1
|
Ganazhapa B, Pereiro-García J, Arregui XQ, Geday MA, Guadaño G, Caño-García M. Generation of arbitrarily patterned polarizers using 2-photon polymerization. Sci Rep 2024; 14:22550. [PMID: 39343947 PMCID: PMC11439941 DOI: 10.1038/s41598-024-73946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Patterned polarizers are prepared using liquid crystals (LC) doped with a black dichroic dye and in combination with a linear polarizer. The pattern is achieved with a nanostructured LC alignment surface, that is generated using a two-photon polymerization direct laser write (2PP-DLW). This technique creates a pattern of high-resolution grooves in the photoresist at any arbitrary angle. The angle governs the LC orientation at any substrate surface point, determining the transmitted light linear polarization angle. This paper presents the first use of a 2PP-DLW cured positive tone photoresist for dichroic dye-doped LC alignment. Two complementary photoresists have been employed: conventional negative tone SU-8 photoresist and, in this context novel, positive tone S1805 photoresist. The alignment quality of the polarizers has been assessed by analyzing the transmission using an additional polarizer. For SU-8, the resulting grayscale pattern and a contrast ratio (CR) of 14 has measured. The uniformity of the alignment has been measured to be 65% using normalized Shannon entropy (H). For S1805, a CR of 37 was measured, and a uniformity of 63% was obtained. 2PP-DLW allows for shaping complex patterns in submicron dimensions and for the fabrication of arbitrarily patterned polarizers and other LC devices.
Collapse
Affiliation(s)
- Byron Ganazhapa
- CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
- LASING S.A, c/Julián Camarillo, 26, Madrid, 28037, Spain.
| | - Javier Pereiro-García
- CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Xabier Quintana Arregui
- CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Morten Andreas Geday
- CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | | | - Manuel Caño-García
- CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
- Department of Electronics and Computer Technology, Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
3
|
Issa A, Ritacco T, Ge D, Broussier A, Lio GE, Giocondo M, Blaize S, Nguyen TH, Dinh XQ, Couteau C, Bachelot R, Jradi S. Quantum Dot Transfer from the Organic Phase to Acrylic Monomers for the Controlled Integration of Single-Photon Sources by Photopolymerization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37191386 DOI: 10.1021/acsami.2c22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.
Collapse
Affiliation(s)
- Ali Issa
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Tiziana Ritacco
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
- Department of Physics, University of Calabria, Cubo 33B, Rende, CS 87036, Italy
| | - Dandan Ge
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Aurelie Broussier
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Giuseppe Emanuele Lio
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
| | - Michele Giocondo
- CNR Nanotec-Institute of Nanotechnology, S.S. Cosenza, Cubo 31C, Rende, CS 87036, Italy
| | - Sylvain Blaize
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Tien Hoa Nguyen
- Shanghai University (SHU), Sino-European School of Shanghai University, Shanghai 2000072, China
| | - Xuan Quyen Dinh
- Shanghai University (SHU), Sino-European School of Shanghai University, Shanghai 2000072, China
| | - Christophe Couteau
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| | - Renaud Bachelot
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
- Key Lab of Advanced Display and System Application, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China
| | - Safi Jradi
- Light, Nanomaterials & Nanotechnologies Laboratory (L2n), Université de Technologie de Troyes & CNRS EMR7004, 12 rue Marie Curie, 10004 Troyes Cedex, France
| |
Collapse
|
4
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
5
|
Lemma ED, Tabone R, Richler K, Schneider AK, Bizzarri C, Weth F, Niemeyer CM, Bastmeyer M. Selective Positioning of Different Cell Types on 3D Scaffolds via DNA Hybridization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36787205 DOI: 10.1021/acsami.2c23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) microscaffolds for cell biology have shown their potential in mimicking physiological environments and simulating complex multicellular constructs. However, controlling the localization of cells precisely on microfabricated structures is still complex and usually limited to two-dimensional assays. Indeed, the implementation of an efficient method to selectively target different cell types to specific regions of a 3D microscaffold would represent a decisive step toward cell-by-cell assembly of complex cellular arrangements. Here, we use two-photon lithography (2PL) to fabricate 3D microarchitectures with functional photoresists. UV-mediated click reactions are used to functionalize their surfaces with single-stranded DNA oligonucleotides, using sequential repetition to decorate different scaffold regions with individual DNA addresses. Various immortalized cell lines and stem cells modified by grafting complementary oligonucleotides onto the phospholipid membranes can then be immobilized onto complementary regions of the 3D structures by selective hybridization. This allows controlled cocultures to be established with spatially separated arrays of eukaryotic cells in 3D.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Roberta Tabone
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Ann-Kathrin Schneider
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Lopes J, Machado A, Batista A, Iglesias B, Araujo P, Barbosa Neto N. Fluorinated phenyl meso-substituents regulating excited state absorption-driven protonation of free-base porphyrins. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Lin WH, Pan SC, Hsu JF, Tseng ZL, Jyu SS, Lin JH. Investigation of Two Photon Absorption of Ligand-Modified CsPbBr 3 Quantum Dots. J Phys Chem Lett 2022; 13:11245-11252. [PMID: 36448820 DOI: 10.1021/acs.jpclett.2c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The characteristics and application of nonlinear absorption from CsPbBr3 QDs film with the ligand-modified strategy have been investigated in this work. By means of a near-infrared fs Ti:sapphire laser as a light source, the up-conversion emission of CsPbBr3 QDs film of around 518 nm revealed a quadratic increase with the pump intensity. Through the temperature-dependent up-conversion emission, we obtained the binding energy and longitudinal optical (LO) phonon energy of CsPbBr3 QDs film of around 58.1 and 61.2 meV, respectively. Due to more active thermal coupling between the excited electron or hot phonon effect, the photon decay trace under two-photon excitation was prolonged at higher temperatures. The ligand-modified CsPbBr3 QDs film exhibits a relatively large TPA coefficient of around 28.6 cm/GW by the open aperture Z-scan measurement, and it has been demonstrated as a promising nonlinear medium to obtain the pulsewidth of ultrafast lasers.
