1
|
Grunddal KV, Diep TA, Petersen N, Tough IR, Skov LJ, Liu L, Buijink JA, Mende F, Jin C, Jepsen SL, Sørensen LME, Achiam MP, Strandby RB, Bach A, Hartmann B, Frimurer TM, Hjorth SA, Bouvier M, Cox H, Holst B. Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. Mol Metab 2021; 49:101207. [PMID: 33711555 PMCID: PMC8042403 DOI: 10.1016/j.molmet.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Thi A Diep
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Iain R Tough
- Wolfson Center for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Louise J Skov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Lingzhi Liu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jesse A Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Franziska Mende
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Chunyu Jin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Louis M E Sørensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Siv A Hjorth
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Molecular Pharmacology Research Unit, University of Montréal, Marcelle-Coutu Bureau Pavilion 1306-3, Montréal, QC H3T 1J4, Canada
| | - Helen Cox
- Wolfson Center for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Hara A, Nakagawa Y, Nakao K, Tamaki M, Ikemoto T, Shimada M, Matsuhisa M, Mizukami H, Maruyama N, Watada H, Fujitani Y. Development of monoclonal mouse antibodies that specifically recognize pancreatic polypeptide. Endocr J 2019; 66:459-468. [PMID: 30842364 DOI: 10.1507/endocrj.ej18-0441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pancreatic polypeptide (PP) is a 36-amino acid peptide encoded by the Ppy gene, which is produced by a small population of cells located in the periphery of the islets of Langerhans. Owing to the high amino acid sequence similarity among neuropeptide Y family members, antibodies against PP that are currently available are not convincingly specific to PP. Here we report the development of mouse monoclonal antibodies that specifically bind to PP. We generated Ppy knockout (Ppy-KO) mice in which the Ppy-coding region was replaced by Cre recombinase. The Ppy-KO mice were immunized with mouse PP peptide, and stable hybridoma cell lines producing anti-PP antibodies were isolated. Firstly, positive clones were selected in an enzyme-linked immunosorbent assay for reactivity with PP coupled to bovine serum albumin. During the screening, hybridoma clones producing antibodies that cross-react to the peptide YY (PYY) were excluded. In the second screening, hybridoma clones in which their culture media produce no signal in Ppy-KO islets but detect specific cells in the peripheral region of wild-type islets, were selected. Further studies demonstrated that the selected monoclonal antibody (23-2D3) specifically recognizes PP-producing cells, not only in mouse, but also in human and rat islets. The monoclonal antibodies with high binding specificity for PP developed in this study will be fundamental for future studies towards elucidating the expression profiles and the physiological roles of PP.
Collapse
Affiliation(s)
- Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Keiko Nakao
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Motoyuki Tamaki
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Center for Therapeutic Innovation in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|
3
|
Fothergill LJ, Furness JB. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 2018; 150:693-702. [PMID: 30357510 DOI: 10.1007/s00418-018-1746-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Enteroendocrine cells were historically classified by a letter code, each linked to a single hormone, deduced to be the only hormone produced by the cell. One type, the L cell, was recognised to store and secrete two products, peptide YY (PYY) and glucagon-related peptides. Many other exceptions to the one-cell one-hormone classifications have been reported over the last 40 years or so, and yet the one-hormone dogma has persisted. In the last 6 years, a plethora of data has appeared that makes the concept unviable. Here, we describe the evidence that multiple hormone transcripts and their products reside in single cells and evidence that the hormones are often, but not always, processed into separate storage vesicles. It has become clear that most enteroendocrine cells contain multiple hormones. For example, most secretin cells contain 5-hydroxytryptamine (5-HT), and in mouse many of these also contain cholecystokinin (CCK). Furthermore, CCK cells also commonly store ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), neurotensin, and PYY. Several hormones, for example, secretin and 5-HT, are in separate storage vesicles at a subcellular level. Hormone patterns can differ considerably between species. Another complication is that relative levels of expression vary substantially. This means that data are significantly influenced by the sensitivities of detection techniques. For example, a hormone that can be detected in storage vesicles by super-resolution microscopy may not be above threshold for detection by conventional fluorescence microscopy. New nomenclature for cell clusters with common attributes will need to be devised and old classifications abandoned.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Fothergill LJ, Ringuet MT, Sioras E, Hunne B, Fazio Coles TE, Martins PR, Furness JB. Cellular and sub-cellular localisation of oxyntomodulin-like immunoreactivity in enteroendocrine cells of human, mouse, pig and rat. Cell Tissue Res 2018; 375:359-369. [DOI: 10.1007/s00441-018-2921-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
|
5
|
Loh K, Shi YC, Bensellam M, Lee K, Laybutt DR, Herzog H. Y1 receptor deficiency in β-cells leads to increased adiposity and impaired glucose metabolism. Sci Rep 2018; 8:11835. [PMID: 30177746 PMCID: PMC6120893 DOI: 10.1038/s41598-018-30140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023] Open
Abstract
Insulin secretion from pancreatic β-cells is critical for maintaining glucose homeostasis and deregulation of circulating insulin levels is associated with the development of metabolic diseases. While many factors have been implicated in the stimulation of insulin secretion, the mechanisms that subsequently reduce insulin secretion remain largely unexplored. Here we demonstrate that mice with β-cell specific ablation of the Y1 receptor exhibit significantly upregulated serum insulin levels associated with increased body weight and adiposity. Interestingly, when challenged with a high fat diet these β-cell specific Y1-deficient mice also develop hyperglycaemia and impaired glucose tolerance. This is most likely due to enhanced hepatic lipid synthesis, resulting in an increase of lipid accumulation in the liver. Together, our study demonstrates that Y1 receptor signaling negatively regulates insulin release, and pharmacological inhibition of Y1 receptor signalling for the treatment of non-insulin dependent diabetes should be taken into careful consideration.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia. .,St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Mohammed Bensellam
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia
| | - Kailun Lee
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
6
|
Franklin ZJ, Tsakmaki A, Fonseca Pedro P, King AJ, Huang GC, Amjad S, Persaud SJ, Bewick GA. Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass. Diabetes Obes Metab 2018; 20:599-609. [PMID: 28940946 DOI: 10.1111/dom.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022]
Abstract
AIMS Two unmet therapeutic strategies for diabetes treatment are prevention of beta-cell death and stimulation of beta-cell replication. Our aim was to characterize the role of neuropeptide Y receptors in the control of beta-cell mass. MATERIALS AND METHODS We used endogenous and selective agonists of the NPY receptor system to explore its role in the prevention of beta-cell apoptosis and proliferation in islets isolated from both mouse and human donors. We further explored the intra-cellular signalling cascades involved, using chemical inhibitors of key signalling pathways. As proof of principle we designed a long-acting analogue of [Leu31 Pro34 ]-NPY, an agonist of the islet-expressed Y receptors, to determine if targeting this system could preserve beta-cell mass in vivo. RESULTS Our data reveal that NPY Y1, 4 and 5 receptor activation engages a generalized and powerful anti-apoptotic pathway that protects mouse and human islets from damage. These anti-apoptotic effects were dependent on stimulating a Gαi-PLC-PKC signalling cascade, which prevented cytokine-induced NFkB signalling. NPY receptor activation functionally protected islets by restoring glucose responsiveness following chemically induced injury in both species. NPY receptor activation attenuated beta-cell apoptosis, preserved functional beta-cell mass and attenuated the hyperglycaemic phenotype in a low-dose streptozotocin model of diabetes. CONCLUSION Taken together, our observations identify the islet Y receptors as promising targets for the preservation of beta-cell mass. As such, targeting these receptors could help to maintain beta-cell mass in both type 1 and type 2 diabetes, and may also be useful for improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Zara J Franklin
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Anastasia Tsakmaki
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | | | - Aileen J King
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Guo Cai Huang
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Sakeena Amjad
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta J Persaud
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Gavin A Bewick
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
7
|
Peptide Tyrosine Tyrosine 3-36 Reduces Meal Size and Activates the Enteric Neurons in Male Sprague-Dawley Rats. Dig Dis Sci 2017; 62:3350-3358. [PMID: 29030744 DOI: 10.1007/s10620-017-4788-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Peptide tyrosine tyrosine 3-36 (peptide YY 3-36 or PYY 3-36) reduces food intake by unknown site(s). AIM To test the hypothesis that the gastrointestinal tract contains sites of action regulating meal size (MS) and intermeal interval (IMI) length by PYY 3-36. METHODS Peptide YY 3-36 (0, 1, 5, 10 and 20 nmol/kg) was injected in the aorta, the artery that supplies the gastrointestinal tract, prior to the onset of the dark cycle in free feeding male Sprague-Dawley rats and food intake was measured. Then, PYY 3-36 (25 nmol/kg) was injected intraperitoneally in these rats and Fos-like immunoreactivity (Fos-LI, a marker for neuronal activation) was quantified in the small intestinal enteric neurons, both myenteric and submucosal, and the dorsal vagal complex (DVC) of the hindbrain. RESULTS PYY 3-36 reduced first MS, decreased IMI length, shortened duration of first meal and increased Fos-LI in enteric and DVC neurons. However, PYY 3-36 failed to change the size of the second meal, satiety ratio, latency to first meal, number of meals and 24 h intake relative to saline control. CONCLUSION The gastrointestinal tract may contain sites of action regulating MS reduction by PYY 3-36.
