1
|
Hammeso WW, Fisseha N, Abera T, Nureye D, Woldeselassie BD. In vivo evaluation of anti-diarrheal activity of hydroalcoholic extract and solvent fractions of the leaf of Leucas deflexa Hook.f (Lamiaceae) in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118993. [PMID: 39476881 DOI: 10.1016/j.jep.2024.118993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The emergence of antibiotic-resistant bacteria has intensified the search for novel antidiarrheal drug. Plant-derived extracts offer promising alternatives due to their ability to modulate gut motility and enhance water absorption. The leaves of Leucas deflexa Hook.f., a plant native to Ethiopia, have been traditionally utilized in the treatment of diarrheal diseases. Nonetheless, its traditional application has yet to be scientifically confirmed. AIM OF THE STUDY Hence, the aim of the present study was to evaluate antidiarrheal activity of the crude extract and fractions of the leaf of Leucas deflexa Hook.f (Lamiaceae). MATERIALS AND METHODS Healthy Swiss albino mice were randomly divided into five groups per experimental model: castor oil-induced diarrhea, gastrointestinal motility, and anti-enteropooling assays. The control group received distilled water (10 ml/kg), while the positive control was treated with loperamide (3 mg/kg). The remaining groups were administered various dosages (LD100, LD200, and LD400 mg/kg) of a hydroalcoholic extract or its fractions from Leucas deflexa Hook.f. RESULT The crude extract and chloroform fraction substantially (P < 0.001) delayed the onset of diarrhea, reduced fecal frequency, and decreased total fecal weight at all administered doses compared to the negative control. The butanol and aqueous fractions exhibited a substantial antidiarrheal effect at doses of 200 mg/kg and 400 mg/kg, respectively. All treatments, including the crude extract, chloroform, butanol, and aqueous fractions, substantially (P < 0.001) reduced the volume and weight of intestinal contents at various doses. Additionally, the chloroform, aqueous fraction, and crude extract at doses of 100, 200, and 400 mg/kg substantially inhibited gastrointestinal motility compared to the negative control. CONCLUSION The results of this study corroborate the traditional use of Leucas deflexa leaves in the treatment of diarrhea. These findings give a scientific justification for further exploration of the underlying mechanisms and potential therapeutic applications of this plant extract.
Collapse
Affiliation(s)
| | - Nebeyi Fisseha
- School of Pharmacy, Department Pharmacology, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Tadele Abera
- School of Pharmacy, Department Pharmacology, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Dejen Nureye
- School of Pharmacy, Department Pharmacology, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | | |
Collapse
|
2
|
Palazzolo S, Natale S, Capparucci F, Piro MG, Cuzzocrea S, Peritore AF, Crupi R, Britti D. Freshwater pollution: cardiotoxicity effect of perfluorooctane sulfonic acid and neonicotinoid imidacloprid mixture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:136-145. [PMID: 39887270 DOI: 10.1093/etojnl/vgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 02/01/2025]
Abstract
Perfluorooctanesulfonate (PFOS) is a widely used chemical that accumulates in living things and the environment, especially the aquatic, over time. It is also known as a "forever chemical". Furthermore, different anthropogenic substances are rarely found individually in the environment. Some of these substances are very toxic to aquatic species, such as imidacloprid (IMI), an insecticide belonging to the neonicotinoid family. The main objectives of this study were to investigate the effect of coexposure of these two contaminants at individual nontoxic concentration. In this study, we first analyzed different nominal concentrations of PFOS (from 0.1 to 10 μM) and IMI (from 75 to 1,000 μM) to highlight the morphological effects at 96 hr postfertilization and subsequently assessed the toxicity of mixture coexposure at both lethal and sublethal levels. Coexposure of PFOS and IMI at two individually nontoxic concentrations resulted in increased toxicity in terms of morphological alterations, accompanied by increased cell death in the pericardium. Molecular investigations confirmed the increased cardiotoxicity accompanied by cell death, showing overexpression of apoptosis-associated genes (caspase 3, bax, and bcl-2.) and a dysregulation of oxidative stress-related genes (cat, sod1, and gstp2). These results suggest that IMI could potentiate PFOS cardiotoxicity on zebrafish embryo development by alteration of antioxidative balance and induced apoptosis.
Collapse
Affiliation(s)
- Simone Palazzolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Maria Giovanna Piro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
- Link Campus University, Rome, Italy
| | | | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, "Magna Græcia University" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Wube B, Asres K, Woldekidan S, Abebe A, Girma Y, Seyoum G. Embryo and Fetal Toxic Effects of the Hydroethanol Extract of Urtica simensis Hochst. Ex. A. Rich Leaves in Pregnant Rats. J Toxicol 2024; 2024:9986648. [PMID: 39554718 PMCID: PMC11567719 DOI: 10.1155/2024/9986648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/05/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction: Urtica simensis has been used to treat various diseases such as malaria, hypertension, diabetes, gonorrhea, gastritis, body swelling, and wound infections. However, the safety of consuming U. simensis leaves during pregnancy has not been evaluated yet. Therefore, this experimental study was conducted to evaluate the toxic effects of U. simensis leaf extract on the prenatal development of embryos and fetuses in pregnant rats. Methods: Fifty pregnant Wistar albino rats were randomly assigned to five groups of 10 gravid rats for each experiment. Groups I-III were given 70% ethanol leaf extract of U. simensis at doses of 250, 500, and 1000 mg/kg daily from 6th to 12th days of gestation. Groups IV-V were kept as pair-fed and ad libitum controls. The developing embryos and fetuses were retrieved on 12 days and 20 days of gestation, respectively. Embryos were evaluated for growth and developmental delays. Fetuses were also assessed for growth retardation and external and visceral anomalies. Results: In the embryonic experiment, somite numbers (p=0.001) and morphological scores (p=0.029) were significantly decreased in pregnant rats given 1000 mg/kg of U. simensis leaf extract. Embryonic developments of the caudal neural tube (CNT) (p=0.001), otic system (p=0.025), olfactory system (p=0.013), and limb buds (p=0.026) were significantly delayed in pregnant rats given 1000 mg/kg of extract. Oral administration of 500 mg/kg of U. simensis leaf extract also caused significant developmental delays in the CNT (p=0.021) and olfactory system (p=0.032). In the fetal experiment, fetal resorption (p=0.015) was significantly increased whereas crown rump length (p=0.012) and fetal weight (p=0.019) were significantly decreased in pregnant rats given 1000 mg/kg of U. simensis leaf extract. Conclusions: The embryotoxic effects of U. simensis leaf extract were evidenced by significant developmental delays. The fetal toxic effects of U. simensis leaf extract were also shown by significant decreases in fetal growth indices. Therefore, pregnant women should be well informed of the possible toxic effects of consuming U. simensis leaf during pregnancy.
Collapse
Affiliation(s)
- Bickes Wube
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samuel Woldekidan
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Girma
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Girma Seyoum
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
He C, Ma L, Hirst J, Li F, Wu H, Liu W, Zhao J, Xu F, Godwin AK, Wang X, Li B. Natural compound Alternol exerts a broad anti-cancer spectrum and a superior therapeutic safety index in vivo. Front Pharmacol 2024; 15:1409506. [PMID: 38855749 PMCID: PMC11157072 DOI: 10.3389/fphar.2024.1409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Alternol is a natural compound isolated from the fermentation of a mutated fungus. We have demonstrated its potent anti-cancer effect via the accumulation of radical oxygen species (ROS) in prostate cancer cells in vitro and in vivo. In this study, we tested its anti-cancer spectrum in multiple platforms. Methods We first tested its anti-cancer spectrum using the National Cancer Institute-60 (NCI-60) screening, a protein quantitation-based assay. CellTiter-Glo screening was utilized for ovarian cancer cell lines. Cell cycle distribution was analyzed using flow cytometry. Xenograft models in nude mice were used to assess anti-cancer effect. Healthy mice were tested for the acuate systemic toxicity. Results Our results showed that Alternol exerted a potent anti-cancer effect on 50 (83%) cancer cell lines with a GI50 less than 5 µM and induced a lethal response in 12 (24%) of those 50 responding cell lines at 10 µM concentration. Consistently, Alternol displayed a similar anti-cancer effect on 14 ovarian cancer cell lines in an ATP quantitation-based assay. Most interestingly, Alternol showed an excellent safety profile with a maximum tolerance dose (MTD) at 665 mg/kg bodyweight in mice. Its therapeutic index was calculated as 13.3 based on the effective tumor-suppressing doses from HeLa and PC-3 cell-derived xenograft models. Conclusion Taken together, Alternol has a broad anti-cancer spectrum with a safe therapeutic index in vivo.
Collapse
Affiliation(s)
- Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'An Jiaotong University, Xi'An, China
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Linlin Ma
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fei Li
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Wu
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Xu
- Department of Physiology, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Pal D, Banerjee D, Sarkar U. Adsorption of an antiseptic in a functionalized fixed-bed: Analysis of breakthrough scenarios and validation of simplistic models defending a novel proposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120649. [PMID: 38552515 DOI: 10.1016/j.jenvman.2024.120649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Chlorhexidine gluconate (CHG) and cetrimide, which are widely used in various pharmaceutical compositions, are considered potentially hazardous compounds. This combination was largely used during and after Covid 19 pandemic for sanitization. Removal of these two compounds from pharmaceutical waste-water with commercial and functionalized activated carbon in a packed bed column is reported. METHODS Effects of changes in bed height, flow rate, and initial concentration on the performance of the packed bed are analyzed using Yoon-Nelson, BDST and Thomas models for commercial scale-up operation. The effects of primary design parameters like bed depth and operating parameters like inflow rate and inlet concentration of influent wastewater are studied on the extent of removal of cetrimide and chlorhexidine gluconate. Granular activated carbon (GAC) is functionalized using HF and NH4OH. The extent of enhanced adsorption using the functionalized GAC is demonstrated using breakthrough curves. SIGNIFICANT FINDINGS K. H. Chu's iconic proposition is validated. Breakthrough time (BT) increases with bed heights and it is less in the case of cetrimide as compared to chlorhexidine gluconate. This shows that cetrimide wins in the competition and occupies the pores much faster than CHG. Mostly, BT-CHG (GAC) < BT-CHG (FAC-HF) < BT-CHG (FAC-NH3) and BT-cetrimide (GAC) < BT-cetrimide (FAC-NH3) < BT-cetrimide (FAC-HF) for a particular bed height. BT-CHG(FAC-HF)BT-cetrimide(FAC-HF)
Collapse
Affiliation(s)
- Debamita Pal
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Debasree Banerjee
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Ujjaini Sarkar
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
7
|
Luo R, He C, He J, Li Z, Wang Y, Hou M, Li P, Yu W, Cheng S, Song Z. Acute toxicology on Danio rerio embryo and adult from Chinese traditional medicine preparation Danggui Shaoyao san. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117528. [PMID: 38043754 DOI: 10.1016/j.jep.2023.117528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.
