1
|
Naponelli V, Piscazzi A, Mangieri D. Cellular and Molecular Mechanisms Modulated by Genistein in Cancer. Int J Mol Sci 2025; 26:1114. [PMID: 39940882 PMCID: PMC11818640 DOI: 10.3390/ijms26031114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is a phytoestrogen belonging to a subclass of natural flavonoids that exhibits a wide range of pharmacological functions, including antioxidant and anti-inflammatory properties. These characteristics make genistein a valuable phytochemical compound for the prevention and/or treatment of cancer. Genistein effectively inhibits tumor growth and dissemination by modulating key cellular mechanisms. This includes the suppression of angiogenesis, the inhibition of epithelial-mesenchymal transition, and the regulation of cancer stem cell proliferation. These effects are mediated through pivotal signaling pathways such as JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin. Moreover, genistein interferes with the function of specific cyclin/CDK complexes and modulates the activation of Bcl-2/Bax and caspases, playing a critical role in halting tumor cell division and promoting apoptosis. The aim of this review is to discuss in detail the key cellular and molecular mechanisms underlying the pleiotropic anticancer effects of this flavonoid.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Annamaria Piscazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
2
|
Boudou F, Belakredar A, Berkane A, Keziz A, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Phytochemical profiling and in silico evaluation of Artemisia absinthium compounds targeting Leishmania N-myristoyltransferase: molecular docking, drug-likeness, and toxicity analyses. Front Chem 2024; 12:1508603. [PMID: 39669181 PMCID: PMC11635459 DOI: 10.3389/fchem.2024.1508603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Background Artemisia absinthium has long been recognized for its therapeutic properties against various diseases. Among these is leishmaniasis, a parasitic infection that remains a global health challenge. Targeting Leishmania N-myristoyltransferase (NMT), a crucial enzyme for parasite survival, represents a promising therapeutic approach. The bioactive compounds in A. absinthium could potentially inhibit NMT and serve as new treatment options for leishmaniasis. Aim This study aims to investigate the phytochemical composition, drug-likeness, and molecular dynamics of A. absinthium bioactive compounds targeting Leishmania NMT, identifying potent inhibitors that could serve as new drug candidates. Method The extract of A. absinthium was analyzed using High-Performance Liquid Chromatography (HPLC), identifying nine phenolic compounds, with kaempferol (10.72%) and chlorogenic acid (4.43%) being the most abundant. Drug-likeness and toxicity were evaluated using SwissADME and OSIRIS Property Explorer, focusing on adherence to Lipinski's rule of five and Ghose's filter. Molecular docking studies were conducted to evaluate the binding affinity of these compounds to NMT. Molecular dynamics (MD) simulations were performed to assess the stability and flexibility of the NMT-apigenin complex. Results Molecular docking identified apigenin as the most potent NMT inhibitor, with a binding energy of -9.6 kcal/mol, forming significant hydrogen bonds with threonine residues 203 and 189. Drug-likeness analysis revealed that most compounds adhered to Lipinski's rule of five, indicating favorable pharmacokinetic properties. MD simulations confirmed the stability of the NMT-apigenin complex, with root mean square deviation (RMSD) values of 0.04 nm, root mean square fluctuation (RMSF) values between 0.05 and 0.35 nm, and radius of gyration (Rg) values ranging from 2.24 to 2.30 nm. Normal mode analysis further supported the complex's stability and flexibility. Conclusion The findings of this study underscore the potential of Artemisia absinthium compounds, particularly apigenin, as promising candidates for the development of new anti-leishmaniasis drugs. The potent inhibition of Leishmania NMT by apigenin, along with its favorable pharmacokinetic and stability profiles, supports its further exploration in antileishmanial drug development.
Collapse
Affiliation(s)
- Farouk Boudou
- Department of Biology, Faculty of Sciences, Djillali Liabes University of Sidi-Bel-Abbes, Sidi-Bel-Abbes, Algeria
| | - Amal Belakredar
- Department of Biotechnology, Faculty of Natural Sciences and Life, University of Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Alaeddine Berkane
- Laboratory of Chemistry, Synthesis, Properties, and Applications (LCSPA), Department of Chemistry, Faculty of Sciences, Dr. Moulay Tahar University of Saida, Saida, Algeria
| | - Ahcen Keziz
- Physics and Chemistry of Materials Lab, Department of Physics, University of M’sila, M’sila, Algeria
| | - Huda Alsaeedi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Goleij P, Tabari MAK, Khandan M, Poudineh M, Rezaee A, Sadreddini S, Sanaye PM, Khan H, Larsen DS, Daglia M. Genistein in focus: pharmacological effects and immune pathway modulation in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03647-x. [PMID: 39601821 DOI: 10.1007/s00210-024-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles. Dysregulation of immune responses can contribute to cancer progression. Phytochemicals, bioactive compounds derived from plants, have gained attention for their potential roles in cancer prevention and therapy due to their antioxidant, anti-inflammatory, and immunomodulatory properties. Genistein, an isoflavone found in soy products, is of particular interest. In this study, genistein's mechanisms of action at the molecular and cellular levels in cancer were demonstrated, highlighting its impact on T and B lymphocytes, NK cells and dendritic cells. Genistein's ability to influence cytokine production, reducing levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, is emphasized. Genistein modulates inflammatory response pathways like Toll-like receptors (TLRs), NF-κB, chemokines, and MAPK, inhibiting tumor growth, promoting apoptosis, and reducing metastasis. It shows promise in overcoming chemoresistance, particularly in ovarian and neuroblastoma cancers, by inhibiting autophagy. Genistein also affects T-cell execution markers, including granzyme B, TNF-α, and FAS ligand in cancer by influencing key proteins involved in immune response and apoptosis. Clinical trials have investigated genistein's therapeutic potential, revealing its promise in enhancing the efficacy of traditional cancer treatments while mitigating associated toxicities. Genistein helps overcome chemoresistance in various cancers by inhibiting autophagy and promoting apoptosis. It also enhances immunotherapy by boosting immune responses and modifying antigens, but careful dosing is needed when combined with anti-PD-1 treatments to avoid reducing effectiveness.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656-87386, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples, 80131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Jeong SH, Kim HH, Park MY, Bhosale PB, Abusaliya A, Hwang KH, Moon YG, Heo JD, Seong JK, Ahn M, Park KI, Won CK, Kim GS. Potential Anticancer Effects of Isoflavone Prunetin and Prunetin Glycoside on Apoptosis Mechanisms. Int J Mol Sci 2024; 25:11713. [PMID: 39519265 PMCID: PMC11545868 DOI: 10.3390/ijms252111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer is a deadly disease caused by cells that deviate from the normal differentiation and proliferation behaviors and continue to multiply. There is still no definitive cure, and many side effects occur even after treatment. However, apoptosis, one of the programs imprinted on cells, is becoming an important concept in controlling cancer. Flavonoids are polyphenolic compounds found in plants, are naturally bioactive compounds, have been studied for their anticancer effects, and have fewer side effects than chemical treatments. Isoflavones are phytoestrogens belonging to the flavonoid family, and this review discusses in depth the potential anticancer effects of prunetin, one of the many flavonoid families, via the apoptotic mechanism. In addition, a glycoside called prunetin glucoside has been investigated for its anticancer effects through apoptotic mechanisms. The primary intention of this review is to identify the effects of prunetin and its glycoside, prunetin glucoside, on cell death signaling pathways in various cancers to enhance the potential anticancer effects of these natural compounds.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Kwang Hyun Hwang
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Yeon Gyu Moon
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 35345, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Chung Kil Won
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| |
Collapse
|
5
|
Viña J, Borrás C, Mas-Bargues C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer's Disease Patients. J Alzheimers Dis 2024; 101:S275-S283. [PMID: 39422955 DOI: 10.3233/jad-240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is recognized as a complex condition influenced by multiple factors, necessitating a similarly multifaceted approach to treatment. Ideally, interventions should prioritize averting the progression to dementia. Given the chronic nature of the disease, long-term management strategies are required. Within this framework, lifestyle modifications and dietary supplements emerge as appealing options due to their minimal toxicity, limited side effects, and cost-effectiveness. This study presents findings from a double-blind, placebo-controlled bicentric pilot clinical trial, demonstrating the significant cognitive preservation associated with genistein, a phytoestrogen found in soy and various other dietary sources, among individuals with prodromal Alzheimer's disease. Our prior investigation utilizing APP/PS1 mice elucidated the specific mechanisms through which genistein operates, including anti-amyloid-β, antioxidant, anti-inflammatory, and antiapoptotic effects. These findings underscore the potential of identifying bioactive compounds from dietary sources for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- José Viña
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Consuelo Borrás
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| | - Cristina Mas-Bargues
- Department of Physiology, Freshage Research Group, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, Spain
| |
Collapse
|
6
|
Kang JH, Dong Z, Shin SH. Benefits of Soybean in the Era of Precision Medicine: A Review of Clinical Evidence. J Microbiol Biotechnol 2023; 33:1552-1562. [PMID: 37674385 PMCID: PMC10774093 DOI: 10.4014/jmb.2308.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Soybean (Glycine max) is an important ingredient of cuisines worldwide. While there is a wealth of evidence that soybean could be a good source of macronutrients and phytochemicals with health-promoting effects, concerns regarding adverse effects have been raised. In this work, we reviewed the current clinical evidence focusing on the benefits and risks of soybean ingredients. In breast, prostate, colorectal, ovarian, and lung cancer, epidemiological studies showed an inverse association between soybean food intake and cancer risks. Soybean intake was inversely correlated with risks of type 2 diabetes mellitus (T2DM), and soy isoflavones ameliorated osteoporosis and hot flashes. Notably, soybean was one of the dietary protein sources that may reduce the risk of breast cancer and T2DM. However, soybean had adverse effects on certain types of drug treatment and caused allergies. In sum, this work provides useful considerations for planning clinical soybean research and selecting dietary protein sources for human health.
