1
|
Gosak M, Yan-Do R, Lin H, MacDonald PE, Stožer A. Ca2+ Oscillations, Waves, and Networks in Islets From Human Donors With and Without Type 2 Diabetes. Diabetes 2022; 71:2584-2596. [PMID: 36084321 PMCID: PMC9750953 DOI: 10.2337/db22-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Pancreatic islets are highly interconnected structures that produce pulses of insulin and other hormones, maintaining normal homeostasis of glucose and other nutrients. Normal stimulus-secretion and intercellular coupling are essential to regulated secretory responses, and these hallmarks are known to be altered in diabetes. In the current study, we used calcium imaging of isolated human islets to assess their collective behavior. The activity occurred in the form of calcium oscillations, was synchronized across different regions of islets through calcium waves, and was glucose dependent: higher glucose enhanced the activity, elicited a greater proportion of global calcium waves, and led to denser and less fragmented functional networks. Hub regions were identified in stimulatory conditions, and they were characterized by long active times. Moreover, calcium waves were found to be initiated in different subregions and the roles of initiators and hubs did not overlap. In type 2 diabetes, glucose dependence was retained, but reduced activity, locally restricted waves, and more segregated networks were detected compared with control islets. Interestingly, hub regions seemed to suffer the most by losing a disproportionately large fraction of connections. These changes affected islets from donors with diabetes in a heterogeneous manner.
Collapse
Affiliation(s)
- Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Richard Yan-Do
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
2
|
Huang W, Wu T, Xie C, Rayner CK, Priest C, Ebendorff‐Heidepriem H, Zhao J(T. Sensing Intra‐ and Extra‐Cellular Ca 2+ in the Islet of Langerhans. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202106020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/19/2024]
Abstract
AbstractCalcium ions (Ca2+) take part in intra‐ and inter‐cellular signaling to mediate cellular functions. Sensing this ubiquitous messenger is instrumental in disentangling the specific functions of cellular sub‐compartments and/or intercellular communications. In this review, the authors first describe intra‐ and inter‐cellular Ca2+ signaling in relation to insulin secretion from the pancreatic islets, and then outline the development of diverse sensors, for example, chemically synthesized indicators, genetically encoded proteins, and ion‐selective microelectrodes, for intra‐ and extra‐cellular sensing of Ca2+. Particular emphasis is placed on emerging approaches in this field, such as low‐affinity Ca2+ indicators and unique Ca2+‐responsive composite materials. The authors conclude by remarking on the challenges and opportunities for further developments in this field, which may facilitate a more comprehensive understanding of Ca2+ signaling within and outside the islets, and its relevance in health and disease.
Collapse
Affiliation(s)
- Weikun Huang
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
| | - Tongzhi Wu
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Cong Xie
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Christopher K. Rayner
- Adelaide Medical School Centre of Research Excellence in Translating Nutritional Science to Good Health The University of Adelaide Adelaide South Australia 5005 Australia
| | - Craig Priest
- Australian National Fabrication Facility and Future Industries Institute UniSA STEM University of South Australia Mawson Lakes South Australia 5095 Australia
| | - Heike Ebendorff‐Heidepriem
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
| | - Jiangbo (Tim) Zhao
- Institute for Photonics and Advanced Sensing School of Physical Sciences ARC Centre of Excellence for Nanoscale BioPhotonics University of Adelaide Adelaide South Australia 5005 Australia
- Department of Engineering Faculty of Science and Engineering University of Hull Hull HU6 7RX UK
| |
Collapse
|
3
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
5
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
6
|
Kim D, Hogan JO, White C. Ca 2+ oscillations in rat carotid body type 1 cells in normoxia and hypoxia. Am J Physiol Cell Physiol 2020; 318:C430-C438. [PMID: 31913694 DOI: 10.1152/ajpcell.00442.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the mechanisms by which carotid body glomus (type 1) cells produce spontaneous Ca2+ oscillations in normoxia and hypoxia. In cells perfused with normoxic solution at 37°C, we observed relatively uniform, low-frequency Ca2+ oscillations in >60% of cells, with each cell showing its own intrinsic frequency and amplitude. The mean frequency and amplitude of Ca2+ oscillations were 0.6 ± 0.1 Hz and 180 ± 42 nM, respectively. The duration of each Ca2+ oscillation ranged from 14 to 26 s (mean of ∼20 s). Inhibition of inositol (1,4,5)-trisphosphate receptor and store-operated Ca2+ entry (SOCE) using 2-APB abolished Ca2+ oscillations. Inhibition of endoplasmic reticulum Ca2+-ATPase (SERCA) using thapsigargin abolished Ca2+ oscillations. ML-9, an inhibitor of STIM1 translocation, also strongly reduced Ca2+ oscillations. Inhibitors of L- and T-type Ca2+ channels (Cav; verapamil>nifedipine>TTA-P2) markedly reduced the frequency of Ca2+ oscillations. Thus, Ca2+ oscillations observed in normoxia were caused by cyclical Ca2+ fluxes at the ER, which was supported by Ca2+ influx via Ca2+ channels. Hypoxia (2-5% O2) increased the frequency and amplitude of Ca2+ oscillations, and Cav inhibitors (verapamil>nifedipine>>TTA-P2) reduced these effects of hypoxia. Our study shows that Ca2+ oscillations represent the basic Ca2+ signaling mechanism in normoxia and hypoxia in CB glomus cells.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - James O Hogan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
7
|
Islam MS. Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:943-963. [PMID: 31646540 DOI: 10.1007/978-3-030-12457-1_37] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin secretion in humans is usually induced by mixed meals, which upon ingestion, increase the plasma concentration of glucose, fatty acids, amino acids, and incretins like glucagon-like peptide 1. Beta-cells can stay in the off-mode, ready-mode or on-mode; the mode-switching being determined by the open state probability of the ATP-sensitive potassium channels, and the activity of enzymes like glucokinase, and glutamate dehydrogenase. Mitochondrial metabolism is critical for insulin secretion. A sound understanding of the intermediary metabolism, electrophysiology, and cell signaling is essential for comprehension of the entire spectrum of the stimulus-secretion coupling. Depolarization brought about by inhibition of the ATP sensitive potassium channel, together with the inward depolarizing currents through the transient receptor potential (TRP) channels, leads to electrical activities, opening of the voltage-gated calcium channels, and exocytosis of insulin. Calcium- and cAMP-signaling elicited by depolarization, and activation of G-protein-coupled receptors, including the free fatty acid receptors, are intricately connected in the form of networks at different levels. Activation of the glucagon-like peptide 1 receptor augments insulin secretion by amplifying calcium signals by calcium induced calcium release (CICR). In the treatment of type 2 diabetes, use of the sulfonylureas that act on the ATP sensitive potassium channel, damages the beta cells, which eventually fail; these drugs do not improve the cardiovascular outcomes. In contrast, drugs acting through the glucagon-like peptide-1 receptor protect the beta-cells, and improve cardiovascular outcomes. The use of the glucagon-like peptide 1 receptor agonists is increasing and that of sulfonylurea is decreasing. A better understanding of the stimulus-secretion coupling may lead to the discovery of other molecular targets for development of drugs for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Research Center, Karolinska Institutet, Stockholm, Sweden. .,Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
9
|
Serum miR-17 levels are downregulated in obese, African American women with elevated HbA1c. J Diabetes Metab Disord 2019; 18:173-179. [PMID: 31275888 DOI: 10.1007/s40200-019-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Purpose Type 2 diabetes is heterogeneous disease characterized by several conditions including hyperglycemia. It is estimated that over 350 million people worldwide are suffering from type 2 diabetes and this number is expected to rise. According to the CDC, African Americans were observed to have a 40% higher incidence of diabetes compared to European Americans. Epigenetic modulating mechanisms such as microRNAs (miRNAs), have recently been established as a massive regulatory machine in metabolic syndrome, obesity and type 2 diabetes. In the present study, we aimed to investigate the serum levels of circulating miRNA 17 (miR-17) of obese, African American women with elevated HbA1c. Methods We investigated miR-17 serum levels using qPCR. Then we used Pairwise Pearson Correlation Test to determine the relationship between clinical metabolic parameters and miR-17 serum levels. Results The results indicated that participants with elevated HbA1c exhibited a down regulation of serum miR-17 levels compared to participants with normal HbA1c. MiR-17 was also correlated with serum calcium in participants with normal HbA1c. Conclusions The results suggest that serum miR-17 is involved in the regulation of glucose and calcium homeostasis, which may contribute to the development of type 2 diabetes.
