1
|
Aitken RJ. Paternal age, de novo mutations, and offspring health? New directions for an ageing problem. Hum Reprod 2024:deae230. [PMID: 39361588 DOI: 10.1093/humrep/deae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Hallam J, Burton P, Sanders K. Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. J Clin Med 2024; 13:4156. [PMID: 39064196 PMCID: PMC11277714 DOI: 10.3390/jcm13144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Semen cryopreservation is routinely performed in fertility clinics for a variety of reasons, including fertility preservation and storage of donor sperm, yet the freeze-thaw process leads to cellular damage via ice crystal formation, osmotic shock, and supraphysiological levels of oxidative stress. Sperm resistance to damage during the freeze-thaw process varies widely, yet the intrinsic factors associated with sperm cryotolerance are largely unknown. The study aimed to investigate whether poor chromatin condensation renders sperm vulnerable to DNA fragmentation and cell death induced by the freeze-thaw process. Methods: Participants (n = 51) from the general community who met the inclusion criteria collected a semen sample after 3-8 days of abstinence. Neat semen samples underwent traditional semen analysis, aniline blue (AB)-eosin staining for chromatin condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay for DNA fragmentation, and the Annexin V assay for apoptosis/necrosis, prior to being cryopreserved using the liquid nitrogen vapour method and stored at -196 °C. Stored samples were later thawed at room temperature and processed using density gradient centrifugation. Motile sperm concentration, DNA fragmentation and apoptosis/necrosis were analysed in post-thaw samples. Results: As indicated by a significant interaction effect in linear mixed models, an increased proportion of AB-positive sperm in the pre-freeze sample exacerbated the adverse effect of freezing on sperm DNA fragmentation (p = 0.004), late apoptosis (p = 0.007), and necrosis (p = 0.007). AB-staining was positively correlated with all three parameters in the post-thaw sample (all rs ≥ 0.424, all p < 0.01) and remained significant after adjusting for neat sperm concentration (all partial rs ≥ 0.493, all p < 0.01). Similarly, AB-staining was significantly correlated with the percentage point change in sperm DNA fragmentation (rs = 0.366, p = 0.014) and necrosis (rs = 0.403, p = 0.009), both of which remained significant after adjusting for neat sperm concentration (both partial rs ≥ 0.404, both p < 0.01), and borderline significantly correlated with percentage point change in late apoptosis (rs = 0.307, p = 0.051). Conclusions: Sperm with poorly condensed chromatin may be more susceptible to cellular damage during the freeze-thaw process, independent of pre-freeze sperm concentration. These findings may help to explain the intrinsic variation in sperm resistance to cryodamage within and between individuals that is poorly understood.
Collapse
Affiliation(s)
- Jade Hallam
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Peter Burton
- Concept Fertility Centre, Subiaco, WA 6008, Australia;
| | - Katherine Sanders
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
3
|
Du C, Yu Y, Fan X. Analysis of research trends (2014-2023) on oxidative stress and male fertility based on bibliometrics and knowledge graphs. Front Endocrinol (Lausanne) 2024; 15:1326402. [PMID: 38323105 PMCID: PMC10846311 DOI: 10.3389/fendo.2024.1326402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Oxidative stress (OS) is considered one of the major factors affecting male fertility, and research in this field has seen constant growth year by year. Currently, around 700 relevant papers are published each year, with a trend of further growth. Therefore, this study systematically summarizes the literature published in the last decade from a bibliometric perspective, revealing the dynamic development of the field, identifying research hotspots, analyzing future trends, and providing reference for further research. Methods Relevant literature on oxidative stress and male fertility was retrieved from the Web of Science Core Collection (WoSCC) database, covering the timespan from 2014 to 2023 and including two types, articles and reviews. CiteSpace and VOSviewer were used for bibliometric analysis, including cluster analysis, co-occurrence analysis, co-citation analysis, and burst analysis of countries/regions, institutions, journals, authors, references, and keywords. Results This paper studied a total of 5,301 papers involving 107 countries/regions, with China having the highest number of publications (898 papers) and the United States having the highest centrality (0.62). Burst analysis of journal citations revealed the emergence of many new journals (e.g., Antioxidants-Basel, Front Endocrinol) after 2021, indicating continuous expansion and development in this field. Cluster analysis of co-cited references and co-occurring keywords divided the research into areas such as oxidative stress and male infertility, oxidative stress level detection, and antioxidants. The keywords associated with research hotspots shifted from oxidative stress detection, sperm DNA damage, apoptosis, and redox potential to DNA methylation, embryonic development, infection, polyunsaturated fatty acids, and antioxidants. Conclusion Bibliometric methods provide an intuitive reflection of the development process in the field of oxidative stress and male fertility, as well as the analysis of research hotspots in different periods. Research on oxidative stress and embryonic development, as well as antioxidant health management, may become hotspots in future research.
Collapse
Affiliation(s)
- Chao Du
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xinyue Fan
- Student Affairs Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Chen YJ, Liu C, Tu ZZ, Lu Q, Messerlian C, Mustieles V, Sun Y, Lu WQ, Pan XF, Mao C, Wang YX. Associations of Urinary Trichloroacetic Acid Concentrations with Spermatozoa Apoptosis and DNA Damage in a Chinese Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6491-6499. [PMID: 35472294 DOI: 10.1021/acs.est.1c07725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to trichloroacetic acid (TCAA) has been associated with impaired semen quality; however, its association with spermatozoa apoptosis and DNA damage remains unclear. We, therefore, collected single semen and repeated urine samples from male partners of couples attending a reproductive center, which were measured for spermatozoa apoptosis and DNA damage parameters and TCAA concentrations, respectively. Multivariable linear regression models were used to explore the associations between urinary TCAA concentrations and spermatozoa apoptosis (n = 462) and DNA damage parameters (n = 512). After adjusting for potential confounders, positive dose-response relationships were found between urinary TCAA concentrations and percentage of tail DNA (tail%) and tail-distributed moment (TDM) (both p for trend <0.10). Compared with men in the lowest tertile of urinary TCAA concentrations, men in the highest tertile had a greater tail% and TDM of 6.2% (95% CI: 0.7, 12.2%) and 8.9% (95% CI: -1.9, 20.5%), respectively. Urinary TCAA concentrations were unrelated to spermatozoa apoptosis parameters in a dose-response manner. However, urinary TCAA concentrations were positively associated with the percentage of Annexin V+/PI- spermatozoa (apoptotic cells), when urinary TCAA concentrations were modeled as continuous variables. Our results suggest that exposure to TCAA at concentrations in real-world scenarios may be associated with spermatozoa apoptosis and DNA damage.