Collapse
Affiliation(s)
- Jung Hyun Kang
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou 450008, Henan, P.R. China
| | - Seung Ho Shin
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Awobajo FO, Medobi EF, Abdul MW, Aminu BB, Ojimma CT, Dada OG. The effect of genistein on IGF-1, PlGF, sFLT-1 and fetoplacental development. Gen Comp Endocrinol 2022; 329:114122. [PMID: 36063867 DOI: 10.1016/j.ygcen.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022]
Abstract
The mechanisms by which genistein, a phytoestrogen, affects fetoplacental development adversely are still poorly understood. It is reported that genistein ingestion modulates thyroid functions, leptin hormone, C-reactive protein, and thyroxin kinase activities. In this study, we evaluated changes in serum and placental insulin-like growth factor-I (IGF-1), placental growth factor (PIGF), and soluble fms-like tyrosine kinase-1 (sFLT-1) in pregnant rats exposed to genistein using ELISA. According to the treatments, Rats were divided into control, 2 mg genistein, and 4 mg genistein groups. Genistein groups were administered with the doses orally from gestational day (GD) one onwards until sacrifice, while the control group received an equal volume of distilled water the vehicle. At GD-12, GD-16, and GD-20, serum samples and placenta homogenates were prepared from maternal blood samples and the placenta and were analysed to determine the concentration of IGF-1, sFLT-1, and PIGF. Serum IGF-1 and PIGF were both increased in all genistein groups at GD-12 and GD-16, and at GD-20 in the 4 mg group. However, serum IGF-1and PIGF levels were decreased in the placenta from all genistein groups at GD-20. Placenta sFLT-1 levels increased at both GD-16 and GD-20 in genistein-treated rat serum. An initial decrease in placental sFLT-1 at GD-12 was followed by an increase at GD-16 and finally a decrease at GD-20 in all genistein-treated rats. The sFL-1/PlGF ratio in placenta samples of genistein-exposed rats was decreased at GD-16 and increased at GD-20, while the reverse was recorded in the serum sample at the same gestational periods. The fetoplacental growth disruption mechanism of genistein can be partly explained by its interference with placental growth factor signalling.
Collapse
Affiliation(s)
- F O Awobajo
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria.
| | - E F Medobi
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria
| | - M W Abdul
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria
| | - B B Aminu
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria
| | - C T Ojimma
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria
| | - O G Dada
- Department of Physiology. Faculty of Basic Medical Sciences, College of Medicine University of Lagos, Nigeria
| |
Collapse
|
8
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
9
|
Lu C, Li F, Yan X, Mao S, Zhang T. Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction. Food Chem 2022; 378:132032. [PMID: 35033710 DOI: 10.1016/j.foodchem.2021.132032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/04/2022]
Abstract
This work aimed to investigate how pulsed electric field (PEF) technology as an alternative to enhance the enzymatic hydrolysis of soybean isoflavone glycosides (SIG). To achieve it, the effect of PEF treatment on the activity, kinetics, thermodynamics and structure of β-glucosidase (β-GLU) were evaluated. The parameters for PEF-assisted hydrolysis of soybean isoflavone glycosides were optimized by response surface methodology. The results showed that PEF treatment increased the relative activity and catalytic efficiency of β-GLU with moderate electric field intensity. Furthermore, PEF treatment induced the secondary and tertiary structural change of β-GLU, the α-helix content increased by 4.23% and the β-fold content decreased by 3.70%. The optimum conditions for PEF treatment were established as the highest yield of isoflavone aglycones achieved 94.58%. Therefore, these results indicated that PEF treatment could be used as an efficient process to improve the β-GLU properties, converting soybean isoflavone glycoside to their aglycones form.
Collapse
Affiliation(s)
- Chengwen Lu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Shuo Mao
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 130062 Changchun, PR China.
| |
Collapse
|
10
|
Qu Y, Luo Y, Yang X, Zhang Y, Yang E, Xu H, He Y, Chagan I, Yan J. Highly Efficient Biotransformation of Phenolic Glycosides Using a Recombinant β -Glucosidase From White Rot Fungus Trametes trogii. Front Microbiol 2022; 13:762502. [PMID: 35663869 PMCID: PMC9158485 DOI: 10.3389/fmicb.2022.762502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Phenolic glycosides are the important bioactive molecules, and their bioavailability can be influenced by enzyme hydrolysis, such as β-glucosidases (EC3.2.1.21) and other glycosyl hydrolases (GHs). Wood rotting fungi possess a superfamily of GHs, but little attention has been paid to the GHs and their potential applications in biotransformation of phenolic glycosides. In this study, two GH3 gene family members of Trametes trogii S0301, mainly expressed in the carbon sources conversion stage were cloned, and TtBgl3 coded by T_trogii_12914 showed β-glucosidase activity toward 4-nitrophenyl β-D-glucopyranoside (pNPG). The recombinant TtBgl3 preferred an intermediately neutral optimum pH with >80% of the maximum activity at pH 5.0-7.0 and was stable at a wide range of pH (5.0-10.0). Phenolic glycosides transformation experiments showed that TtBgl3 was a dual-activity enzyme with both activities of aryl-β-D-glucosidase and β-glucuronidase, and could hydrolyze the β-glucoside/glucuronide bond of phenolic glycosides. Under optimized conditions, the recombinant TtBgl3 had much higher transformation efficiency toward the β-glucoside bond of gastrodin, esculin and daidzin than β-glucuronide bond of baicalin, with the transformation rate of 100 and 50%, respectively. Our homology modeling, molecular docking, and mutational analysis demonstrated that His85 and Lys467 in the acceptor-binding pocket of TtBgl3 were the potential active sites. The point mutation of His85 and Lys467 leads to the significantly impaired catalytic activity toward pNPG and also the weak transformation efficiency toward gastrodin. These findings provide insights for the identification of novel GH3 β-glucosidases from T. trogii and other wood-rotting fungi. Furthermore, TtBgl3 might be applied as green and efficient biological catalysts in the deglycosylation of diverse phenolics to produce bioactive glycosides for drug discovery in the future.