Collapse
Affiliation(s)
- Wan-Hsuan Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Shao-Chien Pan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Jen-Feng Hsu
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| | - Zong-Liang Tseng
- Organic Electronics Research Center and Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City243303, Taiwan
| | - Siao-Shan Jyu
- Taiwan O-Film Technology Company Limited, New Taipei City22101, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei10608, Taiwan
| |
Collapse
|
8
|
Wang L, Shi B, Zhao H, Qi X, Chen J, Li J, Shang Y, Fu KK, Zhang X, Tian M, Qu L. 3D-Printed Parahydrophobic Functional Textile with a Hierarchical Nanomicroscale Structure. ACS NANO 2022; 16:16645-16654. [PMID: 36173181 DOI: 10.1021/acsnano.2c06069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Functional textiles with superhydrophobicity and high adhesion to water, called parahydrophobic, are attracting increasing attention from industry and academia. The hierarchical (micronanoscale) surface patterns in nature provide an excellent reference for the manufacture of parahydrophobic functional textiles. However, the replication of the complex parahydrophobic micronanostructures in nature exceeds the ability of traditional manufacturing strategies, which makes it difficult to accurately manufacture controllable nanostructures on yarn and textiles. Herein, a two-photon femtosecond laser direct writing strategy with nanoscale process capability was utilized to accurately construct the functional parahydrophobic yarn with a diameter of 900 μm. Inspired by rose petals, the parahydrophobic yarn is composed of a hollow round tube, regularly arranged micropapillae (the diameter is 109 μm), and nanofolds (the distance is 800 nm) on papillae. The bionic yarn exhibited a superior parahydrophobic behavior, where the liquid droplet not only was firmly adhered to the bionic yarn at an inverted angle (180°) but also presented as spherical on the yarn (the maximum water contact angle is 159°). The fabric woven by the bionic yarn also exhibited liquid droplet-catching ability even when tilted vertically or turned upside down. Based on the excellent parahydrophobic function of bionic yarn, we demonstrated a glove that has very wide application potential in the fields of water droplet-based transportation, manipulation, microreactors, microextractors, etc.
Collapse
Affiliation(s)
- Lihong Wang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Baohui Shi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
- Key Laboratory of High Performance Fibers and Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Hongtao Zhao
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jiahui Chen
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Juanjuan Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yuanyuan Shang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
- Key Laboratory of High Performance Fibers and Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, PR China
| |
Collapse
|
9
|
Lightman S, Porat O, Hurvitz G, Gvishi R. Vortex-Bessel beam generation by 3D direct printing of an integrated multi-optical element on a fiber tip. OPTICS LETTERS 2022; 47:5248-5251. [PMID: 36240334 DOI: 10.1364/ol.470924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Shaping light beams as they propagate out of the tips of optical fibers is a desired ability, as the light could be tailored for various applications in a miniaturized, integrated, and cost-effective manner. However, fabricating sophisticated refractive elements directly onto fibers is challenging. By using 3D-direct laser writing (3D-DLW), high-quality optical devices could be fabricated directly on top of the fiber's facet by the two-photon absorption process. Here, we demonstrate how a high-order Bessel beam carrying orbital angular momentum (OAM) could be generated by using this lithography process. The beam is shaped using an integrated micro-optical system that consists of a twisted axicon and parabolic lens in an adapted fiber configuration. This work provides the analysis and measurements of the generated beam, along with simulated predictions. The far-field pattern, at a distance of 2 mm from the fiber, was examined, and we have found that the size of the central ring remained nearly unchanged, as expected for this type of beam. The beam's OAM value was measured using either an interference pattern or a mode convertor. Furthermore, the near-field and far-field Bessel beam profiles were investigated simultaneously at various laser power values, reaching intensities of up to 3.8 MW/cm2. This work may pave the way for future integrated beam manipulation on fibers, enabling the use of higher laser outputs.
Collapse
|
10
|
Kunwar P, Ransbottom MJ, Soman P. Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:435-449. [PMID: 36660293 PMCID: PMC9590348 DOI: 10.1089/3dp.2020.0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels are widely used materials due to their biocompatibility, their ability to mimic the hydrated and porous extracellular microenvironment, as well as their ability to tune both mechanical and biochemical properties. However, most hydrogels lack mechanical toughness, and shaping them into complicated three-dimensional (3D) structures remains challenging. In the past decade, tough and stretchable double-network hydrogels (DN gels) were developed for tissue engineering, soft robotics, and applications that require a combination of high-energy dissipation and large deformations. Although DN gels were processed into simple shapes by using conventional casting and molding methods, new 3D printing methods have enabled the shaping of DN gels into structurally complex 3D geometries. This review will describe the state-of-art technologies for shaping tough and stretchable DN gels into custom geometries by using conventional molding and casting, extrusion, and optics-based 3D printing, as well as the key challenges and future outlook in this field.
Collapse
Affiliation(s)
- Puskal Kunwar
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York, USA
| | - Mark James Ransbottom
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York, USA
| | - Pranav Soman
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
11
|
Rogkas N, Vakouftsis C, Spitas V, Lagaros ND, Georgantzinos SK. Design Aspects of Additive Manufacturing at Microscale: A Review. MICROMACHINES 2022; 13:mi13050775. [PMID: 35630242 PMCID: PMC9147298 DOI: 10.3390/mi13050775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) technology has been researched and developed for almost three decades. Microscale AM is one of the fastest-growing fields of research within the AM area. Considerable progress has been made in the development and commercialization of new and innovative microscale AM processes, as well as several practical applications in a variety of fields. However, there are still significant challenges that exist in terms of design, available materials, processes, and the ability to fabricate true three-dimensional structures and systems at a microscale. For instance, microscale AM fabrication technologies are associated with certain limitations and constraints due to the scale aspect, which may require the establishment and use of specialized design methodologies in order to overcome them. The aim of this paper is to review the main processes, materials, and applications of the current microscale AM technology, to present future research needs for this technology, and to discuss the need for the introduction of a design methodology. Thus, one of the primary concerns of the current paper is to present the design aspects describing the comparative advantages and AM limitations at the microscale, as well as the selection of processes and materials.
