1
|
Belceanu AD, Bîlha ȘC, Vulpoi C, Brănișteanu DD. The impact of growth hormone replacement therapy on adipokines, but not upon ghrelin. Minerva Endocrinol (Torino) 2023; 48:411-419. [PMID: 34546018 DOI: 10.23736/s2724-6507.21.03588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Besides growth acceleration, growth hormone (GH) therapy of GH deficient (GHD) children improves body composition by decreasing body fat. This effect is due to GH interaction with lipid and carbohydrate metabolism, possibly also mediated by adipokines secreted by adipose tissue, and ghrelin. This study aimed to assess the impact of one-year GH replacement therapy on the metabolic profile, adipokines, and acylated/unacylated ghrelin of prepubertal children with GHD. METHODS Prospective observational study of 42 non-obese, prepubertal children with GHD followed up for twelve months. Mean lipid, carbohydrate, adipokine profiles, acylated/unacylated ghrelin, and body composition data before therapy onset were compared with measurements obtained after 6 and 12 months of GH therapy. RESULTS Total body fat content and body fat percentage decreased significantly, while the lipid profile improved over the study period in the 42 GHD children with a mean age of 9.2±2.6 years. The levels of leptin and unacylated ghrelin decreased significantly, whereas adiponectin and acylated ghrelin values increased after GH therapy. In regression analysis models, GH treatment (reflected by increased absolute values or standard deviations of IGF1) influences the variation of leptin and adiponectin, but not ghrelin, independently of body composition - lean or fat mass. CONCLUSIONS GH replacement therapy improves body composition, lipid, and adipokine profile in GHD children. Also, GH replacement therapy directly impacts leptin and adiponectin concentrations, independently of body composition. Further research is needed to identify the molecular mechanisms and metabolic pathways by which the GH/IGF1 axis influences adipokines secretion.
Collapse
Affiliation(s)
- Alina D Belceanu
- Department of Endocrinology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Ștefana C Bîlha
- Department of Endocrinology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania -
| | - Carmen Vulpoi
- Department of Endocrinology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Dumitru D Brănișteanu
- Department of Endocrinology, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
2
|
Sundaresan S, Johnson C, Dixon KB, Dole M, Kilkelly D, Antoun J, Flynn CR, Abumrad NN, Tamboli R. Intraduodenal nutrient infusion differentially alters intestinal nutrient sensing, appetite, and satiety responses in lean and obese subjects. Am J Clin Nutr 2023; 118:646-656. [PMID: 37661107 PMCID: PMC10517208 DOI: 10.1016/j.ajcnut.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intestinal nutrient sensing regulates food intake and energy metabolism by acting locally and relaying nutritional status to the brain. It is unclear whether these mechanisms are altered in obese humans. OBJECTIVES We aimed to investigate differences in duodenal nutrient sensing in humans with or without obesity and the effects of transiently blocking vagal transmission on nutrient sensing, hunger, and appetite. METHODS In a single-blinded, randomized, cross-over design, subjects with or without obesity (n = 14 and n = 11, respectively) were infused intraduodenally with saline or a combination of glucose and oleic acid for 90 min (glucose load: 22.5 g, 1 kcal/min; oleic acid load: 10 g, 1 kcal/min) in the presence or absence of local anesthetic (benzocaine). Blood was sampled at 10-min intervals (120-240 min) and 15-min intervals until termination of the study for measurements of gut hormones, insulin, leptin, and C-peptide. Hunger and satiety sensations were scored using the visual analog scale, and hepatic glucose production and glucose oxidation rates were measured. RESULTS Duodenal nutrient infusion in lean subjects led to a 65% drop in acyl ghrelin release and robustly increased cholecystokinin 8 (CCK-8) release (65%; P = 0.023); benzocaine infusion delayed this response (2-factor repeated-measures analysis of variance, P = 0.0065). In contrast, subjects with obesity had significantly blunted response to nutrient infusion, and no further effects were observed with benzocaine. Additionally, significant delays were observed in peptide YY (3-36), pancreatic polypeptide, glucose inhibitory peptide, and glucagon-like peptide 1 (7-36) response. No significant interactions were found between body mass index (BMI) or baseline hormone levels and areas under the curve for hormones except CCK-8 (BMI, P = 0.018; baseline CCK, P = 0.013). Nutrient-induced hunger and satiety sensations were impeded by benzocaine only in the lean cohort. Hunger and satiety sensations in subjects with obesity were not responsive to nutrient entry into the duodenum, and no additional effects were observed by blocking neural signaling. CONCLUSION Nutrient-induced gut hormone release and response to transient vagal blockade are significantly blunted in subjects with obesity. This trial was registered at clinicaltrials.org as NCT02537314.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Physiology, Midwestern University, Downers Grove, IL; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN.
| | - Connor Johnson
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kala B Dixon
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Michael Dole
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Donna Kilkelly
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Antoun
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Robyn Tamboli
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
4
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
6
|
Li H, Wang J, Wang W, Wang X, Xu Z, Li H, Wu H. Comparison Between Laparoscopic Sleeve Gastrectomy and Laparoscopic Greater Curvature Plication Treatments for Obesity: an Updated Systematic Review and Meta-Analysis. Obes Surg 2021; 31:4142-4158. [PMID: 34227019 DOI: 10.1007/s11695-021-05538-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Bariatric surgery has been widely performed to treat morbid obesity. Our meta-analysis aims to provide an updated comparison between laparoscopic sleeve gastrectomy (LSG) and laparoscopic greater curvature plication (LGCP). Medline, EMBASE, Scopus, and Cochrane Central were searched. Ongoing clinical trials were identified from the clinicaltrials.gov website. References of the chosen literatures were manually reviewed for additional relevant studies. As a result, a total of 18 studies involving 1329 patients were selected. We demonstrated a significant higher excess weight loss (%EWL) after LSG at the 1-, 3-, 6-, 12-, and 18-month follow-up time points. However, no significant difference was found at 36 months. Body Mass Index Loss (BMIL) was better after LSG than LGCP at 12 and 24 months. The difference in the improvement of comorbidities (i.e., T2-DM, hypertension, and sleep apnea) did not reach statistical significance. The complications (i.e., bleeding, stenosis, leak, and abdominal pain), operative time, and length of hospital stay were comparable. More patients undergoing LGCP experienced nausea and vomiting. We obtained some different and new results compared to the previously published meta-analysis. Our meta-analysis showed significantly higher %EWL at 24 months (Z=2.08, p=0.04), significantly higher BMIL at 36 months (Z=9.11, p <0.00001), and significantly higher costs (Z=2.87, p=0.004) in the LSG group. In addition, for the first time, complications (i.e., GERD, wound infection, port-site hernia, and mortality) and improvement of dyslipidemia were compared between the two techniques. According to our pooled data, no significant differences were found in any of the above aspects. In conclusion, LSG is superior to LGCP with regard to providing effective weight loss in the short- and mid-term. LSG has a lower rate of minor complications, but was less effective when considering cost. The two procedures are similar in terms of improvement of comorbidities, major complications, operative time, and length of stay.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China.