Collapse
Affiliation(s)
- Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Zhou-Zheng Tu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qi Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Aitken RJ. Role of sperm DNA damage in creating de novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online 2022; 45:109-124. [DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
|
6
|
Romero-Haro AÁ, Pérez-Rodríguez L, Tschirren B. Intergenerational Costs of Oxidative Stress: Reduced Fitness in Daughters of Mothers That Experienced High Levels of Oxidative Damage during Reproduction. Physiol Biochem Zool 2021; 95:1-14. [PMID: 34812695 DOI: 10.1086/717614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractParental condition transfer effects occur when the parents' physiological state during reproduction affects offspring performance. Oxidative damage may mediate such effects, yet evidence that oxidative damage experienced by parents during reproduction negatively affects offspring fitness is scarce and limited to early life stages. We show in Japanese quail (Coturnix japonica) that maternal levels of oxidative damage, measured during reproduction, negatively predict the number of offspring produced by daughters. This maternal effect on daughters' reproductive success was mediated by an effect on hatching success rather than on the number of eggs laid by daughters. We also observed a negative association between fathers' oxidative damage levels and the number of eggs laid by daughters but a positive association between fathers' oxidative damage levels and the hatching success of those eggs. These opposing paternal effects canceled each other out, resulting in no overall effect on the number of offspring produced by daughters. No significant association between a female's own level of oxidative damage during reproduction and her reproductive success was observed. Our results suggest that oxidative damage experienced by parents is a better predictor of an individual's reproductive performance than oxidative damage experienced by the individual itself. Although the mechanisms underlying these parental condition transfer effects are currently unknown, changes in egg composition or (epi)genetic alterations of gametes may play a role. These findings highlight the importance of an intergenerational perspective when quantifying costs of physiological stress.
Collapse
|
7
|
Ebrahimi B, Matavos-Aramyan H, Keshtgar S. The cryoprotective effect of vitamins on human spermatozoa quality: a systematic review and meta-analysis. Cell Tissue Bank 2021; 23:213-225. [PMID: 34476664 DOI: 10.1007/s10561-021-09953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023]
Abstract
The Cryopreservation of spermatozoa ensures preserving fertility potential after some medical treatments such as chemotherapy and radiotherapy in cancer patients. However, many spermatozoa encounter serious damages, and their motility and viability decrease considerably after thawing. The excessive production of reactive oxygen species is one of the major causes of these damages. The supplementation of cryopreservation media with vitamins, which are well-known antioxidants, can reduce cryopreservation-induced damages. In this systematic review, we aimed to evaluate the cryoprotective effect of various vitamins on the quality of cryopreserved-thawed human spermatozoa. Two researchers searched PubMed, ISI, and Scopus databases up to March 2020. All original articles using vitamins in human spermatozoa cryopreservation media were included. We used a standardized form to extract sample size and to determine sample quality, the type and dose of vitamins, and the cryopreservation methods and their effects. We performed a meta-analysis on studies with available data (Mean + SD in cryoprotectant and cryoprotectant + cryoprotectant groups). We also performed a test of between-study heterogeneity, subgroup analysis, and meta-regression. Out of 258 studies, 16 articles were included for the analysis. Our meta-analysis revealed that using vitamins in cryopreservation media could increase motility by 4.60% (95% CI 6.16, 3.05; P = 0.0001), viability by 5.71% (95% CI 9.71, 1.72; P = 0.0001), and DNA integrity by 10.20% (95% CI 12.98, 7.42; P = 0.0001) in cryopreserved-thawed spermatozoa. We found a significant correlation between using vitamins and improved spermatozoa quality; the sperm motility and viability were improved and DNA fragmentation was reduced after thawing by vitamins. However, we could not emphasize on any type or dose of vitamins but we conclude that the anti-oxidative function of vitamins is the main reason for these benefits.
Collapse
Affiliation(s)
- Bahareh Ebrahimi
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedieh Matavos-Aramyan
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran.
| |
Collapse
|
8
|
Relationship of sperm motility with clinical outcome of percutaneous epididymal sperm aspiration-intracytoplasmic sperm injection in infertile males with congenital domestic absence of vas deferens: a retrospective study. ZYGOTE 2021; 30:234-238. [PMID: 34313208 DOI: 10.1017/s0967199421000587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital domestic absence of vas deferens (CBAVD) is a common factor in male infertility, and percutaneous epididymal sperm aspiration (PESA) combined with intracytoplasmic sperm injection (ICSI) is a primary clinical treatment, but the effect of the sperm obtained on pregnancy outcome remains to be explored. This study aimed to investigate the relationship between sperm motility with clinical outcome of PESA-ICSI in infertile males with CBAVD. A cohort of 110 couples was enrolled. In total, 76 infertile males were included in the high motility group, while the remaining 34 males were placed in the low motility group. Clinical pregnancy, embryo implantation rate and live birth rate were included as the primary outcome. After all follow-ups, we found that the high motility group achieved higher normal fertilization rates, cleavage rates, transplantable embryo rates and high-quality embryo rates than those in low motility group (normal fertilization rate, 78.2 ± 11.7% vs. 70.5 ± 10.2%, P = 0.003; cleavage rate, 97.1 ± 2.9% vs. 92.3 ± 3.0%, P = 0.000; transplantable embryo rate, 66.8 ± 14.9% vs. 58.6 ± 12.6%, P = 0.009 and high-quality embryo rate, 49.9 ± 10.5% vs. 40.5 ± 11.2%, P = 0.000). Additionally, compared with the low motility group, the clinical pregnancy rates, embryo implantation rates, and live birth rates in the high motility group were significantly increased (pregnancy rate, 61.8% vs. 26.5%, P = 0.009; embryo implantation rate, 36.5% vs. 18.0%, P = 0.044; live birth rate, 55.3% vs. 17.6%, P = 0.000). We concluded that the motility of sperm obtained by PESA affected the clinical outcome of ICSI in infertile males with CBAVD.
Collapse
|
9
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Doostabadi MR, Hassanzadeh-taheri M, Asgharzadeh M, Mohammadzadeh M. Protective effect of vitamin E on sperm parameters, chromatin quality, and DNA fragmentation in mice treated with different doses of ethanol: An experimental study. Int J Reprod Biomed 2021; 19:525-536. [PMID: 34401647 PMCID: PMC8350852 DOI: 10.18502/ijrm.v19i6.9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Excessive consumption of alcohol induces an increase in oxidative stress production and can lead to detrimental effects on the male reproductive system. OBJECTIVE To evaluate the possible protective effects of coadministration of vitamin (vit) E on the detrimental changes in the sperm quality of mice administered ethanol. MATERIALS AND METHODS Fifty-four BALB/c mice were categorized into nine groups (n = 6/each). The control group received a basal diet while the eight experimental groups received ethanol 10%; ethanol 20%; vit. E 100 mg; vit. E 200 mg; ethanol 10% + vit. E 100 mg; ethanol 10% + vit. E 200 mg; ethanol 20% + vit. E 100 mg; ethanol 20% + vit. E 200 mg. After 35 days, the sperm parameters and sperm chromatin were assessed. RESULTS The results demonstrated a significant reduction in the motility rate, normal morphology rate, viability rate, increase in abnormal DNA structure and packaging (TB staining), and DNA damage (TUNEL) in ethanol consumer groups. In addition, the findings showed a significant increase in the aforementioned parameters in ethanol- and vit. E-consumer groups compared to the ethanol-only consumer groups. The ethanol group received 20% of the most damage among the groups. The group receiving vit. E 100 mg and those receiving ethanol 10% + vit. E 200 mg gained the highest benefit among the groups. CONCLUSION Sperm forward progressive motility, normal morphology rate, and viability decreased in the ethanol groups. Also, the rates of spermatozoa with abnormal DNA structure and DNA fragmentation increased in the ethanol groups. Our findings revealed that the coadministration of vit. E and ethanol can protect destructive changes in DNA structure and damage.