Collapse
Affiliation(s)
- Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
8
|
Zhang Y, Zeng H, Zhou L, Wang C, Yang X, Liu S. Integrated histopathology and transcriptome metabolome profiling reveal the toxicity mechanism of phenazine-1-carboxylic acid in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123402. [PMID: 38272164 DOI: 10.1016/j.envpol.2024.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Phenazine-1-carboxylic acid (PCA) is a new type of agrochemical used to prevent plant diseases, but its effects on aquatic organisms are unclear. To comprehensively assess the impacts of PCA for aquatic organisms and its associated environmental risks, this study investigated, taking zebrafish as the research object, the toxicological mechanism of PCA by means of optical microscopy, hematoxylin and eosin (HE) staining, ultrastructural observation, physiological and biochemical testing, transcriptome sequencing, metabolome analysis, fluorescence quantitative PCR and molecular simulation. The results indicated that PCA was detrimental to zebrafish embryos, larvae and adults, with LC50 values at 96 h of 3.9093 mg/L, 8.5075 mg/L, and 13.6388 mg/L, respectively. PCA caused abnormal spontaneous movement, slowed the heart rate, delayed hatching, shortened the body length, slowed growth, and caused malformations. PCA mainly affected the brain, liver, heart, and ovaries. PCA distorted cell morphology, damaged mitochondrial membranes, disintegrated mitochondrial ridges, and dissociated nuclear membranes. PCA inhibited the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), decreased the malondialdehyde (MDA) content and disrupted antioxidant effects. The results of omics studies confirmed that PCA interfered with the transcriptional and metabolic network of zebrafish, downregulating most genes and metabolites. PCA mainly affected functions related to mitochondrial steroids, lipids, sterols, oxidoreductase activity and pathways involving cofactors, steroids, porphyrin, cytochromes, which specifically bound to targets such as panx3, agmat, and ace2. PCA was moderately toxic to zebrafish, and its usage should be strictly controlled to reduce toxic effects on aquatic organisms. The results of this study provide a new insights for ecotoxicology research.
Collapse
Affiliation(s)
- Ya Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Leyin Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
9
|
Fayez N, Khalil W, Abdel-Sattar E, Abdel-Fattah AFM. Involvement of TNFα, IL-1β, COX-2 and NO in the anti-inflammatory activity of Tamarix aphylla in Wistar albino rats: an in-vivo and in-vitro study. BMC Complement Med Ther 2024; 24:57. [PMID: 38273280 PMCID: PMC10809683 DOI: 10.1186/s12906-024-04359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND With the emergence of many side effects from synthetic drugs, there is an urgent need to find a natural alternative to these products. Therefore, our primary aim was to evaluate the anti-inflammatory activity of Tamarix aphylla (TA) and investigate the potential mechanism underlying this action. METHODS Initially, to ensure the safety of the extract and for dose selection, we performed an acute oral toxicity Assay through the oral administration of graded doses up to 4 g\kg in Wistar rats. then, we used the carrageenan-induced edema model to elucidate the anti-inflammatory activity. Using specific ELISA kits, we measured the levels of TNF-α, IL-1β, COX-2 and NO inside the inflamed paw tissue. Finally, for the in-vitro anti-inflammatory experiment, we used the erythrocyte membrane stability test. RESULTS Based on the acute oral toxicity assay, T. aphylla was considered generally safe and three different doses of 100, 200, and 400 mg/kg were chosen for further experiments. Additionally, TA expressed a significant (P < 0.05) anti-inflammatory activity, showing the maximum inhibition percentage at the fifth hour of measurement at 53.47% and 70.06%, at doses of 200 and 400 mg/kg respectively, compared to 63.81% for the standard drug. Similarly, we found that TA effectively reduced the levels of TNF-α and IL-1β at all tested doses (100-200-400 mg/kg) to a greater extent than the standard drug. Moreover, at 400 mg/kg, TA was able to significantly lower the levels of COX-2 and NO inside the inflamed tissue to a level comparable (P < 0.05) with that measured inside the paw tissue of normal rats. Finally, Tamarix aphylla at 100, 200 and 400 mg/kg doses significantly (P < 0.05) inhibited the heat-induced hemolysis of RBCs membrane by 67.78, 74.82 and 82.08%, respectively, compared to 83.89% produced by Aspirin. CONCLUSION T. aphylla produced a significant (P < 0.05) anti-inflammatory activity compared to the standard drugs either through the reduction of pro-inflammatory mediators or the protection of the lysosomal membrane.
Collapse
Affiliation(s)
- Nada Fayez
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Waleed Khalil
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El- Aini St, Cairo, 11562, Egypt
| | | |
Collapse
|
10
|
Huang S, Cai J, Ma L, Zhang Q, Sun Y, Zhang Q, Qin L. Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS One 2024; 19:e0289894. [PMID: 38181063 PMCID: PMC10769069 DOI: 10.1371/journal.pone.0289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 01/07/2024] Open
Abstract
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Collapse
Affiliation(s)
- Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Hartmann J, Henschel N, Bartmann K, Dönmez A, Brockerhoff G, Koch K, Fritsche E. Molecular and Functional Characterization of Different BrainSphere Models for Use in Neurotoxicity Testing on Microelectrode Arrays. Cells 2023; 12:cells12091270. [PMID: 37174670 PMCID: PMC10177384 DOI: 10.3390/cells12091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The currently accepted methods for neurotoxicity (NT) testing rely on animal studies. However, high costs and low testing throughput hinder their application for large numbers of chemicals. To overcome these limitations, in vitro methods are currently being developed based on human-induced pluripotent stem cells (hiPSC) that allow higher testing throughput at lower costs. We applied six different protocols to generate 3D BrainSphere models for acute NT evaluation. These include three different media for 2D neural induction and two media for subsequent 3D differentiation resulting in self-organized, organotypic neuron/astrocyte microtissues. All induction protocols yielded nearly 100% NESTIN-positive hiPSC-derived neural progenitor cells (hiNPCs), though with different gene expression profiles concerning regional patterning. Moreover, gene expression and immunocytochemistry analyses revealed that the choice of media determines neural differentiation patterns. On the functional level, BrainSpheres exhibited different levels of electrical activity on microelectrode arrays (MEA). Spike sorting allowed BrainSphere functional characterization with the mixed cultures consisting of GABAergic, glutamatergic, dopaminergic, serotonergic, and cholinergic neurons. A test method for acute NT testing, the human multi-neurotransmitter receptor (hMNR) assay, was proposed to apply such MEA-based spike sorting. These models are promising tools not only in toxicology but also for drug development and disease modeling.
Collapse
Affiliation(s)
- Julia Hartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Noah Henschel
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Kristina Bartmann
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Arif Dönmez
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Gabriele Brockerhoff
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | - Katharina Koch
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
- DNTOX GmbH, Gurlittstraße 53, 40223 Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Iftikhar M, Noureen A, Jabeen F, Uzair M, Rehman N, Sher EK, Katubi KM, Américo-Pinheiro JHP, Sher F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. CHEMOSPHERE 2023; 311:136927. [PMID: 36273609 DOI: 10.1016/j.chemosphere.2022.136927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Nickel nanoparticles (Ni-NPs) have potential applications in high-tech sectors such as battery manufacturing, catalysis, nanotube printing and textile. Apart from their increasing utilisation in daily life, there are concerns about their hazardous nature as they are highly penetrable in biological systems. The carcinogenic and mutagenic ability of Ni-NPs is evident but the research gaps are still there concerning the safety evaluation of Ni-NPs regarding male reproductive ability. This controlled randomized research was planned to assess the male reproductive toxicity of Ni-NPs in Sprague Dawley rats. Ni-NPs of spherical shape and mean particle size of 56 nm were used in the study, characterized by SEM, EDS and XRD. The twenty-five healthy rats (200-220 g) were used for toxicity investigation of Ni-NPs and divided into five groups; negative control (0 Ni-NPs), placebo group (0.9% saline) and three Ni-NPs treated groups (@ 15, 30 and 45 mg/kg BW). The results of 14 days of intraperitoneal exposure to Ni-NPs revealed that a higher dose (45 mg/kg BW) of Ni-NPs caused a significant reduction in body weight, serum testosterone, daily sperm production while the testis index and Ni accumulation and histological changes (necrosis in basement membrane and seminiferous tubules, vacuole formation) in testicular tissues increased with increasing dose of Ni-NPs. It can be concluded from the study that Ni-NPs have potential reproductive toxicity. This study provided the baseline data of Ni-NPs toxicity for the male reproductive system and can be applied for risk assessment in Ni-NPs based products.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad, 38000, Pakistan; Department of Zoology, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nagina Rehman
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Khadijah Mohammedsaleh Katubi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
14
|
Di Paola D, Gugliandolo E, Capparucci F, Cordaro M, Iaria C, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Di Paola R, Crupi R, Peritore AF. Early Exposure to Environmental Pollutants: Imidacloprid Potentiates Cadmium Toxicity on Zebrafish Retinal Cells Death. Animals (Basel) 2022; 12:ani12243484. [PMID: 36552404 PMCID: PMC9774592 DOI: 10.3390/ani12243484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, we analyzed the combination of non-toxic concentrations per se, of Cd and a pesticide the imidacloprid (IMI) (10 and 50 μM for Cd and 195 μM for IMI), to highlight early developmental toxicity and possible damage to retinal cells. Co-exposure to Cd and IMI showed a toxic effect in zebrafish larval development, with lowered degrees of survival and hatching, and in some cases the induction of structural alterations and edema. In addition, co-exposure to 50 and 195 μM, respectively, for Cd and IMI, also showed increased apoptosis in eye cells, accompanied by up regulation of genes associated with antioxidant markers (cat, sod1, nrf2 and ho-1). Thus, the present study aims to highlight how the presence of multiple contaminants, even at low concentrations, can be a risk factor in a model of zebrafish (Danio rerio). The presence of other contaminants, such as IMI, can cause an enhancement of the toxic action of Cd on morphological changes in the early life stage of zebrafish, but more importantly disrupt the normal development of the retina, eventually triggering apoptosis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| |
