that the results presented here will be useful in guiding the development of next-generation PD-1/PD-L1 small molecule inhibitors.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - William L Turnbull
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Justin Shields
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lai Xu
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nutan Srivastava
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Guangzhi Zhang
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | - Mary Hitt
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Michael Smylie
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Frederick G West
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - James A Nieman
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Michael Houghton
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
FTY720 Effects on Inflammation and Liver Damage in a Rat Model of Renal Ischemia-Reperfusion Injury. Mediators Inflamm 2019; 2019:3496836. [PMID: 31015795 PMCID: PMC6446098 DOI: 10.1155/2019/3496836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Ischemia-reperfusion injury (IRI) produces systemic inflammation with the potential for causing organ failure in tissues peripheral to the initial site of injury. We speculate that treatment strategies that dampen inflammation may be therapeutically beneficial to either the initial site of injury or peripheral organs. To test this, we evaluated the impact of FTY720-induced sequestration of circulating mature lymphocytes on renal IRI and secondary organ injury. Methods A microvascular clamp was surgically placed around the left renal pedicle of anesthetized male Sprague-Dawley rats with either vehicle or FTY720 treatment (0.3 mg/kg) intravenously injected after 15 min of ischemia. Blood flow was restored after 60 min. Cohorts of anesthetized rats were euthanized at 6, 24, or 72 hrs with tissue samples collected for analysis. Results FTY720 treatment resulted in profound T lymphocyte reduction in peripheral blood. Histopathologic examination, clinical chemistries, and gene transcript expression measurements revealed that FTY720 treatment reduced hepatocellular degeneration, reduced serum markers of liver injury (ALT/AST), and reduced the expression of gene targets associated with IRI. Conclusion These findings support an anti-inflammatory effect of FTY720 in the liver where the expression of genes associated with apoptosis, chemotaxis, and the AP-1 transcription factor was reduced. Findings presented here provide the basis for future studies evaluating FTY720 as a potential therapeutic agent to treat complications resulting from renal IRI.
Collapse
|
15
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
16
|
Ganesan A, Arulraj T, Choulli T, Barakat KH. A mathematical modelling tool for unravelling the antibody-mediated effects on CTLA-4 interactions. BMC Med Inform Decis Mak 2018; 18:37. [PMID: 29890992 PMCID: PMC5996525 DOI: 10.1186/s12911-018-0606-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Monoclonal antibodies blocking the Cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor have revolutionized the field of anti-cancer therapy for the last few years. The human T-cell-based immune responses are modulated by two contradicting signals. CTLA-4 provides a T cell inhibitory signal through its interaction with B7 ligands (B7-1 and B7-2), while CD28 provides a stimulatory signal when interacting with the same ligands. A previous theoretical model has focused on understanding the processes of costimulatory and inhibitory complex formations at the synapse. Nevertheless, the effects of monoclonal antibody (mAb)-mediation on these complexes are relatively unexplored. In this work, we expand on the previous model to develop a new mathematical framework for studying the effects of anti-CTLA-4 mAbs on the co-stimulatory (CD28/B7 ligands) and the co-inhibitory (CTLA-4/B7 ligands) complex formation at the immunological synapse. In particular, we focus on two promising anti-CTLA-4 mAbs, tremelimumab (from AstraZeneca) and ipilimumab (from Bristol-Myers Squibb), which are currently in clinical trials and the market, respectively, for targeting multiple tumors. METHODS The mathematical model in this work has been constructed based on ordinary differential equations and available experimental binding kinetics data for the anti-CTLA-4 antibodies from literature. RESULTS The numerical simulations from the current model are in agreement with a number of experimental data. Especially, the dose-curves for blocking the B7 ligand binding to CTLA-4 by ipilimumab are comparable with the results from a previous competitive binding assay by flow cytometry and ELISA. Our simulations predict the dose response and the relative efficacies of the two mAbs in blocking the inhibitory CTLA-4/B7 complexes. CONCLUSIONS The results show that different factors, such as multivalent interactions, mobility of molecules and competition effects, could impact the effects of antibody-mediation. The results, in particular, describe that the competitive effects could impact the dose-dependent inhibition by the mAbs very significantly. We present this model as a useful tool that can easily be translated to study the effects of any anti-CTLA-4 antibodies on immunological synaptic complex formation, provided reliable biophysical data for mAbs are available.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Theinmozhi Arulraj