Collapse
Affiliation(s)
- Nikolaos Rogkas
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Christos Vakouftsis
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Vasilios Spitas
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Nikos D. Lagaros
- Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zographou, Greece;
| | - Stelios K. Georgantzinos
- Laboratory for Advanced Materials, Structures and Digitalization, Department of Aerospace Science and Technology, National and Kapodistrian University of Athens, Evripus Campus, 34400 Psachna, Greece
- Correspondence:
| |
Collapse
|
12
|
Lopes J, Machado A, Batista A, Araujo P, Barbosa Neto N. Protonation, exciplex, and evidence of aggregate formation in meso-tetra(4-pyridyl) porphyrin triggered by excited-state absorption. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112576. [DOI: 10.1016/j.msec.2021.112576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
|
14
|
He L, Chan HP, Li B. Quantitative study in coupling loss reduction under a large mode-field mismatch using a self-written waveguide. OPTICS EXPRESS 2021; 29:36745-36757. [PMID: 34809078 DOI: 10.1364/oe.435175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The coupling loss between optical devices is a critical factor affecting the performance of optical interconnect. This paper quantitatively studies the effectiveness of using a dye-doped-epoxy-based self-written waveguide (SWW) to reduce the coupling loss in optical interconnect caused by large mode-field mismatch and lateral offset. We formed SWW between single-mode fiber (SMF) with different mode-field diameters (MFD) and a 5 × 2 µm rectangular channel waveguide-under-test (WUT). For the case between a SMF with a mode-field diameter of 9.4 μm and the WUT, the coupling loss is -11 dB. After forming the SWW, the coupling loss is reduced by 8.34 dB. Using SWW, the lateral tolerance length between a SMF with a mode-field diameter of 4.5 μm and the WUT increases by 2.5 times. Under the above-mentioned situation, the coupling loss falls less than 0.20 dB over ± 2 μm lateral offset range. Our findings offer insights quantitatively for coupling loss reduction and relaxing the lateral tolerance under significant mode-field mismatch conditions.
Collapse
|
15
|
Püschmann SD, Frühwirt P, Müller SM, Wagner SH, Torvisco A, Fischer RC, Kelterer AM, Griesser T, Gescheidt G, Haas M. Synthesis and characterization of diacylgermanes: persistent derivatives with superior photoreactivity. Dalton Trans 2021; 50:11965-11974. [PMID: 34378607 PMCID: PMC8406493 DOI: 10.1039/d1dt02091a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
Acylgermanes are known as highly efficient photoinitiators. In this contribution, we present the synthesis of new diacylgermanes 4a-evia a multiple silyl abstraction methodology. The method outperforms the state-of-the-art approach (Corey-Seebach reaction) towards diacylgermanes in terms of group tolerance and toxicity of reagents. Moreover, these compounds are decorated with bulky mesityl groups in order to improve their storage stability. The isolated diacylgermanes were characterized by multinuclear NMR-, UV-Vis spectroscopy and X-ray crystallography, as well as photolysis experiments (photobleaching) and photo-DSC measurements (photopolymerization behavior). Upon irradiation with an LED emitting at 385 nm, all compounds except for 4a and 4c bleach efficiently with quantum yields above 0.6. Due to their broad absorption bands, the compounds can be also bleached with blue light (470 nm), where especially 4e bleaches more efficiently than Ivocerin®.
Collapse
Affiliation(s)
- Sabrina D. Püschmann
- Institute of Inorganic Chemistry, Technical University GrazStremayrgasse 9/IV8010 GrazAustria
| | - Philipp Frühwirt
- Institute of Physical and Theoretical Chemistry, Technical University GrazStremayrgasse 9/II8010 GrazAustria
| | - Stefanie M. Müller
- Institute of Physical and Theoretical Chemistry, Technical University GrazStremayrgasse 9/II8010 GrazAustria
| | - Stefan H. Wagner
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet LeobenOtto-Gloeckelstrasse 2A-8700 LeobenAustria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, Technical University GrazStremayrgasse 9/IV8010 GrazAustria
| | - Roland C. Fischer
- Institute of Inorganic Chemistry, Technical University GrazStremayrgasse 9/IV8010 GrazAustria
| | - Anne-Marie Kelterer
- Institute of Physical and Theoretical Chemistry, Technical University GrazStremayrgasse 9/II8010 GrazAustria
| | - Thomas Griesser
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet LeobenOtto-Gloeckelstrasse 2A-8700 LeobenAustria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Technical University GrazStremayrgasse 9/II8010 GrazAustria
| | - Michael Haas
- Institute of Inorganic Chemistry, Technical University GrazStremayrgasse 9/IV8010 GrazAustria
| |
Collapse
|
16
|
Otuka AJG, Tomazio NB, Paula KT, Mendonça CR. Two-Photon Polymerization: Functionalized Microstructures, Micro-Resonators, and Bio-Scaffolds. Polymers (Basel) 2021; 13:polym13121994. [PMID: 34207089 PMCID: PMC8234590 DOI: 10.3390/polym13121994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
The direct laser writing technique based on two-photon polymerization (TPP) has evolved considerably over the past two decades. Its remarkable characteristics, such as 3D capability, sub-diffraction resolution, material flexibility, and gentle processing conditions, have made it suitable for several applications in photonics and biosciences. In this review, we present an overview of the progress of TPP towards the fabrication of functionalized microstructures, whispering gallery mode (WGM) microresonators, and microenvironments for culturing microorganisms. We also describe the key physical-chemical fundamentals underlying the technique, the typical experimental setups, and the different materials employed for TPP.
Collapse
Affiliation(s)
- Adriano J. G. Otuka
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| | - Nathália B. Tomazio
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Device Research Laboratory, “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
| | - Kelly T. Paula
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
| | - Cleber R. Mendonça
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| |
Collapse
|
17
|
Schuh L, Müller P, Torvisco A, Stueger H, Wrodnigg TM, Haas M. Synthesis of d-Galactose-Substituted Acylsilanes and Acylgermanes. Model Compounds for Visible Light Photoinitiators with Intriguing High Solubility. Organometallics 2021; 40:1185-1189. [PMID: 34054184 PMCID: PMC8155559 DOI: 10.1021/acs.organomet.0c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/28/2022]
Abstract
![]()
A convenient synthetic
method to obtain d-galactose-substituted
acylsilanes and acylgermanes is described. These acyl group 14 compounds
are easily accessible in good yields. Their structural properties
were analyzed by a combination of NMR, single crystal X-ray crystallography,
and UV/vis spectroscopy. A d-galactose-substituted tetraacylgermane
represents a new interesting visible light photoinitiator based on
its absorption properties as well as its high solubility.