Collapse
Affiliation(s)
- Yuan Qu
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
| | - Yuan Luo
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Xulei Yang
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Yu Zhang
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - En Yang
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Huini Xu
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Yingying He
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Irbis Chagan
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - JinPing Yan
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Lee SY, Woo SY, Tian F, Jeong AY, Park SB, Chun HS. Contamination characteristics and risk assessment of aflatoxins in homemade soybean paste, a traditional fermented soybean food, in South Korea. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127576. [PMID: 34736208 DOI: 10.1016/j.jhazmat.2021.127576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Soybean paste is manufactured through microbial fermentation and may become contaminated with aflatoxins. Herein, we conducted nationwide large-scale monitoring (n = 1436) over three years (2018-2020) to investigate aflatoxin levels according to geographic, demographic, manufacturing, quality factors, and risk characteristics of homemade soybean paste produced through fermentation. The mean level of total aflatoxins was 5.88 μg/kg (range, 0.01-281.92), with the most common contaminating type being the B type. Aflatoxin levels significantly differed according to the region, age of the manufacturer, type of starter used, and the amino-type nitrogen content and pH of the homemade soybean paste (p < 0.05). Aflatoxin levels was significantly higher when starters were manufactured using the traditional method (inoculation with a naturally occurring strain in the surrounding environment). The aflatoxin exposure level estimated through the average intake of homemade soybean paste in all age groups was 0.1012 ng/kg body weight/day. The risk assessment for the genotoxic and carcinogenic potential of aflatoxins using the margin of exposure approach revealed values of 3705-3954 for average intake of homemade soybean paste, indicating public health concern. These results suggest that follow-up studies and safety management strategies are needed to reduce aflatoxin levels in homemade soybean paste.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Fei Tian
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - A-Yeong Jeong
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Su Been Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
12
|
Mai Z, Wang L, Zeng Q. Characterization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from mangrove soil metagenomic library. Biochem Biophys Res Commun 2021; 569:61-65. [PMID: 34229124 DOI: 10.1016/j.bbrc.2021.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022]
Abstract
For the beneficial pharmacological properties of isoflavonoids and their related glycoconjugates, there is increasingly interest in their enzymatic conversion. In this study, a novel β-glucosidase gene isolated from metagenomic library of mangrove sediment was cloned and overexpressed in Escherichia coli BL21(DE3). The purified recombination β-glucosidase, designated as r-Bgl66, showed high catalytic activity for soy isoflavone glycosides. It converted soy isoflavone flour extract with the productivities of 0.87 mM/h for daidzein, 0.59 mM/h for genistein and 0.42 mM/h for glycitein. The kcat/Km values for daidzin, genistin and glycitin were 208.73, 222.37 and 288.07 mM-1 s-1, respectively. In addition, r-Bgl66 also exhibited the characteristic of glucose-tolerance, and the inhibition constant Ki was 471.4 mM. These properties make it a good candidate in the enzymatic hydrolysis of soy isoflavone glycosides. This study also highlights the utility of metagenomic approach in discovering novel β-glucosidase for soy isoflavone glycosides hydrolysis.
Collapse
Affiliation(s)
- Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
14
|
Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13112765. [PMID: 34199460 PMCID: PMC8199612 DOI: 10.3390/cancers13112765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is one of the belligerent neoplasia that metastasize to other brain regions and invade nearby healthy tissues. However, the treatments available are associated with some limitations, such as high variations in solid tumors and deregulation of multiple cellular pathways. The heterogeneity of the GBM tumor and its aggressive infiltration into the nearby tissues makes it difficult to treat. Hence, the development of multimodality therapy that can be more effective, novel, with fewer side effects, improving the prognosis for GBM is highly desired. This review evaluated the use of natural phytoconstituents as an alternative for the development of a new therapeutic strategy. The key aspects of GBM and the potential of drug delivery techniques were also assessed, for tumor site delivery with limited side-effects. These efforts will help to provide better therapeutic options to combat GBM in future. Abstract Glioblastoma multiforme (GBM) is one of the debilitating brain tumors, being associated with extremely poor prognosis and short median patient survival. GBM is associated with complex pathogenesis with alterations in various cellular signaling events, that participate in cell proliferation and survival. The impairment in cellular redox pathways leads to tumorigenesis. The current standard pharmacological regimen available for glioblastomas, such as radiotherapy and surgical resection following treatment with chemotherapeutic drug temozolomide, remains fatal, due to drug resistance, metastasis and tumor recurrence. Thus, the demand for an effective therapeutic strategy for GBM remains elusive. Hopefully, novel products from natural compounds are suggested as possible solutions. They protect glial cells by reducing oxidative stress and neuroinflammation, inhibiting proliferation, inducing apoptosis, inhibiting pro-oncogene events and intensifying the potent anti-tumor therapies. Targeting aberrant cellular pathways in the amelioration of GBM could promote the development of new therapeutic options that improve patient quality of life and extend survival. Consequently, our review emphasizes several natural compounds in GBM treatment. We also assessed the potential of drug delivery techniques such as nanoparticles, Gliadel wafers and drug delivery using cellular carriers which could lead to a novel path for the obliteration of GBM.
Collapse
|
15
|
Kumar A, Srivastava AK, Gangwar SK, Misra N, Brahmachari G, Mondal A, Mondal S. FT-IR, UV–visible, and NMR Spectral Analyses, Molecular Structure, and Properties of Nevadensin Revealed by Density Functional Theory and Molecular Docking. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2018.1458741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abhishek Kumar
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ambrish Kumar Srivastava
- P. G. Department of Physics, Veer Kunwar Singh University, Ara, Bihar, India
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | | | - Neeraj Misra
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Goutam Brahmachari
- P. G. Department of Physics, Veer Kunwar Singh University, Ara, Bihar, India
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - Avijit Mondal
- P. G. Department of Physics, Veer Kunwar Singh University, Ara, Bihar, India
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| | - Sadan Mondal
- P. G. Department of Physics, Veer Kunwar Singh University, Ara, Bihar, India
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal, India
| |
Collapse
|
16
|
Persia FA, Troncoso ME, Rinaldini E, Simirgiotis M, Tapia A, Bórquez J, Mackern-Oberti JP, Hapon MB, Gamarra-Luques C. UHPLC-Q/Orbitrap/MS/MS fingerprinting and antitumoral effects of Prosopis strombulifera (LAM.) BENTH. queous extract on allograft colorectal and melanoma cancer models. Heliyon 2020; 6:e03353. [PMID: 32055742 PMCID: PMC7005552 DOI: 10.1016/j.heliyon.2020.e03353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The aqueous extract of the Argentinean native plant, Prosopis strombulifera (PsAE), presents cytotoxicity against human cancer cell lines by inducing cytostasis, necrosis and apoptosis; with diminution of clonogenic survival; without genotoxic effects nor oral animal toxicity. Until now, the chemical extract composition and its in vivo antitumoral properties remain unknown; these studies are the aim of the current work. The PsAE was characterized by chemical fingerprinting and the metabolome was identified by tandem UHPLC-PDA-HESI-Q-orbitrap® mass spectrometry. Colorectal tumors were induced by DMH administration and melanomas resulted from B16-F0 S.C. cells injection; then, animals were treated orally with PsEA. To correlate in vivo results with in vitro cytotoxicity, B16-F0 cell were cultured to determine: cell proliferation and viability by dye exclusion assays, MTT and CFSE dilution; cell cycle distribution by flow cytometry; and immunoblotting of p21cip1, PCNA, cleaved caspase 3, cleaved PARP and TUBA1A. Based on UHPLC-OT-MS and PDA analysis, twenty-six compounds were identified, including: 5 simple organic acids, 4 phenolic acids, 4 procyanidins, 11 flavonoids, and 2 oxylipins. On C57BL6 mice, PsAE significantly increases the median survival on colorectal cancer and reduces the final volume and weight of melanomas. Over cultured cells, the treatment induce over-expression of p21, cytostasis by G2/M cell cycle arrest and apoptosis; while, on in vivo melanomas, treatment up-regulates p21 and slightly decreases PCNA. In conclusion, PsAE is composed by phenolic compounds which demonstrate cytotoxic and antitumoral properties when is orally administrated. Presented results support future research of PsAE as a potential phytomedicine for cancer treatment.