Collapse
|
15
|
Chen Y, Xiao L, Gao G, He L, Zhao K, Shang X, Liu C. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114007. [PMID: 36030688 DOI: 10.1016/j.ecoenv.2022.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
2, 5-dichloro-1, 4-benuinone (2, 5-DCBQ) is an emerging disinfection by-product belonging to the class of halobenzoquinones (HBQs). However, there is limited evidence regarding the neurotoxic effects of 2, 5-DCBQ. To better understand the toxicological mechanisms of aquatic organisms, zebrafish embryos were exposed to 0.2 mg/L, 0.4 mg/L, and 0.6 mg/L of 2, 5-DCBQ from 4 h post-fertilization (hpf) to 120 hpf. Developmental defects, such as reduced body length, decreased heart rate, decreased pigmentation, and abnormal motor axon structure was observed. In particular, the locomotor activity of zebrafish larvae reduced with exposure to increasing 2, 5-DCBQ concentrations, and this effect was more pronounced under dark stimulation. The results indicated that the genes associated with neuronal development (gfap, mbp, syn2a, elavl3, ache, and a1-tubulin) were significantly downregulated after treatment with 2, 5-DCBQ. Furthermore, the KEGG result showed the neuroactive ligand-receptor interaction and apoptosis pathways were visibly disrupted, and we found acetylcholinesterase activity was also affected. In summary, the disinfection by-product, 2, 5-DCBQ, exhibits neurodevelopmental toxicity in zebrafish embryos, providing novel evidence for comprehensive analyses of its toxicity.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Guangyu Gao
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Liting He
- The Second People's Hospital of Guiyang, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
16
|
Zhang Y, Yang Z, Ni J, Ma Y, Xiong H, Jian W. Toxicity and modulation of silver nanoparticles synthesized using abalone viscera hydrolysates on bacterial community in aquatic environment. Front Microbiol 2022; 13:968650. [PMID: 36110292 PMCID: PMC9468672 DOI: 10.3389/fmicb.2022.968650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharide decorated silver nanoparticles (AgNPs) are a new type of antibacterial agent in aquaculture, but their effects on the bacterial community structure in aquaculture water are still unknown. In this study, the primary hydrolysate from abalone (Haliotis discus hannai) viscera (AVH) was used to biosynthesize AVH-AgNPs by in situ reduction, and the crystallinity nature, size, morphology, and chemical composition were analyzed by high-resolution characterization techniques such as Ultraviolet–visible spectroscopy (UV–vis), X-rays diffraction (XRD), Transmission Electron Microscope (TEM), Dynamic light scattering (DLS), Zeta potential, inductively coupled plasma-optical emission spectrometry (ICP-OES) and Turbiscan stability index (TSI) values. Furthermore, the acute toxicity of AVH-AgNPs to zebrafish (Danio rerio) and their effects on bacterial community structure in fish culture water at low concentrations were studied. The results showed that the spherical AVH-AgNPs with an average diameter of 54.57 ± 12.96 nm had good stability, low toxicity, and good in vitro antibacterial activity. Within the experimental concentration range, all AVH-AgNPs treatments had decreased the bacterial diversity in zebrafish culture water to varying degrees. The bacteria with significantly decreased abundances were pathogenic or potential pathogenic, such as Aeromonas veronii, Flavobacterium columnare, and genera Flectobacillus and Bosea. The abundance of Haliscomenobacter sp. JS224, which might cause sludge swelling, also decreased significantly. On the other hand, the relative abundance of some bacterial taxa could remove xenobiotics (e.g., Runella defluvii and Phenylobacterium), control water eutrophication (Sediminibacterium), and reduce toxic algae proliferation (Candidatus Intestinusbacter nucleariae and Candidatus Finniella), increased significantly. Thus, the application of AVH-AgNPs in aquaculture water at low concentrations is relatively safe and has positive significance for improving the aquaculture environment. Also, AVH-AgNPs have good prospects in aquaculture.
Collapse
Affiliation(s)
- Yue Zhang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Zhuan Yang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jing Ni
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Ying Ma
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
- *Correspondence: Ying Ma,
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Hejian Xiong,
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Wenjie Jian,
| |
Collapse
|
17
|
Di Paola D, Iaria C, Capparucci F, Arangia A, Crupi R, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Impact of Mycotoxin Contaminations on Aquatic Organisms: Toxic Effect of Aflatoxin B1 and Fumonisin B1 Mixture. Toxins (Basel) 2022; 14:toxins14080518. [PMID: 36006180 PMCID: PMC9414388 DOI: 10.3390/toxins14080518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Multiple contaminations of several mycotoxins have been detected in human and veterinary food and feed worldwide. To date, a number of studies on the combined effects of mycotoxins have been conducted on cell and animal models, but very limited studies have been done on aquatic organisms. (2) The purpose of the present study was to evaluate the combined toxic effects of Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1) on zebrafish (Danio rerio) embryos. (3) Results: Our results showed that the combination of AFB1 and FB1 at nontoxic concentrations exerted a negative effect on the lethal endpoints analyzed, such as survival, hatching, and heart rate. In addition, the mixture of mycotoxins caused an increase in the levels of enzymes and proteins involved in the antioxidant process, such as superoxide dismutase (SOD) and catalase (CAT), both in terms of protein levels and gene expression, as well as an increase in the levels of the detoxification enzymes glutathione s-transferases (GST) and cytochromes P450 (CYP450). Furthermore, we showed that the mycotoxin mixture induced an increase in pro-apoptotic proteins such as bax and caspase 3, and at the same time reduced the gene expression of the anti-apoptotic bcl-2 protein. Finally, a significant decrease in thyroid function was observed in terms of triiodothyronine (T3), thyroxine (T4), and vitellogenin (VTG) levels. (4) Conclusion: We can say that the mixture of mycotoxins carries a greater risk factor than individual presences. There is a greater need for effective detoxification methods to control and reduce the toxicity of multiple mycotoxins and reduce the toxicity of multiple mycotoxins in feed and throughout the food chain.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.C.); (A.A.); (A.F.P.)
| |
Collapse
|
18
|
Paola DD, Iaria C, Marino F, Gugliandolo E, Piras C, Crupi R, Cuzzocrea S, Spanò N, Britti D, Peritore AF. RETRACTED: Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. TOXICS 2022; 10:388. [PMID: 35878293 PMCID: PMC9325130 DOI: 10.3390/toxics10070388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023]
Abstract
Veterinary antiparasitic pharmaceuticals as well as pesticides have been detected in surface waters, and they may cause several toxic effects in this environmental compartment. In the present study, we evaluated the toxicity after exposure of different concentration of ivermectin (IVM; 50, 100, and 200 μg L-1) and cypermethrin (CYP; 5, 10, and 25 μg L-1) and the combination of these two compounds at non-toxic concentration (IVM 100 + CYP 5 μg L-1) in zebrafish embryos. Combination of IVM at 100 μg L-1 with CYP at 5 μg L-1 exposure induced hatching delay and malformations at 96 hpf in zebrafish larvae as well as significant induction of cell death in zebrafish larvae. At the same time, the two single concentrations of IVM and CYP did not show a toxic effect on zebrafish development. In conclusion, our study suggests that IVM and CYP show a synergistic effect at common, ineffective concentrations, promoting malformation and cell death in fish development.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.M.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.M.); (A.F.P.)
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.M.); (A.F.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (C.P.); (D.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.M.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (C.P.); (D.B.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (C.I.); (F.M.); (A.F.P.)
| |
Collapse
|
19
|
Eder KM, Marzi A, Wågbø AM, Vermeulen JP, de la Fonteyne-Blankestijn LJJ, Rösslein M, Ossig R, Klinkenberg G, Vandebriel RJ, Schnekenburger J. Standardization of an in vitro assay matrix to assess cytotoxicity of organic nanocarriers: a pilot interlaboratory comparison. Drug Deliv Transl Res 2022; 12:2187-2206. [PMID: 35794354 PMCID: PMC9360155 DOI: 10.1007/s13346-022-01203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
Abstract
Nanotechnologies such as nanoparticles are established components of new medical devices and pharmaceuticals. The use and distribution of these materials increases the requirement for standardized evaluation of possible adverse effects, starting with a general cytotoxicity screening. The Horizon 2020 project "Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE)" identified in vitro cytotoxicity quantification as a central task and first step for risk assessment and development for medical nanocarriers. We have performed an interlaboratory comparison on a cell-assay matrix including a kinetic lactate dehydrogenase (LDH) release cell death and WST-8 cell viability assay adapted for testing organic nanocarriers in four well-characterized cell lines of different organ origins. Identical experiments were performed by three laboratories, namely the Biomedical Technology Center (BMTZ) of the University of Münster, SINTEF Materials and Chemistry (SINTEF), and the National Institute for Public Health and the Environment (RIVM) of the Netherlands according to new standard operating procedures (SOPs). The experiments confirmed that LipImage™ 815 lipidots® are non-cytotoxic up to a concentration of 128 µg/mL and poly(alkyl cyanoacrylate) (PACA) nanoparticles for drug delivery of cytostatic agents caused dose-dependent cytotoxic effects on the cell lines starting from 8 µg/mL. PACA nanoparticles loaded with the active pharmaceutical ingredient (API) cabazitaxel showed a less pronounced dose-dependent effect with the lowest concentration of 2 µg/mL causing cytotoxic effects. The mean within laboratory standard deviation was 4.9% for the WST-8 cell viability assay and 4.0% for the LDH release cell death assay, while the between laboratory standard deviation was 7.3% and 7.8% for the two assays, respectively. Here, we demonstrated the suitability and reproducibility of a cytotoxicity matrix consisting of two endpoints performed with four cell lines across three partner laboratories. The experimental procedures described here can facilitate a robust cytotoxicity screening for the development of organic nanomaterials used in medicine.