Collapse
|
8
|
Inhibition of Y1 receptor signaling improves islet transplant outcome. Nat Commun 2017; 8:490. [PMID: 28887564 PMCID: PMC5591241 DOI: 10.1038/s41467-017-00624-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.
Collapse
|
9
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
10
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Mol Cell Endocrinol 2016; 436:102-13. [PMID: 27465830 DOI: 10.1016/j.mce.2016.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p < 0.05) decreased food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p < 0.05 to p < 0.001) glucose, alanine and GLP-1 stimulated insulin secretion from immortalised rodent and human beta-cells, as well as isolated mouse islets, by impeding alterations in membrane potential, [Ca(2+)]i and elevations of cAMP. Mice treated with multiple low dose streptozotocin presented with severe (p < 0.01) loss of beta-cell mass accompanied by notable increases (p < 0.001) in alpha and PP cell numbers. In contrast, hydrocortisone-induced insulin resistance increased islet number (p < 0.01) and beta-cell mass (p < 0.001). PYY expression was consistently observed in alpha-, PP- and delta-, but not beta-cells. Streptozotocin decreased islet PYY co-localisation with PP (p < 0.05) and somatostatin (p < 0.001), whilst hydrocortisone increased PYY co-localisation with glucagon (p < 0.05) in mice. More detailed in vitro investigations revealed that both forms of PYY augmented (p < 0.05 to p < 0.01) immortalised human and rodent beta-cell proliferation and protected against streptozotocin-induced cytotoxicity, to a similar or superior extent as the well characterised beta-cell proliferative and anti-apoptotic agent GLP-1. Taken together, these data highlight the significance and potential offered by modulation of pancreatic islet NPY receptor signalling pathways for preservation of beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
11
|
Persaud SJ, Bewick GA. Peptide YY: more than just an appetite regulator. Diabetologia 2014; 57:1762-9. [PMID: 24917132 DOI: 10.1007/s00125-014-3292-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
Replenishment of beta cell mass is a key aim of novel therapeutic interventions for diabetes, and the implementation of new strategies will be aided by understanding the mechanisms employed to regulate beta cell mass under normal physiological conditions. We have recently identified a new role for the gut hormone peptide YY (PYY) and the neuropeptide Y (NPY) receptor systems in the control of beta cell survival. PYY is perhaps best known for its role in regulating appetite and body weight, but its production by islet cells, the presence of NPY receptors on islets and the demonstration that Y1 activation causes proliferation of beta cells and protects them from apoptosis, suggest a role for this peptide in modulating beta cell mass. This review introduces PYY and its potential role in glucose homeostasis, then focuses on evidence supporting the concept that PYY and NPY receptors are exciting new targets for the preservation of beta cells.
Collapse
Affiliation(s)
- Shanta J Persaud
- Division of Diabetes & Nutritional Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
12
|
Buhmann H, le Roux CW, Bueter M. The gut-brain axis in obesity. Best Pract Res Clin Gastroenterol 2014; 28:559-71. [PMID: 25194175 DOI: 10.1016/j.bpg.2014.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/11/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Currently the only effective treatment for morbid obesity with a proven mortality benefit is surgical intervention. The underlying mechanisms of these surgical techniques are unclear, but alterations in circulating gut hormone levels have been demonstrated to be at least one contributing factor. Gut hormones seem to communicate information from the gastrointestinal tract to the regulatory appetite centres within the central nervous system (CNS) via the so-called 'Gut-Brain-Axis'. Such information may be transferred to the CNS either via vagal or non-vagal afferent nerve signalling or directly via blood circulation. Complex neural networks, distributed throughout the forebrain and brainstem, are in control of feeding and energy homoeostasis. This article aims to review how appetite is potentially regulated by these gastrointestinal hormones. Identification of the underlying mechanisms of appetite and weight control may pave the way to develop better surgical techniques and new therapies in the future.
Collapse
Affiliation(s)
- Helena Buhmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Ireland; Gastrosurgical Laboratory, University of Gothenburg, Sweden
| | - Marco Bueter
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland; Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Buchwald H, Dorman RB, Rasmus NF, Michalek VN, Landvik NM, Ikramuddin S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: implications for ileal transposition. Surg Obes Relat Dis 2014; 10:780-6. [PMID: 24837556 DOI: 10.1016/j.soard.2014.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND We do not have a unified, scientifically tested theory of causation for obesity and its co-morbidities, nor do we have explanations for the mechanics of the metabolic/bariatric surgery procedures. Integral to proffered hypotheses are the actions of the hormones glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and leptin. The objective of this study was to obtain blood levels of GLP-1, PYY, and leptin after stimulation of the terminal ileum and cecum by a static infusion of a food hydrolysate in morbidly obese patients undergoing a duodenal switch procedure. SETTING University Hospital. METHODS Plasma levels of GLP-1, PYY, and leptin were obtained at 0, 30, 60, 90, and 120 minutes after instillation of 240 mL of a food hydrolysate into the ileum or cecum. RESULTS The mean±SD GLP-1 values by cecal stimulation for 0, 30, 60, 90, and 120 minutes were: 41.3±23.2; 39.6±21.8; 38.9±19.1; 47.4±22.3; 51.7±27.3 pM, and by ileal stimulation: 55.0±32.8; 83.4±16.1; 78.7±23.8; 84.7±23.5; 76.4±25.6. The mean±SD PYY values by cecal stimulation were: 62.1±24.8; 91.1±32.8; 102.1±39.6; 119.6±37.5; 130.3±36.7, and by ileal stimulation: 73.8±41.6; 138.1±17.7; 149.5±23.3; 165.7±24.3; 155.5±29.1. Percent change in PYY levels increased ~150%, GLP-1 increased ~50%, and leptin decreased ~20%. CONCLUSION Direct stimulation of the human terminal ileum and cecum by a food hydrolysate elicits significant plasma GLP-1 and PYY elevations and leptin decreases, peaking at 90-120 minutes. The ileal GLP-1 and PYY responses exceed those of the cecum, and the PYY effect is about 3-fold that of GLP-1. The results of this study question the satiety premise for ileal transposition.
Collapse
Affiliation(s)
- Henry Buchwald
- Department of Surgery, University of Minnesota, Minneapolis, MN.
| | - Robert B Dorman
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Van N Michalek
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | |
Collapse
|
14
|
El-Salhy M, Gundersen D, Hatlebakk JG, Gilja OH, Hausken T. Abnormal rectal endocrine cells in patients with irritable bowel syndrome. REGULATORY PEPTIDES 2014; 188:60-5. [PMID: 24316398 DOI: 10.1016/j.regpep.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder. In a previous study the total number of endocrine cells in the rectum of IBS patients, as detected by chromogranin A, did not differ from that of healthy controls. While the total endocrine cell content of the rectum appears to be unchanged in IBS patients, changes in particular endocrine cells cannot be excluded. This study was undertaken, therefore, to investigate the cell density of different rectal endocrine cell types in (IBS) patients. Fifty patients with IBS (41 females and 9 males) were included in the study. Thirty patients had diarrhoea (IBS-D) and 20 had constipation (IBS-C) as the predominant symptom. Twenty-seven subjects were included as controls (19 females and 8 males). Rectal biopsy specimens were immunostained using the avidin-biotin-complex method for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), and oxyntomodulin and somatostatin cells. The cell densities were quantified by computerised image analysis. The serotonin cell density did not differ significantly, although a type II statistical error cannot be excluded, due to the small size of the sample. The densities of PYY and Oxyntomodulin cells were significantly lower and that of somatostatin were significantly higher in IBS patients than controls. These abnormalities were observed in both IBS-D and IBS-C patients. The abnormalities in the endocrine cells observed in this study in the rectum differed considerably from those seen in the colon of IBS patients. This indicates that caution in using the rectum to represent the large intestine in these patients. These abnormalities could be primary (genetic) or secondary to changes in the gut hormones found in other segments of the gut and/or other pathological processes. Although the-cause-and effect relationship of the abnormalities found in rectal endocrine cells is difficult to elucidate, they might contribute to the symptoms associated with IBS. The densities of PYY and somatostatin cells are potential biomarkers with good sensitivity and specificity for the diagnosis of IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Norway; Section for Gastroenterology, Medicine, University of Bergen, Norway.
| | | | - Jan G Hatlebakk
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| | - Odd Helge Gilja
- Section for Gastroenterology, Medicine, University of Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| |
Collapse
|
15
|
Atalayer D, Astbury NM. Anorexia of aging and gut hormones. Aging Dis 2013; 4:264-75. [PMID: 24124632 DOI: 10.14336/ad.2013.0400264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
We are expected to live longer than if we had been born 100 years ago however, the additional years are not necessarily spent in good health or free from disability. Body composition changes dramatically over the course of life. There is a gradual increase in body weight throughout adult life until the age of about 60-65 years. In contrast, body weight appears to decrease with age after the age of 65-75 years, even in those demonstrating a previous healthy body weight. This age related decrease in body weight, often called unintentional weight loss or involuntary weight loss can be a significant problem for the elderly. This has been shown to be related to decline in appetite and food intake is common amongst the elderly and is often referred to the anorexia of aging. Underlying mechanisms regulate energy homeostasis and appetite may change as people age. In this review, peripheral factors regulating appetite have been summarized in regards to their age-dependent changes and role in the etiology of anorexia of aging. Understanding the alterations in the mechanisms regulating appetite and food intake in conjunction with aging may help inform strategies that promote healthy aging and promote health and wellbeing in the elderly years, with the end goal to add life to the years and not just years to our lives.