Collapse
|
10
|
Janjuha S, Pal Singh S, Ninov N. Analysis of Beta-cell Function Using Single-cell Resolution Calcium Imaging in Zebrafish Islets. J Vis Exp 2018. [PMID: 30035763 PMCID: PMC6102039 DOI: 10.3791/57851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pancreatic beta-cells respond to increasing blood glucose concentrations by secreting the hormone insulin. The dysfunction of beta-cells leads to hyperglycemia and severe, life-threatening consequences. Understanding how the beta-cells operate under physiological conditions and what genetic and environmental factors might cause their dysfunction could lead to better treatment options for diabetic patients. The ability to measure calcium levels in beta-cells serves as an important indicator of beta-cell function, as the influx of calcium ions triggers insulin release. Here we describe a protocol for monitoring the glucose-stimulated calcium influx in zebrafish beta-cells by using GCaMP6s, a genetically encoded sensor of calcium. The method allows monitoring the intracellular calcium dynamics with single-cell resolution in ex vivo mounted islets. The glucose-responsiveness of beta-cells within the same islet can be captured simultaneously under different glucose concentrations, which suggests the presence of functional heterogeneity among zebrafish beta-cells. Furthermore, the technique provides high temporal and spatial resolution, which reveals the oscillatory nature of the calcium influx upon glucose stimulation. Our approach opens the doors to use the zebrafish as a model to investigate the contribution of genetic and environmental factors to beta-cell function and dysfunction.
Collapse
Affiliation(s)
- Sharan Janjuha
- Center for Molecular and Cellular Bioengineering, TU Dresden; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden
| | | | - Nikolay Ninov
- Center for Molecular and Cellular Bioengineering, TU Dresden; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden;
| |
Collapse
|
11
|
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 2017; 9:109-139. [PMID: 28662366 PMCID: PMC5710702 DOI: 10.1080/19382014.2017.1342022] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
12
|
Graves SA, Hernandez R, Valdovinos HF, Ellison PA, Engle JW, Barnhart TE, Cai W, Nickles RJ. Preparation and in vivo characterization of 51MnCl 2 as PET tracer of Ca 2+ channel-mediated transport. Sci Rep 2017; 7:3033. [PMID: 28596540 PMCID: PMC5465055 DOI: 10.1038/s41598-017-03202-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/27/2017] [Indexed: 01/27/2023] Open
Abstract
Manganese has long been employed as a T1-shortening agent in magnetic resonance imaging (MRI) applications, but these techniques are limited by the biotoxicity of bulk-manganese. Positron emission tomography (PET) offers superior contrast sensitivity compared with MRI, and recent preclinical PET studies employing 52gMn (t1/2: 5.6 d, β+: 29%) show promise for a variety of applications including cell tracking, neural tract tracing, immunoPET, and functional β-cell mass quantification. The half-life and confounding gamma emissions of 52gMn are prohibitive to clinical translation, but the short-lived 51Mn (t1/2: 46 min, β+: 97%) represents a viable alternative. This work develops methods to produce 51Mn on low-energy medical cyclotrons, characterizes the in vivo behavior of 51MnCl2 in mice, and performs preliminary human dosimetry predictions. 51Mn was produced by proton irradiation of electrodeposited isotopically-enriched 54Fe targets. Radiochemically isolated 51MnCl2 was intravenously administered to ICR mice which were scanned by dynamic and static PET, followed by ex vivo gamma counting. Rapid blood clearance was observed with stable uptake in the pancreas, kidneys, liver, heart, and salivary gland. Dosimetry calculations predict that 370 MBq of 51Mn in an adult human male would yield an effective dose equivalent of approximately 13.5 mSv, roughly equivalent to a clinical [18F]-FDG procedure.
Collapse
Affiliation(s)
- Stephen A Graves
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Paul A Ellison
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA.
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
- Carbone Cancer Center, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
- Department of Radiology, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, USA.
| |
Collapse
|
13
|
KANG HYUK, HAN KYUNGREEM, GOH SEGUN, CHOI MOOYOUNG. COEXISTENCE OF THREE OSCILLATORY MODES OF INSULIN SECRETION: MATHEMATICAL MODELING AND RELEVANCE TO GLUCOSE REGULATION. J BIOL SYST 2017. [DOI: 10.1142/s0218339017500188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin secretion in pancreatic [Formula: see text]-cells exhibits three oscillatory modes with distinct period ranges, called fast, slow, and ultradian modes. To unveil the mechanism underlying such oscillatory behaviors and their roles in blood glucose regulation, we propose a combined model for the glucose–insulin regulation system, incorporating both the cell-level insulin secretion mechanism and inter-organ interactions in the blood glucose regulation. Special emphasis is placed on the identification of the mechanism of the slow oscillation and its role associated with the whole-body glucose regulation. Via extensive numerical simulations, we obtain macroscopic behaviors of the three types of insulin/glucose oscillations in the whole-body as well as microscopic behaviors of the membrane potential and the calcium concentration in the [Formula: see text]-cell. Finally, optimal regulatory strategies for the blood glucose level are discussed on the basis of the quantitative information obtained from the mathematical modeling and numerical simulations.
Collapse
Affiliation(s)
- HYUK KANG
- National Institute for Mathematical Sciences, Daejeon 34047, Korea
| | - KYUNGREEM HAN
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - SEGUN GOH
- Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
| | - MOOYOUNG CHOI
- Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
14
|
Assefa Z, Akbib S, Lavens A, Stangé G, Ling Z, Hellemans KH, Pipeleers D. Direct effect of glucocorticoids on glucose-activated adult rat β-cells increases their cell number and their functional mass for transplantation. Am J Physiol Endocrinol Metab 2016; 311:E698-E705. [PMID: 27555297 DOI: 10.1152/ajpendo.00070.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Compounds that increase β-cell number can serve as β-cell replacement therapies in diabetes. In vitro studies have identified several agents that can activate DNA synthesis in primary β-cells but only in small percentages of cells and without demonstration of increases in cell number. We used whole well multiparameter imaging to first screen a library of 1,280 compounds for their ability to recruit adult rat β-cells into DNA synthesis and then assessed influences of stimulatory agents on the number of living cells. The four compounds with highest β-cell recruitment were glucocorticoid (GC) receptor ligands. The GC effect occurred in glucose-activated β-cells and was associated with increased glucose utilization and oxidation. Hydrocortisone and methylprednisolone almost doubled the number of β-cells in 2 wk. The expanded cell population provided an increased functional β-cell mass for transplantation in diabetic animals. These effects are age dependent; they did not occur in neonatal rat β-cells, where GC exposure suppressed basal replication and was cytotoxic. We concluded that GCs can induce the replication of adult rat β-cells through a direct action, with intercellular differences in responsiveness that have been related to differences in glucose activation and in age. These influences can explain variability in GC-induced activation of DNA synthesis in rat and human β-cells. Our study also demonstrated that β-cells can be expanded in vitro to increase the size of metabolically adequate grafts.