Collapse
Affiliation(s)
- Kai Moritz Eder
- Biomedical Technology Center (BMTZ) of the Medical Faculty, University of Muenster, 48149, Münster, Germany.
| | - Anne Marzi
- Biomedical Technology Center (BMTZ) of the Medical Faculty, University of Muenster, 48149, Münster, Germany
| | - Ane Marit Wågbø
- SINTEF Materials and Chemistry (SINTEF), 7034, Trondheim, Norway
| | - Jolanda P Vermeulen
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | | | - Matthias Rösslein
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-9014, St. Gallen, Switzerland
| | - Rainer Ossig
- Biomedical Technology Center (BMTZ) of the Medical Faculty, University of Muenster, 48149, Münster, Germany
| | - Geir Klinkenberg
- SINTEF Materials and Chemistry (SINTEF), 7034, Trondheim, Norway
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Jürgen Schnekenburger
- Biomedical Technology Center (BMTZ) of the Medical Faculty, University of Muenster, 48149, Münster, Germany
| |
Collapse
|
20
|
Lei X, Xu X, Wang L, Liu L, Kuang H, Xu L, Xu C. Quantitative and rapid detection of spinosad and spinetoram by a gold nanoparticle-based immunostrip. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2026-2034. [PMID: 35546323 DOI: 10.1039/d1ay01790j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinosad (SPI) and spinetoram (Et-SPI) are currently among the most popular new insecticides because of their high efficiency and low toxicity. However, excessive residues in food still pose a potential risk to public health. Therefore, it is necessary to strengthen residue monitoring of the two insecticides based on a simple and rapid method. In this study, a highly sensitive mAb (6G9) against SPI and Et-SPI was prepared using the hapten SPI-HS and used to develop a colloidal gold nanoparticle-based immunochromatographic strip for the detection of SPI and Et-SPI in samples. The quantitative ranges of the developed strip for SPI and Et-SPI were 8.93-1633 ng g-1 and 20.3-3555 ng g-1 in rice, 32.6-785 ng g-1 and 79.3-1862 ng g-1 in tea, and 9.66-360 ng g-1 and 23.9-931 ng g-1 in onions, respectively. In addition, recovery rates ranged from 85.7% to 112.7% with a coefficient of variation <9.5%. Therefore, our developed method was sensitive and valid as a quantitative tool for the rapid monitoring of SPI and Et-SPI in foods.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
21
|
Paola DD, Capparucci F, Natale S, Crupi R, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. RETRACTED: Combined Effects of Potassium Perchlorate and a Neonicotinoid on Zebrafish Larvae ( Danio rerio). TOXICS 2022; 10:203. [PMID: 35622618 PMCID: PMC9145203 DOI: 10.3390/toxics10050203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Imidacloprid (IMI) is part of the neonicotinoids family, insecticides widely used by humans and also found in wastewater. This class of compounds, if present in the environment, can cause toxicity to different species such as bees and gammarids, although little is known about vertebrates such as fish. In addition, several substances have been reported in the environment that can cause damage to aquatic species, such as potassium perchlorate (KClO4), if exposed to high concentrations or for long periods. Often, the co-presence of different contaminants can cause a synergistic action in terms of toxicity to fish. In the present study, we first analyzed different concentrations of IMI (75, 100 and 150 mg/L) and KClO4 (1, 1.5 and 5 mM) to highlight the morphological effects at 96 hpf and, subsequently, chose two nontoxic concentrations to evaluate their co-exposure and the pathway involved in their co-toxicity. Morphological alteration, mucus production, messenger RNA (mRNA) expression related to intestinal function and oxidative stress were measured. These results suggest that co-exposure to IMI and KClO4 could affect zebrafish embryo development by increasing gut toxicity and the alteration of antioxidative defense mechanisms.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (S.N.); (A.F.P.)
| |
Collapse
|
22
|
Di Paola D, Natale S, Iaria C, Crupi R, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Co-Exposure to Potassium Perchlorate and Cd Caused Toxicity and Thyroid Endocrine Disruption in Zebrafish Embryos and Larvae ( Danio rerio). TOXICS 2022; 10:toxics10040198. [PMID: 35448459 PMCID: PMC9030446 DOI: 10.3390/toxics10040198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022]
Abstract
The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on the effects of pollutants on the thyroid system in fish, which is essential for growth, development, and parts of reproduction, is still scarce. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0.1, 1, 1.5, 2, 2.5, and 5 mM) to identify adverse effects on embryo development. The endogenous antioxidant defense mechanism is one of the key functions of the thyroid gland; in this regard, we examined the co-exposure to potassium perchlorate (KClO4), which could disrupt thyroid function, with cadmium (Cd), a known pro-oxidant compound. Zebrafish embryos were exposed to control KClO4 1 mM and Cd 0.5 μM for 96 h after fertilization (hpf) individually and in combination. The morphological alteration, body length, and messenger RNA (mRNA) expression related to thyroid function and oxidative stress, thyroid hormone levels, and malondialdehyde were measured. Significant down-regulation of mRNAs related to thyroid function (thyroid hormone receptor-alpha (THRα), thyroid hormone receptor-beta (THRβ), haematopoietically expressed homeobox (hhex)) and decreased thyroxin (T4) levels were observed after co-exposure to KClO4 and Cd, but this was not observed in the individually treated groups. These results suggest that co-exposure to KClO4 and Cd could affect antioxidant defense mechanisms and potentially normally increase Cd toxicity on mRNA expression, altering the thyroid functions important in zebrafish embryonic developmental stages.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Nunziacarla Spanò
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (A.F.P.)
| |
Collapse
|
23
|
The Developmental Toxicity of Thymus schimperi Essential Oil in Rat Embryos and Fetuses. J Toxicol 2022; 2022:4091839. [PMID: 35450157 PMCID: PMC9017522 DOI: 10.1155/2022/4091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background In Ethiopian traditional medicine, the aerial parts of Thymus schimperi are widely used to treat diseases such as gonorrhea, cough, liver disease, kidney disease, hypertension, stomach pain, and fungal skin infections. In addition, they have been used as vegetables to flavor a broad variety of food products. However, there is an insufficient investigation of the toxic effect of Thymus schimperi essential oil. The aim of this study was, therefore, to evaluate the developmental toxicity of the essential oil of Thymus schimperi leaves on developing rat embryos and fetuses. Methods Essential oil of the aerial parts of Thymus schimperi was extracted by hydrodistillation. Pregnant Wistar albino rats were randomly divided into five groups. The doses 65 mg/kg, 130 mg/kg, and 260 mg/kg of the essential of Thymus schimperi were administered by force feeding to the III–V groups, respectively. Groups I and II were negative and ad libitum control groups. The embryos and fetuses were revealed on days 12 and 20 of gestations, respectively. The embryos were examined for developmental delays or growth retardation. Gross external, skeletal, and visceral anomalies in the fetuses were examined. Results In this study, the developmental scores of the number of implantation sites, crown-rump length, the number of somites, and morphological scores were significantly lower while the score of fetal resorptions was increased in a 12-day-old rat embryos treated with 260 mg/kg of the Thymus schimperi essential oil. There was also a significant delay in the development of the otic system, olfactory system, and a reduction in the number of branchial bars in 12-day-old embryos treated with 130 mg/kg and 260 mg/kg of the essential oil. However, external morphological examinations of rat fetuses revealed no detectable structural abnormalities. The fetal skull, vertebrae, hyoid, forelimb, and hindlimb ossification centers did not differ significantly across all the groups. Furthermore, there were no skeletal or soft-tissue malformations as a result of the essential oil treatment. Although the difference was not statistically significant, fetuses of the high-dose treatment group had a reduced number of ossification centers in the caudal vertebrae and hind limp phalanges. Conclusion The essential oil of Thymus schimperi at high doses has a detrimental effect on the development of rat embryos and fetuses. Its developmental toxicity is evidenced by significant delays in fetal and embryonic development, a decrease in the number of implantation sites, and an increase in fetal resorption. Furthermore, administration of the essential oil in higher doses resulted in a significant decrease in placenta weight and litter weight. In addition, the present study provided evidence that using the Thymus schimperi essential oil in a high dose could affect the developing embryo and fetus. Thus, it is recommended to discourage the use of Thymus schimperi essential oil in high doses.
Collapse
|
24
|
Xiao F, Feng LJ, Sun XD, Wang Y, Wang ZW, Zhu FP, Yuan XZ. Do Polystyrene Nanoplastics Have Similar Effects on Duckweed ( Lemna minor L.) at Environmentally Relevant and Observed-Effect Concentrations? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4071-4079. [PMID: 35290020 DOI: 10.1021/acs.est.1c06595] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the biological effects of nanoplastics (<100 nm in size) in aquatic environments have been increasingly investigated, almost all such studies have been performed at observed-effect concentrations (higher than 1 μg/mL). The use of observed-effect concentrations of nanoplastics can provide essential data for evaluating the potential risks, but how these results apply to the effects of concentrations of nanoplastics observed in the environment remains unclear. Here, we show that exposure to both positively and negatively charged nanoplastics at the observed-effect concentration (ranging from 0 to 50 μg/mL) can result in physiological changes of Lemna minor L., a typical flowering aquatic plant species, inducing H2O2 and O2- accumulation and even cell death. However, the nanoplastics at environmentally relevant concentrations (lower than 0.1 μg/mL) had no obvious effects on phenotype of L. minor. Moreover, nanoplastics at both observed-effect and environmentally relevant concentrations were adsorbed onto the roots and fronds of the plants, whereas uptake by the roots and fronds occurred only at the observed-effect concentration. Although no phenotypic changes across 30 generations of cultivation were observed when the plants were exposed to 0.015 μg/mL nanoplastics, the expression of genes related to the response to stimuli and to oxidative and osmotic stress was upregulated under both observed-effect and environmentally relevant concentrations. Our findings suggest that the long-term presence of nanoplastics at environmentally relevant concentrations might induce some variations in the transcription level and have potential threat to floating microphytes and aquatic ecosystems.