Collapse
Affiliation(s)
- Lukas Schuh
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Philipp Müller
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Harald Stueger
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Tanja M Wrodnigg
- Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Michael Haas
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
18
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
19
|
Zyla G, Surkamp N, Gurevich EL, Esen C, Klehr A, Knigge A, Hofmann MR, Ostendorf A. Two-photon polymerization with diode lasers emitting ultrashort pulses with high repetition rate. OPTICS LETTERS 2020; 45:4827-4830. [PMID: 32870868 DOI: 10.1364/ol.401738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, we investigate the resolution of two-photon polymerization (2PP) with an amplified mode-locked external cavity diode laser with adjustable pulse length and a high repetition rate. The experimental results are analyzed with a newly developed 2PP model. Even with low pulse peak intensity, the produced structural dimensions are comparable to those generated by traditional 2PP laser sources. Thus, we show that a compact monolithic picosecond laser diode without amplification and with a repetition rate in the GHz regime can also be applied for 2PP. These results show the high application potential of compact mode-locked diode lasers for low-cost and compact 2PP systems.
Collapse
|
20
|
Kunwar P, Soman P. Direct Laser Writing of Fluorescent Silver Nanoclusters: A Review of Methods and Applications. ACS APPLIED NANO MATERIALS 2020; 3:7325-7342. [PMID: 33134885 PMCID: PMC7595336 DOI: 10.1021/acsanm.0c01339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metal nanoclusters (NCs) are nanomaterials of size of less than 2 nm that exhibit a set of unique physical, chemical, optical, and electronic properties. Because of recent interest in NCs, a great deal of effort is being made to develop synthetic routes that allow control over the NC size, shape, geometry, and properties. Direct laser writing is one of the few synthesis methods that allow the generation of photostable NCs with high quantum yield in a highly controlled fashion. A key advantage of laser-written NCs is the ability to create easy-to-use solid-state devices for a range of applications. This review will present necessary background and recent advances in laser writing of silver NCs and their applications in different solid-state matrixes such as glass, zeolites, and polymer substrate. This topic will be of interest to researchers in the fields of materials science, optics and photonics, chemistry, and biomedical sciences.
Collapse
Affiliation(s)
- Puskal Kunwar
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York 13244, United States
| | - Pranav Soman
- Department of Chemical and Bioengineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Li Y, Zhang X, Yan Z, Du L, Tang W, Phillips DL. Photochemical α-Cleavage Reaction of 3',5'-Dimethoxybenzoin: A Combined Time-Resolved Spectroscopy and Computational Chemistry Study. Molecules 2020; 25:molecules25153548. [PMID: 32756525 PMCID: PMC7435414 DOI: 10.3390/molecules25153548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Benzoin is one of the most commonly used photoinitiators to induce free radical polymerization. Here, improved benzoin properties could be accomplished by the introduction of two methoxy substituents, leading to the formation of 3',5'-dimethoxybenzoin (DMB) which has a higher photo-cleavage quantum yield (0.54) than benzoin (0.35). To elucidate the underlying reaction mechanisms of DMB and obtain direct information of the transient species involved, femtosecond transient absorption (fs-TA) and nanosecond transient absorption (ns-TA) spectroscopic experiments in conjunction with density functional theory/time-dependent density functional theory (DFT/TD-DFT) calculations were performed. It was found that the photo-induced α-cleavage (Norrish Type I reaction) of DMB occurred from the nπ* triplet state after a rapid intersystem crossing (ISC) process (7.6 ps), leading to the generation of phenyl radicals on the picosecond time scale. Compared with Benzoin, DMB possesses two methoxy groups which are able to stabilize the alcohol radical and thus result in a stronger driving force for cleavage and a higher quantum yield of photodissociation. Two stable conformations (cis-DMB and trans-DMB) at ground state were found via DFT calculations. The influence of the intramolecular hydrogen bond on the α-cleavage of DMB was elaborated.
Collapse
Affiliation(s)
- Yuanchun Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China; (Y.L.); (X.Z.); (Z.Y.)
| | - Xiting Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China; (Y.L.); (X.Z.); (Z.Y.)
| | - Zhiping Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China; (Y.L.); (X.Z.); (Z.Y.)
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China; (Y.L.); (X.Z.); (Z.Y.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (L.D.); (W.T.); (D.L.P.); Tel.: +852-6761-4757 (L.D.); +86-137-2109-1768 (W.T.); +852-2859-2160 (D.L.P.)
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Correspondence: (L.D.); (W.T.); (D.L.P.); Tel.: +852-6761-4757 (L.D.); +86-137-2109-1768 (W.T.); +852-2859-2160 (D.L.P.)
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China; (Y.L.); (X.Z.); (Z.Y.)
- Correspondence: (L.D.); (W.T.); (D.L.P.); Tel.: +852-6761-4757 (L.D.); +86-137-2109-1768 (W.T.); +852-2859-2160 (D.L.P.)
| |
Collapse
|
22
|
Li J, Thiele S, Quirk BC, Kirk RW, Verjans JW, Akers E, Bursill CA, Nicholls SJ, Herkommer AM, Giessen H, McLaughlin RA. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. LIGHT, SCIENCE & APPLICATIONS 2020; 9:124. [PMID: 32704357 PMCID: PMC7371638 DOI: 10.1038/s41377-020-00365-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 05/03/2023]
Abstract
Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application. To overcome this limitation, we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics (<130 µm diameter) on single-mode fibers. Using this technique, we built a fully functional ultrathin aberration-corrected optical coherence tomography probe. This is the smallest freeform 3D imaging probe yet reported, with a diameter of 0.457 mm, including the catheter sheath. We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries. The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.
Collapse
Affiliation(s)
- Jiawen Li
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Simon Thiele
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Bryden C. Quirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Rodney W. Kirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Johan W. Verjans
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
- Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Emma Akers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Christina A. Bursill
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC 3168 Australia
| | - Alois M. Herkommer
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert A. McLaughlin
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
23
|
Ricci M, Rutten MG, Toyouchi S, Nanayakkara S, Fortuni B, Vitale R, Rocha S, Wilson DA, Hofkens J, Saito K, Uji-i H. Two-Photon-Induced [2 + 2] Cycloaddition of Bis-thymines: A Biocompatible and Reversible Approach. ACS OMEGA 2020; 5:11547-11552. [PMID: 32478244 PMCID: PMC7254774 DOI: 10.1021/acsomega.0c00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Despite having great value across a wide variety of scientific fields, two-photon polymerizations currently suffer from two significant problems: the need for photoinitiators, which generate toxic side products, and the irreversibility of the process. Hence, the design of a versatile approach that circumvents these issues represents a major scientific challenge. Herein, we report a two-photon absorption strategy where reversible [2 + 2] cycloaddition of bis-thymines was achieved without the need for any photoinitiator. The cycloaddition and cycloreversion reactions could be induced by simply changing the irradiation wavelength, and repeated writing and erasing cycles were performed. The simplicity, reversibility, and biocompatibility of this strategy open up a whole new toolbox for applications across a wide variety of scientific fields.