Collapse
Affiliation(s)
- Zerihun Assefa
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Sarah Akbib
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Astrid Lavens
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Karine H Hellemans
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| |
Collapse
|
15
|
Pelletier J, Domingues N, Castro MMCA, Östenson CG. In vitro effects of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), or VO(dmpp)2, on insulin secretion in pancreatic islets of type 2 diabetic Goto-Kakizaki rats. J Inorg Biochem 2015; 154:29-34. [PMID: 26559485 DOI: 10.1016/j.jinorgbio.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022]
Abstract
Vanadium compounds have been explored as therapy of diabetes, and most studies have focussed on insulin mimetic effects, i.e. reducing hyperglycemia by improving glucose sensitivity and thus glucose uptake in sensitive tissues. We have recently shown that bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), VO(dmpp)2, has promising effects when compared to another vanadium compound, bis(maltolato)oxidovanadium(IV), BMOV, and insulin itself, in isolated adipocytes and in vivo in Goto-Kakizaki (GK) rats, an animal model of hereditary type 2 diabetes (T2D).We now have investigated in GK rats whether VO(dmpp)2 also modulates another important defect in T2D, impaired insulin secretion. VO(dmpp)2, but not BMOV, stimulated insulin secretion from isolated GK rat pancreatic islets at high, 16.7mM, but not at low–normal, 3.3 mM, glucose concentration. Mechanistic studies demonstrate that the insulin releasing effect of VO(dmpp)2 is due to its interaction with several steps in the stimulus-secretion coupling for glucose, including islet glucose metabolism and K-ATP channels, L-type Ca2+ channels, modulation by protein kinases A and C, as well as the exocytotic machinery. In conclusion, VO(dmpp)2 exhibits properties of interest for treatment of the insulin secretory defect in T2D, in addition to its well-described insulin mimetic activity.
Collapse
Affiliation(s)
- Julien Pelletier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna D2:04, SE-171 76 Stockholm, Sweden
| | - Neuza Domingues
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal; Coimbra Chemistry Centre, Rua Larga, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna D2:04, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
16
|
Dolenšek J, Špelič D, Skelin Klemen M, Žalik B, Gosak M, Slak Rupnik M, Stožer A. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. SENSORS 2015; 15:27393-419. [PMID: 26516866 PMCID: PMC4701238 DOI: 10.3390/s151127393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Denis Špelič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-2-2345843
| |
Collapse
|
17
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling Ca(2+) currents and buffered diffusion of Ca(2+) in human β-cells during voltage clamp experiments. Math Biosci 2015; 270:66-80. [PMID: 26476144 DOI: 10.1016/j.mbs.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022]
Abstract
Macroscopic Ca(2+) currents of the human β-cells were characterized using the Hodgkin-Huxley formalism. Expressions describing the Ca(2+)-dependent inactivation process of the L-type Ca(2+) channels in terms of the concentration of Ca(2+) were obtained. By coupling the modeled Ca(2+) currents to a three-dimensional model of buffered diffusion of Ca(2+), we simulated the Ca(2+) transients formed in the immediate vicinity of the cell membrane during voltage clamp experiments performed in high buffering conditions. Our modeling approach allowed us to consider the distribution of the Ca(2+) sources over the cell membrane. The effect of exogenous (EGTA) and endogenous Ca(2+) buffers on the temporal course of the Ca(2+) transients was evaluated. We show that despite the high Ca(2+) buffering capacity, nanodomains are formed in the submembrane space, where a peak Ca(2+) concentration between ∼76 and 143 µM was estimated from our simulations. In addition, the contribution of each Ca(2+) current to the formation of the Ca(2+) nanodomains was also addressed. Here we provide a general framework to incorporate the spatial aspects to the models of the pancreatic β-cell, such as a more detailed and realistic description of Ca(2+) dynamics in response to electrical activity in physiological conditions can be provided by future models.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico .
| | - J Rafael Godínez-Fernández
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico
| |
Collapse
|
18
|
Henquin JC, Dufrane D, Kerr-Conte J, Nenquin M. Dynamics of glucose-induced insulin secretion in normal human islets. Am J Physiol Endocrinol Metab 2015; 309:E640-50. [PMID: 26264556 DOI: 10.1152/ajpendo.00251.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022]
Abstract
The biphasic pattern of glucose-induced insulin secretion is altered in type 2 diabetes. Impairment of the first phase is an early sign of β-cell dysfunction, but the underlying mechanisms are still unknown. Their identification through in vitro comparisons of islets from diabetic and control subjects requires characterization and quantification of the dynamics of insulin secretion by normal islets. When perifused normal human islets were stimulated with 15 mmol/l glucose (G15), the proinsulin/insulin ratio in secretory products rapidly and reversibly decreased (∼50%) and did not reaugment with time. Switching from prestimulatory G3 to G6-G30 induced biphasic insulin secretion with flat but sustained (2 h) second phases. Stimulation index reached 6.7- and 3.6-fold for the first and second phases induced by G10. Concentration dependency was similar for both phases, with half-maximal and maximal responses at G6.5 and G15, respectively. First-phase response to G15-G30 was diminished by short (30-60 min) prestimulation in G6 (vs. G3) and abolished by prestimulation in G8, whereas the second phase was unaffected. After 1-2 days of culture in G8 (instead of G5), islets were virtually unresponsive to G15. In both settings, a brief return to G3-G5 or transient omission of CaCl2 restored biphasic insulin secretion. Strikingly, tolbutamide and arginine evoked immediate insulin secretion in islets refractory to glucose. In conclusion, we quantitatively characterized the dynamics of glucose-induced insulin secretion in normal human islets and showed that slight elevation of prestimulatory glucose reversibly impairs the first phase, which supports the view that the similar impairment in type 2 diabetic patients might partially be a secondary phenomenon.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium;
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium
| | - Julie Kerr-Conte
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Agil A, Elmahallawy EK, Rodríguez-Ferrer JM, Adem A, Bastaki SM, Al-Abbadi I, Fino Solano YA, Navarro-Alarcón M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food Funct 2015; 6:2671-8. [PMID: 26134826 DOI: 10.1039/c5fo00590f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melatonin, a widespread substance with antioxidant and anti-inflammatory properties, has been found to act as an antidiabetic agent in animal models, regulating the release and action of insulin. However, the molecular bases of this antidiabetic action are unknown, limiting its application in humans. Several studies have recently shown that melatonin can modify calcium (Ca(2+)) in diabetic animals, and Ca(2+) has been reported to be involved in glucose homeostasis. The objective of the present study was to assess whether the antidiabetic effect of chronic melatonin at pharmacological doses is established via Ca(2+) regulation in different tissues in an animal model of obesity-related type 2 diabetes, using Zücker diabetic fatty (ZDF) rats and their lean littermates, Zücker lean (ZL) rats. After the treatments, flame atomic absorption spectrometry was used to determine Ca(2+) levels in the liver, muscle, main types of internal white adipose tissue, subcutaneous lumbar fat, pancreas, brain, and plasma. This study reports for the first time that chronic melatonin administration (10 mg per kg body weight per day for 6 weeks) increases Ca(2+) levels in muscle, liver, different adipose tissues, and pancreas in ZDF rats, although there were no significant changes in their brain or plasma Ca(2+) levels. We propose that this additional peripheral dual action mechanism underlies the improvement in insulin sensitivity and secretion previously documented in samples from the same animals. According to these results, indoleamine may be a potential candidate for the treatment of type 2 diabetes mellitus associated with obesity.