Collapse
Affiliation(s)
- Deniz Atalayer
- Department of Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA ; Department of Medicine, New York Obesity Research and Nutrition Center, St. Luke's-Roosevelt Hospital, New York, NY 10025, USA
| | | |
Collapse
|
16
|
El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. The role of peptide YY in gastrointestinal diseases and disorders (review). Int J Mol Med 2013; 31:275-82. [PMID: 23292145 PMCID: PMC4042877 DOI: 10.3892/ijmm.2012.1222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/09/2012] [Indexed: 12/13/2022] Open
Abstract
Peptide YY (PYY) is affected in several gastrointestinal diseases and disorders. Changes in PYY appear to be an adaptive response to alterations in pathophysiological conditions caused by the disease. This applies to gastrointestinal diseases/disorders such as irritable bowel syndrome, inflammatory bowel disease, celiac disease, systemic sclerosis, and post-intestinal resection. By contrast, the changes in PYY in chronic idiopathic slow transit constipation (CST) seem to be of a primary nature, and may be one etiological factor of the disease. Abnormalities in PYY seem to contribute to the development of symptoms present in irritable bowel syndrome, inflammatory bowel disease, gastroenteropathy in long-standing diabetes and CST. The changes in PYY could, however, be favorable in some gastrointestinal disorders such as celiac disease, systemic sclerosis and post-intestinal resection state. Investigating changes in PYY in gastrointestinal diseases/disorders could be beneficial in clinical practice, where a receptor agonist or an antagonist can be used as a drug, depending on the condition. Similar to other neuroendocrine peptides/amines of the gut, PYY has broad physiological/pharmacological effects: it can bind to and activate several receptors with independent actions. Thus, in order to use PYY as a drug, receptor-specific agonists or antagonists need to be developed.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Stord, Norway.
| | | | | | | | | |
Collapse
|
17
|
Berberoglu Z, Yazici AC, Bayraktar N, Demirag NG. Rosiglitazone decreases fasting plasma peptide YY3-36 in type 2 diabetic women: a possible role in weight gain? Acta Diabetol 2012; 49 Suppl 1:S115-22. [PMID: 22101910 DOI: 10.1007/s00592-011-0352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Rosiglitazone often results in weight gain. We hypothesized that rosiglitazone may modulate circulating levels of ghrelin and peptide YY(3-36) and this modulation may be related to weight-gaining effect of this agent. This study was designed as an open-label, randomized, controlled trial of 3-month duration. Women with newly diagnosed type 2 diabetes were studied. Twenty-eight of the 55 eligible participants were randomly assigned to receive rosiglitazone (4 mg/d). Twenty-seven patients with diabetes matched for age and body mass index served as controls on diet alone. We evaluated the effects of 3 months of rosiglitazone treatment on fasting peptide YY(3-36) and ghrelin levels, and anthropometric measurements. The 3-month administration of rosiglitazone reduced fasting plasma peptide YY(3-36) levels by 25%, the between-group difference was statistically significant. No effect of this thiazolidinedione compound on fasting ghrelin concentrations was observed at the end of study. The ghrelin/body mass index ratio also did not change significantly after treatment. Seventy-five percent of the women with diabetes complained of increased hunger at the end of study. Nevertheless, all subjects exhibited a decrease in fasting PYY levels after 3 months of rosiglitazone therapy, irrespective of the levels of hunger. There was no significant correlation between changes in peptide YY(3-36) and those in anthropometric parameters and insulin sensitivity at the end of the study. Rosiglitazone-induced decrease in fasting peptide YY(3-36) levels may in part contribute to orexigenic and weight-gaining effect of this thiazolidinedione derivative.
Collapse
Affiliation(s)
- Zehra Berberoglu
- Department of Endocrinology and Metabolism, Turkiye Yuksek Ihtisas Education and Research Hospital, Kızılay sokak, 06100 Sihhiye, Ankara, Turkey.
| | | | | | | |
Collapse
|
18
|
Sam AH, Gunner DJ, King A, Persaud SJ, Brooks L, Hostomska K, Ford HE, Liu B, Ghatei MA, Bloom SR, Bewick GA. Selective ablation of peptide YY cells in adult mice reveals their role in beta cell survival. Gastroenterology 2012; 143:459-68. [PMID: 22562022 DOI: 10.1053/j.gastro.2012.04.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/31/2012] [Accepted: 04/24/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS In the pancreas, peptide YY (PYY) is expressed by a subpopulation of nonbeta cells in the islets of Langerhans. We investigated the function of these cells in the pancreas of adult mice. METHODS We generated mice in which administration of diphtheria toxin (DT) led to specific ablation of PYY-expressing cells. We investigated the effects of loss of PYY cells on glucose homeostasis. RESULTS Loss of PYY cells in adult mice resulted in severe hyperglycemia, which was associated with significant loss of pancreatic insulin and disruption of islet morphology. In vitro administration of DT to isolated islets significantly reduced numbers of PYY-expressing cells and levels of insulin. Administration of either pancreatic polypeptide (a strong agonist of the receptor Y(4)) or PYY(3-36) (a selective agonist of the receptor Y(2)) did not restore loss of pancreatic insulin following administration of DT. However, a long-acting PYY analogue reduced the loss of insulin, and administration of this analogue reduced the hyperglycemia and insulin loss induced by streptozotocin in mice. CONCLUSIONS PYY appears to regulate beta cell function and survival via the receptor Y(1/2). These findings might be developed to treat and prevent loss of beta cells in patients with diabetes mellitus.
Collapse
|
19
|
Pyarokhil AH, Ishihara M, Sasaki M, Kitamura N. The developmental plasticity of colocalization pattern of peptide YY and glucagon-like peptide-1 in the endocrine cells of bovine rectum. Biomed Res 2012; 33:35-8. [DOI: 10.2220/biomedres.33.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wernette CM, White BD, Zizza CA. Signaling proteins that influence energy intake may affect unintentional weight loss in elderly persons. ACTA ACUST UNITED AC 2011; 111:864-73. [PMID: 21616199 DOI: 10.1016/j.jada.2011.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
After age 70 to 75 years, average body weight decreases both in ailing and healthy people because of a loss of appetite that results in reduced energy intake and the loss of body fat and lean muscle tissue. This so-called anorexia of aging predisposes elderly people to continued pathologic weight loss and malnutrition-major causes of morbidity and mortality. Health care professionals must understand the many factors involved in the anorexia of aging to help older adults prevent unintentional weight loss. Psychological, social, and cultural factors are important effectors; however, physiological factors are emphasized here because they are not thoroughly understood and they make it inherently difficult for most people to alter their body weight. Monoamines, steroid hormones (glucocorticoids and mineralocorticoids), endocannabinoids, and proteins all influence body weight. This review is an analysis of proteins from the brain, pancreas, adipose tissue, and gastrointestinal tract that are known to affect energy intake and energy balance, with an attempt to identify those factors that may change with aging. The articles included in this review were obtained by a PubMed database search using the keywords mouse OR rat OR human AND aged OR aging OR older OR elderly AND adult AND anorexia OR "unintentional weight loss," and each of the individual proteins discussed, as well as from the reference lists of those articles. The results reveal that some proteins may be important in the development of unintentional weight loss in elderly persons, whereas others may not have a significant role. However, many of the proteins that could conceivably have a role in unintentional weight loss have not yet been studied with that question in mind. Preventing unintentional weight loss in older adults is an important goal and further research on the role of proteins important for the maintenance of energy balance and the development of unintentional weight loss in elderly persons is warranted.
Collapse
Affiliation(s)
- Catherine M Wernette
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA.
| | | | | |
Collapse
|
21
|
Brown DR, Miller RJ. Neurohormonal Control of Fluid and Electrolyte Transport in Intestinal Mucosa. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Abstract
In the past 20 years, numerous publications on a variety of mammalian and non-mammalian species have appeared in the literature to supplement the excellent comparative work performed in the 70s and 80s by the Falkmer, Epple, and Youson groups. What emerges is that islets are much more complex than once thought and show a lot of similarities in rodents and higher primates. The diversity of lifestyles, metabolic demands, and diets has most likely influenced the great diversity in both structure and cell-type content of islets in lower vertebrate species. In this chapter, I try to provide an overview of the evolution from endocrine cell types in invertebrates to the higher mammals and focus on what has been reported in the literature and some of our own experiences and also include a description of other hormones reported to be found in islets.