Collapse
Affiliation(s)
- Mohamad Reza Doostabadi
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Royesh Infertility Center, Birjand University of Medical Science, Birjand, Iran
| | - Mohammadmehdi Hassanzadeh-taheri
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Birjand Cellular and Molecular Research Center, University of Medical Sciences, Birjand, Iran
| | - Mahmoud Asgharzadeh
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoomeh Mohammadzadeh
- Department of Reproductive Biology, Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Aitken RJ, De Iuliis GN, Nixon B. The Sins of Our Forefathers: Paternal Impacts on De Novo Mutation Rate and Development. Annu Rev Genet 2020; 54:1-24. [DOI: 10.1146/annurev-genet-112618-043617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spermatogonial stem cells (SSCs) are generally characterized by excellent DNA surveillance and repair, resulting in one of the lowest spontaneous mutation rates in the body. However, the barriers to mutagenesis can be overwhelmed under two sets of circumstances. First, replication errors may generate age-dependent mutations that provide the mutant cells with a selective advantage, leading to the clonal expansions responsible for dominant genetic diseases such as Apert syndrome and achondroplasia. The second mechanism centers on the vulnerability of the male germline to oxidative stress and the induction of oxidative DNA damage in spermatozoa. Defective repair of such oxidative damage in the fertilized oocyte results in the creation of mutations in the zygote that can influence the health and well-being of the offspring. A particular hot spot for such oxidative attack on chromosome 15 has been found to align with several mutations responsible for paternally mediated disease, including cancer, psychiatric disorders, and infertility.
Collapse
Affiliation(s)
- R. John Aitken
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
12
|
Chang Q, Yang L, Gao Y, Liu L, Wang H, Fu L, Zhou J, Zhang T, Chen X, Li Y, Li S. Production of offspring by intracytoplasmic sperm injection using sperm from deceased transgenic mice at different postmortem intervals. Theriogenology 2020; 157:314-320. [PMID: 32827989 DOI: 10.1016/j.theriogenology.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Successful fertilization by intracytoplasmic sperm injection (ICSI) is possible as long as the sperm genome is intact, even in the context of defective sperm or sustained adverse treatment. However, there are few reports on rescuing gene-modified mouse lines after accidental death. To investigate whether sperm from a dead transgenic mouse can fertilize an oocyte and enable embryo development into a pup, Nestin-GFP transgenic male mice were sacrificed, and sperm was collected 14 h, 24 h, and 48 h after death. The collected sperm was injected into oocytes from hybrid B6D2F1 or inbred C57BL/6 N mice. The results showed that the sperm in the three groups activated oocytes from B6D2F1 and supported embryo development to the blastocyst stage. For ICSI embryos derived from B6D2F1 mice, the cleavage and blastocyst rates were significantly lower in the three experimental groups than in the control group (0 h) (P < 0.05), and the birth rate in the 24 h and 48 h groups was significantly lower than that in the 14 h and control groups (0 h). For C57BL/6N-derived ICSI embryos, the cleavage rates were significantly lower at 24 h and 48 h than at 14 h and 0 h (control group), and the birth rate in the three experimental groups was significantly lower than that in the control group (0 h). The F0 mice derived from B6D2F1 and C57BL/6 N oocytes had normal reproductive ability, and F1 mice were successfully obtained. The characteristics of the GFP gene were preserved and inherited. The histone H2AX phosphorylation assay showed that the proportion of focus-negative embryos was markedly and significantly lower in the 14 h, 24 h, and 48 h groups than in the control group (0 h). The proportion of focus-negative embryos was significantly lower at 48 h than at 14 h or 24 h. The number of foci was significantly higher in the three experimental groups than in the control group (0 h), indicating that sperm DNA sustained more damage after death and that few sperm had an intact genome. In summary, sperm obtained from mice 14 h, 24 h, and 48 h after death is capable of activating an oocyte and supporting complete embryo development into a pup. This study provides an effective way to rescue accidently died mouse strains.
Collapse
Affiliation(s)
- Qiurong Chang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Liyun Yang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yawei Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lili Liu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Huiyang Wang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Li Fu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jing Zhou
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ting Zhang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yao Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Evenson DP, Djira G, Kasperson K, Christianson J. Relationships between the age of 25,445 men attending infertility clinics and sperm chromatin structure assay (SCSA®) defined sperm DNA and chromatin integrity. Fertil Steril 2020; 114:311-320. [DOI: 10.1016/j.fertnstert.2020.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
|
14
|
Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, Yu J, Sinclair DA, Aitken RJ, Morris MJ. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction 2020; 158:169-179. [PMID: 31226694 PMCID: PMC6589912 DOI: 10.1530/rep-18-0574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
Male fertility and sperm quality are negatively impacted by obesity. Furthermore, recent evidence has shown that male offspring from obese rat mothers also have reduced sperm quality and fertility. Here, we extend work in this area by comparing the effects of both maternal obesity and offspring post-weaning diet-induced obesity, as well as their combination, on sperm quality in mice. We additionally tested whether administration of the NAD+-booster nicotinamide mononucleotide (NMN) can ameliorate the negative effects of obesity and maternal obesity on sperm quality. We previously showed that intraperitoneal (i.p.) injection of NMN can reduce the metabolic deficits induced by maternal obesity or post-weaning dietary obesity in mice. In this study, female mice were fed a high-fat diet (HFD) for 6 weeks until they were 18% heavier than a control diet group. Thereafter, HFD and control female mice were mated with control diet males, and male offspring were weaned into groups receiving control or HFD. At 30 weeks of age, mice received 500 mg/kg body weight NMN or vehicle PBS i.p. for 21 days. As expected, adiposity was increased by both maternal and post-weaning HFD but reduced by NMN supplementation. Post-weaning HFD reduced sperm count and motility, while maternal HFD increased offspring sperm DNA fragmentation and levels of aberrant sperm chromatin. There was no evidence that the combination of post-weaning and maternal HFD exacerbated the impacts in sperm quality suggesting that they impact spermatogenesis through different mechanisms. Surprisingly NMN reduced sperm count, vitality and increased sperm oxidative DNA damage, which was associated with increased NAD+ in testes. A subsequent experiment using oral NMN at 400 mg/kg body weight was not associated with reduced sperm viability, oxidative stress, mitochondrial dysfunction or increased NAD+ in testes, suggesting that the negative impacts on sperm could be dependent on dose or mode of administration.
Collapse
Affiliation(s)
- Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - G Mezbah Uddin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Abhirup Das
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Blavatnik Institute,Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Martinez
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Haley S Connaughton
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sara Whiting
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Josephine Yu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Blavatnik Institute,Harvard Medical School, Boston, Massachusetts, USA
| | - R John Aitken
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Abstract
Sperm DNA damage reduces pregnancy rates in couples undergoing in vitro fertilization (IVF). Because it has been shown that testicular sperm have lower DNA damage than ejaculated sperm, it is an attractive idea to consider using testicular sperm for IVF for men with high sperm DNA damage. In fact, there are multiple centers throughout the world now offering sperm retrieval for IVF to manage this condition. However, there is insufficient evidence to conclude that testicular sperm improves pregnancy/live birth rates. Further studies are required before offering sperm retrieval as a standard of care to manage high sperm DNA damage.