Collapse
Affiliation(s)
- A Agil
- Department of Pharmacology and Neurosciences Institute (CIBM), School of Medicine, University of Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
OBJECTIVES The use of primary human β-cells for studying Ca signaling is limited by the scarcity of human pancreatic islets. Rodent insulinoma cell lines are widely used, but it is difficult to extrapolate results obtained from rodent cells to human. Recently, a genetically engineered human β-cell line EndoC-BH1 has been developed. We have examined whether the EndoC-BH1 cells could be used as a model for studying Ca signaling in the β-cells. METHODS We used microscope-based fluorometry to measure cytoplasmic-free Ca concentration from fura-2-loaded single EndoC-BH1 cells cultured on glass cover slips. Ca responses to different agonists of insulin secretion were studied. Insulin secretion was measured by radioimmunoassay. RESULTS EndoC-BH1 cells secreted insulin in response to glucose in a dose-dependent manner, and the secretion was enhanced by GLP-1 (glucagon-like peptide 1). Glucose, potassium chloride, carbachol, L-arginine, and tolbutamide increased cytoplasmic-free Ca concentration in the EndoC-BH1 cells. We found that GLP-1 was essential for Ca response to glucose and tolbutamide. CONCLUSIONS We concluded that the EndoC-BH1 cells can be used as model cells to study Ca signaling and stimulus-secretion coupling in the human β-cells.
Collapse
|
21
|
Ludwig B, Ludwig S. Transplantable bioartificial pancreas devices: current status and future prospects. Langenbecks Arch Surg 2015; 400:531-40. [DOI: 10.1007/s00423-015-1314-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 02/08/2023]
|
22
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
23
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
24
|
Squires PE, Jones PM, Younis MYG, Hills CE. The calcium-sensing receptor and β-cell function. VITAMINS AND HORMONES 2014; 95:249-67. [PMID: 24559921 DOI: 10.1016/b978-0-12-800174-5.00010-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In addition to its central role controlling systemic calcium homeostasis, the extracellular calcium-sensing receptor (CaSR) can be found on multiple cell types not associated with controlling plasma calcium. The endocrine pancreas is one such tissue, and it is apparent that the receptor plays an important role in regulating β-cell function. During exocytosis, divalent cations are coreleased with insulin and their concentration within the restricted intercellular compartments of the pancreatic islet increases sufficiently to activate the CaSR on neighboring cells. Acute and chronic activation of the receptor has multiple effects on the β-cell, from increasing cadherin-based cell-cell adhesion to directly altering the expression and function of various potassium and voltage-dependent calcium channels. The promiscuous activation of multiple binding partners improves cell adhesion, cell coupling, and cell-to-cell communication within the islet and is the basis for the effect of the CaSR on β-cell function and improved glucose responsiveness.
Collapse
Affiliation(s)
- Paul E Squires
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Peter M Jones
- Diabetes & Nutritional Sciences Division, School of Medicine, King's College London, London, United Kingdom
| | - Mustafa Y G Younis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Claire E Hills
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
25
|
Stamper IJ, Jackson E, Wang X. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012719. [PMID: 24580269 PMCID: PMC4172977 DOI: 10.1103/physreve.89.012719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 06/03/2023]
Abstract
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.
Collapse
Affiliation(s)
- I. J. Stamper
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elais Jackson
- Department of Computer and Information Sciences, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xujing Wang
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
27
|
Nguyen KH, Ta TN, Pham THM, Nguyen QT, Pham HD, Mishra S, Nyomba BLG. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:488-495. [PMID: 22633982 DOI: 10.1016/j.jep.2012.05.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several Asian plants are known for their anti-diabetic properties and produce alkaloids and flavonoids that may stimulate insulin secretion. MATERIALS AND METHODS Using Vietnamese plants (Nelumbo nucifera, Gynostemma pentaphyllum, Smilax glabra, and Stemona tuberosa), we extracted two alkaloids (neotuberostemonine, nuciferine) and four flavonoids (astilbin, engeletin, smitilbin, and 3,5,3'-trihydroxy-7,4'-dimethoxyflavone), and studied their insulin stimulatory effects. RESULTS Nuciferine, extracted from Nelumbo nucifera, stimulated both phases of insulin secretion in isolated islets, whereas the other compounds had no effect. The effect of nuciferine was totally abolished by diazoxide and nimodipine, and diminished by protein kinase A and protein kinase C inhibition. Nuciferine and potassium had additive effects on insulin secretion. Nuciferine also stimulated insulin secretion in INS-1E cells at both 3.3 and 16.7 mM glucose concentrations. Compared with glibenclamide, nuciferine had a stronger effect on insulin secretion and less beta-cell toxicity. However, nuciferine did not compete with glibenclamide for binding to the sulfonylurea receptor. CONCLUSIONS Among several compounds extracted from anti-diabetic plants, nuciferine was found to stimulate insulin secretion by closing potassium-adenosine triphosphate channels, explaining anti-diabetic effects of Nelumbo nucifera.
Collapse
Affiliation(s)
- K Hoa Nguyen
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada R3E3P4
| | | | | | | | | | | | | |
Collapse
|
28
|
Ganesan A, Zhang J. How cells process information: quantification of spatiotemporal signaling dynamics. Protein Sci 2012; 21:918-28. [PMID: 22573643 DOI: 10.1002/pro.2089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/23/2012] [Indexed: 02/03/2023]
Abstract
Arguably, one of the foremost distinctions between life and non-living matter is the ability to sense environmental changes and respond appropriately--an ability that is invested in every living cell. Within a single cell, this function is largely carried out by networks of signaling molecules. However, the details of how signaling networks help cells make complicated decisions are still not clear. For instance, how do cells read graded, analog stress signals but convert them into digital live-or-die responses? The answer to such questions may originate from the fact that signaling molecules are not static but dynamic entities, changing in numbers and activity over time and space. In the past two decades, researchers have been able to experimentally monitor signaling dynamics and use mathematical techniques to quantify and abstract general principles of how cells process information. In this review, the authors first introduce and discuss various experimental and computational methodologies that have been used to study signaling dynamics. The authors then discuss the different types of temporal dynamics such as oscillations and bistability that can be exhibited by signaling systems and highlight studies that have investigated such dynamics in physiological settings. Finally, the authors illustrate the role of spatial compartmentalization in regulating cellular responses with examples of second-messenger signaling in cardiac myocytes.