Collapse
Affiliation(s)
- Fabio Andrés Persia
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad de Mendoza, Boulogne Sur Mer 683, CP 5500, Mendoza, Argentina
| | - Mariana Elizabeth Troncoso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad Nacional de Cuyo, Padre Contreras 1300, CP 5500, Mendoza, Argentina
| | - Estefanía Rinaldini
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400, San Juan, Argentina
| | - Jorge Bórquez
- Laboratorio de Productos Naturales Depto. de Química, Facultad de Ciencias, Universidad de Antofagasta. Av. Coloso S-N, Antofagasta 1240000, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP5500, Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad Nacional de Cuyo, Padre Contreras 1300, CP 5500, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET - Universidad Nacional de Cuyo. Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP5500, Mendoza, Argentina
| |
Collapse
|
17
|
D'Angelo S, Scafuro M, Meccariello R. BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocr Metab Immune Disord Drug Targets 2020; 19:594-604. [PMID: 30621569 PMCID: PMC7360909 DOI: 10.2174/1871530319666190101120119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background Bisphenol A (BPA) is worldwide diffused as a monomer of epoxy resins and polycarbonate plastics and has recognized activity as Endocrine Disruptor (ED). It is capable to interfere or compete with endogenous hormones in many physiological activities thus having adverse outcomes on health. Diet highly affects health status and in addition to macronutrients, provides a large number of substances with recognized pro-heath activity, and thus called nutraceuticals. Objective This mini-review aims at summarizing the possible opposite and simultaneous effects of BPA and nutraceuticals on endocrine functions. The possibility that diet may represent the first instrument to preserve health status against BPA damages has been discussed. Methods The screening of recent literature in the field has been carried out. Results The therapeutic and anti-oxidant properties of many nutraceuticals may reverse the adverse health effects of BPA. Conclusion In vitro and in vivo studies provided evidence that nutraceuticals can preserve the health. Thus, the use of nutraceuticals can be considered a support for clinical treatment. In conclusion, dietary remediation may represent a successful therapeutic approach to maintain and preserve health against BPA damage.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| | - Marika Scafuro
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Universita degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| |
Collapse
|
18
|
Shukla RP, Dewangan J, Urandur S, Banala VT, Diwedi M, Sharma S, Agrawal S, Rath SK, Trivedi R, Mishra PR. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Biomater Sci 2020; 8:1298-1315. [DOI: 10.1039/c9bm01246j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The progressive development of tumors leading to angiogenesis marks the advancement of cancer which requires specific targeted treatment preferably with combination chemotherapy.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Jayant Dewangan
- Division of Toxicology
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Monika Diwedi
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Shweta Sharma
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| | | | - Ritu Trivedi
- Division of Endocrinology
- CSIR-Central Drug Research Institute Lucknow
- India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics
- CSIR-Central Drug Research Institute Lucknow
- India
| |
Collapse
|
19
|
Dai S, Pan M, El-Nezami HS, Wan JMF, Wang MF, Habimana O, Lee JCY, Louie JCY, Shah NP. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. J Food Sci 2019; 84:1854-1863. [PMID: 31206699 DOI: 10.1111/1750-3841.14661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus rhamnosus strain ASCC 1520 with high soy isoflavone transformation ability was used to ferment soymilk and added to the diet of mice. The impact of L. rhamnosus fermentation on soy isoflavone metabolites and intestinal bacterial community, in conjunction with fecal enzyme activity and short-chain fatty acids (SCFA) excretion was evaluated. Antibiotics intervention resulted in a decrease in fecal enzyme activities and SCFA. Although long-term intake of soymilk or L. rhamnosus-fermented soymilk did not affect the fecal β-glucuronidase and β-galactosidase activities, it improved the β-glucosidase activity when antibiotics were concomitantly administered. Soymilk or fermented soymilk administration increased the isoflavone metabolites (O-DMA and equol) excreted in urine. Antibiotics decreased the daidzein excretion and its metabolites but showed little effect on glycitein and genistein excretion. Principal coordinates analysis (PCoA) of the 16s rRNA gene sequencing data found a remarkable shift in gut microbiota after soymilk administration and antibiotics treatment. Matastats test of the relative abundance of bacterial taxa revealed Odoribacter (Bacteroidales family), Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. rhamnosus-fermented soymilk. Furthermore, there was less decrease in bacterial taxa with fermented soymilk group even when antibiotics were concomitantly administered. Overall, this study revealed that the gut microbiota of a healthy host is enough for the whole isoflavone metabolism under normal conditions. Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used. PRACTICAL APPLICATION: Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used.
Collapse
Affiliation(s)
- Shuhong Dai
- Dept. of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, P. R. China, 518054.,Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Mingfang Pan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani S El-Nezami
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jennifer M F Wan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - M F Wang
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Olivier Habimana
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jetty C Y Lee
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jimmy C Y Louie
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
20
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
21
|
Hsiao YC, Peng SF, Lai KC, Liao CL, Huang YP, Lin CC, Lin ML, Liu KC, Tsai CC, Ma YS, Chung JG. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. ENVIRONMENTAL TOXICOLOGY 2019; 34:443-456. [PMID: 30618158 DOI: 10.1002/tox.22698] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Genistein, a major isoflavone compound in soybeans, has been shown to have biological activities including anti-cancer activates. In the present, we investigated the anti-leukemia activity of genistein on HL-60 cells in vitro. The percentage of viable cell, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS), and Ca2+ production and the level of ΔΨm were measured by flow cytometric assay. Cell apoptosis and endoplasmic reticulum (ER) stress associated protein expressions were examined by Western blotting assay. Calpain 1, GRP78, and GADD153 expression were measured by confocal laser microscopy. Results indicated that genistein-induced cell morphological changes, decreased the total viable cells, induced G2 /M phase arrest and DNA damage and fragmentation (cell apoptosis) in HL-60 cells. Genistein promoted ROS and Ca2+ productions and decreased the level of ΔΨm in HL-60 cells. Western blotting assay demonstrated that genistein increased ER stress-associated protein expression such as IRE-1α, Calpain 1, GRP78, GADD153, caspase-7, caspase-4, and ATF-6α at 20-50 μM treatment and increased apoptosis associated protein expression such as pro-apoptotic protein Bax, PARP-cleavage, caspase-9, and -3, but decreased anti-apoptotic protein such as Bcl-2 and Bid in HL-60 cells. Calpain 1, GRP78, and GADD153 were increased in HL-60 cells after exposure to 40 μM of genistein. In animal xenografted model, mice were intraperitoneally injected with genistein (0, 0.2, and 0.4 mg/kg) for 28 days and the body weight and tumor volume were recorded. Results showed that genistein did not affect the body weights but significantly reduced the tumor weight in 0.4 mg/kg genistein-treated group. Genistein also increased the expressions of ATF-6α, GRP78, Bax, Bad, and Bak in tumor. In conclusion, genistein decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through ER stress- and mitochondria-dependent pathways in HL-60 cells and suppressed tumor properties in vivo.