Collapse
Affiliation(s)
- Monica Ricci
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Martin G.T.A. Rutten
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Shuichi Toyouchi
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Sepa Nanayakkara
- School
of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Beatrice Fortuni
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Raffaele Vitale
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Laboratoire
de Spectrochimie Infrarouge et Raman, Université
de Lille, Villeneuve
d’Ascq Cedex C5, 59655 Lille, France
| | - Susana Rocha
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Daniela A. Wilson
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kei Saito
- School
of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Hiroshi Uji-i
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Research
Institute for Electronic Science, Hokkaido
University, N20W10, Kita-Waird, Sapporo 001-0020, Japan
| |
Collapse
|
24
|
Saha SK, Wang D, Nguyen VH, Chang Y, Oakdale JS, Chen SC. Scalable submicrometer additive manufacturing. Science 2020; 366:105-109. [PMID: 31604310 DOI: 10.1126/science.aax8760] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)-based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.
Collapse
Affiliation(s)
- Sourabh K Saha
- Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Dien Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Vu H Nguyen
- Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Yina Chang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - James S Oakdale
- Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
25
|
Pan D, Liu S, Ji S, Cai Z, Li J, Hou Y, Zhang W, Fan S, Li R, Hu Y, Zhu W, Wu D, Chu J. Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. OPTICS LETTERS 2020; 45:897-900. [PMID: 32058499 DOI: 10.1364/ol.384249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this Letter, we demonstrate a laser fabrication strategy that uses the long focal depth femtosecond axilens laser beam to manufacture the high-aspect-ratio (HAR) micropillars and atomic force microscopy (AFM) probes by one-step exposure. The long depth of focus is generated by modulating laser beam focused at different positions. By adjusting the exposure height, the morphology of HAR micropillars can be tuned flexibly, and the micropillar with an ultra-high aspect ratio (diameter of 1.5 µm, height of 102 µm, ${\rm AR}={70}$AR=70) can be fabricated within 10 ms which is a great challenge for other processing methods to obtain such a HAR microstructure in such a short time. In addition, the HAR micropillar is fabricated onto a cantilever to form the AFM probe. The homemade probe shows fine imaging quality. This method greatly improves the processing efficiency while ensuring the fabrication resolution which provides a powerful method for processing HAR microstructures.
Collapse
|
26
|
Pearre BW, Michas C, Tsang JM, Gardner TJ, Otchy TM. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. ADDITIVE MANUFACTURING 2019; 30:100887. [PMID: 32864346 PMCID: PMC7450988 DOI: 10.1016/j.addma.2019.100887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
3D printing allows rapid fabrication of complex objects from digital designs. One 3D-printing process, direct laser writing, polymerises a light-sensitive material by steering a focused laser beam through the shape of the object to be created. The highest-resolution direct laser writing systems use a femtosecond laser, steered using mechanised stages or galvanometer-controlled mirrors, to effect two-photon polymerisation. Here we report a new high-resolution direct laser writing system that employs a resonant mirror scanner to achieve a significant increase in printing speed over current methods while maintaining resolution on the order of a micron. This printer is based on a software modification to a commercially available resonant-scanning two-photon microscope. We demonstrate the complete process chain from hardware configuration and control software to the printing of objects of approximately 400 × 400 × 350 μm, and validate performance with objective benchmarks. Released under an open-source license, this work makes micron-scale 3D printing available at little or no cost to the large community of two-photon microscope users, and paves the way toward widespread availability of precision-printed devices.
Collapse
Affiliation(s)
| | - Christos Michas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jean-Marc Tsang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Timothy J. Gardner
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
27
|
Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. APPLIED OPTICS 2019; 58:8227-8236. [PMID: 31674493 DOI: 10.1364/ao.58.008227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
In this paper we consider the calculation of binary diffraction optical elements (DOEs) for the formation and detection of optical vortices of arbitrary order. The synthesis of binary DOEs is based on a combination of the method of carrier spatial frequencies and binary coding with a variable fill factor. Unlike various methods of multiplication, the method of carrier spatial frequencies is characterized by great flexibility and versatility. It allows us to not only form the given field distributions in arbitrary diffraction orders, but also to give them arbitrary weight ratio (energy distribution in orders). As a rule, such universality leads to the need to form a complex amplitude-phase distribution in the input plane. To avoid this, in this paper it is proposed to use binary coding with a variable level. The effect of such coding is studied in detail both theoretically and numerically. It is shown that the level variation makes it possible to change the set of the observed diffraction orders. The positions and orders of the optical vortices formed are uniquely determined by the values of the carrying spatial frequencies and the topological charges of the vortices in the basic order. The results can be useful in optical communications.