Collapse
Affiliation(s)
- Ambhighainath Ganesan
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
Abstract
Islet autoimmunity in type 1 diabetes results in the loss of the pancreatic β-cells. The consequences of insulin deficiency in the portal vein for liver fat are poorly understood. Under normal conditions, the portal vein provides 75% of the liver blood supply. Recent studies suggest that non-alcoholic fatty liver disease (NAFLD) may be more common in type 1 diabetes than previously thought, and may serve as an independent risk marker for some chronic diabetic complications. The pathogenesis of NAFLD remains obscure, but it has been hypothesized that hepatic fat accumulation in type 1 diabetes may be due to lipoprotein abnormalities, hyperglycemia-induced activation of the transcription factors carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP-1c), upregulation of glucose transporter 2 (GLUT2) with subsequent intrahepatic fat synthesis, or a combination of these mechanisms. Novel approaches to non-invasive determinations of liver fat may clarify the consequences for liver metabolism when the pancreas has ceased producing insulin. This article aims to review the factors potentially contributing to hepatic steatosis in type 1 diabetes, and to assess the feasibility of using liver fat as a prognostic and/or diagnostic marker for the disease. It provides a background and a case for possible future studies in the field.
Collapse
Affiliation(s)
- Simon E Regnell
- Lund University, CRC, Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Skåne University Hospital, Malmö, Sweden.
| | | |
Collapse
|
30
|
Hellman B, Salehi A, Grapengiesser E, Gylfe E. Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochem Biophys Res Commun 2011; 417:1219-23. [PMID: 22227186 DOI: 10.1016/j.bbrc.2011.12.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/08/2023]
Abstract
Recent studies of isolated human islets have shown that glucose induces hormone release with repetitive pulses of insulin and somatostatin in antisynchrony with those of glucagon. Since the mouse is the most important animal model we studied the temporal relation between hormones released from mouse islets. Batches of 5-10 islets were perifused and the hormones measured with radioimmunoassay in 30s fractions. At 3mM glucose, hormone secretion was stable with no detectable pulses of glucagon, insulin or somatostatin. Increase of glucose to 20mM resulted in an early secretory phase with a glucagon peak followed by peaks of insulin and somatostatin. Subsequent hormone secretion was pulsatile with a periodicity of 5min. Cross-correlation analyses showed that the glucagon pulses were antisynchronous to those of insulin and somatostatin. In contrast to the marked stimulation of insulin and somatostatin secretion, the pulsatility resulted in inhibition of overall glucagon release. The cytoarchitecture of mouse islets differs from that of human islets, which may affect the interactions between the hormone-producing cells. Although indicating that paracrine regulation is important for the characteristic patterns of pulsatile hormone secretion, the mouse data mimic those of human islets with more than 20-fold variations of the insulin/glucagon ratio. The data indicate that the mouse serves as an appropriate animal model for studying the temporal relation between the islet hormones controlling glucose production in the liver.
Collapse
Affiliation(s)
- Bo Hellman
- Department of Medical Cell Biology, University of Uppsala, SE-75123 Uppsala, Sweden.
| | | | | | | |
Collapse
|
31
|
Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World J Diabetes 2011; 2:82-91. [PMID: 21860691 PMCID: PMC3158876 DOI: 10.4239/wjd.v2.i6.82] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023] Open
Abstract
Melatonin is a circulating hormone that is mainly released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms, its levels being high during the night and low during the day. Interestingly, insulin levels are also adapted to day/night changes through melatonin-dependent synchronization. This regulation may be explained by the inhibiting action of melatonin on insulin release, which is transmitted through both the pertussis-toxin-sensitive membrane receptors MT1 and MT2 and the second messengers 3’,5’-cyclic adenosine monophosphate, 3’,5’-cyclic guanosine monophosphate and inositol 1,4,5-trisphosphate. Melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion, but also by providing protection against reactive oxygen species, since pancreatic β-cells are very susceptible to oxidative stress because they possess only low-antioxidative capacity. On the other hand, in several genetic association studies, single nucleotide polymorphysms of the human MT2 receptor have been described as being causally linked to an elevated risk of developing type 2 diabetes. This suggests that these individuals may be more sensitive to the actions of melatonin, thereby leading to impaired insulin secretion. Therefore, blocking the melatonin-induced inhibition of insulin secretion may be a novel therapeutic avenue for type 2 diabetes.
Collapse
Affiliation(s)
- Javier Espino
- Javier Espino, José A Pariente, Ana B Rodríguez, Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz 06006, Spain
| | | | | |
Collapse
|
32
|
Islam MS. Calcium signaling in the islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:235-59. [PMID: 20217501 DOI: 10.1007/978-90-481-3271-3_11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Easy access to rodent islets and insulinoma cells and the ease of measuring Ca(2+) by fluorescent indicators have resulted in an overflow of data that have clarified minute details of Ca(2+) signaling in the rodent islets. Our understanding of the mechanisms and the roles of Ca(2+) signaling in the human islets, under physiological conditions, has been hugely influenced by uncritical extrapolation of the rodent data obtained under suboptimal experimental conditions. More recently, electrophysiological and Ca(2+) studies have elucidated the ion channel repertoire relevant for Ca(2+) signaling in the human islets and have examined their relative importance. Many new channels belonging to the transient receptor potential (TRP) family are present in the beta-cells. Ryanodine receptors, nicotinic acid adenine dinucleotide phosphate channel, and Ca(2+)-induced Ca(2+) release add new dimension to the complexity of Ca(2+) signaling in the human beta-cells. A lot more needs to be learnt about the roles of these new channels and CICR, not because that will be easy but because that will be difficult. Much de-learning will also be needed. Human beta-cells do not have a resting state in the normal human body even under physiological fasting conditions. Their membrane potential under physiologically relevant resting conditions is approximately -50 mV. Biphasic insulin secretion is an experimental epiphenomenon unrelated to the physiological pulsatile insulin secretion into the portal vein in the human body. Human islets show a wide variety of electrical activities and patterns of [Ca(2+)](i) changes, whose roles in mediating pulsatile secretion of insulin into the portal vein remain questionable. Future studies will hopefully be directed toward a better understanding of Ca(2+) signaling in the human islets in the context of the pathogenesis and treatment of human diabetes.
Collapse
Affiliation(s)
- M Shahidul Islam
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Research Center, 118 83 Stockholm, Sweden.
| |
Collapse
|
33
|
Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E. Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 2009; 150:5334-40. [PMID: 19819962 DOI: 10.1210/en.2009-0600] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kinetics of insulin, glucagon and somatostatin release was studied in human pancreatic islets. Batches of 10-15 islets were perifused and the hormones measured with RIA in 30-sec fractions. Increase of glucose from 3 to 20 mm resulted in a brief pulse of glucagon coinciding with suppression of basal insulin and somatostatin release. There was a subsequent drop of glucagon release concomitant with the appearance of a pronounced pulse of insulin and a slightly delayed pulse of somatostatin. Continued exposure to 20 mm glucose generated pulsatile release of the three hormones with 7- to 8-min periods accounting for 60-70% of the secreted amounts. Glucose caused pronounced stimulation of average insulin and somatostatin release. However, the nadirs between the glucagon pulses were lower than the secretion at 3 mm glucose, resulting in 18% suppression of average release. The repetitive glucagon pulses were antisynchronous to coincident pulses of insulin and somatostatin. The resulting greater than 20-fold variations of the insulin to glucagon ratio might be essential for minute-to-minute regulation of the hepatic glucose production.