Collapse
|
23
|
Sir David Cuthbertson Medal Lecture Bariatric surgery as a model to study appetite control. Proc Nutr Soc 2009; 68:227-33. [DOI: 10.1017/s0029665109001256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The obesity epidemic and its associated morbidity and mortality have led to major research efforts to identify mechanisms that regulate appetite. Gut hormones have recently been found to be an important element in appetite regulation as a result of the signals from the periphery to the brain. Candidate hormones include ghrelin, peptide YY, glucagon-like peptide-1 and gastric inhibitory polypeptide, all of which are currently being investigated as potential obesity treatments. Bariatric surgery is currently the most effective therapy for substantial and sustained weight loss. Understanding how levels of gut hormones are modulated by such procedures has greatly contributed to the comprehension of the underlying mechanisms of appetite and obesity. The present paper is a review of how appetite and levels of gastrointestinal hormones are altered after bariatric surgery. Basic principles of common bariatric procedures and potential mechanisms for appetite regulation by gut hormones are also addressed.
Collapse
|
24
|
Puglisi MJ, Mutungi G, Brun PJ, McGrane MM, Labonte C, Volek JS, Fernandez ML. Raisins and walking alter appetite hormones and plasma lipids by modifications in lipoprotein metabolism and up-regulation of the low-density lipoprotein receptor. Metabolism 2009; 58:120-8. [PMID: 19059539 DOI: 10.1016/j.metabol.2008.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/13/2008] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the effects of consuming raisins, increasing steps walked, or a combination of these interventions on lipoprotein metabolism and appetite hormones by assessing plasma apolipoprotein concentrations, cholesterol ester transfer protein activity, low-density lipoprotein (LDL) receptor messenger RNA (mRNA) abundance, and plasma ghrelin and leptin concentrations. Thirty-four subjects (17 men and 17 postmenopausal women) were matched for weight and sex and randomly assigned to consume 1 cup raisins per day (RAISIN), increase the amount of steps walked per day (WALK), or a combination of both interventions (RAISIN + WALK). The subjects completed a 2-week run-in period, followed by a 6-week intervention. Ribonucleic acid was extracted from mononuclear cells, and LDL receptor mRNA abundance was quantified by use of reverse transcriptase polymerase chain reaction. Plasma apolipoproteins were measured by Luminex (Austin, TX) technology. Apoproteins A-1, B, C-II, and E and cholesterol ester transfer protein activity were not altered for any of the groups. In contrast, apolipoprotein C-III was significantly decreased by 12.3% only in the WALK group (P < .05). Low-density lipoprotein receptor mRNA abundance was increased for all groups after the intervention (P < .001). There was a significant group effect for plasma leptin (P = .026). Plasma concentrations increased for RAISIN and RAISIN + WALK. Similarly, plasma ghrelin concentrations were elevated postintervention for both groups consuming raisins (P < .05). These data suggest that walking and raisin consumption decrease plasma LDL cholesterol by up-regulating the LDL receptor and that raisin consumption may reduce hunger and affect dietary intake by altering hormones influencing satiety.
Collapse
Affiliation(s)
- Michael J Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The obesity epidemic is a major health problem that is associated with increased morbidity and mortality. Gastrointestinal hormones have been increasingly understood to be an important element in appetite regulation. Several gastrointestinal hormones can contribute to obesity by modulating the activity of the gut-brain axis. Bariatric surgery is currently the most effective therapy for significant and sustained weight loss in morbidly obese patients. Understanding how gut hormones are altered by bariatric procedures has contributed to our understanding of the mechanisms of appetite. In this review, we address several gastrointestinal hormones that are associated with obesity and consider how their levels are altered after bariatric surgery. The review also addresses specific effects of different gut hormones on appetite, hunger, and energy balance.
Collapse
Affiliation(s)
| | | | - Carel W. le Roux
- *Dr. Carel W. le Roux, MBChB, Ph.D., MRCP, MRCPath Department of Investigative Medicine Hammersmith Hospital, Imperial College London Du Cane Road, London, W12 0NN, UK Tel. +44 20 83833242
| |
Collapse
|
26
|
Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J Neurosci 2008; 28:11583-92. [PMID: 18987194 DOI: 10.1523/jneurosci.2493-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intestinal hormones CCK and PYY3-36 inhibit gastric emptying and food intake via vagal afferent neurons. Here we report that CCK regulates the expression of Y2R, at which PYY3-36 acts. In nodose ganglia from rats fasted up to 48 h, there was a fivefold decrease of Y2R mRNA compared with rats fed ad libitum; Y2R mRNA in fasted rats was increased by administration of CCK, and by refeeding through a mechanism sensitive to the CCK1R antagonist lorglumide. Antibodies to Y2R revealed expression in both neurons and satellite cells; most of the former (89 +/- 4%) also expressed CCK1R. With fasting there was loss of Y2R immunoreactivity in CCK1R-expressing neurons many of which projected to the stomach, but not in satellite cells or neurons projecting to the ileum or proximal colon. Expression of a Y2R promoter-luciferase reporter (Y2R-luc) in cultured vagal afferent neurons was increased in response to CCK by 12.3 +/- 0.1-fold and by phorbol ester (16.2 +/- 0.4-fold); the response to both was abolished by the protein kinase C inhibitor Ro-32,0432. PYY3-36 stimulated CREB phosphorylation in rat nodose neurons after priming with CCK; in wild-type mice PYY3-36 increased Fos labeling in brainstem neurons but in mice null for CCK1R this response was abolished. Thus Y2R is expressed by functionally distinct subsets of nodose ganglion neurons projecting to the stomach and ileum/colon; in the former expression is dependent on stimulation by CCK, and there is evidence that PYY3-36 effects on vagal afferent neurons are CCK dependent.
Collapse
|
27
|
Gustavsen CR, Pillay N, Heller RS. An immunohistochemical study of the endocrine pancreas of the African ice rat, Otomys sloggetti robertsi. Acta Histochem 2008; 110:294-301. [PMID: 18406449 DOI: 10.1016/j.acthis.2007.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/29/2007] [Accepted: 11/02/2007] [Indexed: 12/22/2022]
Abstract
The African ice rat, Otomys sloggetti robertsi, is a member of the subfamily Otomyinae, in the superfamily of Muroidea, to which all rodents belong. Very little is known about this unique family of rodents. The study reported here examines the endocrine pancreas of this species using immunohistochemical techniques. The islets of Langerhans were scattered in the exocrine pancreas and tended to be quite small. Scattered single endocrine cells (mostly immunoreactive for insulin) were found in the exocrine pancreas and were not generally associated with ducts (as marked by pan-cytokeratin labeling). The normal islet architecture of insulin in the center and glucagon, somatostatin (SS) and pancreatic polypeptide (PP) in the rim was observed, but the islets tended to have 2-3 layers of glucagon immunoreactive cells. Examining for rarer endocrine cell types, we found that cocaine amphetamine regulated transcript (CART) immunoreactive cells were co-localized with SS; and peptide YY (PYY) immunoreactive cells could be found that were singly immunoreactive or co-localized with either PP or glucagon. Ghrelin cells were not found. MafA co-localized only with the insulin cells, while MafB, which localizes to the glucagon cells, also showed a low level of immunoreactivity in most insulin immunoreactive cells. The Nkx family of transcription factors (Nkx6.1 and 2.2) and PDX-1 were all detected in the pancreas in a similar manner to that seen in mouse and rat. In conclusion, the endocrine pancreas of the African ice rat is quite similar to that of other studied rodents, but these animals have more glucagon and SS cells than rat (Rattus) or mouse (Mus) species.
Collapse
|
28
|
Vincent RP, Ashrafian H, le Roux CW. Mechanisms of disease: the role of gastrointestinal hormones in appetite and obesity. ACTA ACUST UNITED AC 2008; 5:268-77. [PMID: 18382432 DOI: 10.1038/ncpgasthep1118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 02/11/2008] [Indexed: 12/25/2022]
Abstract
The obesity epidemic is fast becoming one of the leading causes of mortality and morbidity worldwide. Over the past 30 years, gastrointestinal hormones have been increasingly understood to have an important role as regulators of appetite and energy balance in obese individuals. The levels of these hormones are modulated by bariatric surgery, and understanding how they are affected by such procedures can contribute to our comprehension of the underlying mechanisms by which these hormones affect obesity and its treatment. In this Review, we consider several gastrointestinal hormones that can contribute to obesity by modulating the activity of the gut-brain axis, and examine their specific effects on appetite, hunger and energy balance. Better understanding of the mechanisms by which these peptides exert their effects may enable the development of improved weight-loss medications and new treatments for obesity.