| | - Weiqiang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| | - Xu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| | - Zhichao Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| | - Hanwen Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| | - Hai Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui Province, China
| |
Collapse
|
7
|
GHS-R in brown fat potentiates differential thermogenic responses under metabolic and thermal stresses. PLoS One 2021; 16:e0249420. [PMID: 33793646 PMCID: PMC8016305 DOI: 10.1371/journal.pone.0249420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022] Open
Abstract
In response to cold or diet, fatty acids are dissipated into heat through uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). This process is termed non-shivering thermogenesis, which is important for body temperature maintenance and contributes to obesity pathogenesis. Thermogenic enhancement has been considered a promising anti-obesity strategy. Ghrelin and its receptor Growth Hormone Secretagogue Receptor (GHS-R) have critical roles in energy intake, nutrient sensing, and lipid metabolism. We previously reported that global Ghsr-knockout mice have increased energy expenditure due to enhanced thermogenesis. To determine the site of action for GHS-R mediated thermogenesis, we generated brown adipocyte-specific Ghsr knockout mice (UCP1-CreER/Ghsrf/f) and assessed thermogenic responses under regular diet (RD) fed homeostatic metabolic state or high-fat diet (HFD) fed metabolically-impaired obese state, under normal or cold housing environment. Under a RD-feeding, UCP1-CreER/Ghsrf/f mice showed increased body fat and a slightly elevated core body temperature under cold but not under normal temperature. Consistently, the expression of thermogenic genes in BAT of RD-fed UCP1-CreER/Ghsrf/f mice was increased in reposes to cold. Under HFD feeding, HFD-fed UCP1-CreER/Ghsrf/f mice showed no difference in body fat or body temperature under either normal or cold exposure. Interestingly, the expression of thermogenic genes in BAT of HFD-fed UCP1-CreER/Ghsrf/f mice was upregulated under normal temperature but downregulated under cold exposure. Overall, our data show that GHS-R has cell-autonomous effect in brown adipocytes, and GHS-R regulates BAT thermogenic activity in a temperature- and metabolic state-dependent manner. The thermogenic effect of GHS-R in BAT is more pronounced in cold environment and differentially variable based on metabolic state; under cold exposure, GHS-R inhibition in BAT activates thermogenesis under homeostatic state but suppresses thermogenesis under obese state. Our finding collectively suggests that GHS-R in BAT, acting as a "metabolic thermostat", differentially regulates thermogenesis in response to different metabolic and thermal stimuli.
Collapse
|
8
|
Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:315-325. [PMID: 34225937 DOI: 10.1016/b978-0-12-820107-7.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunctional regulation of energy homeostasis results in increased bodyweight and obesity, eventually leading to type 2 diabetes mellitus. The infundibular nucleus (IFN) of the hypothalamus is the main regulator of energy homeostasis. The peptidergic neurons and glia cells of the IFN receive metabolic cues concerning energy state of the body from the circulation. The IFN can monitor hormones like insulin and leptin and nutrients like glucose and fatty acids. All these metabolic cues are integrated into an output signal regulating energy homeostasis through the release of neuropeptides. These neuropeptides are released in several inter- and extrahypothalamic brain regions involved in regulation of energy homeostasis. This review will give an overview of the peripheral signals involved in the regulation of energy homeostasis, the peptidergic neurons and glial cells of the IFN, and will highlight the main intra-hypothalamic projection sites of the IFN.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Effects of thylakoid intake on appetite and weight loss: a systematic review. J Diabetes Metab Disord 2020; 19:565-573. [PMID: 32550209 DOI: 10.1007/s40200-019-00443-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Background Previous studies have shown thylakoids, the membrane proteins which are extracted from green leaves like spinach, can induce satiety through homeostatic and non-homeostatic pathways. In this study, we reviewed the current human literature on thylakoids' characteristics and their relationship to satiety regulation and weight loss. Methods A systematic search of literature published between January 1990 and May 2019 was conducted on the electronic databases; including WEB OF SCIENCE, Cochrane Library, MEDLINE, Scopus, and EMBASE databases. We included all clinical trials that addressed the effects of thylakoids or chloroplast intake on satiety and weight loss. Results After excluding non-human studies, non-RCTs, duplications, studies with irrelevant data and interventions, eight studies were included in the qualitative synthesis. All studies supported this hypothesis that thylakoids reduce the feeling of hunger by increasing postprandial cholecystokinin and leptin and decreasing serum ghrelin, but the consequences of thylakoid intake on anthropometric characteristics were controversial. Conclusion In conclusion, our results may approve this postulation that receiving a thylakoid-enriched meal can decrease appetite and probably food intake in short term; however, more studies are needed to explore the effects of long term supplementation with thylakoids on weight loss in human subjects.
Collapse
|
11
|
Xiao L, Zhang H, Wang Y, Li J, Yang G, Wang L, Liang Z. Dysregulation of the ghrelin/RANKL/OPG pathway in bone mass is related to AIS osteopenia. Bone 2020; 134:115291. [PMID: 32087335 DOI: 10.1016/j.bone.2020.115291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS), and ghrelin has been shown to have a positive effect on bone metabolism. However, the circulating level of ghrelin is increased in AIS osteopenia, and the relationship between ghrelin and low bone mass in AIS osteopenia remains unclear. METHOD A total of 563 AIS and 281 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Plasma ghrelin levels were determined by enzyme-linked immunosorbent assay (ELISA) in both AIS and control groups. An improved multiplex ligation detection reaction was performed to analyze single-nucleotide polymorphisms (SNPs). Facet joints were collected and subjected to immunohistochemistry; osteogenic gene and protein expression was also measured. Furthermore, primary cells were extracted from facet joints and bone marrow to observe the response to ghrelin stimulation. RESULTS The body mass index was lower and circulating ghrelin was markedly higher in the AIS osteopenia group than in the control group. No significant difference was observed in four ghrelin level-related SNPs between the AIS osteopenia and control groups. RNA and protein analyses revealed higher RANKL/OPG and lower runx2 levels in AIS cancellous bone. Compared with normal primary osteoblasts and BMSCs, AIS osteopenia primary cells were insensitive to the same ghrelin concentration gradient and showed lower osteogenic ability, increases in OPG and decreases in RANKL. CONCLUSION Our results indicate that high circulating ghrelin levels may not result from gene variations in AIS osteopenia. Dysregulation of the ghrelin/RANKL/OPG pathway may lead to decreased osteogenic ability of osteoblasts and BMSCs, which may be related to lower bone mass in AIS osteopenia.
Collapse
Affiliation(s)
- Lige Xiao
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| | - Hongqi Zhang
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| | - Yunjia Wang
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China.
| | - Jiong Li
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| | - Guanteng Yang
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| | - Longjie Wang
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| | - Zhuotao Liang
- Department of Spine Surgery, Xiangya Hospital of Central-South University, Changsha 410008, Hunan, China
| |
Collapse
|
12
|
Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 2020; 235:8938-8950. [PMID: 32342523 DOI: 10.1002/jcp.29739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
GPR81 (also named as HCA1) is a member of a subfamily of orphan G-protein coupled receptors (GPCRs), coupled to Gi -type G proteins. GPR81 was discovered in 2001 and identified as the only known endogenous receptor of lactate under physiological conditions in 2008, which opened a new field of research on how lactate may act as a signal molecule along with the GPR81 expression in the roles of metabolic process and inflammatory response. Recent studies showed that the physiological functions of GPR81 include lipid metabolism in adipose tissues, metabolic excitability in the brain, cellular development, and inflammatory response modulation. These findings may reveal a novel therapeutic strategy to treat clinical, metabolic, and inflammatory diseases. This article will summarize past research on GPR81, including its characteristics of distribution and expression, functional residues, pharmacological, and physiological agonists, involvement in signal transduction, and pharmacological applications.