Collapse
Affiliation(s)
- Bo Hellman
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Salehi A, Parandeh F, Fredholm BB, Grapengiesser E, Hellman B. Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci 2009; 85:470-6. [DOI: 10.1016/j.lfs.2009.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/11/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
|
35
|
Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009; 297:58-72. [PMID: 18706473 DOI: 10.1016/j.mce.2008.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden.
| | | |
Collapse
|
36
|
Abstract
The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting beta-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca(2+). Within the islets the beta-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing alpha-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y(1) receptors. Knock-out of the adenosine A(1) receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood.
Collapse
Affiliation(s)
- Bo Hellman
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Pedersen MG, Corradin A, Toffolo GM, Cobelli C. A subcellular model of glucose-stimulated pancreatic insulin secretion. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3525-3543. [PMID: 18653438 DOI: 10.1098/rsta.2008.0120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When glucose is raised from a basal to stimulating level, the pancreatic islets respond with a typical biphasic insulin secretion pattern. Moreover, the pancreas is able to recognize the rate of change of the glucose concentration. We present a relatively simple model of insulin secretion from pancreatic beta-cells, yet founded on solid physiological grounds and capable of reproducing a series of secretion patterns from perfused pancreases as well as from stimulated islets. The model includes the notion of distinct pools of granules as well as mechanisms such as mobilization, priming, exocytosis and kiss-and-run. Based on experimental data, we suggest that the individual beta-cells activate at different glucose concentrations. The model reproduces most of the data it was tested against very well, and can therefore serve as a general model of glucose-stimulated insulin secretion. Simulations predict that the effect of an increased frequency of kiss-and-run exocytotic events is a reduction in insulin secretion without modification of the qualitative pattern. Our model also appears to be the first physiology-based one to reproduce the staircase experiment, which underlies 'derivative control', i.e. the pancreatic capacity of measuring the rate of change of the glucose concentration.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
| | | | | | | |
Collapse
|
38
|
Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys J 2008; 95:4676-88. [PMID: 18708464 DOI: 10.1529/biophysj.107.125088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Individual mouse pancreatic islets exhibit oscillations in [Ca(2+)](i) and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, [Ca(2+)](i) changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent. The degree of synchronicity was quantified using a novel analytical approach that yields a parameter that we call the "Synchronization Index". Individual islets exhibited [Ca(2+)](i) oscillations with periods of 3-6 min, but were not synchronized under control conditions. However, raising islet [Ca(2+)](i) with a brief application of the cholinergic agonist carbachol (25 microM) or elevated KCl in glucose-containing saline rapidly synchronized islet [Ca(2+)](i) oscillations for >/=30 min, long after the synchronizing agent was removed. In contrast, the adrenergic agonists clonidine or norepinephrine, and the K(ATP) channel inhibitor tolbutamide, failed to synchronize islets. Partial synchronization was observed, however, with the K(ATP) channel opener diazoxide. The synchronizing action of carbachol depended on the glucose concentration used, suggesting that glucose metabolism was necessary for synchronization to occur. To understand how transiently perturbing islet [Ca(2+)](i) produced sustained synchronization, we used a mathematical model of islet oscillations in which complex oscillatory behavior results from the interaction between a fast electrical subsystem and a slower metabolic oscillator. Transient synchronization simulated by the model was mediated by resetting of the islet oscillators to a similar initial phase followed by transient "ringing" behavior, during which the model islets oscillated with a similar frequency. These results suggest that neurohormone release from intrapancreatic neurons could help synchronize islets in situ. Defects in this coordinating mechanism could contribute to the disrupted insulin secretion observed in Type 2 diabetes.
Collapse
|
39
|
Nittala A, Wang X. The hyperbolic effect of density and strength of inter beta-cell coupling on islet bursting: a theoretical investigation. Theor Biol Med Model 2008; 5:17. [PMID: 18673579 PMCID: PMC2538510 DOI: 10.1186/1742-4682-5-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 08/03/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insulin, the principal regulating hormone of blood glucose, is released through the bursting of the pancreatic islets. Increasing evidence indicates the importance of islet morphostructure in its function, and the need of a quantitative investigation. Recently we have studied this problem from the perspective of islet bursting of insulin, utilizing a new 3D hexagonal closest packing (HCP) model of islet structure that we have developed. Quantitative non-linear dependence of islet function on its structure was found. In this study, we further investigate two key structural measures: the number of neighboring cells that each beta-cell is coupled to, nc, and the coupling strength, gc. RESULTS BETA-cell clusters of different sizes with number of beta-cells nbeta ranging from 1-343, nc from 0-12, and gc from 0-1000 pS, were simulated. Three functional measures of islet bursting characteristics--fraction of bursting beta-cells fb, synchronization index lambda, and bursting period Tb, were quantified. The results revealed a hyperbolic dependence on the combined effect of nc and gc. From this we propose to define a dimensionless cluster coupling index or CCI, as a composite measure for islet morphostructural integrity. We show that the robustness of islet oscillatory bursting depends on CCI, with all three functional measures fb, lambda and Tb increasing monotonically with CCI when it is small, and plateau around CCI = 1. CONCLUSION CCI is a good islet function predictor. It has the potential of linking islet structure and function, and providing insight to identify therapeutic targets for the preservation and restoration of islet beta-cell mass and function.
Collapse
Affiliation(s)
- Aparna Nittala
- Max McGee National Research Center for Juvenile Diabetes & Human and Molecular Genetics Center, Medical College of Wisconsin and Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
40
|
Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008; 8:26-37. [PMID: 18590690 DOI: 10.1016/j.cmet.2008.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/11/2008] [Accepted: 06/13/2008] [Indexed: 01/28/2023]
Abstract
Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grasso D, Sacchetti ML, Bruno L, Lo Ré A, Iovanna JL, Gonzalez CD, Vaccaro MI. Autophagy and VMP1 expression are early cellular events in experimental diabetes. Pancreatology 2008; 9:81-8. [PMID: 19077458 DOI: 10.1159/000178878] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS We have described VMP1 as a new protein which expression triggers autophagy in mammalian cells. Here we show that experimental diabetes activates VMP1 expression and autophagy in pancreas beta cells as a direct response to streptozotocin (STZ). METHODS Male Wistar rats were treated with 65 mg/kg STZ and pancreas islets from untreated rats were incubated with 1 mM STZ. RESULTS RT-PCR analysis shows early VMP1 induction after STZ treatment. In situ hybridization reveals VMP1 mRNA in islet beta cells. Electron microscopy shows chromatin aggregation and autophagy morphology that was confirmed by LC3 expression and LC3-VMP1 co-localization. Apoptotic cell death and the reduction of beta cell pool are evident after 24 h treatment, while VMP1 is still expressed in the remaining cells. VMP1-Beclin1 colocalization in pancreas tissue from STZ-treated rats suggests that VMP1-Beclin1 interaction is involved in the autophagic process activation during experimental diabetes. Results were confirmed using pancreas islets, showing VMP1 expression and autophagy in beta cells as a direct effect of STZ treatment. CONCLUSION Pancreas beta cells trigger VMP1 expression and autophagy during the early cellular events in response to experimental diabetes.