Collapse
|
28
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
30
|
Ladner IS, Cullinan MA, Saha SK. Tensile properties of polymer nanowires fabricated via two-photon lithography. RSC Adv 2019; 9:28808-28813. [PMID: 35529657 PMCID: PMC9071184 DOI: 10.1039/c9ra02350j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Two-photon lithography enables fabrication of complex 3D structures with nanoscale features. However, its utility is limited by the lack of knowledge about the process–property relationship. Here, we have designed micro-electro-mechanical systems (MEMS)-based miniaturized tensile testers to measure the stress–strain response of the individual polymer nanowires. Measurements demonstrate that geometrically indistinguishable nanowires can exhibit widely varying material behavior ranging from brittle to soft plastic based on processing conditions. In addition, a distinct size-scaling effect was observed for post-processed nanowires wherein thinner nanowires have up to 2 times higher properties. The process–property characterization presented here will be critical for predictive design of functional 3D structures with nanoscale features. Previously unmeasurable mechanical properties of additively manufactured polymer nanowires were measured using custom-built MEMS sensors to characterize the process–property relationship.![]()
Collapse
Affiliation(s)
- Ian S. Ladner
- Center for Engineered Materials & Manufacturing
- Lawrence Livermore National Laboratory
- Livermore
- USA
- Department of Mechanical Engineering
| | - Michael A. Cullinan
- Department of Mechanical Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Sourabh K. Saha
- Center for Engineered Materials & Manufacturing
- Lawrence Livermore National Laboratory
- Livermore
- USA
- Woodruff School of Mechanical Engineering
| |
Collapse
|
31
|
Salmean C, Dimartino S. 3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3671-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Donato MG, Rajamanickam VP, Foti A, Gucciardi PG, Liberale C, Maragò OM. Optical force decoration of 3D microstructures with plasmonic particles. OPTICS LETTERS 2018; 43:5170-5173. [PMID: 30320847 DOI: 10.1364/ol.43.005170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Optical forces are used to push and aggregate gold nanorods onto several substrates creating surface-enhanced Raman scattering (SERS) active hot spots for Raman-based identification of proteins. By monitoring the increase of the protein SERS signal, we observe different aggregation times for different curvatures of the substrates. The slower aggregation dynamics on curved surfaces is justified by a simple geometrical model. In particular, this technique is used to decorate three-dimensional microstructures and to quickly realize hybrid micro/nanosensors for highly sensitive detection of biological material directly in a liquid environment.
Collapse
|
33
|
Nadgorny M, Ameli A. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17489-17507. [PMID: 29742896 DOI: 10.1021/acsami.8b01786] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three-dimensional printing (3DP) has attracted a considerable amount of attention during the past years, being globally recognized as one of the most promising and revolutionary manufacturing technologies. Although the field is rapidly evolving with significant technological advancements, materials research remains a spotlight of interest, essential for the future developments of 3DP. Smart polymers and nanocomposites, which respond to external stimuli by changing their properties and structure, represent an important group of materials that hold a great promise for the fabrication of sensors, actuators, robots, electronics, and medical devices. The interest in exploring functional materials and their 3DP is constantly growing in an attempt to meet the ever-increasing manufacturing demand of complex functional platforms in an efficient manner. In this review, we aim to outline the recent advances in the science and engineering of functional polymers and nanocomposites for 3DP technologies. The report covers temperature-responsive polymers, polymers and nanocomposites with electromagnetic, piezoresistive and piezoelectric behaviors, self-healing polymers, light- and pH-responsive materials, and mechanochromic polymers. The main objective is to link the performance and functionalities to the fundamental properties, chemistry, and physics of the materials, and to the process-driven characteristics, in an attempt to provide a multidisciplinary image and a deeper understanding of the topic. The challenges and opportunities for future research are also discussed.
Collapse
Affiliation(s)
- Milena Nadgorny
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Parkville 3010 , Victoria , Australia
| | - Amir Ameli
- Advanced Composites Laboratory, School of Mechanical and Materials Engineering , Washington State University Tri-Cities , 2710 Crimson Way , Richland , Washington 99354 , United States
| |
Collapse
|
34
|
Multi-length scale bioprinting towards simulating microenvironmental cues. Biodes Manuf 2018; 1:77-88. [PMID: 30546920 PMCID: PMC6267274 DOI: 10.1007/s42242-018-0014-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
It is envisaged that the creation of cellular environments at multiple length scales, that recapitulate in vivo bioactive and structural roles, may hold the key to creating functional, complex tissues in the laboratory. This review considers recent advances in biofabrication and bioprinting techniques across different length scales. Particular focus is placed on 3D printing of hydrogels and fabrication of biomaterial fibres that could extend the feature resolution and material functionality of soft tissue constructs. The outlook from this review discusses how one might create and simulate microenvironmental cues in vitro. A fabrication platform that integrates the competencies of different biofabrication technologies is proposed. Such a multi-process, multiscale fabrication strategy may ultimately translate engineering capability into an accessible life sciences toolkit, fulfilling its potential to deliver in vitro disease models and engineered tissue implants.
Collapse
|
35
|
Microfluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices. Sci Rep 2018; 8:8031. [PMID: 29795137 PMCID: PMC5966447 DOI: 10.1038/s41598-018-25977-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023] Open
Abstract
Extracorporeal lung assist technology is one of the last options in critical care medicine to treat patients suffering from severe oxygenation and decarboxylation disorders. Platelet activation along with the consequent thrombus formation is a potentially life-threatening complication of this technique. To avoid platelet-dependent clot formation, this study aims at developing a microfluidic cell sorting chip that can bypass platelets prior to the membrane oxygenator of the extracorporeal lung assist device. The cell sorting chips were produced by maskless dip-in laser lithography, followed by soft lithography replication using PDMS. Citrated porcine whole blood with a clinically relevant haematocrit of 17% was used for the cell sorting experiments involving three different blood flow rates. The joint effects of flow focusing and hydrodynamic lifting forces within the cell sorting chip resulted in a reduction of up to 57% of the baseline platelet count. This cell sorting strategy is suitable for the continuous and label-free separation of red blood cells and platelets and is potentially applicable for increasing the biocompatibility and lifetime of current extracorporeal lung assist devices.
Collapse
|
36
|
You S, Li J, Zhu W, Yu C, Mei D, Chen S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J Mater Chem B 2018; 6:2187-2197. [PMID: 30319779 PMCID: PMC6178227 DOI: 10.1039/c8tb00301g] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment is a crucial part of tissue engineering. It has been demonstrated that cell behaviors can be affected by not only the hydrogel's physical and chemical properties, but also its three dimensional (3D) geometrical structures. In order to study the influence of 3D geometrical cues on cell behaviors as well as the maturation and function of engineered tissues, it is imperative to develop 3D fabrication techniques to create micro and nanoscale hydrogel constructs. Among existing techniques that can effectively pattern hydrogels, two-photon polymerization (2PP)-based femtosecond laser 3D printing technology allows one to produce hydrogel structures with 100 nm resolution. This article reviews the basics of this technique as well as some of its applications in tissue engineering.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Jiawen Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| | - Deqing Mei
- Department of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093-0448, USA
| |
Collapse
|
37
|
Haas M, Radebner J, Eibel A, Gescheidt G, Stueger H. Recent Advances in Germanium-Based Photoinitiator Chemistry. Chemistry 2018; 24:8258-8267. [PMID: 29356151 PMCID: PMC6032850 DOI: 10.1002/chem.201705567] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 11/06/2022]
Abstract
Acylgermanes provide an outstanding photoinduced reactivity at very useful absorption wavelengths. This encouraged multidisciplinary research groups to utilize them as highly effective and non-toxic photoinitiators particularly for medical applications. In this Minireview, we present the most recent breakthroughs to synthesize acylgermanes. We also outline mechanistic aspects of photoinduced reactions of several acylgermane derivatives based on fundamental spectroscopic insights. These studies may aid future developments for tailor-made photoinitiators.