Collapse
Affiliation(s)
- Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuran Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, Shandong, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruifang Ji
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Rudenko O, Springer C, Skov LJ, Madsen AN, Hasholt L, Nørremølle A, Holst B. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. J Neuroendocrinol 2019; 31:e12699. [PMID: 30776164 DOI: 10.1111/jne.12699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a heritable neurodegenerative disorder, characterised by metabolic disturbances, along with cognitive and psychiatric impairments. Targeting metabolic HD dysfunction via the maintenance of body weight and fat mass and restoration of peripheral energy metabolism can improve the progression of neurological symptoms. In this respect, we focused on the therapeutic potential of the orexigenic peptide hormone ghrelin, which plays an important role in promoting a positive energy balance. In the present study, we found a significant disruption of circadian metabolic regulation in a R6/2 mouse HD model in the late stage of disease. Daily circadian rhythms of activity, energy expenditure, respiratory exchange ratio and feeding were strongly attenuated in R6/2 mice. During the rest phase, R6/2 mice had a higher total activity, elevated energy expenditure and excessive water consumption compared to control mice. We also found that, in the late stage of disease, R6/2 mice had ghrelin axis deficiency as a result of low circulating ghrelin levels, in addition to down-regulation of the ghrelin receptor and several key signalling molecules in the hypothalamus, as well as a reduced responsiveness to exogenous peripheral ghrelin. We demonstrated that, in pre-symptomatic mice, responsiveness to ghrelin is preserved. Chronic ghrelin treatment efficiently increased lean body mass and decreased the energy expenditure and fat utilisation of R6/2 mice in the early stage of disease. In addition, ghrelin treatment was also effective in the normalisation of drinking behaviour and the rest activity of these mice. Ghrelin treatment could provide a novel therapeutic possibility for delaying disease progression; however, deficiency in ghrelin receptor expression could limit its therapeutic potential in the late stage of disease.
Collapse
Affiliation(s)
- Olga Rudenko
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Springer
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louisa J Skov
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N Madsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lis Hasholt
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wenthur CJ, Gautam R, Zhou B, Vendruscolo LF, Leggio L, Janda KD. Ghrelin Receptor Influence on Cocaine Reward is Not Directly Dependent on Peripheral Acyl-Ghrelin. Sci Rep 2019; 9:1841. [PMID: 30755699 PMCID: PMC6372697 DOI: 10.1038/s41598-019-38549-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone acyl-ghrelin and its receptor, GHSR1a, represent intriguing therapeutic targets due to their actions in metabolic homeostasis and reward activity. However, this pleotropic activity makes it difficult to intervene in this system without inducing unwanted effects. Thus, it is desirable to identify passive and active regulatory mechanisms that allow differentiation between functional domains. Anatomical restriction by the blood brain barrier represents one major passive regulatory mechanism. However, it is likely that the ghrelin system is subject to additional passive mechanisms that promote independent regulation of orexigenic behavior and reward processing. By applying acyl-ghrelin sequestering antibodies, it was determined that peripheral sequestration of acyl-ghrelin is sufficient to blunt weight gain, but not cocaine rewarding effects. However, both weight gain and reward-associated behaviors were shown to be blocked by direct antagonism of GHSR1a. Overall, these data indicate that GHSR1a effects on reward are independent from peripheral acyl-ghrelin binding, whereas centrally-mediated alteration of energy storage requires peripheral acyl-ghrelin binding. This demonstration of variable ligand-dependence amongst functionally-distinct GHSR1a populations is used to generate a regulatory model for functional manipulation of specific effects when attempting to therapeutically target the ghrelin system.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacy, University of Wisconsin - Madison, Madison, WI, USA
| | - Ritika Gautam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Ding Y, Zhang N, Li J, Jin Y, Shao B. Molecular cloning and expression of ghrelin in the hypothalamus-pituitary-gastrointestinal tract axis of the Yak (Bos grunniens) in the Qinghai-Tibetan Plateau. Anat Histol Embryol 2018; 47:583-590. [PMID: 30178622 DOI: 10.1111/ahe.12400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/25/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023]
Abstract
Ghrelin is a very important brain-gut peptide that modulates appetite and energy metabolism in mammals. The yak is the only large mammal that can adapt to the cold temperatures and hypoxia conditions present in the Qinghai-Tibet Plateau. However, there are no reports on ghrelin molecular characterization and expression in the hypothalamus-pituitary-digestive tract axis of the yak to date. In this study, the coding region sequence of the yak ghrelin, containing a complete ORF (351) encoding for 117 amino acids, was cloned. Immunohistochemistry analysis of the yak samples showed that ghrelin-immunoreactive cells were expressed at the arcuate nucleus (ARC), the ventromedial nucleus (VMN), the dorsomedial nucleus (DMN) of the hypothalamus and also at the anterior pituitary. Ghrelin-positive cells were also present in approximately two thirds of the submucosa of the abomasum fundic gland and mucous layer of the duodenum intestinal gland. Ghrelin's mRNA highest expression occurred in the abomasum sample, followed by the duodenum, hypothalamus and lowest at the pituitary gland. The level of ghrelin mRNA measured in yak was higher than in cattle for all the tissues that were compared. The ghrelin protein and mRNA expression profiles were similar. These data imply that the high expression of ghrelin in the hypothalamus-pituitary-digestive tract axis of yak could aid adaptation to the extreme environment better than cattle, by improving appetite and fat accumulation, regulating body temperature and reducing energy consumption via regulating energy metabolism.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life science, Northwest Normal University, Lanzhou, China
| | - Na Zhang
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jialong Li
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Yiran Jin
- School of Life science, Northwest Normal University, Lanzhou, China
| | - Baoping Shao
- School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Ravussin Y, Edwin E, Gallop M, Xu L, Bartolomé A, Kraakman MJ, LeDuc CA, Ferrante AW. Evidence for a Non-leptin System that Defends against Weight Gain in Overfeeding. Cell Metab 2018; 28:289-299.e5. [PMID: 29937378 PMCID: PMC6082718 DOI: 10.1016/j.cmet.2018.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/04/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Weight is defended so that increases or decreases in body mass elicit responses that favor restoration of one's previous weight. While much is known about the signals that respond to weight loss and the central role that leptin plays, the lack of experimental systems studying the overfed state has meant little is known about pathways defending against weight gain. We developed a system to study this physiology and found that overfed mice defend against increased weight gain with graded anorexia but, unlike weight loss, this response is independent of circulating leptin concentration. In overfed mice that are unresponsive to orexigenic stimuli, adipose tissue is transcriptionally and immunologically distinct from fat of ad libitum-fed obese animals. These findings provide evidence that overfeeding-induced obesity alters adipose tissue and central responses in ways that are distinct from ad libitum obesity and activates a non-leptin system to defend against weight gain.
Collapse
Affiliation(s)
- Yann Ravussin
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Ethan Edwin
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Molly Gallop
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Lumei Xu
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Michael J Kraakman
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Charles A LeDuc
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | - Anthony W Ferrante
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
17
|
Fuller-Jackson JP, Henry BA. Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol 2018; 237:R99-R115. [PMID: 29703782 DOI: 10.1530/joe-18-0090] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The balance between energy intake and energy expenditure establishes and preserves a 'set-point' body weight. The latter is comprised of three major components including metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the cellular dissipation of energy via heat production. This process has been extensively characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1) creates a proton leak across the inner mitochondrial membrane, diverting protons away from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle and post-prandial thermogenesis has been associated with UCP3 and the futile calcium cycling. This review will focus on the differential contributions of adipose tissue and skeletal muscle in determining total thermogenic output and energy expenditure in large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather possess white fat depots that contain brown and beige adipocytes interspersed amongst white adipose tissue. This is representative of humans, where brown, beige and white adipocytes have been identified in the neck and supraclavicular regions. This review will describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger mammals.