Collapse
Affiliation(s)
- Fu Xiao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Li-Juan Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yue Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zhong-Wei Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fan-Ping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
25
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
26
|
Zhang Y, Li X, Liang J, Luo Y, Tang N, Ye S, Zhu Z, Xing W, Guo J, Zhang H. Microcystis aeruginosa's exposure to an antagonism of nanoplastics and MWCNTs: The disorders in cellular and metabolic processes. CHEMOSPHERE 2022; 288:132516. [PMID: 34648785 DOI: 10.1016/j.chemosphere.2021.132516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics and carbon nanotubes (CNTs) is one of the emerging environmental contaminants and a widely used engineering nanomaterial, and their biological toxicity has been frequently studied. However, there has been no research on the combined exposure of these two totally different shape nanoparticles. To explore their potential threat to freshwater ecosystems, Microcystis aeruginosa (M. aeruginosa) was exposed to concentration gradients of polystyrene nanoplastics (Nano-PS) and multi-walled carbon nanotubes (MWCNTs). The physiological analysis and whole-transcriptome sequencing were integrated to certify the cytotoxicity. As the physiological results showed, the low concentration (5 mg/L) of these two nanoparticles showed a stimulation on the growth (6.49%-12.2%) and photosynthesis (0-7.6%), and the coexposure was slightly higher than individuals. However, other concentrations showed inhibitory effect, especially at high concentration (50 mg/L), and all physical signs and electron microscope images showed obvious cytotoxicity. Compared with the individuals, the coexposure showed an antagonistic effect induced by the heterogeneous agglomeration which decreased the surface toxicity and the contact with algae of nanomaterials. Transcriptome results showed that coexposure treatment had the fewest differential genes, and the primary effects embodied in the disturbances of cellular and metabolic processes which were superior to the individuals. In the 50 mg/L Nano-PS, the translation process was significantly disordered, and MWCNTs could disrupted the photosynthesis, multiple metabolism processes, membrane transport, and translation. These findings demonstrated the aquatic toxic mechanism from cellular and metabolic processes of Nano-PS and MWCNTs for M. aeruginosa and provided valuable data for environmental risk assessment of them.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hui Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
27
|
Huang YF, He F, Cui H, Zhang YY, Yang HY, Liang ZS, Dai W, Cheng CS, Xie Y, Liu L, Liu ZQ, Zhou H. Systematic investigation on the distribution of four hidden toxic Aconitum alkaloids in commonly used Aconitum herbs and their acute toxicity. J Pharm Biomed Anal 2022; 208:114471. [PMID: 34814080 DOI: 10.1016/j.jpba.2021.114471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Yunaconitine (YAC), crassicauline A (CCA), 8-deacetylyunaconitine (DYA), and 8-deacetylcrassicauline A (DCA), as hidden toxic Aconitum alkaloids, are detected in some products of processed Aconitum carmichaelii lateral root and poisoning cases. The distribution and toxicity of these four components in Aconitum herbs should be further systematically studied for medication safety. This study developed a new UHPLC-QQQ-MS/MS method to determine ten Aconitum alkaloids, including aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, benzoylhypaconine, YAC, CCA, DYA, and DCA, for Aconitum herbs simultaneously. YAC and CCA were founded in some samples of unprocessed A. carmichaelii lateral root (7.04%), A. carmichaelii root (9.43%), A. brachypodum root (6.00%), and A. ouvrardianum root (100%). Four hidden toxic Aconitum alkaloids were detected in processed A. carmichaelii lateral root (2.56%) and A. vilmorinianum root (100%). Four hidden toxic Aconitum alkaloids played significant roles in the classification of Aconitum herbs by OPLS-DA analysis. The acute toxicity test was performed by up-and-down procedure (UDP). The oral administration of the half lethal dose (LD50) of YAC, CCA, DYA, and DCA to female ICR mice was 2.37 mg/kg, 5.60 mg/kg, 60.0 mg/kg, and 753 mg/kg, respectively. The LD50 by intravenous injection was 0.200 mg/kg, 0.980 mg/kg, 7.60 mg/kg, and 34.0 mg/kg, respectively. The LD50 of unprocessed A. carmichaelii lateral root, A. vilmorinianum root, and A. brachypodum root to mice orally was 1.89 g/kg, 0.950 g/kg, and 0.380 g/kg, respectively. Symptoms of Aconitum alkaloid poisoning in mice were decreased activity, fur erect, palpebral edema, vomiting, polypnea, and convulsions. The main change of organs was flatulence. No poisoning or death occurred in mice at the maximum dosage (27.0 g/kg) of A. ouvrardianum root orally. To better control the quality and safety of Aconitum herbs, this study provides favorable support for improving the existing standards to strengthen the supervision of the four hidden toxic Aconitum alkaloids.
Collapse
Affiliation(s)
- Yu-Feng Huang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Institute of International Standardization of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fan He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Hao Cui
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Hua-Yi Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Zong-Suo Liang
- College of Life Sciences, Zhejiang Sci-Tech University, Zhejiang 310018, PR China
| | - Wei Dai
- Institute of Traditional Chinese Medicine, Mianyang Academy of Agricultural Sciences, Sichuan 621023, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China
| | - Ying Xie
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangdong 510006, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Macao 999078, PR China.
| |
Collapse
|
28
|
Di Paola D, Natale S, Gugliandolo E, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Spanò N, Marino F, Peritore AF. Assessment of 2-Pentadecyl-2-oxazoline Role on Lipopolysaccharide-Induced Inflammation on Early Stage Development of Zebrafish ( Danio rerio). Life (Basel) 2022; 12:128. [PMID: 35054521 PMCID: PMC8781862 DOI: 10.3390/life12010128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS), or bacterial endotoxin, is an important virulence factor in several human and animal pathologies. Oxazoline of Palmitoylethanolamide (PEAOXA) has shown strong anti-inflammatory activity in several animal models. LPS was applied for 24 h to zebrafish embryos to induce inflammation, and then the anti-inflammatory action of PEAOXA was evaluated for the first time in the zebrafish model (Danio rerio). Different concentrations of PEAOXA were tested for toxicity on zebrafish embryonic development; only the highest concentration of 30 mg/L showed toxic effects. Quantitative RT-PCR was applied to detect Tumor necrosis factor-α, Interleukin 1β, 6, and 8, and members of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Exposure to LPS induced an increase in pro-inflammatory cytokines (tumor necrosis factor and interleukin 1, 6, and 8) in both gene and protein expression, as well as an increase of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and the nuclear factor kappa light polypeptide enhancer in B-cells inhibitor (IκBα) gene expression. Furthermore, acute LPS exposure also induced an increase in tryptase release, related to mast cell activity, and in the production of apoptosis-related proteins (caspase 3, bax, and bcl-2). Treatment with PEAOXA 10 mg/L significantly counteracts LPS-induced inflammation in terms of cytokine expression and decreases tryptase release and the apoptosis pathway.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Fabio Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (R.S.); (R.D.); (R.F.); (D.I.); (F.M.); (A.F.P.)
| |
Collapse
|
29
|
Di Paola D, Natale S, Iaria C, Cordaro M, Crupi R, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Intestinal Disorder in Zebrafish Larvae (Danio rerio): The Protective Action of N-Palmitoylethanolamide-oxazoline. Life (Basel) 2022; 12:life12010125. [PMID: 35054518 PMCID: PMC8778351 DOI: 10.3390/life12010125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
IBD (Inflammatory Bowel Disease) is an inflammatory disease affecting the gastrointestinal tract that is common in both humans and veterinarians. Several studies have revealed the pharmacological properties of the oxazoline of palmitoylethanolamide (PEAOXA). Zebrafish larvae were exposed to sodium dextran sulphate (DSS) to induce enterocolitis and study the protective action of PEAOXA. After repetitive exposure with 0.25% DSS, larvae presented gut alteration with an increase in mucus production. Furthermore, DSS exposure induced an increase in the inflammatory pathway in the intestine, related to an increase in the Endoplasmic-reticulum (ER) stress genes. PEAOXA exposure at a concentration of 10 mg/L decreased the DSS-induced gut damage and mucus production, as well as being able to reduce the inflammatory and ER stress-related genes expression. In conclusion, our results demonstrate that the alterations induced by repeated exposure to DSS were counteracted by PEAOXA action that was able to inhibit the increase in inflammation and ER stress involved in the progression of enterocolitis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Sabrina Natale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.C.); (N.S.); Tel.: +39-90-6765208 (S.C.); +39-90-6765210 (N.S.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (S.N.); (C.I.); (R.S.); (R.D.); (R.F.); (D.I.); (A.F.P.)
| |
Collapse
|
30
|
Wei H, Bai Z, Xie D, Chen Y, Wang M. CO 2-driven seawater acidification increases cadmium toxicity in a marine copepod. MARINE POLLUTION BULLETIN 2021; 173:113145. [PMID: 34800761 DOI: 10.1016/j.marpolbul.2021.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Here, we examined the 48-h acute toxicity of cadmium (Cd) in the marine copepod Tigriopus japonicus under two pCO2 concentrations (400 and 1000 μatm). Subsequently, T. japonicus was interactively exposed to different pCO2 (400, 1000 μatm) and Cd (control, 500 μg/L) treatments for 48 h. After exposure, biochemical and physiological responses were analyzed for the copepods. The results showed that the 48-h LC50 values of Cd were calculated as 12.03 mg/L and 9.08 mg/L in T. japonicus, respectively, under 400 and 1000 μatm pCO2 conditions. Cd exposure significantly promoted Cd exclusion/glycolysis, detoxification/stress response, and oxidative stress/apoptosis while it depressed that of antioxidant capacity. Intriguingly, CO2-driven acidification enhanced Cd bioaccumulation and its toxicity in T. japonicus. Overall, our study provides a mechanistic understanding about the interaction between seawater acidification and Cd pollution in marine copepods.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), Xiamen 361008, China.
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
31
|
Desta GT, Adela Alemu M, Tsegaw A, Belete TM, Adugna BY. Antidiarrheal Effect of 80% Methanol Extract and Fractions of Clerodendrum myricoides (Hochst.) Vatke (Lamiaceae) Leaf in Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9369173. [PMID: 34712351 PMCID: PMC8548112 DOI: 10.1155/2021/9369173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Diarrhea is one of the tempting symptoms of diseases in the world. In Ethiopian traditional medicine practices, Clerodendrum myricoides is utilized for the treatment of diarrhea without scientific evidence. OBJECTIVE This study was aimed to evaluate the antidiarrheal activity of 80% methanol extract and fractions of the leaf of Clerodendrum myricoides in mice. METHODS The crude extract was prepared by maceration in 80% methanol and then fractionated using hexane, chloroform, and distilled water. Antidiarrheal activity was assessed by castor oil-induced diarrhea, enteropooling, and gastrointestinal motility models using onset of diarrhea, number and weight of feces, volume and weight of intestinal contents, and distance travelled by charcoal meal as main parameters. Negative controls received either distilled water or 2% Tween 80 (10 ml/kg), positive controls received 3 mg/kg loperamide or 1 mg/kg atropine, and the test groups received 100, 200, and 400 mg/kg doses of the extract. RESULTS The crude extract and chloroform fraction significantly prolonged the onset of diarrhea at 200 and 400 mg/kg and decreased the number of wet, total, and weight of fresh feces at all tested doses. Hexane fraction has a significant antidiarrheal effect on the onset, number, and weight of feces at 400 mg/kg. The crude extract and chloroform fraction at all tested doses, as well as aqueous fraction at 200 mg/kg and 100 mg/kg, produced significant reduction in volume and weight of intestinal contents. Additionally, hexane fraction showed significant reduction of volume and weight of the intestinal content at 400 mg/kg. In the gastrointestinal motility test model, both chloroform fraction and crude extract at all tested doses and aqueous fraction at 200 mg/kg and 400 mg/kg showed a significant antidiarrheal effect as compared to the negative control. CONCLUSION The leaf of Clerodendrum myricoides showed antidiarrheal activity which supports the traditional use.