Collapse
Affiliation(s)
- Royce P Vincent
- Department of Chemical Pathology, King's College Hospital NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
29
|
Abstract
Gut hormones signal to the central nervous system to influence energy homeostasis. Evidence supports the existence of a system in the gut that senses the presence of food in the gastrointestinal tract and signals to the brain via neural and endocrine mechanisms to regulate short-term appetite and satiety. Recent evidence has shown that specific gut hormones administered at physiological or pathophysiological concentrations can influence appetite in rodents and humans. Gut hormones therefore have an important physiological role in postprandial satiety, and gut hormone signaling systems represent important pharmaceutical targets for potential antiobesity therapies. Our laboratory investigates the role of gut hormones in energy homeostasis and has a particular interest in this field of translational research. In this review we describe our initial studies and the results of more recent investigations into the effects of the gastric hormone ghrelin and the intestinal hormones peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin on energy homeostasis. We also speculate on the role of gut hormones in the future treatment of obesity.
Collapse
Affiliation(s)
- Kevin G Murphy
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, London W12 ONN, UK
| | | | | |
Collapse
|
30
|
Martin GR, Beck PL, Sigalet DL. Gut hormones, and short bowel syndrome: The enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation. World J Gastroenterol 2006; 12:4117-29. [PMID: 16830359 PMCID: PMC4087358 DOI: 10.3748/wjg.v12.i26.4117] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Short bowel syndrome (SBS) refers to the malabsorption of nutrients, water, and essential vitamins as a result of disease or surgical removal of parts of the small intestine. The most common reasons for removing part of the small intestine are due to surgical intervention for the treatment of either Crohn's disease or necrotizing enterocolitis. Intestinal adaptation following resection may take weeks to months to be achieved, thus nutritional support requires a variety of therapeutic measures, which include parenteral nutrition. Improper nutrition management can leave the SBS patient malnourished and/or dehydrated, which can be life threatening. The development of therapeutic strategies that reduce both the complications and medical costs associated with SBS/long-term parenteral nutrition while enhancing the intestinal adaptive response would be valuable.
Currently, therapeutic options available for the treatment of SBS are limited. There are many potential stimulators of intestinal adaptation including peptide hormones, growth factors, and neuronally-derived components. Glucagon-like peptide-2 (GLP-2) is one potential treatment for gastrointestinal disorders associated with insufficient mucosal function. A significant body of evidence demonstrates that GLP-2 is a trophic hormone that plays an important role in controlling intestinal adaptation. Recent data from clinical trials demonstrate that GLP-2 is safe, well-tolerated, and promotes intestinal growth in SBS patients. However, the mechanism of action and the localization of the glucagon-like peptide-2 receptor (GLP-2R) remains an enigma. This review summarizes the role of a number of mucosal-derived factors that might be involved with intestinal adaptation processes; however, this discussion primarily examines the physiology, mechanism of action, and utility of GLP-2 in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- G-R Martin
- Department of Gastrointestinal Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW., Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
31
|
Perez-Tilve D, Nogueiras R, Mallo F, Benoit SC, Tschoep M. Gut hormones ghrelin, PYY, and GLP-1 in the regulation of energy balance [corrected] and metabolism. Endocrine 2006; 29:61-71. [PMID: 16622293 DOI: 10.1385/endo:29:1:61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
The first hormone discovered in the gastrointestinal tract was secretin, isolated from duodenal mucosa. Some years later, two additional gastrointestinal hormones, gastrin and cholecystokinin (CCK), were discovered, but it was not until the 1970s that gastrointestinal endocrinology studies became more prevalent, resulting in the discovery of many more hormones. Here, we examine the role of gut hormones in energy balance regulation and their possible use as pharmaceutical targets for obesity.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Department of Psychiatry, University of Cincinnati Genome Research Institute, Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|
32
|
Riediger T, Bothe C, Becskei C, Lutz TA. Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 2004; 79:317-26. [PMID: 15256809 DOI: 10.1159/000079842] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/24/2004] [Indexed: 01/27/2023]
Abstract
The hypothalamic arcuate nucleus (Arc) monitors and integrates hormonal and metabolic signals involved in the maintenance of energy homeostasis. The orexigenic peptide ghrelin is secreted from the stomach during negative status of energy intake and directly activates neurons of the medial arcuate nucleus (ArcM) in rats. In contrast to ghrelin, peptide YY (PYY) is released postprandially from the gut and reduces food intake when applied peripherally. Neurons in the ArcM express ghrelin receptors and neuropeptide Y receptors. Thus, PYY may inhibit feeding by acting on ghrelin-sensitive Arc neurons. Using extracellular recordings, we (1) characterized the effects of PYY on the electrical activity of ghrelin-sensitive neurons in the ArcM of rats. In order to correlate the effect of PYY on neuronal activity with the energy status, we (2) investigated the ability of PYY to reverse fasting-induced c-Fos expression in Arc neurons of mice. In addition, we (3) sought to confirm that PYY reduces food intake under our experimental conditions. Superfusion of PYY reversibly inhibited 94% of all ArcM neurons by a direct postsynaptic mechanism. The PYY-induced inhibition was dose-dependent and occurred at a threshold concentration of 10(-8)M. Consistent with the opposite effects of ghrelin and PYY on food intake, a high percentage (50%) of Arc neurons was activated by ghrelin and inhibited by PYY. In line with this inhibitory action, peripherally injected PYY partly reversed the fasting-induced c-Fos expression in Arc neurons of mice. Similarly, refeeding of food-deprived mice reversed the fasting-induced activation in the Arc. Furthermore, peripherally injected PYY reduced food intake in 12-hour fasted mice. Thus the activity of Arc neurons correlated with the feeding status and was not only reduced by feeding but also by administration of PYY in non-refed mice. In conclusion, our current observations suggest that PYY may contribute to signaling a positive status of energy intake by inhibiting Arc neurons, which are activated under a negative status of energy intake by signals such as ghrelin.
Collapse
Affiliation(s)
- Thomas Riediger
- Institute of Veterinary Physiology, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
33
|
Abstract
The cellular distribution of PP and PYY in mammals is reviewed. Expression of PP is restricted to endocrine cells mainly present in the pancreas predominantly in the duodenal portion (head) but also found in small numbers in the gastro-intestinal tract. PYY has a dual expression in both endocrine cells and neurons. PYY expressing endocrine cells occur all along the gastrointestinal tract and are frequent in the distal portion. Islet cells expressing PYY are found in many species. In rodents they predominate in the splenic portion (tail) of the pancreas. A limited expression of PYY is found also in endocrine cells in the adrenal gland, respiratory tract and pituitary. Peripheral, particularly enteric, neurons also express PYY as does a restricted set of central neurons.
Collapse
Affiliation(s)
- Eva Ekblad
- Department of Physiological Sciences, Section for Neuroendocrine Cell Biology, Lund University, Lund, Sweden.
| | | |
Collapse
|
34
|
Abstract
Peptide YY (PYY) released postprandially from the ileum and colon displays a potent inhibition of cephalic and gastric phases of gastric acid secretion through both central and peripheral mechanisms. To modulate vagal regulation of gastric functions, circulating PYY enters the brain through the area postrema and the nucleus of the solitary tract, where it exerts a stimulatory action through PYY-preferring Y1-like receptors, and an inhibitory action through Y2 receptors. In the gastric mucosa, PYY binds to Y1 receptors in the enterochromaffin-like cells to inhibit gastrin-stimulated histamine release and calcium signaling via a pertussis toxin-sensitive pathway.
Collapse
Affiliation(s)
- Hong Yang
- CURE: Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System, and Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California 90073, USA.
| |
Collapse
|
35
|
Topçu T, Gülpinar MA, Işman CA, Yeğen BC, Yeğen C. Enterogastric brake in rats with segmental bowel resection: role of capsaicin-sensitive nerves. Clin Exp Pharmacol Physiol 2002; 29:68-72. [PMID: 11917906 DOI: 10.1046/j.1440-1681.2002.03602.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Unabsorbed nutrients in the distal gut inhibit upper gastrointestinal motility. 2. The aim of the present study was to investigate changes in gastric motility following segmental resections and to evaluate the role of capsaicin-sensitive afferent neurons that may be responsible for these changes. 3. Wistar albino rats of both sexes (200-250 g) were used. Under aseptic conditions and anaesthesia (100 mg/kg ketamine), a baby-feeding tube was placed distal to the resection in either the ileum or caecum for intraluminal perfusion of saline or 20 lipid. In one group of rats, capsaicin was perfused (0.6) for afferent denervation. One group of rats underwent jejunal and ileal resections with end-to-end anastomosis of the remaining segments and were cannulated distal to these anastomosis. Ten days after the surgery, the percentage gastric emptying of a solid meal was calculated. 4. Intra-ileal (18) and intracaecal (34) lipid perfusions delayed gastric emptying compared with groups perfused with saline (54 and 74, respectively; P< 0.001 and P< 0.01). The delay in gastric emptying by ileal perfusion was significantly greater than that following caecal perfusion (P< 0.05). With both resections, gastric emptying was delayed compared with sham groups (P< 0.05-0.01). Local administration of capsaicin abolished the inhibitory effect of lipid on gastric emptying in healthy intact rats and in the jejunal-resection group, whereas a partial reversal was seen in the ileal-resection group. 5. In conclusion, the present data demonstrate that in both healthy intact rat groups and in short bowel groups, capsaicin-sensitive extrinsic neurons participate in brake mechanisms of the distal gut.