Collapse
Affiliation(s)
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Al-Ayed MSZ. Relaxant effect of ghrelin on guinea pig isolated tracheal smooth muscle: role of epithelial NO and PGE2. Pflugers Arch 2018; 470:949-958. [DOI: 10.1007/s00424-018-2126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022]
|
19
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats. Appetite 2017; 113:30-40. [DOI: 10.1016/j.appet.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
|
20
|
Hopkins AL, Nelson TAS, Guschina IA, Parsons LC, Lewis CL, Brown RC, Christian HC, Davies JS, Wells T. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R 1a activity: evidence for target cell-induced acylation. Sci Rep 2017; 7:45541. [PMID: 28361877 PMCID: PMC5374529 DOI: 10.1038/srep45541] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Despite being unable to activate the cognate ghrelin receptor (GHS-R), unacylated ghrelin (UAG) possesses a unique activity spectrum that includes promoting bone marrow adipogenesis. Since a receptor mediating this action has not been identified, we re-appraised the potential interaction of UAG with GHS-R in the regulation of bone marrow adiposity. Surprisingly, the adipogenic effects of intra-bone marrow (ibm)-infused acylated ghrelin (AG) and UAG were abolished in male GHS-R-null mice. Gas chromatography showed that isolated tibial marrow adipocytes contain the medium-chain fatty acids utilised in the acylation of UAG, including octanoic acid. Additionally, immunohistochemistry and immunogold electron microscopy revealed that tibial marrow adipocytes show prominent expression of the UAG-activating enzyme ghrelin O-acyl transferase (GOAT), which is located in the membranes of lipid trafficking vesicles and in the plasma membrane. Finally, the adipogenic effect of ibm-infused UAG was completely abolished in GOAT-KO mice. Thus, the adipogenic action of exogenous UAG in tibial marrow is dependent upon acylation by GOAT and activation of GHS-R. This suggests that UAG is subject to target cell-mediated activation – a novel mechanism for manipulating hormone activity.
Collapse
Affiliation(s)
- Anna L Hopkins
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Timothy A S Nelson
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Irina A Guschina
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lydia C Parsons
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Charlotte L Lewis
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Richard C Brown
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Jeffrey S Davies
- Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Timothy Wells
- Neuroscience &Mental Health Research Institute, and School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
21
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
22
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine. GENES BRAIN AND BEHAVIOR 2016; 16:439-448. [PMID: 27862969 DOI: 10.1111/gbb.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats.
Collapse
Affiliation(s)
- C-H Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - S-C Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - P-N Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Y-S Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - D-Y Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
23
|
Martins AD, Sá R, Monteiro MP, Barros A, Sousa M, Carvalho RA, Silva BM, Oliveira PF, Alves MG. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol 2016; 434:199-209. [PMID: 27392494 DOI: 10.1016/j.mce.2016.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
Ghrelin is a growth hormone-releasing peptide that has been suggested to interfere with spermatogenesis, though the underling mechanisms remain unknown. We studied the effect of ghrelin in human Sertoli cells (hSCs) metabolic phenotype. For that, hSCs were exposed to increasing concentrations of ghrelin (20, 100 and 500 pM) mimicking the levels reported in obese, normal weight, and severely undernourished individuals. The metabolite production/consumption was determined. The protein levels of key glycolysis-related transporters and enzymes were assessed. The lactate dehydrogenase (LDH) activity was measured. Mitochondrial complexes protein levels and mitochondria membrane potential were also measured. We showed that hSCs express the growth hormone secretagogue receptor. At the concentration present in the plasma of normal weight men, ghrelin caused a decrease of glucose consumption and mitochondrial membrane potential in hSCs, though LDH activity and lactate production remained unchanged, illustrating an alteration of glycolytic flux efficiency. Exposure of hSCs to levels of ghrelin found in the plasma of severely undernourished individuals decreased pyruvate consumption and mitochondrial complex III protein expression. All concentrations of ghrelin decreased alanine and acetate production by hSCs. Notably, the effects of ghrelin levels found in severely undernourished individuals were more pronounced in hSCs metabolic phenotype highlighting the importance of a proper eating behavior to maintain male reproductive potential. In conclusion, ghrelin acts as an energy status sensor for hSCs in a dose-dependent manner, showing an inverse association with the production of lactate, thus controlling the nutritional support of spermatogenesis.
Collapse
Affiliation(s)
- A D Martins
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - R Sá
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - M P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Department of Anatomy, Abel Salazar Institute of Biomedical Sciences, ICBAS, University of Porto, 4050-313, Porto, Portugal
| | - A Barros
- Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M Sousa
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal
| | - R A Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - B M Silva
- Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M G Alves
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal; Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal.
| |
Collapse
|
24
|
Gómez-Hernández A, Beneit N, Díaz-Castroverde S, Escribano Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int J Endocrinol 2016; 2016:1216783. [PMID: 27766104 PMCID: PMC5059561 DOI: 10.1155/2016/1216783] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its associated metabolic and vascular complications. Weight gain in obesity generates excess of fat, usually visceral fat, and activates the inflammatory response in the adipocytes and then in other tissues such as liver. Therefore, low systemic inflammation responsible for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of brown and perivascular adipose tissues as a promising therapy in humans. These lines of knowledge are focused on the design of new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of beige cells from white adipose tissue. These new treatments may contribute not only to reduce obesity but also to prevent highly prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
26
|
Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem Biol Interact 2016; 259:271-275. [PMID: 26915976 DOI: 10.1016/j.cbi.2016.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Abstract
Butyrylcholinesterase (BChE) has long been regarded as an "orphan enzyme" with no specific physiological role other than to metabolize exogenous bioactive esters in the diet or in medicines. Human beings with genetic mutations that eliminate all BChE activity appear completely normal, and BChE-knockout mice have been described as "lacking a phenotype" except for faster weight gain on high-fat diets. However, our recent studies with viral gene transfer of BChE in mice reveal that BChE hydrolyzes the so-called "hunger hormone," ghrelin, at a rate which strongly affects the circulating levels of this peptide hormone. This action has important consequences for weight gain and fat metabolism. Surprisingly, it also impacts emotional behaviors such as aggression. Overexpression of BChE leads to low ghrelin levels in the blood stream and reduces aggression and social stress in mice. Under certain circumstances these combined effects contribute to increased life-span in group-housed animals. These findings may generalize to humans, as recent clinical studies by multiple investigators indicate that, among patients with severe cardiovascular disease, longevity correlates with increasing levels of plasma BChE activity.
Collapse
|
27
|
Verdi D, Prevedello L, Albanese A, Lobba A, Foletto M. Laparoscopic Gastric Plication (LGCP) Vs Sleeve Gastrectomy (LSG): A Single Institution Experience. Obes Surg 2015; 25:1653-7. [PMID: 25663148 DOI: 10.1007/s11695-015-1600-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Laparoscopic greater curvature plication (LGCP) and laparoscopic sleeve gastrectomy (LSG) both reduce gastric capacity, either by in-folding (LGCP) or removing (LSG) the greater curvature. While mid and long-term results of LSG are well known, LGCP is still considered investigational. The aim of this study was to compare the effectiveness of LGCP and LSG in terms of weight loss and safety. METHODS Forty-five obese LGCP patients (6 males and 39 females) were matched with 45 LSG patients. The two groups were matched according to sex, age ± 10 years and BMI ± 1 kg/m(2). Surgical complication rate, redo surgery need, excess BMI loss (%EBL) and mean BMI at 3 and 6 months were compared. RESULTS LGCP and LSG mean age was 37.8 and 40 years, while the mean preoperative BMI was 40.65 and 41 kg/m(2), respectively. There was no difference in operative time, complication rate, mean BMI and %EBL at 3 months. Redo surgery rate was higher in LGCP group (LGCP 60 % vs LSG 8.8 %, P < 0.0001). The mean time to redo surgery was longer in LSG group (23 ± 6.61 vs 17.3 ± 7.67 months, P = 0.0003). The mean BMI at 6 months was lower in LSG group (32 ± 5.7 vs 34.6 ± 5.3, P = 0.028). The mean %EBL at 6 months was higher in LSG group (57 ± 30.89 vs 40.2 ± 25, P = 0.0057). CONCLUSIONS LGCP patients required more redo surgery. Weight loss was greater in LSG group at 6-month follow-up.