Collapse
Affiliation(s)
- Getaye Tessema Desta
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Adela Alemu
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Asegedech Tsegaw
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tafere Mulaw Belete
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Baye Yrga Adugna
- Department of Pharmacy, Amhara Regional Health Bureau, Bahir Dar, Ethiopia
| |
Collapse
|
32
|
Pavic A, Ilic-Tomic T, Glamočlija J. Unravelling Anti-Melanogenic Potency of Edible Mushrooms Laetiporus sulphureus and Agaricus silvaticus In Vivo Using the Zebrafish Model. J Fungi (Basel) 2021; 7:834. [PMID: 34682255 PMCID: PMC8540621 DOI: 10.3390/jof7100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Severe drawbacks associated with the topical use of depigmenting agents in treatments of skin hyperigmentations impose a great demand for novel, effective, and safe melanogenesis inhibitors. Edible and medicinal mushrooms, known for numerous health-promoting properties, represent a rich reservoir of anti-melanogenic compounds, with the potential to be applied in preventing excessive skin pigmentation. Herein, using zebrafish (Danio rerio) as a preclinical animal model, we have demonstrated that ethanol extract of Laetiporus sulphureus (LSE) and Agaricus silvaticus (ASE) are not toxic at high doses up to 400-500 µg/mL while effectively inhibit melanogenesis in a dose-dependent manner. At depigmenting doses, the explored extracts showed no adverse effects on zebrafish embryos melanocytes. Even more, they did not provoke inflammation or neutropenia when applied at the highest dose ensuring almost complete the cells depigmentation. Since LSE and ASE have demonstrated significantly higher the therapeutic potential than kojic acid and hydroquinone, two well-known depigmenting agents, overall results of this study strongly suggest that the explored mushrooms extracts could be used as efficient and safe topical agents in treatments of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Jasmina Glamočlija
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
33
|
Huang C, Shi Y, Zhou C, Guo L, Liu G, Zhuang Y, Li G, Hu G, Liu P, Guo X. Effects of Subchronic Copper Poisoning on Cecal Histology and Its Microflora in Chickens. Front Microbiol 2021; 12:739577. [PMID: 34566941 PMCID: PMC8456085 DOI: 10.3389/fmicb.2021.739577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Copper (Cu) is an important trace element with a two-sided effect on the growth performance of animals, which depends on the timing and dosage of Cu addition, etc. The purpose of this study was to determine the effects of oral copper sulfate (CuSO4, 350 ppm) on growth performance, cecal morphology, and its microflora of chickens (n = 60) after 30, 60, and 90 days. The results showed that after 90 days of copper exposure, the chickens lost weight, the cecum mucosa was detached, and vacuolation and inflammatory infiltration occurred at the base of the lamina propria. In addition, using the 16S rDNA sequencing method, we observed that copper exposure changed the richness and diversity of intestinal microorganisms. At the phylum level, Proteobacteria and Actinobacteria both significantly increased, while Bacteroidetes significantly decreased in the Cu group compared with control check (CK) group. At the genus level, the relative abundance of Rikenellaceae_RC9_gut_group decreased significantly, while Ruminococcaceae_UCG-014, Lachnoclostridium, and [Eubacterium]_coprostanoligenes_group increased significantly after copper exposure, and the change in microflora was most significant at 90 days. Moreover, the relevance of genus-level bacteria was altered. PICRUST analysis revealed potential metabolic changes associated with copper exposure, such as Staphylococcus aureus infection and metabolic disorders of nutrients. To sum up, these data show that subchronic copper exposure not only affects the growth and development of chickens but also causes the imbalance of intestinal microflora, which may further induce metabolic disorders in chickens.
Collapse
Affiliation(s)
- Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guohui Liu
- Animal Husbandry and Veterinary Department of Ganzhou, Ganzhou, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
34
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.,Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
35
|
Kediso TE, Tolessa T, Getachew F, Makonnen E, Seifu D. Effect of 70% Ethanol Extract and its Solvent Fractions of Artemisia afra (Jacq. Ex Willd.) against Pentylenetetrazole-Induced Seizure in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6690965. [PMID: 34239592 PMCID: PMC8233086 DOI: 10.1155/2021/6690965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Artemisia afra (Jacq. ex Willd.), commonly called African wormwood, is a highly aromatic perennial herb and a well-known medicinal plant, claimed to be effective and safe in the treatment of epilepsy. The whole-plant extract is traditionally used as an antiepileptic agent in Ethiopia. Aim of the Study. The aim of this study was, therefore, to evaluate the anticonvulsant effect of the hydroethanolic extract and solvent fractions of A. afra whole part in mice. MATERIALS AND METHODS The effects of A. afra hydroethanolic extract and its solvent fractions were evaluated against pentylenetetrazole- (PTZ-) induced convulsions in mice. The onset and duration of PTZ-induced convulsions were determined with hydroethanolic A. afra extract and its solvent fractions. Data were analyzed using a one-way analysis of variance (ANOVA) followed by post hoc Tukey's multiple comparisons test. p < 0.05 was considered statistically significant. RESULTS The hydroethanolic extract of A. afra, with all the three doses of 250, 500, and 1000 mg/kg, showed a significant delay (504.833 ± 62.835 ∗ s; p < 0.05 ∗ ; 551.833 ± 47.69 ∗∗ s; p < 0.01 ∗∗ ; and 808.333 ± 64.8 ∗∗∗ s; p < 0.001 ∗∗∗ , respectively) in the mean onset of convulsion and a decrease (17.000 ± 1.88 ∗∗∗ s, p < 0.05 ∗ ; 13.000 ± 1.8 ∗∗ s, p < 0.01 ∗∗ ; and 7.833 ± 1.07 ∗∗∗ s, p < 0.001, respectively) in the mean duration of convulsion against PTZ-induced convulsion in a dose-dependent manner compared to the control (92.833 ± 13.006 s; 34.167 ± 3.683 s), and its anticonvulsant activity was significantly less compared to that of diazepam (1001.167 ± 68.430 s; 4.500 ± 0.619 s). The solvent fractions, however, did not show anticonvulsant activity against PTZ-induced convulsion. CONCLUSION Crude extract of A. afra has an anticonvulsant effect in mice. This might be attributed to the synergistic effects of two or more active ingredients present in the herb.
Collapse
Affiliation(s)
- Teketel Eristu Kediso
- Department of Biomedical Sciences, College of Health Sciences, Arbaminch University, Arbaminch, Ethiopia
- Department of Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Tolessa
- Department of Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fikirte Getachew
- Department of Biomedical Sciences, College of Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Division of Biomedical Sciences, Department of Biochemistry, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
36
|
Anwar F, Saleem U, Rehman AU, Ahmad B, Froeyen M, Mirza MU, Kee LY, Abdullah I, Ahmad S. Toxicity Evaluation of the Naphthalen-2-yl 3,5-Dinitrobenzoate: A Drug Candidate for Alzheimer Disease. Front Pharmacol 2021; 12:607026. [PMID: 34040515 PMCID: PMC8141749 DOI: 10.3389/fphar.2021.607026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD 50 . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.,Riphah Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| | - Atta-Ur Rehman
- Department of Pharmacy, Forman Christian University, Lahore, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Lee Yean Kee
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, Kee LY, Abdullah I, Ahmad S. Toxicological Screening of 4-Phenyl-3,4-dihydrobenzo[ h]quinolin-2(1 H)-one: A New Potential Candidate for Alzheimer's Treatment. ACS OMEGA 2021; 6:10897-10909. [PMID: 34056243 PMCID: PMC8153932 DOI: 10.1021/acsomega.1c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 05/04/2023]
Abstract
Toxicity studies are necessary for the development of a new drug. Naphthalene is a bicyclic molecule and is easy to derivatize. In our previous study, a derivative of naphthalene (4-phenyl,3,4-dihydrobenzoquinoline-2(H)one) was synthesized and reported its in vitro activity on different enzymes. This study was a probe to investigate the toxicity potential of that compound (SF3). Acute oral (425), subacute (407), and teratogenicity (414) studies were planned according to their respective guidelines given by organization of economic cooperation and development (OECD). Acute oral, subacute, and teratogenicity studies were carried out on 2000, 5-40, and 40 mg/kg doses. Blood samples were collected for hematological and biochemical analyses. Vital organs were excised for oxidative stress (superoxide dismutase, catalase, glutathione, and malondialdehyde) and histopathological analysis. LD 50 of SF3 was higher than 2000 mg/kg. In acute and subacute studies, levels of alkaline phosphates and aspartate transaminase were increased. Teratogenicity showed no resorptions, no skeletal or soft tissue abnormalities, and no cleft pallet. Oxidative stress biomarkers were close to the normal, and no increase in the malondialdehyde level was seen. Histopathological studies revealed normal tissue architecture of the selected organs, except kidney, in acute oral and subacute toxicity studies at 40 mg/kg. The study concluded that SF3 is safer if used as a drug.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad 38040, Pakistan
| | - Atta ur Rehman
- Department
of Pharmacy, Forman Christian College, Lahore 54600, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSATS Institute of Information
Technology, Abbottabad Campus, Abottabad 22060, Pakistan
| | - Muhammad Usman Mirza
- Department
of Pharmaceutical and Pharmacological Sciences, Rega Institute for
Medical Research, Medicinal Chemistry, University
of Leuven, Leuven B-3000, Belgium
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Lee Yean Kee
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iskandar Abdullah
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sarfraz Ahmad
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
38
|
Yao J, Wang Z, Guo L, Xu X, Liu L, Kuang H, Xu C. Lateral flow immunoassay for the simultaneous detection of fipronil and its metabolites in food samples. Food Chem 2021; 356:129710. [PMID: 33836353 DOI: 10.1016/j.foodchem.2021.129710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
We developed a sensitive and rapid lateral flow immunochromatographic (LFI) assay for the simultaneous detection of fipronil and its metabolites in eggs and cucumbers using gold nanoparticle (GNP)-labeled monoclonal antibodies (mAbs). Anti-fipronil mAbs (1B6) were produced using two haptens and identified by heterologous indirect competitive enzyme-linked immunosorbent assay (icELISA) with half maximal inhibitory concentration (IC50) and limit of detection (LOD) values of 0.46 ± 0.07 and 0.05 ± 0.01 ng mL-1, respectively. The developed LFI strip showed high sensitivity and specificity in the detection of fipronil with cut-off and visual limit of detection (vLOD) values of 10 and 0.25 ng mL-1, respectively. Furthermore, the application of LFI in the detection of fipronil-spiked egg and cucumber samples was validated by liquid chromatography tandem mass spectrometry (LC-MS/MS). Our developed LFI assay is suitable for detection of fipronil and its metabolites in real samples.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
39
|
Bai Z, Wang M. Warmer temperature increases mercury toxicity in a marine copepod. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110861. [PMID: 32544748 DOI: 10.1016/j.ecoenv.2020.110861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Marine biota have been co-challenged with ocean warming and mercury (Hg) pollution over many generations because of human activities; however, the molecular mechanisms to explain their combined effects are not well understood. In this study, a marine planktonic copepod Pseudodiaptomus annandalei was acutely exposed to different temperature (22 and 25 °C) and Hg (0 and 118 μg/L) treatments in a 24-h cross-factored experiment. Hg accumulation and its subcellular fractions were determined in the copepods after exposure. The expression of the genes of superoxide dismutase (SOD), glutathione peroxidase (GPx), metallothionein1 (mt1), heat shock protein 70 (hsp70), hsp90, hexokinase (hk), and pyruvate kinase (pk) was also analyzed. Both the Hg treatment alone and the combined exposure of warmer temperature plus Hg pollution remarkably facilitated Hg bioaccumulation in the exposed copepods. Compared with the Hg treatment alone, the combined exposure increased total Hg accumulation and also the amount of Hg stored in the metal-sensitive fractions (MSF), suggesting elevated Hg toxicity in P. annandalei under a warmer environment, given that the MSF is directly related to metal toxicity. The warmer temperature significantly up-regulated the mRNA levels of mt1, hsp70, hsp90, and hk, indicating the copepods suffered from thermal stress. With exposure to Hg, the mRNA level of SOD increased strikingly but the transcript levels of hsp90, hk, and pk decreased significantly, indicating that Hg induced toxic events (e.g., oxidative damage and energy depletion). Particularly, in contrast to the Hg treatment alone, the combined exposure significantly down-regulated the mRNA levels of SOD and GPx but up-regulated the mRNA levels of mt1, hsp70, hsp90, hk, and pk. Collectively, the results of this study indicate that ocean warming will potentially boost Hg toxicity in the marine copepod P. annandalei, which is information that will increase the accuracy of the projections of marine ecosystem responses to the joint effects of climate change stressors and metal pollution on the future ocean.