Collapse
Affiliation(s)
- Tuğba Topçu
- Department of General Surgery, Marmara University, School of Medicine, Haydarpaşa, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
36
|
Winarto A, Miki T, Seino S, Iwanaga T. Morphological changes in pancreatic islets of KATP channel-deficient mice: the involvement of KATP channels in the survival of insulin cells and the maintenance of islet architecture. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:59-67. [PMID: 11310506 DOI: 10.1679/aohc.64.59] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) is an essential ion channel involved in glucose-induced insulin secretion. The KATP channel is composed of an inwardly rectifying potassium channel, Kir6.2, and the sulfonylurea receptor (SUR 1); in the pancreas it is reported to be shared by all endocrine cell types. A previous study by our research group showed that Kir 6.2-knockout mice lacked KATP channel activities and failed to secrete insulin in response to glucose, but displayed normal blood glucose levels and only mild impairment in glucose tolerance at younger ages. In some aged knockout mice, however, obesity and hyperglycemia were recognizable. The present study aimed to reveal morphological changes in pancreatic islets of Kir 6.2-knockout mice throughout life. At birth, there were no significant differences in the islet cell arrangement between the knockout mice and controls. At 14 postnatal weeks glucagon cells appeared in the central parts of islets, and this image became more pronounced with aging. In animals older than 50 weeks insulin cells decreased in numbers and intensity of insulin immunoreactivity; most islets in 70- and 80-week-old mice were predominantly composed of glucagon cells and peptide YY (PYY)-containing cells. Staining of serial sections and double staining of single sections from these old mice demonstrated the frequent coexpression of glucagon and PYY, which is a phenotype for the earliest progenitor cells of pancreatic endocrine cells. These findings suggest that the KATP channel is important for insulin cell survival and also regulates the differentiation of islet cells.
Collapse
Affiliation(s)
- A Winarto
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
37
|
Agungpriyono S, Macdonald AA, Leus KY, Kitamura N, Adnyane IK, Goodall GP, Hondo E, Yamada J. Immunohistochemical study on the distribution of endocrine cells in the gastrointestinal tract of the babirusa, Babyrousa babyrussa (Suidae). Anat Histol Embryol 2000; 29:173-8. [PMID: 10916880 DOI: 10.1046/j.1439-0264.2000.00258.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distribution and relative frequency of endocrine cells in the gastrointestinal tract of the babirusa were studied immunohistochemically using the avidin-biotin-peroxidase complex method. Thirteen types of gut endocrine cells were detected; they were immunoreactive for chromogranin, serotonin, somatostatin, gastrin, bovine pancreatic polypeptide (BPP), glucagon, secretin, cholecystokinin (CCK), methionine-enkephalin-Arg6-Gly7-Leu8 (MENK8), motilin, gastric inhibitory polypeptide (GIP) and peptide tyrosine tyrosine (PYY). Cells that were immunoreactive for chromogranin, serotonin, somatostatin and glucagon were found in all portions of the gastrointestinal tract. MENK8-immunoreactive cells were observed in the stomach and small intestine. Gastrin-immunoreactive cells were detected in the pyloric region and duodenum. PYY-immunoreactive cells were found in the small and large intestine. Cells immunoreactive for motilin, CCK, GIP, and secretin were observed in the proximal small intestine and those immunoreactive for neurotensin were found only in the ileum. Although the distribution pattern of endocrine cells in the gastrointestinal tract of babirusa was similar to those reported for pig, restricted distribution of several endocrine cells, gastrin, BPP, MENK8, motilin, CCK, GIP, secretin and neurotensin and wider distribution of glucagon and PYY were observed in the babirusa. The unexpected presence of MENK8 in all glandular regions of the stomach and PYY in the small intestine was also noted. The distribution of gut endocrine cells might be related to the regulatory characteristics of the babirusa digestive tract.
Collapse
Affiliation(s)
- S Agungpriyono
- Department of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sonoyama K, Suzuki K, Kasai T. Peptide YY stimulates the expression of apolipoprotein A-IV gene in Caco-2 intestinal cells. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 223:270-5. [PMID: 10719839 DOI: 10.1046/j.1525-1373.2000.22338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of peptide YY, a gastrointestinal hormone, on the expression of the apolipoprotein A-IV gene in the intestinal epithelial cell line Caco-2 was examined by semiquantitative RT-PCR followed by Southern hybridization with an inner oligonucleotide probe. Apolipoprotein A-IV mRNA levels were increased in response to peptide YY in a dose- and time-dependent fashion. Western blotting revealed that the exogenous peptide YY increased the intracellular concentration of apolipoprotein A-IV. In contrast, apolipoprotein A-I, B, and C-III mRNA did not respond to peptide YY. Differentiated Caco-2 cells expressed Y1- but not Y2- and Y5-receptor subtype mRNA. The present results suggest that peptide YY modulates apolipoprotein A-IV gene expression, likely via the Y1-receptor subtype in intestinal epithelial cells.
Collapse
Affiliation(s)
- K Sonoyama
- Department of Bioscience and Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
39
|
Lozano MT, García Hernández MP, García Ayala A, Elbal MT, Agulleiro B. Identification of the pancreatic endocrine cells of Pseudemys scripta elegans by immunogold labeling. Gen Comp Endocrinol 2000; 117:163-72. [PMID: 10642438 DOI: 10.1006/gcen.2000.7394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endocrine pancreatic cells of Pseudemys scripta elegans were investigated immunocytochemically by light and electron microscopy. Insulin-, somatostatin (SST)-1, SST-28 (1-12)-, salmon (s)SST-25-, glucagon-, pancreatic polypeptide (PP)-, peptide tyrosine tyrosine (PYY)-, and neuropeptide tyrosine (NPY)-like immunoreactivities were observed. Insulin cells were immunogold labeled with bonito insulin antiserum and secretory granules were characterized by a wide halo and a dense core of varying shape. Consecutive PAP-immunostained sections showed that SST-28 (1-12), SST-14, and sSST-25 immunoreactivities occurred in the same cells. However, preabsorption tests demonstrated that anti-sSST-25 serum detected the invariant SST-14 molecule. The SST-28 (1-12)/SST-14-immunogold-labeled cells mainly had round or ovoid medium electron-dense granules. Glucagon-IR cells were characterized by round secretory granules with an electron-dense core, with or without a narrow clear halo. There were PP, PYY, and NPY (NPY-like) immunoreactivities in a population of glucagon-IR cells in the pancreatic duodenal region (glucagon/NPY cells). Most of the secretory granules of these glucagon/NPY-like cells had an electron-dense content and were round, although there were also pyriform or ovoid secretory granules which were smaller than those of glucagon-IR cells. Preabsorption tests proved that the NPY-like peptides detected in the endocrine pancreas of P. scripta elegans were more similar to NPY or PYY than to PP.
Collapse
Affiliation(s)
- M T Lozano
- Department of Cell Biology, University of Murcia, Murcia, 30100, Spain
| | | | | | | | | |
Collapse
|
40
|
Näslund E, Bogefors J, Skogar S, Grybäck P, Jacobsson H, Holst JJ, Hellström PM. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R910-6. [PMID: 10484511 DOI: 10.1152/ajpregu.1999.277.3.r910] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to assess the effect of glucagon-like peptide-1 (GLP-1) on solid gastric emptying and the subsequent release of pancreatic and intestinal hormones. In eight men [age 33.6 +/- 2.5 yr, body mass index 24.1 +/- 0.9 (means +/- SE)], scintigraphic solid gastric emptying during infusion of GLP-1 (0.75 pmol. kg(-1). min(-1)) or saline was studied for 180 min. Concomitantly, plasma concentrations of C- and N-terminal GLP-1, glucose, insulin, C-peptide, glucagon, and peptide YY (PYY) were assessed. Infusion of GLP-1 resulted in a profound inhibition of both the lag phase (GLP-1: 91.5, range 73.3-103.6 min vs. saline: 19. 5, range 10.2-43.4 min) and emptying rate (GLP-1: 0.34, range 0.06-0. 56 %/min vs. saline: 0.84, range 0.54-1.33 %/min; P < 0.01 for both) of solid gastric emptying. Concentrations of both intact and total GLP-1 were elevated to supraphysiological levels. Plasma glucose and glucagon concentrations were below baseline during infusion of GLP-1 in contrast to saline infusion, where concentrations were elevated above baseline (both P < 0.001). The insulin and C-peptide responses were lower during infusion with GLP-1 than with saline (P < 0.004 and P < 0.001, respectively). Plasma PYY concentrations decreased below baseline during GLP-1 infusion in contrast to saline, where concentrations were elevated above baseline (P = 0.04). Infusion of GLP-1 inhibits solid gastric emptying with secondary effects on the release of insulin, C-peptide, and glucagon, resulting in lower plasma glucose concentrations. In addition, the release of PYY into the circulation is inhibited by GLP-1 infusion, suggesting a negative feedback of GLP-1 on the function of the L-cell.