Collapse
Affiliation(s)
- Daunia Verdi
- Bariatric Unit, Padova University Hospital, Via Giustiniani 2, 35128, Padova, Italy
| | | | | | | | | |
Collapse
|
28
|
Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues. Biochem Pharmacol 2015; 98:732-9. [PMID: 26514871 DOI: 10.1016/j.bcp.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022]
Abstract
A high-throughput radiometric assay was developed to characterize enzymatic hydrolysis of ghrelin and to track the peptide's fate in vivo. The assay is based on solvent partitioning of [(3)H]-octanoic acid liberated from [(3)H]-octanoyl ghrelin during enzymatic hydrolysis. This simple and cost-effective method facilitates kinetic analysis of ghrelin hydrolase activity of native and mutated butyrylcholinesterases or carboxylesterases from multiple species. In addition, the assay's high sensitivity facilitates ready evaluation of ghrelin's pharmacokinetics and tissue distribution in mice after i.v. bolus administration of radiolabeled peptide.
Collapse
|
29
|
Yap TWC, Leow AHR, Azmi AN, Francois F, Perez-Perez GI, Blaser MJ, Poh BH, Loke MF, Goh KL, Vadivelu J. Changes in Metabolic Hormones in Malaysian Young Adults following Helicobacter pylori Eradication. PLoS One 2015; 10:e0135771. [PMID: 26291794 PMCID: PMC4546342 DOI: 10.1371/journal.pone.0135771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study. METHODS We enrolled 29 H. pylori-positive young adult (18-30 year-old) volunteer subjects to evaluate the effect of H. pylori eradication on meal-associated changes on eight gastrointestinal hormones, using a multiplex bead assay. Changes in body mass index and anthropometric measurements were recorded, pre- and post-eradication therapy. RESULTS Pre-prandial active amylin, total peptide YY (PYY) and pancreatic polypeptide (PP) levels were significantly elevated 12 months post-eradication compared with baseline (n = 18; Wilcoxon's signed rank test, p<0.05). Four of the post-prandial gut metabolic hormones levels (GLP-1, total PYY, active amylin, PP) were significantly higher 12 months post-eradication compared to baseline (n = 18; p<0.05). Following H. pylori eradication, the BMI and anthropometric values did not significantly change. CONCLUSIONS Our study indicates that H. pylori eradication was associated with long-term disturbance in three hormones (active amylin, PP and total PYY) both pre- and post-prandially and one hormone (GLP-1) post-prandially. Longer post-eradication monitoring is needed to investigate the long-term impact of the observed hormonal changes on metabolic homeostasis.
Collapse
Affiliation(s)
- Theresa Wan-Chen Yap
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alex Hwong-Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Najib Azmi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fritz Francois
- New York University Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Guillermo I Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Martin J. Blaser
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Mun-Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- * E-mail:
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Abstract
Obesity ensues from an imbalance between energy intake and expenditure that results from gene-environment interactions, which favour a positive energy balance. A society that promotes unhealthy food and encourages sedentary lifestyle (that is, an obesogenic environment) has become a major contributory factor in excess fat deposition in individuals predisposed to obesity. Energy homeostasis relies upon control of energy intake as well as expenditure, which is in part determined by the themogenesis of brown adipose tissue and mediated by the sympathetic nervous system. Several areas of the brain that constitute cognitive and autonomic brain systems, which in turn form networks involved in the control of appetite and thermogenesis, also contribute to energy homeostasis. These networks include the dopamine mesolimbic circuit, as well as the opioid, endocannabinoid and melanocortin systems. The activity of these networks is modulated by peripheral factors such as hormones derived from adipose tissue and the gut, which access the brain via the circulation and neuronal signalling pathways to inform the central nervous system about energy balance and nutritional status. In this Review, I focus on the determinants of energy homeostasis that have emerged as prominent factors relevant to obesity.
Collapse
Affiliation(s)
- Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada
| |
Collapse
|
31
|
Benso A, Gramaglia E, Olivetti I, Tomelini M, Belcastro S, Calvi E, Dotta A, St-Pierre D, Ghigo E, Broglio F. Acute effects of acylated ghrelin on salbutamol-induced metabolic actions in humans. Endocrine 2015; 48:937-41. [PMID: 25012253 DOI: 10.1007/s12020-014-0343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study is to describe a potential modulatory effect of acute acylated ghrelin (AG) administration on the glucose, insulin, and free fatty acids (FFA) responses to salbutamol (SALBU). Six healthy young male volunteers underwent the following four testing sessions in random order at least 7 days apart: (a) acute AG administration (1.0 μg/kg i.v. as bolus at 0'); (b) SALBU infusion (0.06 μg/kg/min i.v. from -15' to +45'); (c) SALBU infusion+AG; and (d) isotonic saline infusion. Blood samples for glucose, insulin, and FFA levels were collected every 15 min. As expected, with respect to saline, SALBU infusion induced a remarkable increase in glucose (10.8±5.6 mmol/l×min; P<0.05), insulin (2436.8±556.9 pmol/l×min; P<0.05), and FFA (18.9±4.5 mmol/l×min; P<0.01) levels. A significant increase in glucose (7.4±3.9 mmol/l×min; P<0.05) and FFA levels (10.0±2.8 mmol/l×min; P<0.01) without significant variations in insulin levels were recorded after AG administration. Interestingly, the hyperglycemic effect of AG appeared to be significantly potentiated during SALBU infusion (26.7±4.8 mmol/l×min; P<0.05). On the other hand, the stimulatory effect of SALBU on insulin and FFA was not significantly modified by AG administration. The results of this study show that acute AG administration has a synergic effect with β2-adrenergic receptor activation by SALBU on blood glucose increase, suggesting that their pharmacological hyperglycemic action takes place via different mechanisms. On the other hand, AG has a negligible influence on the other pharmacological metabolic effects of SALBU infusion.
Collapse
Affiliation(s)
- A Benso
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, A.O. Città della Salute e della Scienza - Molinette, Corso Dogliotti 14, 10126, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The enteroendocrine system is the primary sensor of ingested nutrients and is responsible for secreting an array of gut hormones, which modulate multiple physiological responses including gastrointestinal motility and secretion, glucose homeostasis, and appetite. This Review provides an up-to-date synopsis of the molecular mechanisms underlying enteroendocrine nutrient sensing and highlights our current understanding of the neuro-hormonal regulation of gut hormone secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the development of novel therapeutic strategies.