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Tahir Choulli
- Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Romano A, Carneiro MBH, Doria NA, Roma EH, Ribeiro-Gomes FL, Inbar E, Lee SH, Mendez J, Paun A, Sacks DL, Peters NC. Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathog 2017; 13:e1006479. [PMID: 28666021 PMCID: PMC5509374 DOI: 10.1371/journal.ppat.1006479] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/13/2017] [Accepted: 06/18/2017] [Indexed: 01/13/2023] Open
Abstract
Inflammatory monocytes can be manipulated by environmental cues to perform multiple functions. To define the role of monocytes during primary or secondary infection with an intra-phagosomal pathogen we employed Leishmania major-red fluorescent protein (RFP) parasites and multi-color flow cytometry to define and enumerate infected and uninfected inflammatory cells in the skin. During primary infection, infected monocytes had altered maturation and were the initial mononuclear host cell for parasite replication. In contrast, at a distal site of secondary infection in mice with a healed but persistent primary infection, this same population rapidly produced inducible nitric oxide synthase (iNOS) in an IFN-γ dependent manner and was critical for parasite killing. Maturation to a dendritic cell-like phenotype was not required for monocyte iNOS-production, and enhanced monocyte recruitment correlated with IFN-γ dependent cxcl10 expression. In contrast, neutrophils appeared to be a safe haven for parasites in both primary and secondary sites. Thus, inflammatory monocytes play divergent roles during primary versus secondary infection with an intra-phagosomal pathogen. Many infectious diseases are initiated in the context of inflammation. This inflammatory response may be initiated by the pathogen itself or by damage to barrier sites associated with the infectious process. In the case of the vector-transmitted intra-phagosomal pathogen Leishmania, the parasite must contend with the robust inflammatory response initiated by the bite of an infected sand fly. Traditionally, rapid infection of macrophages in the skin and manipulation of these cells was seen as the mechanism by which the parasite avoided elimination by inflammatory cells. In the present study, we find that this is not the case following primary infection. After transient residence in neutrophils, Leishmania parasites transitioned into immature inflammatory monocytes, where they underwent proliferation and suppressed the maturation of these cells. In stark contrast, in a setting of pre-existing immunity, inoculation of parasites at a secondary site of infection resulted in parasite killing by monocytes in an IFN-γ dependent manner. Therefore, the role of monocytes is dependent upon the primary or secondary nature of the infection site into which they are recruited, emphasizing both the plasticity of this cell population and the central role these cells play during Leishmaniasis.
Collapse
Affiliation(s)
- Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Matheus B. H. Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole A. Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Eric H. Roma
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Flavia L. Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehud Inbar
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Jonatan Mendez
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- * E-mail:
| |
Collapse
|
18
|
Gilert A, Baruch L, Bronshtein T, Machluf M. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens. Biomed Microdevices 2016; 18:23. [PMID: 26888439 DOI: 10.1007/s10544-016-0050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.
Collapse
Affiliation(s)
- Ariel Gilert
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Limor Baruch
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
19
|
Strutt TM, McKinstry KK, Kuang Y, Finn CM, Hwang JH, Dhume K, Sell S, Swain SL. Direct IL-6 Signals Maximize Protective Secondary CD4 T Cell Responses against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3260-3270. [PMID: 27647834 PMCID: PMC5101150 DOI: 10.4049/jimmunol.1600033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Memory T cells can often respond against pathogens that have evaded neutralizing Abs and are thus key to vaccine-induced protection, yet the signals needed to optimize their responses are unclear. In this study, we identify a dramatic and selective requirement for IL-6 to achieve optimal memory CD4 T cell recall following heterosubtypic influenza A virus (IAV) challenge of mice primed previously with wild-type or attenuated IAV strains. Through analysis of endogenous T cell responses and adoptive transfer of IAV-specific memory T cell populations, we find that without IL-6, CD4+, but not CD8+, secondary effector populations expand less and have blunted function and antiviral impact. Early and direct IL-6 signals to memory CD4 T cells are required to program maximal secondary effector responses at the site of infection during heterosubtypic challenge, indicating a novel role for a costimulatory cytokine in recall responses.