Collapse
Affiliation(s)
- Zhuoan Bai
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
40
|
Qin HM, Herrera D, Liu DF, Chen CQ, Nersesyan A, Mišík M, Knasmueller S. Genotoxic properties of materials used for endoprostheses: Experimental and human data. Food Chem Toxicol 2020; 145:111707. [PMID: 32889016 DOI: 10.1016/j.fct.2020.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Approximately 2 million endoprostheses are implanted annually and metal ions as well as particles are released into the body from the materials which are used. This review describes the results of studies concerning genotoxic damage caused by artificial joints. DNA damage leads to various adverse long-term health effects in humans including cancer. Experiments with mammalian cells showed that metal ions and particles from orthopedic materials cause DNA damage. Induction of chromosomal aberrations (CA) was found in several in vitro experiments and in studies with rodents with metals from orthopedic materials. Human studies focused mainly on induction of CA (7 studies). Only few investigations (4) concerned sister chromatid exchanges, oxidative DNA damage (2) and micronucleus formation (1). CA are a reliable biomarker for increased cancer risks in humans) and were increased in all studies in patients with artificial joints. No firm conclusion can be drawn at present if the effects in humans are due to oxidative stress and if dissolved metal ions or release particles play a role. Our findings indicate that patients with artificial joints may have increased cancer risks due to damage of the genetic material. Future studies should be performed to identify safe materials and to study the molecular mechanisms in detail.
Collapse
Affiliation(s)
- Hong-Min Qin
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Denise Herrera
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Dian-Feng Liu
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Chao-Qian Chen
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria.
| |
Collapse
|
41
|
Cong B, Liu C, Wang L, Chai Y. The Impact on Antioxidant Enzyme Activity and Related Gene Expression Following Adult Zebrafish ( Danio rerio) Exposure to Dimethyl Phthalate. Animals (Basel) 2020; 10:ani10040717. [PMID: 32325949 PMCID: PMC7222705 DOI: 10.3390/ani10040717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Dimethyl phthalate (DMP) is a widespread environmental contaminant and its toxicological effects on fish have not been adequately examined. Our present study clearly showed that a high concentration induced oxidative damage in zebrafish, which proved the molecular regulation due to the negative effects of DMP, along with the physical damage in zebrafish. We also found that antioxidant enzymes might be used as appropriate biochemical markers for the toxic identification of DMP. Abstract Dimethyl phthalate (DMP) is a widespread environmental contaminant that poses potential toxicity risks for animals and humans. However, the toxicological effects of DMP on fish have not been adequately examined. In this study, the acute toxicity, oxidative damage, antioxidant enzyme activities, and relative gene expression patterns were investigated in the liver of adult zebrafish (Danio rerio) exposed to DMP. We found that the lethal concentration (LC50) of DMP for zebrafish after 96 h of exposure was 45.8 mg/L. The zebrafish that were exposed to low, medium and high concentrations of DMP (0.5, 4.6, and 22.9 mg/L, respectively) for 96 h had an increased malondialdehyde (MDA) content and a lower antioxidant capacity compared with the control solvent group. The total superoxide dismutase (SOD) activity was significantly higher than 0 h after initial exposure for 24 h at low concentrations, and then decreased at high concentrations after exposure for 96 h. The catalase (CAT) and glutathione S-transferase (GST) activities were significantly reduced after 96 h of exposure to high concentrations of DMP, with the up- or down-regulation of the related transcriptional expression. These findings indicated that DMP could cause physiological effects in zebrafish by disturbing the expression levels of antioxidant enzymes. These results might contribute to the identification of biomarkers to monitor phthalate pollution.
Collapse
Affiliation(s)
- Bailin Cong
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
| | - Cong Liu
- Department of Marine Science, Marine College, Shandong University (Weihai), Weihai 264209, China; (C.L.); (L.W.)
| | - Lujie Wang
- Department of Marine Science, Marine College, Shandong University (Weihai), Weihai 264209, China; (C.L.); (L.W.)
| | - Yingmei Chai
- Department of Marine Science, Marine College, Shandong University (Weihai), Weihai 264209, China; (C.L.); (L.W.)
- Correspondence: ; Tel.: +86-631-5688303
| |
Collapse
|
42
|
Shen C, Wei J, Wang T, Wang Y. Acute toxicity and responses of antioxidant systems to dibutyl phthalate in neonate and adult Daphnia magna. PeerJ 2019; 7:e6584. [PMID: 30886775 PMCID: PMC6421057 DOI: 10.7717/peerj.6584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Dibutyl phthalate (DBP) poses a severe threat to aquatic ecosystems, introducing hazards to both aquatic species and human health. The ecotoxic effects of DBP on aquatic organisms have not been fully investigated. This study investigates acute toxicity, oxidative damage, and antioxidant enzyme parameters in neonate and adult Daphnia magna exposed to DBP. The obtained results show comparable DBP toxic responses in neonates and adults. The median lethal concentrations (LC50) of DBP in neonates exposed for 24 and 48 h were 3.48 and 2.83 mg/L, respectively. The LC50 of adults for the same DBP exposure durations were 4.92 and 4.31 mg/L, respectively. Increased hydrogen peroxide and malondialdehyde were found in neonates and adults at both 24 and 48 h, while the total antioxidant capacity decreased. Superoxide dismutase activity increased significantly in neonates and adults exposed to 0.5 mg/L DBP, and subsequently diminished at higher DBP concentrations and prolonged exposure. Catalase and glutathione S-transferases activities both decreased markedly in neonates and adults. The changes observed were found to be time and concentration dependent. Overall, these data indicated that the acute toxic effects of DBP exposure on neonates were more pronounced than in adults, and oxidative injury may be the main mechanism of DBP toxicity. These results provide a functional link for lipid peroxidation, antioxidant capacity, and antioxidant enzyme levels in the Daphnia magna response to DBP exposure.
Collapse
Affiliation(s)
- Chenchen Shen
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Jie Wei
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Tianyi Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
43
|
Chen Y, Liu W, Shang Y, Cao P, Cui J, Li Z, Yin X, Li Y. Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int J Nanomedicine 2018; 14:57-74. [PMID: 30587985 PMCID: PMC6304077 DOI: 10.2147/ijn.s177880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer and severely threatens human health. Since the prognosis of advanced HCC remains poor, there is an urgent need to develop new therapeutic approaches. Porphyrin metal-organic frameworks are a class of porous organic-inorganic hybrid functional materials with good biocompatibility. Methods Gadolinium-porphyrin metal-organic frameworks were used as a skeleton for folic acid (FA) conjugation to synthesize a novel type of nanoparticle, denoted as folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks (FA-NPMOFs). The FA-NPMOFs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric-differential thermal analysis. The biotoxicity and imaging capability of the FA-NPMOFs were determined using HepG2 cells and embryonic and larval zebrafish. The delivery and photodynamic therapeutic effect of FA-NPMOFs were explored in transgenic zebrafish with doxycycline-induced HCC. Results FA-NPMOFs were spherical in structure with good dispersion and water solubility. They showed low biotoxicity, emitted bright red fluorescence, and exhibited an excellent magnetic resonance imaging capability, both in vitro and in vivo. Meanwhile, the FA-NPMOFs exhibited a strong affinity for folate receptor (FR)-expressing cells and were delivered to the tumor site in a targeted manner. Moreover, HCC tumor cells were eliminated following laser irradiation. Conclusion FA-NPMOFs can be used for dual-modality imaging and photodynamic therapy in HCC and show promise for use as a carrier in new therapies for HCC and other FR-positive tumors.