Collapse
|
33
|
Reyes-Vidal C, Fernandez JC, Bruce JN, Crisman C, Conwell IM, Kostadinov J, Geer EB, Post KD, Freda PU. Prospective study of surgical treatment of acromegaly: effects on ghrelin, weight, adiposity, and markers of CV risk. J Clin Endocrinol Metab 2014; 99:4124-32. [PMID: 25137427 PMCID: PMC4223431 DOI: 10.1210/jc.2014-2259] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Although epidemiological studies have found that GH and IGF-1 normalization reduce the excess mortality of active acromegaly to expected rates, cross-sectional data report some cardiovascular (CV) risk markers to be less favorable in remission than active acromegaly. OBJECTIVE The objective of the study was to test the hypothesis that remission of acromegaly after surgical therapy increases weight and adiposity and some CV risk markers and these changes are paralleled by a rise in ghrelin. DESIGN Forty-two adults with untreated, active acromegaly were studied prospectively. Changes in outcome measures from before to after surgery were assessed in 26 subjects achieving remission (normal IGF-1) and 16 with persistent active acromegaly (elevated IGF-1) after surgery. SETTING The study was conducted at tertiary referral centers for pituitary tumors. MAIN OUTCOME MEASURES Endocrine, metabolic, and CV risk parameters, anthropometrics, and body composition by dual-energy X-ray absorptiometry were measured. RESULTS Remission increased total ghrelin, body weight, waist circumference, C-reactive protein, homocysteine, high-density lipoprotein, and leptin and reduced systolic blood pressure, homeostasis model assessment score, triglycerides, and lipoprotein (a) by 6 months and for 32 ± 4 months after surgery. The ghrelin rise correlated with the fall in the levels of GH, IGF-1, and insulin and insulin resistance. Weight, waist circumference, and ghrelin did not increase significantly in the persistent active acromegaly group. Total body fat, trunk fat, and perentage total body fat increased by 1 year after surgery in 15 remission subjects: the increase in body fat correlated with the rise in total ghrelin. CONCLUSIONS Although most markers of CV risk improve with acromegaly remission after surgery, some markers and adiposity increase and are paralleled by a rise in total ghrelin, suggesting that these changes may be related. Understanding the mechanisms and long-term implications of the changes that accompany treatment of acromegaly is important to optimizing management because some aspects of the postoperative profile associate with the increased metabolic and CV risk in other populations.
Collapse
Affiliation(s)
- Carlos Reyes-Vidal
- Departments of Medicine (C.R-V., J.C.F., I.M.C., P.U.F.) and Neurosurgery (J.N.B.), Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Neurosurgery (C.C.), Rutgers New Jersey Medical School, Rutgers, New Jersey 07103; and Departments of Neurosurgery (J.K., E.B.G., K.D.P.) and Medicine (E.B.G., K.D.P.), Mt Sinai Medical Center, New York, New York 10029
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Perret J, De Vriese C, Delporte C. Polymorphisms for ghrelin with consequences on satiety and metabolic alterations. Curr Opin Clin Nutr Metab Care 2014; 17:306-11. [PMID: 24870813 DOI: 10.1097/mco.0000000000000072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW To understand the current trend of ghrelin genetic variations on the control of satiety, eating behaviours, obesity, and metabolic alterations, and its development over the last 18 months. RECENT FINDINGS Several polymorphisms of the ghrelin gene, its receptor gene and ghrelin's acylating enzyme, ghrelin O-acyl transferase, have been identified and studied over the last decade in relation to control of satiety, obesity, eating behaviours, metabolic syndrome, glucose homeostasis, and type 2 diabetes. However, the effects described are either small or nonsignificant and often subjected to contradictory conclusions between studies. In the last 18 months, several of these areas of investigations have been revisited under more controlled conditions or have been subjected to meta-analysis. SUMMARY The effects of ghrelin gene polymorphism, is a complex area of investigation, due to ghrelin's interplay with a host of various factors part of an integrative network. However, taken together, results suggest that there are no or nonsignificant effects of the common genetic variants. A better understanding of the network, probably by a systems biology type approach, will be necessary to assign the exact role played by gene polymorphism of the component of the ghrelin axis.
Collapse
Affiliation(s)
- Jason Perret
- aLaboratory of Pathophysiological and Nutritional Biochemistry bLaboratory of Pharmaceutics and Biopharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
36
|
Chabot F, Caron A, Laplante M, St-Pierre DH. Interrelationships between ghrelin, insulin and glucose homeostasis: Physiological relevance. World J Diabetes 2014; 5:328-341. [PMID: 24936254 PMCID: PMC4058737 DOI: 10.4239/wjd.v5.i3.328] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Ghrelin is a 28 amino acid peptide mainly derived from the oxyntic gland of the stomach. Both acylated (AG) and unacylated (UAG) forms of ghrelin are found in the circulation. Initially, AG was considered as the only bioactive form of ghrelin. However, recent advances indicate that both AG and UAG exert distinct and common effects in organisms. Soon after its discovery, ghrelin was shown to promote appetite and adiposity in animal and human models. In response to these anabolic effects, an impressive number of elements have suggested the influence of ghrelin on the regulation of metabolic functions and the development of obesity-related disorders. However, due to the complexity of its biochemical nature and the physiological processes it governs, some of the effects of ghrelin are still debated in the literature. Evidence suggests that ghrelin influences glucose homeostasis through the modulation of insulin secretion and insulin receptor signaling. On the other hand, insulin was also shown to influence circulating levels of ghrelin. Here, we review the relationship between ghrelin and insulin and we describe the impact of this interaction on the modulation of glucose homeostasis.
Collapse
|
37
|
Stevanovic DM, Grefhorst A, Themmen APN, Popovic V, Holstege J, Haasdijk E, Trajkovic V, van der Lely AJ, Delhanty PJD. Unacylated ghrelin suppresses ghrelin-induced neuronal activity in the hypothalamus and brainstem of male rats [corrected]. PLoS One 2014; 9:e98180. [PMID: 24852945 PMCID: PMC4031147 DOI: 10.1371/journal.pone.0098180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/29/2014] [Indexed: 01/03/2023] Open
Abstract
Ghrelin, the endogenous growth hormone secretagogue, has an important role in metabolic homeostasis. It exists in two major molecular forms: acylated (AG) and unacylated (UAG). Many studies suggest different roles for these two forms of ghrelin in energy balance regulation. In the present study, we compared the effects of acute intracerebroventricular administration of AG, UAG and their combination (AG+UAG) to young adult Wistar rats on food intake and central melanocortin system modulation. Although UAG did not affect food intake it significantly increased the number of c-Fos positive neurons in the arcuate (ARC), paraventricular (PVN) and solitary tract (NTS) nuclei. In contrast, UAG suppressed AG-induced neuronal activity in PVN and NTS. Central UAG also modulated hypothalamic expression of Mc4r and Bmp8b, which were increased and Mc3r, Pomc, Agrp and Ucp2, which were decreased. Finally, UAG, AG and combination treatments caused activation of c-Fos in POMC expressing neurons in the arcuate, substantiating a physiologic effect of these peptides on the central melanocortin system. Together, these results demonstrate that UAG can act directly to increase neuronal activity in the hypothalamus and is able to counteract AG-induced neuronal activity in the PVN and NTS. UAG also modulates expression of members of the melanocortin signaling system in the hypothalamus. In the absence of an effect on energy intake, these findings indicate that UAG could affect energy homeostasis by modulation of the central melanocortin system.
Collapse
Affiliation(s)
- Darko M. Stevanovic
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail: (DS); (PJDD)
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Axel P. N. Themmen
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vera Popovic
- Institute of Endocrinology, Diabetes and Diseases of Metabolism, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Joan Holstege
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elize Haasdijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Patric J. D. Delhanty
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail: (DS); (PJDD)
| |
Collapse
|
38
|
Abstract
Although the stomach is often perceived as a crude, food-grinding, muscular bag, scientific breakthroughs have shown us that in the case of the stomach there is more than meets the eye. The endocrine function of the stomach is mainly exerted through the actions of ghrelin, an acylated peptide hormone that is the first known and so far most extensively studied endogenous orexigenic substance. The satiety-hunger balance is kept in check by many anorexigenic gut hormones among which is the deacylated form of ghrelin--desacyl ghrelin. The interplay of gut hormones affects the brain directly, as most gut hormones cross the blood-brain barrier and bind to their respective receptors in the central nervous system. Other hormones like obestatin and nesfatin are secreted from the stomach along with ghrelin, yet their physiological function is to be elucidated. The importance of the satiety-hunger balance can be seen in its most typical derangement--obesity. Some studies imply that ghrelin, along with other gut hormones, plays an important part in the pathophysiology of obesity. More importantly, it seems that the mechanisms by which bariatric surgery procedures induce weight loss are primarily based on changing the gut hormone levels, including ghrelin. If proven, ghrelin antagonists could be the renaissance of pharmacological obesity treatment.