Collapse
|
16
|
Uribe P, Meriño J, Bravo A, Zambrano F, Schulz M, Villegas JV, Sánchez R. Antioxidant effects of penicillamine against in vitro-induced oxidative stress in human spermatozoa. Andrologia 2020; 52:e13553. [PMID: 32196709 DOI: 10.1111/and.13553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress contributes importantly to the aetiology of male infertility, impairing sperm function. The protective effect of antioxidants on seminal parameters has been established, and the antioxidant penicillamine has shown beneficial effects; however, its protective effect on human spermatozoa exposed to oxidative stress has not been reported. The objective of this work was to evaluate the effect of penicillamine on human spermatozoa exposed in vitro to oxidative stress. First, the effect of penicillamine on spermatozoa from normozoospermic donors was evaluated. Then, the effect of penicillamine on spermatozoa exposed to oxidative stress induced separately by ionomycin and hydrogen peroxide (H2 O2 ) was analysed. An untreated control and a control treated only with the oxidative stress inducer were included. Reactive oxygen species (ROS) levels, viability, mitochondrial membrane potential (MMP) and motility were analysed. The results showed that penicillamine, added to the incubation medium, decreased the ROS levels induced by ionomycin and H2 O2 , and this effect was associated with better preservation of MMP, motility, and ATP levels. These results highlight the potential advantages of penicillamine supplementation of sperm culture medium, especially for semen samples with high ROS levels and also in circumstances where laboratory handling can cause an increase in ROS production.
Collapse
Affiliation(s)
- Pamela Uribe
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Juan Meriño
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mabel Schulz
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Juana V Villegas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
17
|
Cito G, Becatti M, Natali A, Fucci R, Picone R, Cocci A, Falcone P, Criscuoli L, Mannucci A, Argento FR, Bertocci F, Serni S, Carini M, Fiorillo C, Coccia ME. Redox status assessment in infertile patients with non-obstructive azoospermia undergoing testicular sperm extraction: A prospective study. Andrology 2019; 8:364-371. [PMID: 31654557 DOI: 10.1111/andr.12721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/06/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress (OS) is one of the most prevalent causes of sperm damage, through the toxic effects of endogenously generated hydrogen peroxide, superoxide anion, and hydroxyl radicals. Peripheral leukocytes represent a feasible model for studying the pathophysiology of OS-mediated homeostasis, which can be responsible for cell dysfunction and cell injury. OBJECTIVE To evaluate the redox status in patients with non-obstructive azoospermia (NOA), establishing the potential role exerted by reactive oxygen species (ROS) in the genesis of testicular secretory injury. MATERIAL AND METHODS From May 2018 to March 2019, 39 patients were enrolled in this prospective single-center cohort study and divided into two groups. Group 1 included 19 patients with NOA, and Group 2 included 20 normozoospermic men, partners of women with infertility tubal factor. All patients underwent serum blood tests. NOA underwent testicular sperm extraction (TeSE). ROS production (in lymphocytes, monocytes, and granulocytes) was assessed by fluorescence-activated cell sorting (FACS) analysis. Plasma oxidative stress was evaluated by lipid peroxidation markers (MDA) and total antioxidant capacity (TAC) both assessed by fluorometric techniques. RESULTS Mean lymphocyte ROS production resulted 967.0 ± 224.5 vs 728.0 ± 98.0 (NOA vs Controls, P < .001), monocyte ROS resulted 2102.5 ± 517.5 vs 1253 ± 171 (P < .001), and granulocyte ROS were 2366.5 ± 595.4 vs 1751.0 ± 213.0 (P < .001). Significant increases plasma lipid peroxidation markers were found in NOA patients compared with controls (2.7 ± 0.8 vs 0.37 ± 0.2 nmol/mL, P < .001). Significant decreased TAC was evident in NOA compared with controls (13.4 ± 3.9 vs 3.0 ± 0.2 µmol/mL Trolox equivalents, P < .001). No significant differences were found in blood leukocyte subpopulations ROS production, plasma lipid peroxidation, and TAC comparing groups (positive vs negative sperm retrieval, P > .05). CONCLUSION ROS production can be directly related to disorders of spermatogenesis, leading to severe conditions of male infertility, including azoospermia.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Patrizia Falcone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Luciana Criscuoli
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Flavia R Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesco Bertocci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria E Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Sperm cryopreservation reduces offspring growth. Proc Biol Sci 2019; 286:20191644. [PMID: 31551057 PMCID: PMC6784727 DOI: 10.1098/rspb.2019.1644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (Salmo trutta) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.
Collapse
Affiliation(s)
| | | | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Tian J, Xie T, Qiu Z, Liu J, Ye W, Song Y. [Association of advanced oxidation protein products in seminal plasma with teratospermia and outcome parameters of in vitro fertilization]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:937-943. [PMID: 31511214 DOI: 10.12122/j.issn.1673-4254.2019.08.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the association of the level of advanced oxidation protein products (AOPPs) in seminal plasma with teratospermia and the outcome parameters of in vitro fertilization (IVF). METHODS We conducted a cross-sectional study among 272 male patients receiving assisted reproduction treatment in the Center for Reproductive Medicine of our hospital between October, 2018 and March, 2019. The levels of seminal AOPPs and reactive oxygen species (ROS), demographic data, sperm parameters and IVF outcome parameters were analyzed for all the patients. According to the percentage of sperms with normal morphology, the patients were divided before IVF into teratozoospermia group and normal sperm morphology group, and those in teratozoospermia group were further divided into 3 subgroups with mild, moderate and severe teratozoospermia. The patients were also divided on the day oocyte retrieval into 2 groups with fertilizing rates lower (group Ⅰ) and higher (group Ⅱ) than the median rate. RESULTS We found a significant negative correlation of seminal AOPP level before treatment with the percentage of normal sperm morphology (P=0.003) and seminal ROS level (P=0.013). The seminal levels of AOPPs (P= 0.027) and ROS (P=0.036) were significantly elevated in patients with teratospermia, and seminal AOPP level was significantly higher in severe teratospermia group than in mild (P=0.019) and moderate (P=0.015) teratospermia groups. The seminal levels of AOPPs (P=0.003) and ROS (P=0.017) on the day of oocyte retrieval were negatively correlated with the fertilization rate in IVF cycles, and the levels of AOPPs (P=0.049) and ROS (P=0.036) were significantly higher in group Ⅰ than in group Ⅱ. CONCLUSIONS An elevated level of seminal AOPPs may indicate an increased risk of severe teratospermia and a lower fertilization rate in IVF.
Collapse
Affiliation(s)
- Jianwei Tian
- Department of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhuolin Qiu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenting Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Abbasihormozi SH, Babapour V, Kouhkan A, Niasari Naslji A, Afraz K, Zolfaghary Z, Shahverdi AH. Stress Hormone and Oxidative Stress Biomarkers Link Obesity and Diabetes with Reduced Fertility Potential. CELL JOURNAL 2019; 21:307-313. [PMID: 31210437 PMCID: PMC6582426 DOI: 10.22074/cellj.2019.6339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 11/04/2022]
Abstract
Objective Tilting the balance in favor of antioxidant agents could increase infertility problems in obese and diabetic individuals. The aim of this study was to evaluate oxidative stress status in semen of men with type 2 diabetes and obesity to investigate whether excessive amounts of oxidative stress, as a result of diabetes and obesity, influence infertility potential. Materials and Methods A case-control study was conducted in men (n=150) attending the Infertility Center of Royan Institute between December 2016 and February 2017. Participants were categorized into four groups; normal weight (BMI<25 kg/m2) and non-type-2 diabetic (control=40), obese and non- type-2 diabetic (obese=40), non-obese and type- 2 diabetic (Nob-DM=35), and obese and type-2 diabetic (Ob-DM=35). The semen analysis was performed according to the World Health Organization criteria. Oxidative stress, DNA fragmentation, sperm apoptosis, and total antioxidant capacity (TAC) were evaluated in semen samples of men. Serum glucose, HbA1c, cortisol, and testosterone levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. Results Compared with the control group, sperm motility, progressive motility, and normal morphology were significantly decreased in the obese, Nob-DM, and Ob-DM groups (P<0.01). The obese, Nob-DM, and Ob-DM groups showed significantly lower levels of TAC and higher amounts of oxidative stress, early apoptotic sperm, and the percentage of DNA fragmentation as compared with the control group (P<0.05). Testosterone concentration was decreased in the obese, Nob-DM, and Ob-DM groups when compared with healthy individuals (P<0.05), whereas the cortisol level was significantly increased in the Nob-DM and Ob-DM groups in comparison to the obese and control group (P<0.01). Conclusion Increased amount of reactive oxygen species (ROS) levels and DNA fragmentation in men affected by either diabetes or obesity could be considered prognostic factors in sub-fertile patients, alerting physicians to an early screen of male patients to avoid the development of infertility in prone patients.