Collapse
Affiliation(s)
- Michael Haas
- Institute of Inorganic Chemistry, Technische Universität Graz, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Judith Radebner
- Institute of Inorganic Chemistry, Technische Universität Graz, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Anna Eibel
- Institute of Physical and Theoretical Chemistry, Technische Universität Graz, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Technische Universität Graz, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Harald Stueger
- Institute of Inorganic Chemistry, Technische Universität Graz, Stremayrgasse 9/IV, 8010, Graz, Austria
| |
Collapse
|
38
|
Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S. 3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches. SMALL METHODS 2018; 2:1700277. [PMID: 30090851 PMCID: PMC6078427 DOI: 10.1002/smtd.201700277] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
3D-printing is a powerful additive manufacturing tool, one that enables fabrication of biomedical devices and systems that would otherwise be challenging to create with more traditional methods such as machining or molding. Many different classes of 3D-printing technologies exist, most notably extrusion-based and light-based 3D-printers, which are popular in consumer markets, with advantages and limitations for each modality. The focus here is primarily on showcasing the ability of these 3D-printing platforms to create different types of functional biomedical microdevices-their advantages and limitations are covered with respect to other classes of 3D-printing, as well as the past, recent, and future efforts to advance the functional microdevice domain. In particular, the fabrication of micromachines/robotics, drug-delivery devices, biosensors, and microfluidics is addressed. The current challenges associated with 3D-printing of functional microdevices are also addressed, as well as future directions to improve both the printing techniques and the performance of the printed products.
Collapse
Affiliation(s)
- Henry H Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Victorine
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Zhang N, Wang Y, Sun W, Liu S, Huang C, Jiang X, Xiao M, Xiao S, Song Q. High-Q and highly reproducible microdisks and microlasers. NANOSCALE 2018; 10:2045-2051. [PMID: 29323392 DOI: 10.1039/c7nr08600h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High quality (Q) factor microdisks are fundamental building blocks of on-chip integrated photonic circuits and biological sensors. The resonant modes in microdisks circulate near their boundaries, making their performances strongly dependent upon surface roughness. Surface-tension-induced microspheres and microtoroids are superior to other dielectric microdisks when comparing Q factors. However, most photonic materials such as silicon and negative photoresists are hard to be reflowed and thus the realizations of high-Q microdisks are strongly dependent on electron-beam lithography. Herein, we demonstrate a robust, cost-effective, and highly reproducible technique to fabricate ultrahigh-Q microdisks. By using silica microtoroids as masks, we have successfully replicated their ultrasmooth boundaries in a photoresist via anisotropic dry etching. The experimentally recorded Q factors of passive microdisks can be as large as 1.5 × 106. Similarly, ultrahigh Q microdisk lasers have also been replicated in dye-doped polymeric films. The laser linewidth is only 8 pm, which is limited by the spectrometer and is much narrower than that in previous reports. Meanwhile, high-Q deformed microdisks have also been fabricated by controlling the shape of microtoroids, making the internal ray dynamics and external directional laser emissions controllable. Interestingly, this technique also applies to other materials. Silicon microdisks with Q > 106 have been experimentally demonstrated with a similar process. We believe this research will be important for the advances of high-Q micro-resonators and their applications.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS NANO 2018; 12:327-337. [PMID: 29202221 DOI: 10.1021/acsnano.7b06398] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Veronika Magdanz
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Lukas Schwarz
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology , Reichenhainer Straße 70, 09107 Chemnitz, Germany
| |
Collapse
|
41
|
Delrot P, Loterie D, Psaltis D, Moser C. Single-photon three-dimensional microfabrication through a multimode optical fiber. OPTICS EXPRESS 2018; 26:1766-1778. [PMID: 29402046 DOI: 10.1364/oe.26.001766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Two-photon polymerization (TPP) processes have enabled the fabrication of advanced and functional microstructures. However, most TPP platforms are bulky and require the use of expensive femtosecond lasers. Here, we propose an inexpensive and compact alternative to TPP by adapting an endoscopic imaging system for single-photon three-dimensional microfabrication. The wavefront of a visible continuous-wave laser beam is shaped so that it focuses into a photoresist through a 5 cm long ultra-thin multimode optical fiber (∅70 μm, NA 0.64). Using this device, we show that single-photon polymerization can be confined to the phase-controlled focal spot thanks to the non-linearity of the photoresist, likely due to oxygen radical scavenging. Thus, by exploiting this non-linearity with a specific overcuring method we demonstrate single-photon three-dimensional fabrication of solid and hollow microstructures through a multimode fiber with a 1.0-μm lateral and 21.5-μm axial printing resolution. This opens up new possibilities for advanced and functional microfabrication through endoscopic probes with inexpensive laser sources.
Collapse
|
42
|
Saha SK, Oakdale JS, Cuadra JA, Divin C, Ye J, Forien JB, Bayu Aji LB, Biener J, Smith WL. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1164-1172. [PMID: 29171264 DOI: 10.1021/acsami.7b12654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2-3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for the evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. Here, we present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the "feedstock" for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.