Collapse
Affiliation(s)
- Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | |
Collapse
|
39
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
40
|
Gahete MD, Rincón-Fernández D, Villa-Osaba A, Hormaechea-Agulla D, Ibáñez-Costa A, Martínez-Fuentes AJ, Gracia-Navarro F, Castaño JP, Luque RM. Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol 2014; 220:R1-24. [PMID: 24194510 DOI: 10.1530/joe-13-0391] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a 28-amino acid acylated hormone, highly expressed in the stomach, which binds to its cognate receptor (GHSR1a) to regulate a plethora of relevant biological processes, including food intake, energy balance, hormonal secretions, learning, inflammation, etc. However, ghrelin is, in fact, the most notorious component of a complex, intricate regulatory system comprised of a growing number of alternative peptides (e.g. obestatin, unacylated ghrelin, and In1-ghrelin, etc.), known (GHSRs) and, necessarily unknown receptors, as well as modifying enzymes (e.g. ghrelin-O-acyl-transferase), which interact among them as well as with other regulatory systems in order to tightly modulate key (patho)-physiological processes. This multiplicity of functions and versatility of the ghrelin system arise from a dual, genetic and functional, complexity. Importantly, a growing body of evidence suggests that dysregulation in some of the components of the ghrelin system can lead to or influence the development and/or progression of highly concerning pathologies such as endocrine-related tumors, inflammatory/cardiovascular diseases, and neurodegeneration, wherein these altered components could be used as diagnostic, prognostic, or therapeutic targets. In this context, the aim of this review is to integrate and comprehensively analyze the multiple components and functions of the ghrelin system described to date in order to define and understand its biological and (patho)-physiological significance.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, Campus Universitario de Rabanales, Edificio Severo Ochoa (C6), Planta 3, University of Córdoba, 14014-Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba; Reina Sofia University Hospital, Córdoba; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Terra X, Auguet T, Agüera Z, Quesada IM, Orellana-Gavaldà JM, Aguilar C, Jiménez-Murcia S, Berlanga A, Guiu-Jurado E, Menchón JM, Fernández-Aranda F, Richart C. Adipocytokine levels in women with anorexia nervosa. Relationship with weight restoration and disease duration. Int J Eat Disord 2013; 46:855-61. [PMID: 23881663 DOI: 10.1002/eat.22166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Starvation-induced depletion of fat stores in anorexia nervosa (AN) is known to be accompanied by alterations in some circulating adipocytokines. We analyzed a panel of circulating adipocytokines in women with AN compared with normal-weight controls and their relation with the disease duration and weight restoration. METHOD We analyzed circulating adipocytokine levels in 28 patients with AN and in 33 normal-weight controls who were eating healthily. We determined by enzyme-linked immunosorbent assay the circulating levels of total and high molecular weight (HMW) adiponectin, lipocalin-2 (LCN2), leptin, tumor necrosis factor receptor-II (TNFRII), interleukin-6 (IL6), adipocyte fatty acid binding protein-4 (FABP4), ghrelin, and resistin. RESULTS The two circulating forms of adiponectin are higher in AN women compared with controls. Both total and HMW adiponectin related negatively to the duration of the disease (r = -0.372, p = 0.033; r = -0.450, p = 0.038, respectively). Furthermore, the lipid binding-proteins LCN2 and FABP4 are lower in AN compared to the control group. Finally, leptin levels are lower in AN against controls and correlated positively with disease duration (r = 0.537, p = 0.007). Resistin, ghrelin, TNFRII, and IL6 have similar values in both groups, although TNFRII and ghrelin related negatively to body mass index variation at the end of treatment (r = -0.456, p = 0.039; r = -0.536, p = 0.015, respectively). DISCUSSION These results suggest there is a need to investigate if changes in adipocytokine levels could serve as weight restoration biomarkers. Further studies are warranted to elucidate the specific role of these molecules in the timing of weight restoration.
Collapse
Affiliation(s)
- Ximena Terra
- Grup d'estudi de malalties metabòliques associades a insulin resistència (GEMMAIR), Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recent literature indicates that the functions of ghrelin go well beyond its role as an orexigenic signal. Here, we have reviewed some of the most recent findings on ghrelin and its signalling in animals and humans. RECENT FINDINGS Ghrelin regulates glucose homeostasis by inhibiting insulin secretion and regulating gluconeogenesis/glycogenolysis. Ghrelin signalling decreases thermogenesis to regulate energy expenditure. Ghrelin improves the survival prognosis of myocardial infarction by reducing sympathetic nerve activity. Ghrelin prevents muscle atrophy by inducing muscle differentiation and fusion. Ghrelin regulates bone formation and metabolism by modulating proliferation and differentiation of osteoblasts. SUMMARY In addition to ghrelin's effects on appetite and adiposity, ghrelin signalling also plays crucial roles in glucose and energy homeostasis, cardioprotection, muscle atrophy and bone metabolism. These multifaceted roles of ghrelin make ghrelin and GHS-R highly attractive targets for drug development. Ghrelin mimetics may be used to treat heart diseases, muscular dystrophy/sarcopenia and osteoporosis; GHS-R antagonists may be used to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Geetali Pradhan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L. Samson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Xu L, Qu Z, Guo F, Pang M, Gao S, Zhu H, Gu F, Sun X. Effects of ghrelin on gastric distention sensitive neurons in the arcuate nucleus of hypothalamus and gastric motility in diabetic rats. Peptides 2013; 48:137-46. [PMID: 23965296 DOI: 10.1016/j.peptides.2013.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 02/08/2023]
Abstract
This study was performed to observe the effects of ghrelin on the activity of gastric distention (GD) sensitive neurons in the arcuate nucleus of hypothalamus (Arc) and on gastric motility in vivo in streptozocin (STZ) induced diabetes mellitus (DM) rats. Electrophysiological results showed that ghrelin could excite GD-excitatory (GD-E) neurons and inhibit GD-inhibitory (GD-I) neurons in the Arc. However, fewer GD-E neurons were excited by ghrelin and the excitatory effect of ghrelin on GD-E neurons was much weaker in DM rats. Gastric motility research in vivo showed that microinjection of ghrelin into the Arc could significantly promote gastric motility and it showed a dose-dependent manner. The effect of ghrelin promoting gastric motility in DM rats was weaker than that in normal rats. The effects induced by ghrelin could be blocked by growth hormone secretagogue receptor (GHSR) antagonist [d-Lys-3]-GHRP-6 or BIM28163. RIA and real-time PCR data showed that the levels of ghrelin in the plasma, stomach and ghrelin mRNA in the Arc increased at first but decreased later and the expression of GHSR-1a mRNA in the Arc maintained a low level in DM rats. The present findings indicate that ghrelin could regulate the activity of GD sensitive neurons and gastric motility via ghrelin receptors in the Arc. The reduced effects of promoting gastric motility induced by ghrelin could be connected with the decreased expression of ghrelin receptors in the Arc in diabetes. Our data provide new experimental evidence for the role of ghrelin in gastric motility disorder in diabetes.