Collapse
Affiliation(s)
- E Näslund
- Division of Surgery, Danderyd Hospital, Karolinska Institutet, SE-182 88, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lozano MT, Hernández MP, Agulleiro B. Endocrine pancreatic cells from Xenopus laevis: light and electron microscopic studies. Gen Comp Endocrinol 1999; 114:191-205. [PMID: 10208768 DOI: 10.1006/gcen.1998.7247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin, glucagon, pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), somatostatin (SST)-28 (1-12), salmon (s) SST-25, and SST-14 immunoreactivities were demonstrated in the pancreatic endocrine cells of Xenopus laevis using light and electron microscopic immunocytochemistry. Insulin-, SST-28 (1-12)/SST-14-, and PYY-immunoreactive (ir) cells were found throughout the pancreas either isolated in small clusters of a single cell type or, except in the case of PYY-ir cells, forming islets consisting of various cell types. Anti-sSST-25 serum detected the invariant SST-14 form. Cells that were only immunoreactive to glucagon were isolated or clustered in the duodenal lobe, while in the splenic lobe cells immunoreactive to both glucagon and PP were observed in isolation, clustered, or in the periphery of the islets. There were no cells that were immunoreactive only to PP or to NPY. Ultrastructurally, the endocrine cells were characterized by their secretory granules, which were immunogold labeled with the corresponding antisera. Insulin cells had large round secretory granules with a round, irregular, or crystalline-like dense core. Glucagon-ir cells had round secretory granules with a dense core and a clear halo. Glucagon/PP- and PYY-ir cells showed round, ovoid, or pear-shaped secretory granules, which were larger and less electron dense in the latter cell type. The secretory granules of SST-ir cells were ovoid or bacillary with a medium electron-dense content. A sixth cell type with very small secretory granules could only be characterized by conventional electron microscopy, since it did not immunoreact with any of the antisera applied in this study.
Collapse
Affiliation(s)
- M T Lozano
- Faculty of Biology, University of Murcia, Murcia, 30100, Spain
| | | | | |
Collapse
|
42
|
Abstract
We have devised a new culture system for in vitro culture of pancreatic buds from mouse embryos which enables the organ to grow as a flat branched structure suitable for wholemount immunostaining. This system has been used to analyze pancreatic development. We have also used the ROSA-26 gene trap mouse strain as a source of tissue which expresses lacZ in a stable manner, in all cell types, during in vitro culture. Combinations of lacZ epithelium and unlabeled mesenchyme show that both exocrine and endocrine cells arise from the epithelium, and smooth muscle cells from the mesenchyme. Although previously suspected, this is the first formal proof that both exocrine and endocrine cells are of endodermal origin. Combinations of lacZ epithelium with unlabeled stomach mesenchyme give similar results and show that stomach mesenchyme has the same trophic effect as pancreatic mesenchyme. When a lacZ and an unlabeled epithelium are combined with an unlabeled mesenchyme, both acini and islets in the resulting culture can be of mixed cell composition. This shows that neither of the chief structural units of the pancreas is formed by clonal growth from a single cell.
Collapse
Affiliation(s)
- A C Percival
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | | |
Collapse
|
43
|
Maglio M, Putti R. Morphological basis of the interactions between endocrine cell types in the pancreatic islets of the teleost, Blennius gattoruggine. Tissue Cell 1998; 30:672-83. [PMID: 10036791 DOI: 10.1016/s0040-8166(98)80086-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The endocrine pancreas of the teleost fish Blennius gattoruggine was studied by immunochemistry using both light and electron microscopy. Generally, one large Brockmann body, along with intermediate and small islets, was found. Cells immunoreactive (IR) to anti-insulin (B), anti-glucagon (A) anti-somatostatin (D) anti-pancreatic polypeptide and anti-PYY sera were detected with B cells located at the center of the islet and the other cell types forming a peripheral mantle. The B-cell cytoplasm showed rows of microtubules close to the secretory granules and perpendicular to the plasmalemma. The ultrathin section images revealed exocytotic and endocytotic features, and the presence of intercellular gap junctions between the plasmalemma of contiguous cells, suggesting intercellular routes of communication, e.g. via autocrine and/or paracrine mechanism. These features were observed in all of the cell types, and were abundant in D cells. D cells were particularly numerous in the islets and were disposed close to A and B cells, as observed in other teleost species. The most peripheral B cells, in closer contact with D cells than the central ones, appeared strongly immunolabeled, perhaps owing to the inhibitory action of somatostatin. Some D cells exhibited a long protrusion directed towards the center of the islet. In view of their cytological characteristics and their secretion, D cells might have an important role in the modulation of A and B-cell secretion in an endocrine and/or paracrine fashion.
Collapse
Affiliation(s)
- M Maglio
- Dipartimento di Biologia evolutiva e comparata, Università Federico II di Napoli, Italia
| | | |
Collapse
|
44
|
Wolfe-Coote S, Louw J, Woodroof C, du Toit DF. Development, differentiation, and regeneration potential of the Vervet monkey endocrine pancreas. Microsc Res Tech 1998; 43:322-31. [PMID: 9849973 DOI: 10.1002/(sici)1097-0029(19981115)43:4<322::aid-jemt6>3.0.co;2-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using immunolabelling techniques, characterization of the Vervet monkey pancreas included a study of both its development and its structure and normal functioning in the adult. We found that PP and somatostatin occurred during development before glucagon. Insulin and all four pancreatic peptides occurred in one of the primordial buds prior to fusion. These finding call into question the suggested contribution of only PP cells by the ventral bud and non-PP cells by the dorsal bud. Co-localization of glucagon and PP was observed extensively with their relative expressions occurring in what appeared to be an organised non-random manner. Cells expressing both glucagon and PP persisted in the adult, together with many other combinations, suggesting an interesting plasticity of endocrine cell differentiation in the adult. Cellophane wrapping of the head of the Vervet monkey pancreas was shown to result in a noticeable increase in duct cell proliferation and endocrine cell volume but no increased replication of endocrine cells. Cells, immunoreactive for pancreatic peptides, were observed to bud from the ducts, suggesting a regeneration of endocrine cell tissue by neogenesis, although it is uncertain whether the duct epithelium contains the only stem cell source of new endocrine tissue. Hopefully, further investigations will elucidate a mechanism by which endocrine cell regenerative capacity can be stimulated in diabetics to overcome their absolute or relative deficiencies of insulin production.
Collapse
Affiliation(s)
- S Wolfe-Coote
- Experimental Biology Programme, Medical Research Council, Tygerberg, Cape, South Africa.
| | | | | | | |
Collapse
|
45
|
Gómez-visus I, García-Hernández MP, Lozano MT, Agulleiro B. Glucagon- and NPY-related peptide-immunoreactive cells in the gut of sea bass (Dicentrarchus labrax L.): a light and electron microscopic study. Gen Comp Endocrinol 1998; 112:26-37. [PMID: 9748400 DOI: 10.1006/gcen.1998.7119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon and peptide of the neuropeptide Y (NPY) family immunoreactivities were studied in the gut of sea bass (Dicentrarchus labrax) using antisera against bovine/porcine glucagon, porcine glucagon, glicentin (10-30), bovine pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), salmon PYY (sPYY), and NPY. Glucagon-, glicentin-, PYY-, and NPY-immunoreactive (ir) cells were detected in the stomach, and glucagon-, PP-, PYY-, sPYY-, and NPY-ir cells in the intestine. PP, PYY, and NPY immunoreactivities coexisted in intestinal endocrine cells (NPY-like peptide containing cells), in some of which there was also glucagon immunoreactivity. Preabsorption tests indicated that different products of the glucagon gene(s) are probably expressed in the stomach and intestine of sea bass and that the peptides belonging to the NPY family in the endocrine cells of the intestine are more similar to NPY than to other peptides of this family. Glucagon-ir cells in the stomach, and glucagon/NPY-like containing cells in the intestine, were characterized by conventional and immunogold electron-microscopic techniques. The glucagon cells had secretory granules with a clotted content, the gold particles being observed in both the core and the halo. Glucagon/NPY-like cells showed two types of secretory granules differing in size, both of which were immunogold labeled with anti-NPY and anti-sPYY; the smaller granules were weakly immunogold labeled with anti-glucagon.