Collapse
Affiliation(s)
- Daniel Grasso
- Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Melatonin influences insulin secretion both in vivo and in vitro. (i) The effects are MT(1)-and MT(2)-receptor-mediated. (ii) They are specific, high-affinity, pertussis-toxin-sensitive, G(i)-protein-coupled, leading to inhibition of the cAMP-pathway and decrease of insulin release. [Correction added after online publication 4 December 2007: in the preceding sentence, 'increase of insulin release' was changed to 'decrease of insulin release'.] Furthermore, melatonin inhibits the cGMP-pathway, possibly mediated by MT(2) receptors. In this way, melatonin likely inhibits insulin release. A third system, the IP(3)-pathway, is mediated by G(q)-proteins, phospholipase C and IP(3), which mobilize Ca(2+) from intracellular stores, with a resultant increase in insulin. (iii) Insulin secretion in vivo, as well as from isolated islets, exhibits a circadian rhythm. This rhythm, which is apparently generated within the islets, is influenced by melatonin, which induces a phase shift in insulin secretion. (iv) Observation of the circadian expression of clock genes in the pancreas could possibly be an indication of the generation of circadian rhythms in the pancreatic islets themselves. (v) Melatonin influences diabetes and associated metabolic disturbances. The diabetogens, alloxan and streptozotocin, lead to selective destruction of beta-cells through their accumulation in these cells, where they induce the generation of ROS. Beta-cells are very susceptible to oxidative stress because they possess only low-antioxidative capacity. Results suggest that melatonin in pharmacological doses provides protection against ROS. (vi) Finally, melatonin levels in plasma, as well as the arylalkylamine-N-acetyltransferase (AANAT) activity, are lower in diabetic than in nondiabetic rats and humans. In contrast, in the pineal gland, the AANAT mRNA is increased and the insulin receptor mRNA is decreased, which indicates a close interrelationship between insulin and melatonin.
Collapse
Affiliation(s)
- Elmar Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
43
|
Baltrusch S, Lenzen S. Regulation of [Ca2+]i oscillations in mouse pancreatic islets by adrenergic agonists. Biochem Biophys Res Commun 2007; 363:1038-43. [DOI: 10.1016/j.bbrc.2007.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/09/2007] [Indexed: 11/17/2022]
|
44
|
Nittala A, Ghosh S, Wang X. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model. PLoS One 2007; 2:e983. [PMID: 17912360 PMCID: PMC1991600 DOI: 10.1371/journal.pone.0000983] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/07/2007] [Indexed: 12/02/2022] Open
Abstract
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Aparna Nittala
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Soumitra Ghosh
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Patterson S, Scullion SMJ, McCluskey JT, Flatt PR, McClenaghan NH. Prolonged exposure to homocysteine results in diminished but reversible pancreatic beta-cell responsiveness to insulinotropic agents. Diabetes Metab Res Rev 2007; 23:324-34. [PMID: 17089371 DOI: 10.1002/dmrr.699] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Plasma homocysteine levels may be elevated in poorly controlled diabetes with pre-existing vascular complications and/or nephropathy. Since homocysteine has detrimental effects on a wide diversity of cell types, the present study examined the effects of long-term homocysteine exposure on the secretory function of clonal BRIN-BD11 beta-cells. METHODS Acute insulin secretory function, cellular insulin content and viability of BRIN-BD11 cells were assessed following long-term (18 h) exposure to homocysteine in culture. RT-PCR and Western blot analysis were used to determine the expression of key beta-cell genes and proteins. Cells were cultured for a further 18 h without homocysteine to determine any long-lasting effects. RESULTS Homocysteine (250-1000 micromol/L) exposure reduced insulin secretion at both moderate (5.6 mmol/L) and stimulatory (16.7 mmol/L) glucose by 48-63%. Similarly, insulin secretory responsiveness to stimulatory concentrations of alanine, arginine, 2-ketoisocaproate, tolbutamide, KCl, elevated Ca2+, forskolin and PMA, GLP-1, GIP and CCK-8 were reduced by 11-62% following culture with 100-250 micromol/L homocysteine. These inhibitory effects could not simply be attributed to changes in cellular insulin content, cell viability, H2O2 generation or any obvious alterations of gene/protein expression for insulin, glucokinase, GLUT2, VDCC, or Kir6.2 and SUR1. Additional culture for 18 h in standard culture media after homocysteine exposure restored secretory responsiveness to all agents tested. CONCLUSION These findings suggest that long-term exposure to high homocysteine levels causes a reversible impairment of pancreatic beta-cell insulinotropic pathways. The in vivo actions of hyperhomocysteinaemia on islet cell function merit investigation.
Collapse
Affiliation(s)
- Steven Patterson
- Diabetes Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, N Ireland, UK.
| | | | | | | | | |
Collapse
|
46
|
Bermúdez-Pirela VJ, Cano C, Medina MT, Souki A, Lemus MA, Leal EM, Seyfi HA, Cano R, Ciscek A, Bermúdez-Arias F, Contreras F, Israili ZH, Hernández-Hernández R, Valasco M. Metformin Plus Low-Dose Glimeperide Significantly Improves Homeostasis Model Assessment for Insulin Resistance (HOMAIR) and β-Cell Function (HOMAβ-cell) Without Hyperinsulinemia in Patients With Type 2 Diabetes Mellitus. Am J Ther 2007; 14:194-202. [PMID: 17414590 DOI: 10.1097/01.pap.0000249909.54047.0e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Type 2 diabetes mellitus is characterized by insulin resistance and defects in insulin secretion from pancreatic beta-cells, which have been studied by using euglycemic/hyperinsulinemic clamps. However, it is difficult to study insulin resistance and beta-cell failure by these techniques in humans. Therefore, the aim of this study was to evaluate the effect of three different antidiabetic therapeutic regimens on insulin resistance and beta-cell activity by using a mathematical model, Homeostasis Model Assessment for insulin resistance (HOMA(IR)) and beta-cell function (HOMA(beta-cell)). RESEARCH DESIGN AND METHODS Seventy type 2 diabetic patients were randomly assigned to one of three therapeutic regimens: (A) metformin + American Diabetic Association (ADA)-recommended diet + physical activity; (B) metformin + low-dose glimepiride + ADA diet + physical activity; or (C) ADA diet + physical activity (no drugs). Blood samples were obtained before and after the treatment to determine serum levels of fasting and post-prandial blood glucose, fasting insulin, and glycosylated hemoglobin (HbA1c), and HOMA(IR) and HOMA(beta-cell) were calculated. RESULTS Fasting and post-prandial levels of glucose, HbA1c, and fasting insulin and calculated HOMA(IR) and HOMA(beta-cell) values before treatment were significantly higher than the respective values after treatment for all groups of patients (P < 0.01). Significant differences were also found when comparing the treatment-induced reduction in fasting blood glucose (51.8%; P < 0.01), post-prandial blood glucose (55.0%; P < 0.05), and HOMA(IR) (65.3%; P < 0.01) in patients of Group B with that in patients receiving other therapeutic options (Groups A and C). CONCLUSIONS Metformin plus low-dose glimepiride (plus ADA diet and physical activity) is a more effective treatment for type 2 diabetes than either metformin plus ADA diet and physical activity or ADA diet and physical activity alone. Determination of HOMA(IR) and HOMA(beta-cell) values is an inexpensive, reliable, less invasive, and less labor-intensive method than other tests to estimate insulin resistance and beta-cell function in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Valmore J Bermúdez-Pirela
- Endocrine and Metabolic Diseases Research Center Dr. Félix Gómez, University of Zulia School of Medicine, Maracaibo, Venezuela.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Quesada I, Todorova MG, Alonso-Magdalena P, Beltrá M, Carneiro EM, Martin F, Nadal A, Soria B. Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 2006; 55:2463-9. [PMID: 16936194 DOI: 10.2337/db06-0272] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Homeostasis of blood glucose is mainly regulated by the coordinated secretion of glucagon and insulin from alpha- and beta-cells within the islets of Langerhans. The release of both hormones is Ca(2+) dependent. In the current study, we used confocal microscopy and immunocytochemistry to unequivocally characterize the glucose-induced Ca(2+) signals in alpha- and beta-cells within intact human islets. Extracellular glucose stimulation induced an opposite response in these two cell types. Although the intracellular Ca(2+) concentration ([Ca(2+)](i)) in beta-cells remained stable at low glucose concentrations, alpha-cells exhibited an oscillatory [Ca(2+)](i) response. Conversely, the elevation of extracellular glucose elicited an oscillatory [Ca(2+)](i) pattern in beta-cells but inhibited low-glucose-induced [Ca(2+)](i) signals in alpha-cells. These Ca(2+) signals were synchronic among beta-cells grouped in clusters within the islet, although they were not coordinated among the whole beta-cell population. The response of alpha-cells was totally asynchronic. Therefore, both the alpha- and beta-cell populations within human islets did not work as a syncitium in response to glucose. A deeper knowledge of alpha- and beta-cell behavior within intact human islets is important to better understand the physiology of the human endocrine pancreas and may be useful to select high-quality islets for transplantation.