Collapse
Affiliation(s)
- Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827;
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827;
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Caroline M Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Ji Hae Hwang
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
20
|
Guinn Z, Lampe AT, Brown DM, Petro TM. Significant role for IRF3 in both T cell and APC effector functions during T cell responses. Cell Immunol 2016; 310:141-149. [PMID: 27641636 DOI: 10.1016/j.cellimm.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
Interferon Regulatory Factor (IRF)3 is a crucial transcription factor during innate immune responses. Here we show IRF3 also has a role in adaptive T cell immune responses. Expression of IFN-γ, IL-17, and Granzyme B (GrB) during in vitro T cell responses was impaired when either dendritic cells (DCs) or T cells were derived from IRF3KO mice. Unexpectedly, IRF3-dependent NK-activating molecule (INAM), which is an NK cell activating factor of the DC innate immune response, was induced during the T cell response. Additionally, supernatants from responding T cells induced ISG54 in the RAW264.7 macrophage cell line in an IRF3 dependent manner. Moreover, addition of anti-IFN-γ prevented supernatant induction of ISG54 and recombinant IFN-γ stimulated ISG54 expression. Thus, IRF3 in APCs and T cells is required for optimal T-cell effector function and the ability of T cells to influence innate immune function of APCs.
Collapse
Affiliation(s)
- Zacharey Guinn
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, United States
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, United States.
| |
Collapse
|
21
|
Habib S, El Andaloussi A, Hisham A, Ismail N. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens. PLoS One 2016; 11:e0153223. [PMID: 27092553 PMCID: PMC4836677 DOI: 10.1371/journal.pone.0153223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK) cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE), which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.
Collapse
Affiliation(s)
- Samar Habib
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Abdeljabar El Andaloussi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Ahmed Hisham
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Richards KA, Nayak J, Chaves FA, DiPiazza A, Knowlden ZAG, Alam S, Treanor JJ, Sant AJ. Seasonal Influenza Can Poise Hosts for CD4 T-Cell Immunity to H7N9 Avian Influenza. J Infect Dis 2015; 212:86-94. [PMID: 25492919 PMCID: PMC4481611 DOI: 10.1093/infdis/jiu662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/11/2014] [Indexed: 01/26/2023] Open
Abstract
The emergence of avian H7N9 viruses has raised concerns about its pandemic potential and prompted vaccine trials. At present, it is unknown whether there will be sufficient cross-reactive hemagglutinin (HA)-specific CD4 T-cell memory with seasonal influenza to facilitate antibody production to H7 HA. There has also been speculation that H7N9 will have few CD4 T-cell epitopes. In this study, we quantified the potential of seasonal influenza to provide memory CD4 T cells that can cross-reactively recognize H7 HA-derived peptides. These studies have revealed that many humans have substantial H7-reactive CD4 T cells, whereas up to 40% are lacking such reactivity. Correlation studies indicate that CD4 T cells reactive with H7 HA are drawn from reactivity generated from seasonal strains. Overall, our findings suggest that previous exposure of humans to seasonal influenza can poise them to respond to avian H7N9, but this is likely to be uneven across populations.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Jennifer Nayak
- Department of Pediatrics, and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, New York
| | - Francisco A. Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Anthony DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | | | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
23
|
Moon H, Park C, Lee JG, Shin SH, Lee JH, Kho I, Kang K, Cha HS, Kim TJ. Early Development in the Peritoneal Cavity of CD49dhigh Th1 Memory Phenotype CD4+ T Cells with Enhanced B Cell Helper Activity. THE JOURNAL OF IMMUNOLOGY 2015; 195:564-75. [DOI: 10.4049/jimmunol.1401661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 05/15/2015] [Indexed: 01/10/2023]
|
24
|
Rolin O, Smallridge W, Henry M, Goodfield L, Place D, Harvill ET. Toll-like receptor 4 limits transmission of Bordetella bronchiseptica. PLoS One 2014; 9:e85229. [PMID: 24497924 PMCID: PMC3907416 DOI: 10.1371/journal.pone.0085229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023] Open
Abstract
Transmission of pathogens has been notoriously difficult to study under laboratory conditions leaving knowledge gaps regarding how bacterial factors and host immune components affect the spread of infections between hosts. We describe the development of a mouse model of transmission of a natural pathogen, Bordetella bronchiseptica, and its use to assess the impact of host immune functions. Although B. bronchiseptica transmits poorly between wild-type mice and mice lacking other immune components, it transmits efficiently between mice deficient in Toll-Like Receptor 4 (TLR4). TLR4-mutant mice were more susceptible to initial colonization, and poorly controlled pathogen growth and shedding. Heavy neutrophil infiltration distinguished TLR4-deficient responses, and neutrophil depletion did not affect respiratory CFU load, but decreased bacterial shedding. The effect of TLR4 response on transmission may explain the extensive variation in TLR4 agonist potency observed among closely related subspecies of Bordetella. This transmission model will enable mechanistic studies of how pathogens spread from one host to another, the defining feature of infectious disease.