Collapse
Affiliation(s)
- Sourabh K Saha
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - James S Oakdale
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Jefferson A Cuadra
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Chuck Divin
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Jianchao Ye
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Jean-Baptiste Forien
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Leonardus B Bayu Aji
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Juergen Biener
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - William L Smith
- Materials Engineering Division and ‡Materials Science Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
43
|
Pennacchio FA, Casale C, Urciuolo F, Imparato G, Vecchione R, Netti PA. Controlling the orientation of a cell-synthesized extracellular matrix by using engineered gelatin-based building blocks. Biomater Sci 2018; 6:2084-2091. [DOI: 10.1039/c7bm01093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface micropatterned gelatin building blocks clearly increment the alignment degree of collagen-based microtissues synthesized by human dermal fibroblasts.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT@CRIB)
- Napoli
- Italy
- Interdisciplinary Research Centre on Biomaterials
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials
- (CRIB)
- University of Naples Federico II
- Naples I-80125
- Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT@CRIB)
- Napoli
- Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT@CRIB)
- Napoli
- Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT@CRIB)
- Napoli
- Italy
- Interdisciplinary Research Centre on Biomaterials
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT@CRIB)
- Napoli
- Italy
- Interdisciplinary Research Centre on Biomaterials
| |
Collapse
|
44
|
Yilmaz G, Yagci Y. Photoinduced metal-free atom transfer radical polymerizations: state-of-the-art, mechanistic aspects and applications. Polym Chem 2018. [DOI: 10.1039/c8py00207j] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoinduced atom transfer radical polymerization has recently been the center of intensive research in synthetic polymer chemistry because of the unique possibility of topological and temporal control in addition to precise control of macromolecular structure offered by conventional ATRP.
Collapse
Affiliation(s)
- Gorkem Yilmaz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Yusuf Yagci
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry
| |
Collapse
|
45
|
Saouma FO, Stoumpos CC, Kanatzidis MG, Kim YS, Jang JI. Multiphoton Absorption Order of CsPbBr 3 As Determined by Wavelength-Dependent Nonlinear Optical Spectroscopy. J Phys Chem Lett 2017; 8:4912-4917. [PMID: 28944676 DOI: 10.1021/acs.jpclett.7b02286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CsPbBr3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conduction-band minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly two-photon forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.
Collapse
Affiliation(s)
- Felix O Saouma
- Department of Physics, Applied Physics and Astronomy, State University of New York (SUNY) at Binghamton , P.O. Box 6000, Binghamton, New York 13902, United States
| | - Constantinos C Stoumpos
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Soo Kim
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan , 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Joon I Jang
- Department of Physics, Sogang University , 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| |
Collapse
|
46
|
Schwärzle D, Hou X, Prucker O, Rühe J. Polymer Microstructures through Two-Photon Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703469. [PMID: 28833568 DOI: 10.1002/adma.201703469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Two-photon crosslinking of polymers (2PC) is proposed as a novel method for the fabrication of freestanding microstructures via two-photon lithography. During this process in the confocal volume, two-photon absorption leads to (formal) C,H-insertion reactions, and consequently to a strictly localized crosslinking of the polymer. To achieve this, the polymer is coated as a solvent-free (glassy) film onto an appropriate substrate, and the desired microstructure is written by 2PC into this glass. In all regions outside of the focal volume where no two-photon process occurs, the polymer remains uncrosslinked and can be washed away during a developing process. Using a self-assembled monolayer containing the same photoreactive group allows covalent attachment of the forming freestanding structures to the substrate, and thus guarantees an improved stability of these structures against shear-induced detachment. As the two photon process is carried out in the glassy state, in a simple way, multilayer structures can be used to write structures having a varying chemical composition perpendicular to the surface. As an example, the 2PC process is used to build a structure from both protein-repellent and protein-adsorbing polymers so that the resulting 3D structure exhibits spatially controlled protein adsorption.
Collapse
Affiliation(s)
- David Schwärzle
- Department of Microsystems Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Xiaoqang Hou
- Department of Microsystems Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Oswald Prucker
- Department of Microsystems Engineering, University of Freiburg, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
47
|
Kumar VB, Sahu AK, Mohsin ASM, Li X, Gedanken A. Refractive-Index Tuning of Highly Fluorescent Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28930-28938. [PMID: 28796480 DOI: 10.1021/acsami.7b08985] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this manuscript, we report the refractive-index (RI) modulation of various concentrations of nitrogen-doped carbon dots (N@C-dots) embedded in poly(vinyl alcohol) (PVA) polymer. The dispersion and size distribution of N@C-dots embedded within PVA have been investigated using electron microscopy. The RI of PVA-N@C-dots can be enhanced by increasing the doping concentration of highly fluorescent C-dots (quantum yield 44%). This is demonstrated using ultraviolet-visible (UV-visible), photoluminscence, Raman, and Fourier transform infrared (FTIR) spectroscopy measurements. The Mie scattering of light on N@C-dots was applied for developing the relationship between RI tuning and absorption cross section of N@C-dots. The extinction cross section of N@C-dot thin films can be rapidly enhanced by either tuning the RI or increasing the concentration of N@C-dots. The developed method can be used as effective RI contrast for various applications such as holography creation and bioimaging.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Amit Kumar Sahu
- Centre for Micro-Photonics, Swinburne University of Technology , John Street, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Abu S M Mohsin
- Centre for Micro-Photonics, Swinburne University of Technology , John Street, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Xiangping Li
- Centre for Micro-Photonics, Swinburne University of Technology , John Street, P.O. Box 218, Hawthorn, Victoria 3122, Australia
- Institute of Photonics Technology, Jinan University , Guangzhou 510632, China
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
48
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017; 117:10212-10290. [PMID: 28756658 PMCID: PMC5553103 DOI: 10.1021/acs.chemrev.7b00074] [Citation(s) in RCA: 1201] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
Collapse
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Robert Liska
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Jürgen Stampfl
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Matthias Gurr
- H.
B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
49
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.7b00074 impact factor 2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | | | | | - Matthias Gurr
- H. B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
50
|
Dottermusch S, Quintilla A, Gomard G, Roslizar A, Voggu VR, Simonsen BA, Park JS, Pernik DR, Korgel BA, Paetzold UW, Richards BS. Infiltrated photonic crystals for light-trapping in CuInSe 2 nanocrystal-based solar cells. OPTICS EXPRESS 2017; 25:A502-A514. [PMID: 28788881 DOI: 10.1364/oe.25.00a502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solution processable nanocrystal solar cells combine the advantages of low-cost printing and wide range of accessible absorber materials, however high trap densities limit performance and layer thickness. In this work we develop a versatile route to realize the infiltration of a photonic crystal, with copper indium diselenide nanocrystal ink. The photonic crystal allows to couple incident light into pseudo-guided modes and thereby enhanced light absorption. For the presented design, we are able to identify individual guided modes, explain the underlying physics, and obtain a perfect match between the measured and simulated absorption peaks. For our relatively low refractive index layers, a 7% maximum integrated absorption enhancement is demonstrated.
Collapse
|