Collapse
Affiliation(s)
- Yang Chen
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China.,School of Science, Tianjin University, Tianjin, China
| | - Yue Shang
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Peipei Cao
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Jianlin Cui
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China,
| | - Xuebo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yuhao Li
- Nankai University School of Medicine, Tianjin, China, .,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical International Collaborative Innovation Center, Nankai University, Tianjin, China,
| |
Collapse
|
44
|
Wang NX, Liu YY, Wei ZB, Yang LY, Miao AJ. Waterborne and Dietborne Toxicity of Inorganic Arsenic to the Freshwater Zooplankton Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8912-8919. [PMID: 29947214 DOI: 10.1021/acs.est.8b02600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Waterborne and dietborne exposure are both important sources for the accumulation of inorganic arsenic (iAs) in aquatic organisms. Although the waterborne toxicity of iAs has been extensively investigated, its dietborne toxicity has received little attention. The present study examined the acute and chronic toxicity of arsenate (iAsV) and arsenite (iAsIII) to the freshwater zooplankton species Daphnia magna under both waterborne and dietborne exposure scenarios. The bioaccumulation, speciation, and tissue and subcellular distributions of arsenic were analyzed to understand the mechanisms accounting for differences in toxicity related to different arsenic species, exposure scenarios, and exposure duration. The toxicity of iAs increased with exposure time, and iAsIII was more toxic than iAsV. Moreover, although dietborne iAs had no acute effect on D. magna, it incurred significant toxicity in the chronic-exposure experiment. Nevertheless, the toxicity of dietborne iAs was still lower than that of waterborne iAs regardless of the exposure duration. This difference was found to be caused by the lower bioaccumulation of dietborne iAs, its higher distribution in the gut and in the biologically detoxified subcellular fraction, and greater transformation to the less toxic dimethylarsinic acid. Overall, the dietborne toxicity of iAs should be considered when evaluating the environmental risks posed by arsenic.
Collapse
Affiliation(s)
- Ning-Xin Wang
- School of Energy and Environment , Anhui University of Technology , Maanshan , Anhui Province 243002 , China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
45
|
Wang Y, Deng W, Wang F, Su Y, Feng Y, Chen P, Ma J, Su H, Yao K, Liu Y, Lv W, Liu G. Study of the simulated sunlight photolysis mechanism of ketoprofen: the role of superoxide anion radicals, transformation byproducts, and ecotoxicity assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1176-1184. [PMID: 28745761 DOI: 10.1039/c7em00111h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the photolysis mechanism of ketoprofen (KET) under simulated sunlight. The results demonstrated that the photolysis of KET aligned well with pseudo first-order kinetics. Radical scavenging experiments and dissolved oxygen experiments revealed that the superoxide anion radical (O2˙-) played a primary role in the photolytic process in pure water. Bicarbonate slightly increased the photodegradation of KET through generating carbonate radicals, while DOM inhibited the photolysis via both attenuating light and competing radicals. Moreover, Zhujiang river water inhibited KET phototransformation. Potential KET degradation pathways were proposed based on the identification of products using LC/MS/MS and GC/MS techniques. The theoretical prediction of reaction sites was derived from Frontier Electron Densities (FEDs), which primarily involved the KET decarboxylation reaction. The ecotoxicity of the treated solutions was evaluated by employing Daphnia magna and V. fischeri as biological indicators. Ecotoxicity was also hypothetically predicted through the "ecological structure-activity relationship" (ECOSAR) program, which revealed that toxic products might be generated during the photolysis process.
Collapse
Affiliation(s)
- Yingfei Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ni Z, Tao L, Xiaohui X, Zelin Z, Jiangang L, Zhao S, Weikang H, Hongchao X, Qiujing W, Xin L. Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression. J Cell Physiol 2017; 232:2776-2787. [PMID: 28383775 PMCID: PMC5518182 DOI: 10.1002/jcp.25943] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
Abstract
Polydatin (PD), a resveratrol glycoside, has been shown to protect renal function in diabetic nephropathy (DN), but the underlying molecular mechanism remains unclear. This study demonstrates that PD stabilize the mitochondrial morphology and attenuate mitochondrial malfunction in both KKAy mice and in hyperglycemia (HG)‐induced MPC5 cells. We use Western blot analysis to demonstrate that PD reversed podocyte apoptosis induced by HG via suppressing dynamin‐related protein 1 (Drp1). This effect may depend on the ability of PD to inhibit the generation of cellular reactive oxygen species (ROS). In conclusion, we demonstrate that PD may be therapeutically useful in DN, and that, podocyte apoptosis induced by HG can be reversed by PD through suppressing Drp1 expression.
Collapse
Affiliation(s)
- Zheng Ni
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Liang Tao
- College of Stomatology of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xu Xiaohui
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zhao Zelin
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Liu Jiangang
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Song Zhao
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Huo Weikang
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Xu Hongchao
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| | - Wang Qiujing
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangdong Province, China
| | - Li Xin
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, PR China
| |
Collapse
|
47
|
Singh SV, Manhas A, Kumar Y, Mishra S, Shanker K, Khan F, Srivastava K, Pal A. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomed Pharmacother 2017; 89:761-771. [PMID: 28273638 DOI: 10.1016/j.biopha.2017.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
Abstract
A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.
Collapse
Affiliation(s)
- Shiv Vardan Singh
- In-vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashan Manhas
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yogesh Kumar
- Molecular and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Sonali Mishra
- Anlaytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Karuna Shanker
- Anlaytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Feroz Khan
- Molecular and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Kumkum Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Pal
- In-vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| |
Collapse
|
48
|
Liang R, He J, Shi Y, Li Z, Sarvajayakesavalu S, Baninla Y, Guo F, Chen J, Xu X, Lu Y. Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. CHEMOSPHERE 2017; 168:1613-1618. [PMID: 27938985 DOI: 10.1016/j.chemosphere.2016.11.147] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 05/27/2023]
Abstract
In recent years, Perfluorooctane sulfonate (PFOS) was widely detected in Yellow-Bohai Sea and other areas, causing a series of adverse effects in aquatic organisms. However, present studies of its chronic and acute toxicity on aquatic organisms were far more inadequate. Therefore, in the present study, Daphnia magna was used to investigate PFOS toxicity on their immobilization, heartbeat, reproductive and biochemical performance in acute, subchronic and chronic exposure. The results showed that the 48h-EC50 value for immobilization was 79.35 mg L-1 and the toxicity was classified as intermediate. Heartbeat was significantly stimulated and reproductive parameters were significantly suppressed by PFOS, which can be used to reflect the toxicological effects on individuals. On the other hand, intrinsic rate of natural increase was more sensitive than reproductive parameters, which indicated negative responses on population dynamics of Daphnia magna. In addition, there were different degrees of inhibition on GST, CAT and ChE activity, which indicated three types of enzyme could become biomarkers to chronic PFOS exposure. Most of selected and evaluated endpoints have significant sensitivity to PFOS at the concentration of 8 mg L-1 during subchronic and chronic exposure.
Collapse
Affiliation(s)
- Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao He
- College of Resources and Environmental Sciences, China Agriculture University, Beijing, 100193, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhifen Li
- Shandong Xiehe University, Shandong, 250107, China
| | - Suriyanarayanan Sarvajayakesavalu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; SCOPE (Scientific Committee on Problems of the Environment) Beijing Office, Beijing, 100085, China
| | - Yvette Baninla
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifan Guo
- Beijing Sustainable Green Energy ET. Co., Ltd, 100192, China
| | - Juan Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangbo Xu
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100059, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Pre-clinical toxicity of a combination of berberine and 5-aminosalicylic acid in mice. Food Chem Toxicol 2016; 97:150-158. [DOI: 10.1016/j.fct.2016.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022]
|
50
|
Cao C, Wang Q, Jiao F, Zhu G. Impact of co-exposure with butachlor and triadimefon on thyroid endocrine system in larval zebrafish. ACTA ACUST UNITED AC 2016; 68:463-9. [PMID: 27480594 DOI: 10.1016/j.etp.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Butachlor (BTL) and triadimefon (TDF), the widely used herbicide and fungicide, are unavoidable enter into the aquatic environment. However, there were limited study regarding to the joint toxicity of these two pesticides on fish at present. AIM To evaluate the potential thyroid-disrupting toxicity and exposed to different concentrations of BTL mixed with TDF. MATERIALS AND METHODS Zebrafish embryo (n=3) were exposed to 0.01 and 0.05 fold of LC50 from the acute joint toxicity test, of which 0.32mg/L (BTL) and 9.41mg/L (TDF) for single or mixture agents (BTL: 0.0064mg/L, 0.032mg/L; TDF: 0.1882mg/L, 0.9410mg/L; co-exposure: 0.0032mg/L BTL+0.0941mg/L TDF, 0.016mg/l BTL+0.4705mg/L TDF) after 10-day post-fertilization. Hatching, malformation, survival rates and thyroid hormones (THs), genes expression involved in HPT-axis of embryos were measured and detected in control and separately/co-exposure treatments. THs contents were evaluated by ELISA kit and the expression levels of genes were determined by RT-PCR. RESULTS Hatching, malformation and survival rates of embryos exposed to single BTL exhibited no statistically significant difference from the control besides decreased of high concentration in survival rates. Exposure to TDF reduced hatching, survival rate and increased malformation. The combined exposure to BTL and TDF resulted in greater adverse effects on embryonic development. BTL exposure significantly increased free T3 and T4 contents. Elevated free T3 content was also observed in the larvae exposed with single BTL. Co-exposure of the two pesticides caused greater enhanced of T3 and T4 levels. Furthermore, gene data showed BTL up-regulated the mRNA expression of tpo, tshβ, tg, ttr, dio2, TDF up-regulated the mRNA expression of tpo, trα, ttr, dio2 and down-regulated trβ gene. The mixture of the two pesticides caused up-regulation mRNA expression of trα, trβ, tg, ttr, dio2. CONCLUSION BTL and TDF resulted in adverse effects on zebrafish embryonic development and caused thyroid endocrine disruption, BTL and TDF have a synergistic effect on development and thyroid endocrine by enhanced level of thyroid hormone.
Collapse
Affiliation(s)
- Chuyan Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Fang Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|