Collapse
Affiliation(s)
- Yin-Chen Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, Taiwan
- General Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Kirsanov KI, Vlasova OA, Fetisov TI, Zenkov RG, Lesovaya EA, Belitsky GA, Gurova K, Yakubovskaya MG. Influence of DNA-binding compounds with cancer preventive activity on the mechanisms of gene expression regulation. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2018-5-4-41-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - O. A. Vlasova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - T. I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - R. G. Zenkov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - E. A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; I.P. Pavlov Ryazan State Medical University
| | - G. A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | | | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
23
|
Qi Y, Ding Z, Yao Y, Ma D, Ren F, Yang H, Chen A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp Ther Med 2018; 17:1670-1676. [PMID: 30783435 PMCID: PMC6364180 DOI: 10.3892/etm.2018.7138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is one of the main causes of cancer-associated mortality across the world. Currently, ovarian cancer is mainly treated with chemotherapy. However, ovarian cancer is detected at advanced stages and chemotherapy has numerous side effects. In addition, the results of current chemotherapy on the treatment of ovarian cancer are less than satisfactory. Therefore, there is an urgent need to develop novel and more viable chemotherapeutic agents that can be used to treat ovarian cancer. The present study was designed to synthesize a series of novel triazole analogs of the bioactive apigenin-7-methyl ether to evaluate its anticancer activity against three human ovarian cancer cell lines. A total of eight novel triazole derivatives were synthesized and screened for their anticancer activity. Of all the derivatives, a derivative named 3d exhibited significant and dose-dependent anticancer activity against the SKOV3 ovarian cancer cell line. The IC50 of 3d was found to be 10 µM against the SKOV3 cancer cell line. It was also observed that 3d induced apoptosis in SKOV3 cancer cells through the accretion of reactive oxygen species and reduction in mitochondrial membrane potential. The molecule also modulated the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein. Taken together, these results showed that the apigenein-7-methyl ether novel derivative 3d may prove an important lead molecule for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuyan Qi
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhaoxia Ding
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yushuang Yao
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dehua Ma
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Feifei Ren
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Hongjuan Yang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Aiping Chen
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
24
|
Vinayak M. Molecular Action of Herbal Antioxidants in Regulation of Cancer Growth: Scope for Novel Anticancer Drugs. Nutr Cancer 2018; 70:1199-1209. [DOI: 10.1080/01635581.2018.1539187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Huang PH, Tseng CH, Lin CY, Lee CW, Yen FL. Preparation, characterizations and anti-pollutant activity of 7,3',4'-trihydroxyisoflavone nanoparticles in particulate matter-induced HaCaT keratinocytes. Int J Nanomedicine 2018; 13:3279-3293. [PMID: 29910615 PMCID: PMC5987860 DOI: 10.2147/ijn.s153323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background 7,3',4'-Trihydroxyisoflavone (734THI), a secondary metabolite derived from daidzein in soybean, possesses several biological activities, including antioxidant, skin whitening and anti-atopic dermatitis properties, but the poor aqueous solubility of 734THI has limited its application in medicine and cosmetic industry. Methods The aim of the present study was to improve the physicochemical properties of 734THI using planetary ball mill preparation under a solvent-free process to improve its solubility and anti-pollutant activity. Results 734THI nanoparticle powder (734THIN) was successfully prepared by the planetary ball mill technique using polyvinylpyrrolidone K30 as the excipient. 734THIN effectively increased the aqueous solubility and cellular uptake of 734THI by improving its physicochemical properties, including particle size reduction, crystalline-amorphous transformation and intermolecular hydrogen bonding with polyvinylpyrrolidone K30. In addition, 734THIN inhibited the overexpression of COX-2 and MMP-9 by downregulating MAPK pathway signaling in particulate matter-exposed HaCaT keratinocytes, while raw 734THI in PBS with low aqueous solubility did not show any anti-inflammatory or antiaging activity. Conclusion 734THIN may be used as an additive in anti-pollutant skin care products for preventing particulate matter-induced inflammation and aging in skin.
Collapse
Affiliation(s)
| | | | - Chia-Yu Lin
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Chiang-Wen Lee
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan.,Department of Nursing, Division of Basic Medical Sciences.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
26
|
Lee BJ, Zhou Y, Lee JS, Shin BK, Seo JA, Lee D, Kim YS, Choi HK. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PLoS One 2018; 13:e0196315. [PMID: 29689113 PMCID: PMC5916519 DOI: 10.1371/journal.pone.0196315] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000-400 cm-1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans.
Collapse
Affiliation(s)
- Byeong-Ju Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yaoyao Zhou
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Soung Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Byeung Kon Shin
- National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Doyup Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Simultaneous separation of three isoflavones on oligo-β-cyclodextrin substituted polystyrene-based medium and evaluation adsorption characteristics using AutoDock. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Jiao C, Zhu L, Gu Z. GSK-3 mediates NO-cGMP-induced isoflavone production in soybean sprouts. Food Res Int 2017; 101:203-208. [PMID: 28941685 DOI: 10.1016/j.foodres.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/19/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
The role of glycogen synthase kinase-3 (GSK-3) in the nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP)-induced isoflavone production in soybean sprouts was examined. Inhibitors and donors of NO, cGMP, and GSK-3 inhibitor were added to UV-B irradiated sprouts. Results showed that NO, with cGMP, induced the expression of GSK-3 under UV-B radiation. Protein kinase G (PKG) was shown to be involved in NO-cGMP-induced GSK-3 activation. GSK-3 elevated activity and expression levels of chalcone synthase (CHS) and isoflavone synthase (IFS), and increased isoflavone accumulation.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Life Science, Anqing Normal University, Anqing, Anhui 246133, People's Republic of China.
| | - Liangliang Zhu
- College of Life Science, Anqing Normal University, Anqing, Anhui 246133, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
29
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
30
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
31
|
Dai J, Van Wie PG, Fai LY, Kim D, Wang L, Poyil P, Luo J, Zhang Z. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells. Toxicol Appl Pharmacol 2016; 311:106-112. [PMID: 27664007 DOI: 10.1016/j.taap.2016.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression.
Collapse
Affiliation(s)
- Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter G Van Wie
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Leonard Yenwong Fai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536, USA
| | - Pratheeshkumar Poyil
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
32
|
SPECT/CT analysis of splenic function in genistein-treated malaria-infected mice. Exp Parasitol 2016; 170:10-15. [PMID: 27585499 DOI: 10.1016/j.exppara.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 01/24/2023]
Abstract
Spleen traps malaria-infected red blood cells, thereby leading to splenomegaly. Splenomegaly induces impairment in splenic function, i.e., rupture. Therefore, splenomegaly inhibition is required to protect the spleen. In our previous study, genistein was found to have an influence on malaria-induced splenomegaly. However, the effect of genistein in malaria-induced splenomegaly, especially on the function of spleen, has not been fully investigated. In this study, hematoxylin and eosin (H&E) staining images show that genistein partially prevents malaria-induced architectural disruption of spleen. In addition, genistein decreases transgenic Plasmodium parasites accumulation in the spleen. Genistein treatment can protect splenic function from impairment caused by malaria infection. To examine the functions of malaria-infected spleen, we employed single-photon emission computed tomography/computed tomography (SPECT/CT) technology. Red blood cells are specifically radiolabeled with Technetium-99m pertechnetate (99mTcO4-) and trapped inside the spleen. The standardized uptake values (SUVs) in the spleen of infected mice are higher than those of naive and genistein-treated mice. However, genistein reduces the malaria-induced trapping capacity of spleen for heat-damaged radiolabeled RBCs, while exhibiting a protective effect against malaria. Considering these results, we suggested that genistein could be effectively used in combination therapy for malaria-induced splenic impairment.