Collapse
Affiliation(s)
- S Hima Abbasihormozi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Kouhkan
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Niasari Naslji
- Department of Midwifery and Reproductive Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kaveh Afraz
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zolfaghary
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdol Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
21
|
Xu CS, Zhou Y, Jiang Z, Wang LE, Huang JJ, Zhang TY, Zhao Y, Shen W, Zou SH, Zang LL. The in vitro effects of gibberellin on human sperm motility. Aging (Albany NY) 2019; 11:3080-3093. [PMID: 31118311 PMCID: PMC6555458 DOI: 10.18632/aging.101963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Gibberellin, a plant growth regulator, is widely used to increase the shelf life and quality of fruits and vegetables. In this study, human semen samples were exposed to different concentrations of gibberellin, which reduced spermatozoa motility in vitro. Gibberellin exposure also increased levels of reactive oxygen species and the protein levels of apoptosis markers in human sperm. Gibberellin inhibited the activity of Na+/K+-adenosine triphosphatase (ATPase) and Ca2+-ATPase, which maintain the stability of ions inside and outside the membranes of spermatozoa. Moreover, gibberellin exposure suppressed adenosine triphosphate production and reduced the protein levels of adenosine triphosphate synthases, which may have induced the protein expression of adenosine 5'-monophosphate-activated protein kinase (AMPK) and its phosphorylated form. These results suggest that gibberellin reduces human sperm motility in vitro by increasing reactive oxygen species levels and reducing ATPase activity, which may upregulate AMPK and consequently reduce the fertilization potential of spermatozoa.
Collapse
Affiliation(s)
- Chun-Shuang Xu
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Yi Zhou
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Zhou Jiang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Li-E Wang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Jiao-Jiao Huang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| | - Tian-Yu Zhang
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong Zhao
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Hua Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li-Li Zang
- Center for Reproductive Medicine, Qingdao Women’s and Children’s Hospital, Qingdao University, Qingdao 266034, China
| |
Collapse
|
22
|
Fowler KE, Mandawala AA, Griffin DK. The role of chromosome segregation and nuclear organisation in human subfertility. Biochem Soc Trans 2019; 47:425-432. [DOI: 10.1042/bst20180231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Spermatogenesis is central to successful sexual reproduction, producing large numbers of haploid motile male gametes. Throughout this process, a series of equational and reductional chromosome segregation precedes radical repackaging of the haploid genome. Faithful chromosome segregation is thus crucial, as is an ordered spatio-temporal ‘dance’ of packing a large amount of chromatin into a very small space. Ergo, when the process goes wrong, this is associated with an improper chromosome number, nuclear position and/or chromatin damage in the sperm head. Generally, screening for overall DNA damage is relatively commonplace in clinics, but aneuploidy assessment is less so and nuclear organisation studies form the basis of academic research. Several studies have focussed on the role of chromosome segregation, nuclear organisation and analysis of sperm morphometry in human subfertility observing significant alterations in some cases, especially of the sex chromosomes. Importantly, sperm DNA damage has been associated with infertility and both extrinsic (e.g. lifestyle) and intrinsic (e.g. reactive oxygen species levels) factors, and while some DNA-strand breaks are repaired, unexpected breaks can cause differential chromatin packaging and further breakage. A ‘healthy’ sperm nucleus (with the right number of chromosomes, nuclear organisation and minimal DNA damage) is thus an essential part of reproduction. The purpose of this review is to summarise state of the art in the fields of sperm aneuploidy assessment, nuclear organisation and DNA damage studies.
Collapse
Affiliation(s)
- Katie E. Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | - Anjali A. Mandawala
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | | |
Collapse
|
23
|
Raad G, Azouri J, Rizk K, Zeidan NS, Azouri J, Grandjean V, Hazzouri M. Adverse effects of paternal obesity on the motile spermatozoa quality. PLoS One 2019; 14:e0211837. [PMID: 30742661 PMCID: PMC6370200 DOI: 10.1371/journal.pone.0211837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence suggests that paternal obesity may decrease male fertility potential. During infertility treatment with intra-cytoplasmic sperm injection (ICSI), a morphologically normal motile spermatozoon is injected into a mature egg, when possible. However, sperm motility and morphology per se do not reflect the sperm molecular composition. In this study, we aimed to assess the quality of motile spermatozoa in the context of obesity by analysing their conventional and molecular characteristics as well as their ability to promote early embryonic development. A prospective study was conducted on 128 infertile men divided into three groups: 40 lean, 42 overweight, and 46 obese men. Conventional sperm parameters (concentration, motility and morphology) and sperm molecular status (chromatin composition and integrity, 5-methycytosine (5-mC) and 5-hydroxycytosine (5-hmC) contents and oxidative stress level) were analysed on raw semen and/or on motile spermatozoa selected by density gradient or swim-up techniques. Morphokinetic analysis of the embryos derived from ICSI was performed using the Embryoviewer software. Our results showed that the motile sperm-enriched fraction from obese men exhibited higher levels of retained histones (p<0.001), elevated percentage of altered chromatin integrity (p<0.001), and decreased contents of 5-hmC (p<0.001), and 5-mC (p<0.05) levels as compared to that from lean men. Importantly, there were no statistically significant correlations between these molecular parameters and the percentages of morphologically normal motile spermatozoa. Regarding embryo morphokinetics, the CC1 (p<0.05) and CC3 (p<0.05) embryonic cell cycles were significantly delayed in the cleavage embryos of the obese group as compared to the embryos of the lean group. Our data is of particular interest because, besides demonstrating the negative impacts of obesity on motile spermatozoa molecular composition, it also highlights the possible risk of disturbing early embryonic cell cycles kinetics in the context of paternal obesity.