Collapse
Affiliation(s)
- Ivan Quesada
- Institute of Bioengineering, Miguel Hernandez University, Ctra. N-332, Km. 87, 03550 Sant Joan d'Alacant, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G, Düfer M. Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice. Diabetologia 2005; 48:913-21. [PMID: 15830184 DOI: 10.1007/s00125-005-1720-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Islets or beta cells from Sur1(-/-) mice were used to determine whether changes in plasma membrane potential (V(m)) remain coupled to changes in cytosolic Ca(2+) ([Ca(2+)](i)) in the absence of K(ATP) channels and thus provide a triggering signal for insulin secretion. The study also sought to elucidate whether [Ca(2+)](i) influences oscillations in V(m) in sur1(-/-) beta cells. METHODS Plasma membrane potential and ion currents were measured with microelectrodes and the patch-clamp technique. [Ca(2+)](i) was monitored with the fluorescent dye fura-2. Insulin secretion from isolated islets was determined by static incubations. RESULTS Membrane depolarisation of Sur1(-/-) islets by arginine or increased extracellular K(+), elevated [Ca(2+)](i) and augmented insulin secretion. Oligomycin completely abolished glucose-stimulated insulin release from Sur1(-/-) islets. Oscillations in V(m) were influenced by [Ca(2+)](i) as follows: (1) elevation of extracellular Ca(2+) lengthened phases of membrane hyperpolarisation; (2) simulating a burst of action potentials induced a Ca(2+)-dependent outward current that was augmented by increased Ca(2+) influx through L-type Ca(2+) channels; (3) Ca(2+) depletion of intracellular stores by cyclopiazonic acid increased the burst frequency in Sur1(-/-) islets, elevating [Ca(2+)](i) and insulin secretion; (4) store depletion activated a Ca(2+) influx that was not inhibitable by the L-type Ca(2+) channel blocker D600. CONCLUSIONS/INTERPRETATION Although V(m) is largely uncoupled from glucose metabolism in the absence of K(ATP) channels, increased electrical activity leads to elevations of [Ca(2+)](i) that are sufficient to stimulate insulin secretion. In Sur1(-/-) beta cells, [Ca(2+)](i) exerts feedback mechanisms on V(m) by activating a hyperpolarising outward current and by depolarising V(m) via store-operated ion channels.
Collapse
Affiliation(s)
- D Haspel
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Squires PE, Churamani D, Pararajasingam R, Persaud SJ, Jones PM. Similarities of K+ATP channel expression and Ca2+ changes in pancreatic beta cells and hypothalamic neurons. Pancreas 2005; 30:227-32. [PMID: 15782099 DOI: 10.1097/01.mpa.0000153614.55761.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The mechanisms through which pancreatic beta cells recognize and respond to changes in circulating glucose are well understood. Evidence is accumulating that a subpopulation of neurons in the ventromedial hypothalamus (VMH) use similar cellular mechanisms to sense changes in extracellular glucose. In the present study, we used PCR and single-cell calcium imaging techniques to investigate whether glucose-sensing cells in the pancreas and hypothalamus employ a similar set of stimulus-response elements. Dispersed cells from mouse pancreata and hypothalamus were used in conjunction with the insulin-secreting cell line MIN6. We present functional data suggesting that both pancreatic and a subpopulation of hypothalamic cells exhibit glucose- and tolbutamide-evoked changes in cytosolic calcium and consider some clinical implications of different glucose sensors using the same mechanisms.
Collapse
Affiliation(s)
- Paul E Squires
- Molecular Physiology, Department of Biological Sciences, University of Warwick, Coventry, United Kingdom.
| | | | | | | | | |
Collapse
|
50
|
Grapengiesser E, Dansk H, Hellman B. Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca(2+) oscillations. Biochem Pharmacol 2004; 68:667-74. [PMID: 15276074 DOI: 10.1016/j.bcp.2004.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Pancreatic beta-cells respond to glucose stimulation with increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), manifested as membrane-derived slow oscillations sometimes superimposed with transients of intracellular origin. The effect of external ATP on the oscillatory Ca(2+) signal for pulsatile insulin release was studied by digital imaging of fura-2 loaded beta-cells and small aggregates isolated from islets of ob/ob-mice. Addition of ATP (0.01-100 microM) to media containing 20mM glucose temporarily synchronized the [Ca(2+)](i) rhythmicity in the absence of cell contact by eliciting premature oscillations. External ATP triggered premature [Ca(2+)](i) oscillations also when the sarcoendoplasmic reticulum Ca(2+)-ATPase was inhibited with 50 microM cyclopiazonic acid and phospholipase C inhibited with 10 microM U-73122. The effect of ATP was mimicked by other activators of cytoplasmic phospholipase A(2) (10nM acetylcholine, 0.1-1 micro M of the C-terminal octapeptide of cholecystokinin and 2 microg/ml melittin) and suppressed by an inhibitor of the enzyme (50 microM p-amylcinnamoylanthranilic acid). Premature oscillations generated by pulses of ATP sometimes triggered subsequent oscillations. However, prolonged exposure to high concentrations of the nucleotide (10-100 microM) had a suppressive action on the beta-cell rhythmicity. The early effects of ATP included generation of transients induced by inositol (1,4,5) trisphosphate and superimposed on the premature oscillation or on an ordinary oscillation induced by glucose. The results support the idea that purinergic activation of phospholipase A(2) has a co-ordinating effect on the beta-cell rhythmicity by triggering premature [Ca(2+)](i) oscillations mediated by closure of ATP-sensitive K(+) channels.
Collapse
Affiliation(s)
- Eva Grapengiesser
- Department of Medical Cell Biology, Uppsala University, Biomedicum, SE-75123 Uppsala, Sweden
| | | | | |
Collapse
|