Collapse
|
33
|
Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res 2016; 5:133. [PMID: 27656602 PMCID: PMC5025906 DOI: 10.4103/2277-9175.187395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This cancer may be due to a multistep process with an accumulation of epigenetic alterations in tumor suppressor genes (TSGs), leading to hypermethylation of the genes. Hypermethylation of TSGs is associated with silencing and inactivation of them. It is well-known that DNA hypomethylation is the initial epigenetic abnormality recognized in human tumors. Estrogen receptor alpha (ERα) is one of the TSGs which modulates gene transcription and its hypermethylation is because of overactivity of DNA methyltransferases. Fortunately, epigenetic changes especially hypermethylation can be reversed by pharmacological compounds such as genistein (GE) and 17-beta estradiol (E2) which involve in preventing the development of certain cancers by maintaining a protective DNA methylation. The aim of the present study was to analyze the effects of GE on ERα and DNMT1 genes expression and also apoptotic and antiproliferative effects of GE and E2 on HCC. Materials and Methods: Cells were treated with various concentrations of GE and E2 and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used. Furthermore, cells were treated with single dose of GE and E2 (25 μM) and flow cytometry assay was performed. The expression level of the genes was determined by quantitative real-time reverse transcription polymerase chain reaction. Results: GE increased ERα and decreased DNMT1 genes expression, GE and E2 inhibited cell viability and induced apoptosis significantly. Conclusion: GE can epigenetically increase ERα expression by inhibition of DNMT1 expression which in turn increases apoptotic effect of E2. Furthermore, a combination of GE and E2 can induce apoptosis more significantly.
Collapse
Affiliation(s)
- Fraidoon Kavoosi
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masumeh Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Yan FY, Xia W, Zhang XX, Chen S, Nie XZ, Qian LC. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J Zhejiang Univ Sci B 2016; 17:455-64. [PMID: 27256679 PMCID: PMC4913794 DOI: 10.1631/jzus.b1500317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/05/2016] [Indexed: 02/03/2023]
Abstract
An extracellular β-glucosidase produced by Aspergillus terreus was identified, purified, characterized and was tested for the hydrolysis of soybean isoflavone. Matrix-assisted laser desorption/ionization with tandem time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) revealed the protein to be a member of the glycosyl hydrolase family 3 with an apparent molecular mass of about 120 kDa. The purified β-glucosidase showed optimal activity at pH 5.0 and 65 °C and was very stable at 50 °C. Moreover, the enzyme exhibited good stability over pH 3.0-8.0 and possessed high tolerance towards pepsin and trypsin. The kinetic parameters Km (apparent Michaelis-Menten constant) and Vmax (maximal reaction velocity) for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 1.73 mmol/L and 42.37 U/mg, respectively. The Km and Vmax for cellobiose were 4.11 mmol/L and 5.7 U/mg, respectively. The enzyme efficiently converted isoflavone glycosides to aglycones, with a hydrolysis rate of 95.8% for daidzin, 86.7% for genistin, and 72.1% for glycitin. Meanwhile, the productivities were 1.14 mmol/(L·h) for daidzein, 0.72 mmol/(L·h) for genistein, and 0.19 mmol/(L·h) for glycitein. This is the first report on the application of A. terreus β-glucosidase for converting isoflavone glycosides to their aglycones in soybean products.
Collapse
|
35
|
de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 2016; 29:35-44. [PMID: 27223841 DOI: 10.1016/j.mito.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Genistein (4',5,7-trihydroxyisoflavone; C15H10O5), an isoflavone, has been investigated as an anti-cancer agent due to its ability to trigger cell death (both intrinsic and extrinsic apoptotic pathways) in different cancer cells in vitro and in vivo. Furthermore, genistein has been viewed as a mitochondriotropic molecule due to the direct effects this isoflavone induces in mitochondria, such as modulation of enzymatic activity of components of the oxidative phosphorylation system. Apoptosis triggering may also be mediated by genistein through activation of the mitochondria-dependent pathway by a mechanism associated with mitochondrial dysfunction (i.e., disruption of the mitochondrial membrane potential - MMP, release of cytochrome c, activation of the apoptosome, among others). Efforts have been made in order to elucidate how genistein coordinate these biochemical phenomena. Nonetheless, some areas of the mitochondria-associated research (mitochondrial biogenesis, redox biology of mitochondria, and mitochondria-associated bioenergetic parameters) need to be explored regarding the role of genistein as a mitochondria-targeted agent. This is a pharmacologically relevant issue due to the possibility of using genistein as a mitochondria-targeted drug in cases of cancer, neurodegeneration, cardiovascular, and endocrine disease, for example. The present review aims to describe, compare, and discuss relevant data about the effects of genistein upon mitochondria.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química (PPGQ), Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brasil.
| |
Collapse
|
36
|
Ango PY, Kapche DW, Fotso GW, Fozing CD, Yeboah EM, Mapitse R, Demirtas I, Ngadjui BT, Yeboah SO. Thonningiiflavanonol A and thonningiiflavanonol B, two novel flavonoids, and other constituents of Ficus thonningii Blume (Moraceae). ACTA ACUST UNITED AC 2016; 71:65-71. [DOI: 10.1515/znc-2015-0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
Abstract
A phytochemical study of Ficus thonningii has led to the isolation of two previously unreported compounds, thonningiiflavanonol A and thonningiiflavanonol B together with 16 known compounds: shuterin, naringenin, syringic acid, p-hydroxybenzoic acid, genistein, 5,7,3′,4′,5′-pentahydroxyflavanone, luteolin, methylparaben, aromadendrin, garbanzol, dihydroquercetin, 5,7,3′-trihydroxyflavanone, β-sitosterol, sitosterolglucoside, lupeol acetate, and taraxerol. Their structures were elucidated on the basis of spectroscopic data. The new compounds and extracts displayed potent antioxidant activity.
Collapse
Affiliation(s)
- Patrick Y. Ango
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, P. O. Box +(237) 812, Yaoundé, Cameroon
| | - Deccaux W.F.G. Kapche
- Department of Chemistry, Higher Teacher Training School, University of Yaoundé I, P. O. Box +(237) 47, Yaoundé, Cameroon
| | - Ghislain W. Fotso
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, P. O. Box +(237) 812, Yaoundé, Cameroon
| | - Christian D. Fozing
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, P. O. Box +(237) 812, Yaoundé, Cameroon
| | - Elizabeth M.O. Yeboah
- Faculty of Science, Department of Chemistry, University of Botswana, P. Bag 00704, Gaborone, Botswana
| | - Renameditswe Mapitse
- Faculty of Science, Department of Chemistry, University of Botswana, P. Bag 00704, Gaborone, Botswana
| | - Ibrahim Demirtas
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Bonaventure T. Ngadjui
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, P. O. Box +(237) 812, Yaoundé, Cameroon
| | - Samuel O. Yeboah
- Faculty of Science, Department of Chemistry, University of Botswana, P. Bag 00704, Gaborone, Botswana
| |
Collapse
|
37
|
Zanini S, Marzotto M, Giovinazzo F, Bassi C, Bellavite P. Effects of dietary components on cancer of the digestive system. Crit Rev Food Sci Nutr 2016; 55:1870-85. [PMID: 24841279 DOI: 10.1080/10408398.2012.732126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer is the second leading cause of death in developed countries and poor diet and physical inactivity are major risk factors in cancer-related deaths. Therefore, interventions to reduce levels of smoking, improve diet, and increase physical activity must become much higher priorities in the general population's health and health care systems. The consumption of fruit and vegetables exerts a preventive effect towards cancer and in recent years natural dietary agents have attracted great attention in the scientific community and among the general public. Foods, such as tomatoes, olive oil, broccoli, garlic, onions, berries, soy bean, honey, tea, aloe vera, grapes, rosemary, basil, chili peppers, carrots, pomegranate, and curcuma contain active components that can influence the initiation and the progression of carcinogenesis, acting on pathways implied in cell proliferation, apoptosis and metastasis. The present review illustrates the main foods and their active components, including their antioxidant, cytotoxic, and pro-apoptotic properties, with a particular focus on the evidence related to cancers of the digestive system.