Collapse
Affiliation(s)
- Georges Raad
- Azoury-IVF clinic, Mount Lebanon Hospital, Camille Chamoun Boulevard, Beirut, Lebanon
- Lebanese University, Faculty of Sciences 2, Fanar, Lebanon
| | - Joseph Azouri
- Azoury-IVF clinic, Mount Lebanon Hospital, Camille Chamoun Boulevard, Beirut, Lebanon
| | - Kamal Rizk
- Azoury-IVF clinic, Mount Lebanon Hospital, Camille Chamoun Boulevard, Beirut, Lebanon
| | - Nina S. Zeidan
- Lebanese University, Faculty of Sciences 2, Fanar, Lebanon
| | - Jessica Azouri
- Azoury-IVF clinic, Mount Lebanon Hospital, Camille Chamoun Boulevard, Beirut, Lebanon
| | - Valérie Grandjean
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10 “Control of gene expression “, Nice, France and University of Nice Sophia Antipolis, Faculty of Medecine, Nice, France
- * E-mail:
| | - Mira Hazzouri
- Lebanese University, Faculty of Sciences 2, Fanar, Lebanon
| |
Collapse
|
24
|
Kumar N, Singh AK. Reactive oxygen species in seminal plasma as a cause of male infertility. J Gynecol Obstet Hum Reprod 2018; 47:565-572. [DOI: 10.1016/j.jogoh.2018.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
|
25
|
Subramanian V, Ravichandran A, Thiagarajan N, Govindarajan M, Dhandayuthapani S, Suresh S. Seminal reactive oxygen species and total antioxidant capacity: Correlations with sperm parameters and impact on male infertility. Clin Exp Reprod Med 2018; 45:88-93. [PMID: 29984209 PMCID: PMC6030612 DOI: 10.5653/cerm.2018.45.2.88] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Objective The aim of this study was to measure reactive oxygen species (ROS) production and total antioxidant capacity (TAC) in the seminal fluid of the male partners in couples undergoing intrauterine insemination and to evaluate correlations between these values and their semen parameters. Methods The study was conducted at Vamsam Fertility Center, Coimbatore, India and enrolled 110 male patients from whom semen samples were collected. ROS production was measured by a thiobarbituric acid reactive species assay, and TAC was measured by a 2,2-diphenyl-2-picrylhydrazyl free radical assay. The differences in the TAC and malondialdehyde (MDA) levels between the subfertile and fertile groups were analysed. Correlations between sperm parameters and TAC and MDA levels were statistically analysed, and cutoff values with respect to the controls were determined. All hypothesis tests used were two-tailed, with statistical significance assessed at the level of p<0.05. Results A total of 87 subfertile and 23 fertile men were included in the study. The mean MDA level was significantly higher in the subfertile subjects than in the fertile subjects, and the mean antioxidant level was significantly lower in the subfertile subjects than in the fertile subjects. Seminal MDA levels were negatively associated with sperm concentration, motility, and morphology, whereas the opposite was seen with TAC levels. Conclusion Measurements of seminal TAC and ROS are valuable for predicting semen quality, and hence predicting the outcomes of fertility treatment.
Collapse
|
26
|
Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, Rymaszewska A, Laszczynska M, Grochans E, Piasecka M. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell 2018; 31:220-231. [PMID: 29594950 DOI: 10.1007/s13577-018-0203-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023]
Abstract
Because sperm chromatin may play a key role in reproductive success, we verify the associations between sperm chromatin abnormalities, embryo development and the ability to achieve pregnancy. The evaluation of sperm chromatin maturity using aniline blue (AB), chromomycin A3 (CMA3) and toluidine blue (TB) staining were carried out in group of males from infertile couples that underwent ICSI. Low levels of sperm chromatin abnormalities (< 16%) were found in most subjects (> 50%). A higher percentage of TB-positive sperm cells were discovered in the men from couples who achieved ≤ 50% fertilized oocytes compared to men who achieved > 50%. No significant differences were discovered by the applied tests between the men from couples who achieved ≤ 50% and those who achieved > 50% high-quality embryos on the 3rd or 5th day after fertilization, nor between the men from couples who achieved pregnancy and those who failed. The sperm chromatin maturity did not correlate with the ICSI results. However, the ROC analysis revealed a significant predictive value of TB-positive spermatozoa only for fertilization. Therefore, the TB assay can be considered as a useful test for the prediction of fertilization. Our findings suggest that the level of sperm chromatin abnormalities of the examined men was not clinically significant. No found associations between sperm chromatin maturity and embryo development and the ability to achieve pregnancy. We could not exclude the effects of the repairing processes in the fertilized oocyte. The use of complementary tests that verify the status of the sperm chromatin seems justified.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Aleksandra Rosiak
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland.,VitroLive Fertility Clinic, 70-001, Szczecin, Poland
| | - Dariusz Gaczarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, 71-270, Szczecin, Poland
| | - Joanna Jakubik
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Rafal Kurzawa
- Department of Gynecology and Procreative Health, Pomeranian Medical University, 71-210, Szczecin, Poland.,VitroLive Fertility Clinic, 70-001, Szczecin, Poland
| | - Anna Kazienko
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Anna Rymaszewska
- Department of Genetics, Faculty of Biology, University of Szczecin, 71-412, Szczecin, Poland
| | - Maria Laszczynska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland
| | - Elzbieta Grochans
- Department of Nursing, Pomeranian Medical University, 71-210, Szczecin, Poland
| | - Malgorzata Piasecka
- Department of Histology and Developmental Biology, Pomeranian Medical University, Zolnierska 48, 71-210, Szczecin, Poland.
| |
Collapse
|
27
|
Paoli D, Pallotti F, Lenzi A, Lombardo F. Fatherhood and Sperm DNA Damage in Testicular Cancer Patients. Front Endocrinol (Lausanne) 2018; 9:506. [PMID: 30271379 PMCID: PMC6146098 DOI: 10.3389/fendo.2018.00506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023] Open
Abstract
Testicular cancer (TC) is one of the most treatable of all malignancies and the management of the quality of life of these patients is increasingly important, especially with regard to their sexuality and fertility. Survivors must overcome anxiety and fears about reduced fertility and possible pregnancy-related risks as well as health effects in offspring. There is thus a growing awareness of the need for reproductive counseling of cancer survivors. Studies found a high level of sperm DNA damage in TC patients in comparison with healthy, fertile controls, but no significant difference between these patients and infertile patients. Sperm DNA alterations due to cancer treatment persist from 2 to 5 years after the end of the treatment and may be influenced by both the type of therapy and the stage of the disease. Population studies reported a slightly reduced overall fertility of TC survivors and a more frequent use of ART than the general population, with a success rate of around 50%. Paternity after a diagnosis of cancer is an important issue and reproductive potential is becoming a major quality of life factor. Sperm chromatin instability associated with genome instability is the most important reproductive side effect related to the malignancy or its treatment. Studies investigating the magnitude of this damage could have a considerable translational importance in the management of cancer patients, as they could identify the time needed for the germ cell line to repair nuclear damage and thus produce gametes with a reduced risk for the offspring.
Collapse
|
28
|
Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 2017; 154:R123-R131. [DOI: 10.1530/rep-17-0161] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Obesity, defined as excessive accumulation of fat in adipose tissue, is a metabolic disorder resulting from behavioral, environmental and heritable causes. Obesity increases the risks of hypertension, diabetes, cardiovascular disease, sleep apnea, respiratory problems, osteoarthritis and cancer. Meanwhile, the negative impact of obesity on male reproduction is gradually recognized. According to the clinical investigations and animal experiments, obesity is correlated with reductions in sperm concentration and motility, increase in sperm DNA damage and changes in reproductive hormones. Several mechanisms can elucidate the effects of obesity on sperm functions and male subfertility, i.e., the excessive conversion of androgens into estrogens in redundant adipose tissue causes sexual hormone imbalance, subsequently resulting in hypogonadism. Secondly, adipokines produced by adipose tissue induce severe inflammation and oxidative stress in male reproductive tract, directly impairing testicular and epididymal tissues. Moreover, increased scrotal adiposity leads to increase gonadal heat, continuously hurting spermatogenesis. Therefore, obesity alters the systematic and regional environment crucial for spermatogenesis in testis and sperm maturation in epididymis, and finally results in poor sperm quality including decreased sperm motility, abnormal sperm morphology and acrosome reaction, changed membrane lipids and increased DNA damage. Furthermore, recent studies indicate that epigenetic changes may be a consequence of increased adiposity. A major effort to identify epigenetic determinants of obesity revealed that sperm DNA methylation and non-coding RNA modification are associated with BMI changes and proposed to inherit metabolic comorbidities across generations. This review will explain how obesity-related changes in males to influence sperm function and male fertility as well.