Collapse
Affiliation(s)
- Olivier Rolin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Will Smallridge
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael Henry
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura Goodfield
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhang J, Crumpacker C. Eradication of HIV and Cure of AIDS, Now and How? Front Immunol 2013; 4:337. [PMID: 24151495 PMCID: PMC3799464 DOI: 10.3389/fimmu.2013.00337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022] Open
Abstract
Recent studies have highlighted the importance of eradication of human immunodeficiency virus (HIV) and cure of acquired immunodeficiency syndrome (AIDS). However, a pivotal point that the patient immunity controls HIV reactivation after highly active anti-retroviral therapy [HAART or combination anti-retroviral therapy (cART)] remains less well addressed. In spite of the fact that both innate and adaptive immunities are indispensable and numerous cells participate in the anti-HIV immunity, memory CD4 T-cells are indisputably the key cells organizing all immune actions against HIV while being the targets of HIV. Here we present a view and multidisciplinary approaches to HIV/AIDS eradication and cure. We aim at memory CD4 T-cells, utilizing the stem cell properties of these cells to reprogram an anti-HIV memory repertoire to eliminate the viral reservoir, toward achieving an AIDS-free world.
Collapse
Affiliation(s)
- Jielin Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | | |
Collapse
|
26
|
McKinstry KK, Dutton RW, Swain SL, Strutt TM. Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful. Arch Immunol Ther Exp (Warsz) 2013; 61:341-53. [PMID: 23708562 DOI: 10.1007/s00005-013-0236-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Recent observations have uncovered multiple pathways whereby CD4 T cells can contribute to protective immune responses against microbial threats. Incorporating the generation of memory CD4 T cells into vaccine strategies thus presents an attractive approach toward improving immunity against several important human pathogens, especially those against which antibody responses alone are inadequate to confer long-term immunity. Here, we review how memory CD4 T cells provide protection against influenza viruses. We discuss the complexities of protective memory CD4 T cell responses observed in animal models and the potential challenges of translating these observations into the clinic. Specifically, we concentrate on how better understanding of organ-specific heterogeneity of responding cells and defining multiple correlates of protection might improve vaccine-generated memory CD4 T cells to better protect against seasonal, and more importantly, pandemic influenza.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01583, USA,
| | | | | | | |
Collapse
|
27
|
Defective immunoregulation in RSV vaccine-augmented viral lung disease restored by selective chemoattraction of regulatory T cells. Proc Natl Acad Sci U S A 2013; 110:2987-92. [PMID: 23382205 DOI: 10.1073/pnas.1217580110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human trials of formaldehyde-inactivated respiratory syncytial virus (FI-RSV) vaccine in 1966-1967 caused disastrous worsening of disease and death in infants during subsequent natural respiratory syncytial virus (RSV) infection. The reasons behind vaccine-induced augmentation are only partially understood, and fear of augmentation continues to hold back vaccine development. We now show that mice vaccinated with FI-RSV show enhanced local recruitment of conventional CD4(+) T cells accompanied by a profound loss of regulatory T cells (Tregs) in the airways. This loss of Tregs was so complete that additional depletion of Tregs (in transgenic depletion of regulatory T-cell mice) produced no additional disease enhancement. Transfer of conventional CD4(+) T cells from FI-RSV-vaccinated mice into naive RSV-infected recipients also caused a reduction in airway Treg responses; boosting Tregs with IL-2 immune complexes failed to restore normal levels of Tregs or to ameliorate disease. However, delivery of chemokine ligands (CCL) 17/22 via the airway selectively recruited airway Tregs and attenuated vaccine-augmented disease, reducing weight loss and inhibiting local recruitment of pathogenic CD4(+) T cells. These findings reveal an unexpected mechanism of vaccine-induced disease augmentation and indicate that selective chemoattraction of Tregs into diseased sites may offer a novel approach to the modulation of tissue-specific inflammation.
Collapse
|
28
|
Abstract
In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing "help" for B cell and CD8+ T cell responses during influenza virus infection.
Collapse
|