Collapse
Affiliation(s)
- Sara Zanini
- a Laboratory of Translational Surgery, Universitary Laboratories of Medical Research (LURM), G. B. Rossi Hospital , University of Verona , Verona , Italy
| | | | | | | | | |
Collapse
|
38
|
Lai YC, Yew YW. Tofu, urinary phytoestrogens, and melanoma: An analysis of a national database in the United States. DERMATOL SIN 2015. [DOI: 10.1016/j.dsi.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. J Biosci Bioeng 2015; 120:614-23. [DOI: 10.1016/j.jbiosc.2015.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/19/2015] [Accepted: 03/28/2015] [Indexed: 01/28/2023]
|
40
|
Nazim UM, Park SY. Genistein enhances TRAIL-induced cancer cell death via inactivation of autophagic flux. Oncol Rep 2015; 34:2692-8. [PMID: 26352862 DOI: 10.3892/or.2015.4247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/23/2015] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a transmembrane cytokine that is a promising anticancer agent as it selectively induces apoptosis in various types of tumor cells. Autophagic flux, which includes the complete process of autophagy, and suppression of autophagic flux has been increasingly recognized as a favorable and novel therapeutic approach for cancer treatment. Here, we showed that genistein, a major isoflavone compound that exerts its anticancer properties by inhibiting tumor cell proliferation, can induce TRAIL-mediated apoptotic cell death in TRAIL‑resistant human adenocarcinoma A549 cells. Notably, genistein treatment led to a marked increase in the accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II and p62 protein levels. The combination of genistein and TRAIL increased LC3-II, p62, activated caspase-3 and activated caspase-8 accumulation, confirming the inhibition of autophagic flux. Taken together, our results revealed that genistein enhanced TRAIL-induced tumor cell death in TRAIL-resistant A549 adenocarcinoma cells by inhibiting autophagic flux.
Collapse
Affiliation(s)
- Uddin Md Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
41
|
Jacob A, Parolia A, Pau A, Davamani Amalraj F. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:294. [PMID: 26303848 PMCID: PMC4549008 DOI: 10.1186/s12906-015-0814-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 12/03/2022]
Abstract
Background To evaluate and compare the effects of ethanolic extracts of Malaysian propolis and Brazilian red propolis at different concentrations on the migration and proliferation of fibroblast cells. Methods Malaysian and Brazilian red propolis crude samples were extracted using ethanol. Their wound healing effects were tested in vitro on the normal human fibroblast cell line CRL-7522. Cell migration and proliferation assays were carried out using propolis concentrations of 1, 10, 100, 250, 500 and 1000 μg/mL. The data were analyzed using one-way ANOVA and post hoc Bonferroni tests (α = 0.05). Results Malaysian and Brazilian red propolis followed a concentration-dependent increasing and decreasing trend. Malaysian propolis showed the fastest migration rate at 250 μg/mL which was statistically significant (p < 0.05) and maximum proliferation at 500 μg/mL with no significant difference (p > 0.05) compared to control. Brazilian red propolis showed a slight increase in migration and proliferation at 10 and 100 μg/mL, respectively with no significant difference (p > 0.05) compared to control, while concentrations above these conferred inhibitory effects. Conclusion Malaysian and Brazilian red propolis show potential to assist in wound healing, depending on their concentration.
Collapse
|
42
|
Lee S, Kim JE, Suk S, Kwon OW, Park G, Lim TG, Seo SG, Kim JR, Kim DE, Lee M, Chung DK, Jeon JE, Cho DW, Hurh BS, Kim SY, Lee KW. A fermented barley and soybean formula enhances skin hydration. J Clin Biochem Nutr 2015; 57:156-63. [PMID: 26388675 PMCID: PMC4566027 DOI: 10.3164/jcbn.15-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/01/2015] [Indexed: 01/25/2023] Open
Abstract
Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.
Collapse
Affiliation(s)
- Sein Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Sujin Suk
- Interdisciplinary Program in Agricultural Biotechnology Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Oh Wook Kwon
- Graduate School of East-West Medical Science, Kyung Hee University, Global Campus, #1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 446-701, Korea
| | - Gaeun Park
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Sang Gwon Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea
| | - Dae Eung Kim
- Sempio Fermentation Research Center; #183 Osongsaengmyeong 4-ro, Osongeup, Cheongwongun, Chungcheongbukdo, 363-954, Korea
| | - Miyeong Lee
- Skin Biotechnology Center, Gyeonggi Biocenter, Suwon, Korea
| | - Dae Kyun Chung
- Skin Biotechnology Center, Gyeonggi Biocenter, Suwon, Korea ; Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Korea
| | - Jong Eun Jeon
- Sempio Fermentation Research Center; #183 Osongsaengmyeong 4-ro, Osongeup, Cheongwongun, Chungcheongbukdo, 363-954, Korea
| | - Dong Woon Cho
- Sempio Fermentation Research Center; #183 Osongsaengmyeong 4-ro, Osongeup, Cheongwongun, Chungcheongbukdo, 363-954, Korea
| | - Byung Serk Hurh
- Sempio Fermentation Research Center; #183 Osongsaengmyeong 4-ro, Osongeup, Cheongwongun, Chungcheongbukdo, 363-954, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Seoul 151-921, Korea ; Institute on Aging, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
43
|
Tan HK, Moad AIH, Tan ML. The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev 2015; 15:6463-75. [PMID: 25169472 DOI: 10.7314/apjcp.2014.15.16.6463] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
Collapse
Affiliation(s)
- Heng Kean Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation (MOSTI), Halaman Bukit Gambir, Malaysia E-mail : ,
| | | | | |
Collapse
|
44
|
Effects of flavonoids on expression of genes involved in cell cycle regulation and DNA replication in human fibroblasts. Mol Cell Biochem 2015; 407:97-109. [PMID: 26003441 PMCID: PMC4536262 DOI: 10.1007/s11010-015-2458-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/16/2015] [Indexed: 12/27/2022]
Abstract
Flavonoids have been studied as potential agents in medicine for many years. Among them, genistein was found to be active in various biological systems, mainly in prevention of cancer. Our recent work supported the idea that genistein also impacts multiple cellular processes in healthy fibroblasts; however, its effects on cell cycle-related pathways remained to be elucidated. Thus, in this work, high throughput screening with microarrays coupled to real-time quantitative Reverse Transcription PCR analyses was employed to study the changes in expression of key genes associated with cell cycle regulation and/or DNA replication in response to genistein, kaempferol, daidzein, and mixtures of genistein and either kaempferol or daidzein. Among them, genistein was found as the most significantly modulating, in a time- and dose-dependent manner, compound of activity of studied genes, whose products are involved in different phases of the cell cycle and/or in regulatory processes important for DNA replication and cell growth. It considerably reduced the efficiency of expression of genes coding for MCM2-7 and MCM10 helicases, as well as some other proteins involved in the S phase control. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of CDKN1A, CDKN1C, CDKN2A, CDKN2B, CDKN2C, and GADD45A genes, as well as down-regulation of several mRNAs specific for this stage, demonstrated by transcriptomic assessments. We believe that studies described in this paper will be helpful in elucidating molecular mechanisms of action of genistein as modulator of cell cycle and inhibitor of DNA replication in humans.