Collapse
Affiliation(s)
- Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao 266021, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Many questions must be considered with regard to consuming food, including when to eat, what to eat and how much to eat. Although eating is often thought to be a homeostatic behaviour, little evidence exists to suggest that eating is an automatic response to an acute shortage of energy. Instead, food intake can be considered as an integrated response over a prolonged period of time that maintains the levels of energy stored in adipocytes. When we eat is generally determined by habit, convenience or opportunity rather than need, and meals are preceded by a neurally-controlled coordinated secretion of numerous hormones that prime the digestive system for the anticipated caloric load. How much we eat is determined by satiation hormones that are secreted in response to ingested nutrients, and these signals are in turn modified by adiposity hormones that indicate the fat content of the body. In addition, many nonhomeostatic factors, including stress, learning, palatability and social influences, interact with other controllers of food intake. If a choice of food is available, what we eat is based on pleasure and past experience. This article reviews the hormones that mediate and influence these processes.
Collapse
Affiliation(s)
- Denovan P Begg
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | |
Collapse
|
45
|
He C, Tsend-Ayush E, Myers MA, Forbes BE, Grützner F. Changes in the ghrelin hormone pathway maybe part of an unusual gastric system in monotremes. Gen Comp Endocrinol 2013; 191:74-82. [PMID: 23770219 DOI: 10.1016/j.ygcen.2013.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/14/2022]
Abstract
Ghrelin is a growth hormone (GH)-releasing and appetite-regulating peptide predominately released from the stomach. Ghrelin is evolutionarily highly conserved and known to have a wide range of functions including the regulation of metabolism by maintaining an insulin-glucose balance. The peptide is produced as a single proprotein, which is later proteolytically cleaved. Ghrelin exerts its biological function after O-n-octanoylation at residue serine 3, which is catalyzed by ghrelin O-acyl transferase (GOAT) and allows binding to the growth hormone secretagogue receptor (GHS-R 1a). Genes involved in the ghrelin pathway have been identified in a broad range of vertebrate species, however, little is known about this pathway in the basal mammalian lineage of monotremes (platypus and echidna). Monotremes are particularly interesting in this context, as they have undergone massive changes in stomach anatomy and physiology, accompanied by a striking loss of genes involved in gastric function. In this study, we investigated genes in the ghrelin pathway in monotremes. Using degenerate PCR, database searches and synteny analysis we found that genes encoding ghrelin and GOAT are missing in the platypus genome, whilst, as has been reported in other species, the GHSR is present and expressed in brain, pancreas, kidney, intestine, heart and stomach. This is the first report suggesting the loss of ghrelin in a mammal. The loss of this gene may be related to changes to the platypus digestive system and raises questions about the control of blood glucose levels and insulin response in monotreme mammals. In addition, the conservation of the ghrelin receptor gene in platypus indicates that another ligand(s) maybe acting via this receptor in monotremes.
Collapse
Affiliation(s)
- Chuan He
- School of Molecular and Biomedical Science, The University of Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
46
|
Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nøhr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2013; 2:376-92. [PMID: 24327954 DOI: 10.1016/j.molmet.2013.08.006] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022] Open
Abstract
The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.
Collapse
Key Words
- 7TM, seven transmembrane segment
- BAC, bacterial artificial chromosome
- CCK, cholecystokinin
- CFMB, (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butamide
- CGRP, calcitonin gene-related peptide
- CHBA, 3-chloro-5-hydroxybenzoic acid
- Enteroendocrine
- G protein signaling
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GPCR
- Ghrelin
- Metabolites
- PTx, Bordetella pertussis toxin
- PYY, peptide YY
- Secretion
- hrGFP, humanized Renilla reniformis green fluorescent protein
Collapse
Affiliation(s)
- Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark ; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
48
|
Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavaldà JM, Hernández M, Sabench F, Porras JA, Llutart J, Martinez S, Aguilar C, Del Castillo D, Richart C. Long-term Changes in Leptin, Chemerin and Ghrelin Levels Following Different Bariatric Surgery Procedures: Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. Obes Surg 2013; 23:1790-8. [DOI: 10.1007/s11695-013-1033-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Gao S, Casals N, Keung W, Moran TH, Lopaschuk GD. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiol Behav 2013; 118:165-70. [PMID: 23680429 DOI: 10.1016/j.physbeh.2013.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/06/2013] [Indexed: 01/15/2023]
Abstract
Fatty acid metabolism is an important pathway involved in the hypothalamus-mediated control of food intake. Previous studies using whole hypothalamic tissue lysates have shown that fatty acid metabolism plays a key role in ghrelin's effect on feeding. Here, we report site-specific effects of central ghrelin on fatty acid metabolism in two critical hypothalamic nuclei, the ventral medial nucleus (VMN) and the arcuate nucleus (Arc). Intracerebroventricular administration of ghrelin to rats activates AMP-activated protein kinase in both the VMN and the Arc, while ghrelin treatment has a site-specific effect on fatty acid metabolic pathways in these two nuclei. In the VMN, central ghrelin increases the phosphorylation level of ACC, indicating the decrease in activity, and decreases the level of malonyl-CoA (the product of ACC). Malonyl-CoA is an inhibitor of carnitine palmitoyltransferase-1 (CPT-1) that is a key enzyme in mitochondrial fatty acid oxidation. Consistent with this action of malonyl-CoA on CPT-1, central ghrelin treatment increases the activity of CPT-1 in the VMN. In contrast, in the Arc, neither malonyl-CoA level nor CPT-1 activity is affected following central ghrelin. Taken together, our data suggest ghrelin exerts differential effects on fatty acid metabolic pathways in the VMN and the Arc.
Collapse
Affiliation(s)
- Su Gao
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
50
|
Goebel-Stengel M, Hofmann T, Elbelt U, Teuffel P, Ahnis A, Kobelt P, Lambrecht NWG, Klapp BF, Stengel A. The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index. Peptides 2013; 43:13-9. [PMID: 23454172 DOI: 10.1016/j.peptides.2013.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 01/16/2023]
Abstract
Ghrelin is the only known peripherally produced and centrally acting peptide hormone stimulating food intake. The acylation of ghrelin is essential for binding to its receptor. Recently, the ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) was identified in mice, rats and humans. In addition to gastric mucosal expression, GOAT was also detected in the circulation of rodents and its expression was dependent on metabolic status. We investigated whether GOAT is also present in human plasma and whether expression levels are affected under different conditions of body weight. Normal weight, anorexic and obese subjects with body mass index (BMI) 30-40, 40-50 and >50 were recruited (n=9/group). In overnight fasted subjects GOAT protein expression was assessed by Western blot and ghrelin measured by ELISA. GOAT protein was detectable in human plasma. Anorexic patients showed reduced GOAT protein levels (-42%, p<0.01) whereas obese patients with BMI>50 had increased concentrations (+34%) compared to normal weight controls. Ghrelin levels were higher in anorexic patients compared to all other groups (+62-78%, p<0.001). Plasma GOAT protein expression showed a positive correlation with BMI (r=0.71, p<0.001) and a negative correlation with ghrelin (r=-0.60, p<0.001). Summarized, GOAT is also present in human plasma and GOAT protein levels depend on the metabolic environment with decreased levels in anorexic and increased levels in morbidly obese patients. These data may indicate that GOAT counteracts the adaptive changes of ghrelin observed under these conditions and ultimately contributes to the development or maintenance of anorexia and obesity as it is the only enzyme acylating ghrelin.
Collapse
Affiliation(s)
- Miriam Goebel-Stengel
- Department of Internal Medicine, Institute of Neurogastroenterology and Motility, Martin-Luther Hospital, Academic Teaching Institution of Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|