Collapse
|
29
|
Aitken RJ. DNA damage in human spermatozoa; important contributor to mutagenesis in the offspring. Transl Androl Urol 2017; 6:S761-S764. [PMID: 29082208 PMCID: PMC5643656 DOI: 10.21037/tau.2017.09.13] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear DNA damage in spermatozoa could potentially have a major impact on the fertilizing capacity of these cells, their ability to establish a normal pattern of embryonic development as well as the health and wellbeing of subsequent offspring. Many laboratory techniques have been developed to assess this damage focusing on strand breaks, chromatin stability following exposure to extreme pH conditions and the formation of DNA adducts. Of particular importance may be the dominant role played by oxidative stress in the etiology of defective sperm function and DNA damage. The oxidative base lesions created via this mechanism have the potential to generate genetic and epigenetic mutations in the offspring that could have a profound impact on the latter's long-term health trajectory. Moreover if oxidative stress is the cause of DNA damage in spermatozoa then there is a potential role for antioxidant therapy in the resolution of this problem, which deserves investigation.
Collapse
Affiliation(s)
- Robert John Aitken
- Discipline of Biological Sciences and Priority Research Centre for Reproductive Science, University of Newcastle, NSW, Australia.,Hunter Medical Research Institute, NSW, Australia
| |
Collapse
|
30
|
Borini A, Tarozzi N, Nadalini M. Sperm DNA fragmentation testing in male infertility work-up: are we ready? Transl Androl Urol 2017; 6:S580-S582. [PMID: 29082181 PMCID: PMC5643714 DOI: 10.21037/tau.2017.03.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Costa F, Barbisan F, Assmann CE, Seehaber AD, Duarte MHMT, Duarte MMMF, Cruz IBMD. Influence of Val16Ala-SOD2 polymorphism on sperm quality parameters. HUM FERTIL 2017; 21:212-219. [PMID: 28658993 DOI: 10.1080/14647273.2017.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to investigate the association between the Val16Ala superoxide dismutase manganese-dependent (SOD2) single nucleotide polymorphism (SNP) and sperm reproductive parameters in a sample of Brazilian men. A potential association between this polymorphism and some oxidative biochemical parameters as well as sperm plasma cell-free DNA (cfDNA) levels were also evaluated. The study was performed using semen samples obtained from male patients that had undergone semen analysis according to the 2010 World Health Organisation (WHO) recommendations and the Val16Ala-SOD2 SNP was genotyped by polymerase chain reaction (PCR). Oxidative parameters as well as cfDNA levels were spectrophotometrically and fluorimetrically determined. Statistical analysis included chi-square test, analysis of variance followed by Bonferroni post hoc test, as well as logistic regression multivariate analysis. Semen samples from 169 men (35.89 ± 7.33 years) were genotyped. The allelic frequencies were V= 0.485 (n = 97), A = 0.515 (n = 103), with statistically similar allelic frequencies to those of samples obtained from a general population: V = 0.509; A= 0.591. In general, AV samples presented lower numbers of sperm-altered parameters than homozygous sperm. Lipoperoxidation was higher in homozygous than heterozygous sperm samples. The results suggest that genetically caused S-HP imbalance could contribute to poor sperm quality and affect male fertility.
Collapse
Affiliation(s)
- Felipe Costa
- a Pharmacology Graduate Program , Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Fernanda Barbisan
- a Pharmacology Graduate Program , Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Charles Elias Assmann
- b Toxicological Biochemistry Graduate Program , Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | | | | | | | | |
Collapse
|
32
|
Hoang HD, Miller MA. Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity. PLoS Biol 2017; 15:e2002047. [PMID: 28662030 PMCID: PMC5490939 DOI: 10.1371/journal.pbio.2002047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
The sperm’s crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm’s navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate Gα pathways in gustatory sensory neurons that extend cilia through the male nose. SRB signaling is necessary and sufficient in these sensory neurons to influence sperm motility parameters. The neuropeptide Y pathway acts together with SRB-13 to antagonize negative effects of the GCY-35 hyperoxia sensor on spermatogenesis. SRB chemoreceptors are not essential for sperm navigation under low oxygen conditions that C. elegans prefers. In ambient oxygen environments, SRB-13 signaling impacts gene expression during spermatogenesis and the sperm’s mitochondria, thereby increasing migration velocity and inhibiting reversals within the hermaphrodite uterus. The SRB-13 transcriptome is highly enriched in genes implicated in pathogen defense, many of which are expressed in diverse tissues. We show that the critical time period for SRB-13 signaling is prior to spermatocyte differentiation. Our results support the model that young C. elegans males sense external environment and oxygen tension, triggering long-lasting downstream signaling events with effects on the sperm’s mitochondria and navigational capacity. Environmental exposures early in male life may alter sperm function and fertility. Habitat loss, disease, climate change, and pollution are thought to negatively affect animal fertility. Sperm are a potential target, but the molecular mechanisms are not understood. The nematode C. elegans is a powerful genetic model to investigate the relationship between environment and male fertility. The hermaphrodite’s transparent epidermis permits the direct visualization of migrating male sperm and fertilization. In this study, we identified multiple serpentine receptor B (SRB) chemosensory receptors that are expressed in amphid sensory neurons, which extend cilia through the male nose. These SRB chemoreceptors are necessary to produce sperm that are efficient at navigating the hermaphrodite reproductive tract to the fertilization site. We show that SRB-13 signaling counteracts the negative effect of GCY-35 O2 sensor activity, thereby maintaining sperm mitochondrial function and navigational capacity in hyperoxic conditions. Of particular interest, SRB-13 acts in early larval stage males prior to testis maturation. We propose that young males respond to specific stressful environments by altering SRB neural circuits, which in turn impact sperm mitochondrial function and motility. This chemosensory mechanism may be part of a systemic response in C. elegans males to external environment and oxygen levels.
Collapse
Affiliation(s)
- Hieu D. Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Michael A. Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rajabi H, Mohseni-kouchesfehani H, Eslami-Arshaghi T, Salehi M. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus. Andrologia 2017; 50. [DOI: 10.1111/and.12800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- H. Rajabi
- Stem Cell Technology Research Center; Tehran Iran
- Faculty of Biological Science; Kharazmi University; Tehran Iran
| | | | | | - M. Salehi
- Infertility and Reproductive Health Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
34
|
Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. ZYGOTE 2017; 25:103-110. [PMID: 28185602 DOI: 10.1017/s0967199417000028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead poisoning is a stealthy threat to human physiological systems as chronic exposure can remain asymptomatic for long periods of time before symptoms manifest. We presently review the biophysical mechanisms of lead poisoning that contribute to male infertility. Environmental and occupational exposure of lead may adversely affect the hypothalamic-pituitary-testicular axis, impairing the induction of spermatogenesis. Dysfunction at the reproductive axis, namely testosterone suppression, is most susceptible and irreversible during pubertal development. Lead poisoning also appears to directly impair the process of spermatogenesis itself as well as sperm function. Spermatogenesis issues may manifest as low sperm count and stem from reproductive axis dysfunction or testicular degeneration. Generation of excessive reactive oxygen species due to lead-associated oxidative stress can potentially affect sperm viability, motility, DNA fragmentation, membrane lipid peroxidation, capacitation, hyperactivation, acrosome reaction, and chemotaxis for sperm-oocyte fusion, all of which can contribute to deter fertilization. Reproductive toxicity has been tested through cross-sectional analysis studies in humans as well as in vivo and in vitro studies in animals.