Collapse
|
45
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Zhang X, Wang J, Hong C, Luo W, Wang C. Design, synthesis and evaluation of genistein-polyamine conjugates as multi-functional anti-Alzheimer agents. Acta Pharm Sin B 2015; 5:67-73. [PMID: 26579427 PMCID: PMC4629212 DOI: 10.1016/j.apsb.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/27/2014] [Accepted: 12/11/2014] [Indexed: 12/03/2022] Open
Abstract
A series of genistein-polyamine conjugates (4a–4h) were designed, synthesized and evaluated as multi-functional anti-Alzheimer agents. The results showed that these compounds had significant cholinesterases (ChEs) inhibitory activity. Compound 4b exhibited the strongest inhibition to acetylcholinesterase (AChE) with an IC50 value of 2.75 μmol/L, which was better than that of rivastigmine (5.60 μmol/L). Lineweaver–Burk plot and molecular modeling study showed that compound 4b targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, compound 4b showed potent metal-chelating ability. In addition, it was found that 4a–4h did not affect HepG-2 cell viability at the concentration of 10 μmol/L.
Collapse
Affiliation(s)
| | | | | | - Wen Luo
- Corresponding authors. Tel./fax: +86 371 22864665.
| | - Chaojie Wang
- Corresponding authors. Tel./fax: +86 371 22864665.
| |
Collapse
|
47
|
Whirledge S, Senbanjo LT, Cidlowski JA. Genistein disrupts glucocorticoid receptor signaling in human uterine endometrial Ishikawa cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:80-87. [PMID: 25136773 PMCID: PMC4286279 DOI: 10.1289/ehp.1408437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/15/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND The link between environmental estrogen exposure and defects in the female reproductive tract is well established. The phytoestrogen genistein is able to modulate uterine estrogen receptor (ER) activity, and dietary exposure is associated with uterine pathologies. Regulation of stress and immune functions by the glucocorticoid receptor (GR) is also an integral part of maintaining reproductive tract function; disruption of GR signaling by genistein may also have a role in the adverse effects of genistein. OBJECTIVE We evaluated the transcriptional response to genistein in Ishikawa cells and investigated the effects of genistein on GR-mediated target genes. METHODS We used Ishikawa cells as a model system to identify novel targets of genistein and the synthetic glucocorticoid dexamethasone through whole genome microarray analysis. Common gene targets were defined and response patterns verified by quantitative real-time reverse-transcription polymerase chain reaction. The mechanism of transcriptional antagonism was determined for select genes. RESULTS Genistein regulated numerous genes in Ishikawa cells independently of estradiol, and the response to coadministration of genistein and dexamethasone was unique compared with the response to either estradiol or dexamethasone alone. Furthermore, genistein altered glucocorticoid regulation of GR target genes. In a select set of genes, co-regulation by dexamethasone and genistein was found to require both GR and ERα signaling, respectively. CONCLUSIONS Using Ishikawa cells, we observed that exposure to genistein resulted in distinct changes in gene expression and unique differences in the GR transcriptome.
Collapse
Affiliation(s)
- Shannon Whirledge
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
48
|
The daidzein metabolite, 6,7,4'-Trihydroxyisoflavone, is a novel inhibitor of PKCα in suppressing solar UV-induced matrix metalloproteinase 1. Int J Mol Sci 2014; 15:21419-32. [PMID: 25415304 PMCID: PMC4264233 DOI: 10.3390/ijms151121419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Soy isoflavone is an attractive source of functional cosmetic materials with anti-wrinkle, whitening and skin hydration effects. After consumption, the majority of soy isoflavones are converted to their metabolites in the human gastrointestinal tract. To understand the physiological impact of soy isoflavone on the human body, it is necessary to evaluate and address the biological function of its metabolites. In this study, we investigated the effect of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF), a major metabolite of daidzein, against solar UV (sUV)-induced matrix metalloproteinases (MMPs) in normal human dermal fibroblasts. MMPs play a critical role in the degradation of collagen in skin, thereby accelerating the aging process of skin. The mitogen-activated protein/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MKK)3/6/p38 and MKK4/c-Jun N-terminal kinases (JNK) signaling pathways are known to modulate MMP-1 function, and their activation by sUV was significantly reduced by 6,7,4'-THIF pretreatment. Our results also indicated that the enzyme activity of protein kinase C (PKC)α, an upstream regulator of MKKs signaling, is suppressed by 6,7,4'-THIF using the in vitro kinase assay. Furthermore, the direct interaction between 6,7,4'-THIF and endogenous PKCα was confirmed using the pull-down assay. Not only sUV-induced MMP-1 expression, but also sUV-induced signaling pathway activation were decreased in PKCα knockdown cells. Overall, we elucidated the inhibitory effect of 6,7,4'-THIF on sUV-induced MMPs and suggest PKCα as its direct molecular target.
Collapse
|
49
|
Yang X, Ma R, Shi P, Huang H, Bai Y, Wang Y, Yang P, Fan Y, Yao B. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. PLoS One 2014; 9:e106785. [PMID: 25188254 PMCID: PMC4154733 DOI: 10.1371/journal.pone.0106785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/01/2014] [Indexed: 12/02/2022] Open
Abstract
Isoflavone occurs abundantly in leguminous seeds in the form of glycoside and aglycone. However, isoflavone glycoside has anti-nutritional effect and only the free type is beneficial to human health. In the present study we identified a β-glucosidase from thermophilic Neosartorya fischeri P1, termed NfBGL1, capable of efficiently converting isoflavone glycosides into free isoflavones. The gene, belonging to glycoside hydrolase family 3, was successfully overexpressed in Pichia pastoris at high cell density in a 3.7-l fermentor. Purified recombinant NfBGL1 had higher specific activity (2189 ± 1.7 U/mg) and temperature optimum (80 °C) than other fungal counterparts when using p-nitrophenyl β-D-glucopyranoside as the substrate. It retained stable at temperatures up to 70 °C and over a broad pH range of 3.0-10.0. NfBGL1 had broad substrate specificity including glucosidase, cellobiase, xylanase and glucanase activities, and displayed preference for hydrolysis of β-1,2 glycosidic bond rather than β-1,3, β-1,4, β-1,6 bonds. The enzyme showed high bioconversion ability for major soybean isoflavone glycosides (daidin, gensitin and glycitin) into free forms. These properties make NfBGL1 potential for the wide use in the food, feed, pharmacy and biofuel industries.
Collapse
Affiliation(s)
- Xinzhuo Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Moreira AC, Silva AM, Santos MS, Sardão VA. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J Steroid Biochem Mol Biol 2014; 143:61-71. [PMID: 24583026 DOI: 10.1016/j.jsbmb.2014.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/03/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Abstract
Menopause is characterized by an altered hormonal status and by a decrease in life quality due to the appearance of uncomfortable symptoms. Nowadays, with increasing life span, women spend one-third of their lifetime under menopause. Understanding menopause-associated pathophysiology and developing new strategies to improve the treatment of menopausal-associated symptoms is an important topic in the clinic. This review describes physiological and hormone alterations observed during menopause and therapeutic strategies used during this period. We critically address the benefits and doubts associated with estrogen/progesterone-based hormone replacement therapy (HRT) and discuss the use of phytoestrogens (PEs) as a possible alternative. These relevant plant-derived compounds have structural similarities to estradiol, interacting with cell proteins and organelles, presenting several advantages and disadvantages versus traditional HRT in the context of menopause. However, a better assessment of PEs safety/efficacy would warrant a possible widespread clinical use.
Collapse
Affiliation(s)
- Ana C Moreira
- Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|