Collapse
|
35
|
Wu H, Olmsted A, Cantonwine DE, Shahsavari S, Rahil T, Sites C, Pilsner JR. Urinary phthalate and phthalate alternative metabolites and isoprostane among couples undergoing fertility treatment. ENVIRONMENTAL RESEARCH 2017; 153:1-7. [PMID: 27875712 PMCID: PMC5222784 DOI: 10.1016/j.envres.2016.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Epidemiological data suggest associations between phthalate exposures to a variety of adverse reproductive outcomes including reduced sperm quality and reproductive success. While mechanisms of these associations are not fully elucidated, oxidative stress has been implicated as a potential mediator. We examined associations of urinary metabolites of phthalates and phthalate alternative plasticizers with oxidative stress among couples seeking fertility treatment. METHODS Seventeen urinary plasticizer metabolites and 15-F2t isoprostane, a biomarker of oxidative stress, were quantified in spot samples from 50 couples seeking fertility treatment who enrolled in the Sperm Environmental Epigenetics and Development Study during 2014-2015. RESULTS In multivariable analyses, percent change in isoprostane was positively associated with interquartile range increases for the oxidative metabolites of di-2-ethylhexyl phthalate, [mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP; 20.0%, p=0.02), mono-2-ethyl-5-oxohexyl phthalate (MEOHP; 24.1%, p=0.01), and mono-2-ethyl-5-carboxypentyl phthalate (MECPP; 24.1%, p=0.004)], mono-isobutyl phthalate (MiBP; 17.8%, p=0.02), mono-hydroxyisobutyl phthalate (MHiBP; 27.5%, p=0.003), and cyclohexane-1,2-dicarboxylic acid mono-hydroxy-isononyl ester (MHINCH; 32.3%, p=0.002). Stratification of participants by sex revealed that isoprostane was positively associated with MHiBP (41.4%, p=0.01) and monocarboxy-isononyl phthalate (MCNP; 26.0%, p=0.02) among females and MEOHP (35.8%, p=0.03), MiBP (29.2%, p=0.01), MHiBP (34.7%, p=0.007) and MHINCH (49.0%, p=0.002) among males. CONCLUSIONS Our results suggest that exposure to phthalates and phthalate replacements are associated with higher levels of oxidative stress in a sex-specific manner. Additional studies are needed to replicate our findings and to examine the potential health implications of the use of phthalates and alternative phthalates in consumer end products.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - Alexandra Olmsted
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - David E Cantonwine
- Department of Obstetrics Gynecology and Reproductive Biology, Division of Maternal Fetal Medicine Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States
| | - Shahin Shahsavari
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - Tayyab Rahil
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, United States
| | - Cynthia Sites
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, United States
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States.
| |
Collapse
|
36
|
Drevet JR. Sperm DNA damage and assisted reproductive technologies: reasons to be cautious! Basic Clin Androl 2016; 26:11. [PMID: 27708783 PMCID: PMC5037879 DOI: 10.1186/s12610-016-0038-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/17/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joël R Drevet
- GReD Laboratory, CNRS UMR6293 - INSERM U1103 - Clermont Université, Clermont-Ferrand, France
| |
Collapse
|
37
|
|
38
|
Muratori M, Tarozzi N, Cambi M, Boni L, Iorio AL, Passaro C, Luppino B, Nadalini M, Marchiani S, Tamburrino L, Forti G, Maggi M, Baldi E, Borini A. Variation of DNA Fragmentation Levels During Density Gradient Sperm Selection for Assisted Reproduction Techniques: A Possible New Male Predictive Parameter of Pregnancy? Medicine (Baltimore) 2016; 95:e3624. [PMID: 27196465 PMCID: PMC4902407 DOI: 10.1097/md.0000000000003624] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Predicting the outcome of in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is one main goal of the present research on assisted reproduction. To understand whether density gradient centrifugation (DGC), used to select sperm, can affect sperm DNA integrity and impact pregnancy rate (PR), we prospectively evaluated sperm DNA fragmentation (sDF) by TUNEL/PI, before and after DGC. sDF was studied in a cohort of 90 infertile couples the same day of IVF/ICSI treatment. After DGC, sDF increased in 41 samples (Group A, median sDF value: 29.25% [interquartile range, IQR: 16.01-41.63] in pre- and 60.40% [IQR: 32.92-93.53] in post-DGC) and decreased in 49 (Group B, median sDF value: 18.84% [IQR: 13.70-35.47] in pre- and 8.98% [IQR: 6.24-15.58] in post-DGC). PR was 17.1% and 34.4% in Group A and B, respectively (odds ratio [OR]: 2.58, 95% confidence interval [CI]: 0.95-7.04, P = 0.056). After adjustment for female factor, female and male age and female BMI, the estimated OR increased to 3.12 (95% CI: 1.05-9.27, P = 0.041). According to the subgroup analysis for presence/absence of female factor, heterogeneity in the association between the Group A and B and PR emerged (OR: 4.22, 95% CI: 1.16-15.30 and OR: 1.53, 95% CI: 0.23-10.40, respectively, for couples without, n = 59, and with, n = 31, female factor).This study provides the first evidence that the DGC procedure produces an increase in sDF in about half of the subjects undergoing IVF/ICSI, who then show a much lower probability of pregnancy, raising concerns about the safety of this selection procedure. Evaluation of sDF before and after DGC configures as a possible new prognostic parameter of pregnancy outcome in IVF/ICSI. Alternative sperm selection strategies are recommended for those subjects who undergo the damage after DGC.
Collapse
Affiliation(s)
- Monica Muratori
- From the Department of Experimental, Clinical and Biomedical Sciences, Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of Florence (MM, MC, ALI, CP, BL, SM, LT, GF, MM, EB); Tecnobios Procreazione, Centre for Reproductive Health, Bologna (NT, MN, AB); and Clinical Trials Coordinating Center, AOU Careggi, Istituto Toscano Tumori, Florence (LB), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
New flow cytometry approaches in equine andrology. Theriogenology 2016; 86:366-72. [PMID: 27160445 DOI: 10.1016/j.theriogenology.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/20/2016] [Accepted: 03/14/2016] [Indexed: 01/07/2023]
Abstract
Flow cytometry is currently recognized as a robust tool for the evaluation of sperm quality and function. However, within equine reproduction, this technique has not reached the sophistication of other areas of biology and medicine. In recent years, more sophisticated flow cytometers have been introduced in andrology laboratories, and the number of tests that can be potentially used in the evaluation of sperm physiology has increased accordingly. In this review, recent advances in the evaluation of stallion spermatozoa will be discussed. These new techniques in flow cytometry are able to simultaneously measure damage to different sperm regions and/or changes in functionality.
Collapse
|
40
|
An Update on Oxidative Damage to Spermatozoa and Oocytes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9540142. [PMID: 26942204 PMCID: PMC4749785 DOI: 10.1155/2016/9540142] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 01/23/2023]
Abstract
On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization.
Collapse
|
41
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|