Collapse
Affiliation(s)
- I Gómez-visus
- Faculty of Biology, University of Murcia, Murcia, 30100, Spain
| | | | | | | |
Collapse
|
46
|
Shimizu K, Kato Y, Shiratori K, Ding Y, Song Y, Furlanetto R, Chang TM, Watanabe S, Hayashi N, Kobayashi M, Chey WY. Evidence for the existence of CCK-producing cells in rat pancreatic islets. Endocrinology 1998; 139:389-96. [PMID: 9421438 DOI: 10.1210/endo.139.1.5691] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although the existence of cholecystokinin-like immunoreactivity (CCK-LI) in rat pancreas had been reported previously, it was never clearly demonstrated whether CCK is produced in rat pancreatic islets. AIMS The purpose of this study was to elucidate the source of the CCK-LI, the molecular properties of CCK, and the expression of the CCK gene in islet cells. METHODS Immunohistochemical studies of rat pancreas were carried out with different rabbit antisera against CCK-8 and CCK-related peptide including N-terminal CCK-33 (1-22) and gastrin-17, and colocalization with known islet hormones including insulin, glucagon, somatostatin, and pancreatic polypeptide was investigated. The major molecular form of CCK in the islets was determined by HPLC. RT-PCR and in situ hybridization were performed to demonstrate the presence of the CCK transcript in the pancreas. RESULTS CCK-LI was found in the center of the islets, colocalized with insulin in B cells. The major molecular form of CCK in the islets was CCK-8. A 350-nucleotide fragment of PCR-amplified CCK cDNA was detected in the islet as well as the duodenum by RT-PCR. In situ hybridization showed that CCK messenger RNA was located in a large portion of the islets, and this was consistent with the immunohistochemical findings. CONCLUSION CCK messenger RNA and immunoreactivity are expressed in adult rat pancreatic islets, indicating that CCK-producing cells are present in adult rat islets.
Collapse
Affiliation(s)
- K Shimizu
- Department of Gastroenterology, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reddy S, Elliott RB, Poole CA, Ross JM. Double-label immunofluorescence study of glutamic acid decarboxylase in the fetal and adult ovine pancreas by light and confocal microscopy: evidence for predominant beta-cell coexpression. Gen Comp Endocrinol 1997; 106:301-9. [PMID: 9204363 DOI: 10.1006/gcen.1997.6892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamic acid decarboxylase (GAD) is present in the central nervous system and in several nonneuronal tissues including the pancreatic islets. There are two isoforms with molecular weights of 65 kDa (GAD65) and 67 kDa (GAD67). The cellular specificity of the two molecular forms of GAD and their levels within the mammalian islets may be species-dependent, being coexpressed in both beta and in non-beta cells. We have examined the ovine pancreas, from the adult and fetal stages of late gestation, for the expression of GAD65 within the islet cells by double-label immunofluorescence light and confocal microscopy. In the adult tissue, GAD65 was colocalized in a majority of the beta cells (> 95%), with only a few glucagon and somatostatin cells (< 5%) showing immunolocalization. During the fetal stages GAD65 also showed a similar predominant beta-cell coexpression. The enzyme was also detected in a few fetal glucagon (< 5%) but not somatostatin cells. In the degenerating large fetal islets, GAD65 was also observed in the majority of the residual beta cells. These results demonstrate that in the ovine pancreas GAD65 is expressed during fetal development and is predominantly beta-cell-restricted. This pattern of expression is maintained during adult life. However, the physiological role of pancreatic GAD and/or its biosynthetic product, gamma-aminobutyric acid, in islet function in the sheep and in other ruminants remains unclear.
Collapse
Affiliation(s)
- S Reddy
- Department of Paediatrics, University of Auckland School of Medicine, New Zealand
| | | | | | | |
Collapse
|
48
|
Wettergren A, Maina P, Boesby S, Holst JJ. Glucagon-like peptide-1 7-36 amide and peptide YY have additive inhibitory effect on gastric acid secretion in man. Scand J Gastroenterol 1997; 32:552-5. [PMID: 9200286 DOI: 10.3109/00365529709025098] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glucagon-like peptide-1 7-36 amide (GLP-1) and peptide YY (PYY) are colocalized in the L-cell of the ileal mucosa, and both peptides may function as enterogastrone hormones. However, it is not known whether they interact with regard to the effect on acid secretion. METHODS The effect of intravenous infusion of GLP-1 and PYY, either alone or in combination, on pentagastrin-induced acid secretion in eight healthy volunteers was examined. The peptides were infused at two different rates: 0.25 pmol/kg/min (low rate) and 0.5 pmol/kg/min (high rate). RESULTS Given alone, GLP-1 and PYY inhibited acid secretion by 26 +/- 5% and 18 +/- 5% (low rate) and 45 +/- 8% and 38 +/- 7% (high rate), respectively. Combined infusion resulted in an inhibition of 32 +/- 5% (low rate) and 62 +/- 7% (high rate). Both infusion rates resulted in GLP-1 and PYY plasma concentrations below or similar to postprandial levels. CONCLUSION The present study suggests that the interaction between GLP-1 and PYY in man is of the additive type. The results indicate that GLP-1 and PYY have an important role in the physiologic control of gastric acid secretion.
Collapse
Affiliation(s)
- A Wettergren
- Dept. of Gastrointestinal Surgery D, Glostrup Hospital, Denmark
| | | | | | | |
Collapse
|
49
|
Louw J, Woodroof CW, Wolfe-Coote SA. Distribution of endocrine cells displaying immunoreactivity for one or more peptides in the pancreas of the adult vervet monkey (Cercopithecus aethiops). Anat Rec (Hoboken) 1997; 247:405-12. [PMID: 9066918 DOI: 10.1002/(sici)1097-0185(199703)247:3<405::aid-ar12>3.0.co;2-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Our previous studies on the Chacma baboon revealed that the most striking difference between islets of the ventral and dorsal regions of the pancreas was their content of A and pancreatic polypeptide (PP) cells with A cells predominating in the tail and PP cells in the uncinate and head. Cells displaying dual immunoreactivity for both glucagon and PP were also observed. The objective of this study was to establish baseline parameters of the adult Vervet monkey (Cercopithecus aethiops) pancreas so that it could be used as a primate model to investigate possible therapies for diabetes. METHODS Vervet-monkey pancreas was divided into uncinate, head, and tail regions, and the tissue processed for immunolabelling for pancreatic peptides using avidin-biotin-peroxidase as marker. Dot-blotting and absorption controls for antibody specificity were included because of the shared amino acid sequences in pancreatic polypeptide (PP), neuropeptide Y (NPY), and peptide YY (PYY). Endocrine cell distributions and the percentages of each cell type per region were calculated for each monkey. RESULTS A significant difference in the percentages of PP cells (P = 0.02) was observed between uncinate and tail regions, the distribution of NPY cells was similar to that of the PP cells, and all other distributions were similar to those reported in the literature for most animals studied. Cells displaying dual immunoreactivity for glucagon and PP or NPY, PYY and NPY, or PP, PP and somatostatin and glucagon and insulin were identified and mapped throughout the pancreas. Most co-localizations occurred in the uncinate region. Co-localization of glucagon and insulin has not, to our knowledge, been reported previously in the adult pancreas. CONCLUSIONS Pancreatic endocrine cell distribution in the adult Vervet monkey was found to be very similar to most other animals studied. The occurrence of cells displaying dual immunoreactivity for a number of different combinations of pancreatic peptides suggests an interesting plasticity of endocrine cells even in the adult animal.
Collapse
Affiliation(s)
- J Louw
- Medical Research Council, Experimental Biology Programme, Tygerberg, South Africa
| | | | | |
Collapse
|
50
|
Myrsén-Axcrona U, Ekblad E, Sundler F. Developmental expression of NPY, PYY and PP in the rat pancreas and their coexistence with islet hormones. REGULATORY PEPTIDES 1997; 68:165-75. [PMID: 9100283 DOI: 10.1016/s0167-0115(96)02113-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been suggested that members of the neuropeptide Y (NPY) family of regulatory peptides [NPY, peptide YY (PYY) and pancreatic polypeptide (PP)] play an important role in the development of the endocrine pancreas. The development of rat endocrine pancreas from embryonic (E) day 12 until 30 days postpartum (P) was studied with emphasis on NPY, PYY and PP and their co-existence with insulin, glucagon and somatostatin using single and double immunostaining and in situ hybridization. Already at E12, PYY was detectable in small endocrine cell clusters and found to be co-localised with both insulin and glucagon, which at this stage occurred in the same cells. At E16 most of the insulin-immunoreactive (IR) cells were distinct from the glucagon/PYY-IR cells. Interestingly, at E16 NPY mRNA, and at E17 NPY immunoreactivity appeared in a few, scattered endocrine cells. Virtually all NPY-IR endocrine cells were insulin-producing beta cells. At E18 the endocrine cells started to form typical islets with centrally located insulin/NPY-IR cells surrounded by glucagon/PYY-IR cells. AT E20-E21, the vast majority of insulin-producing cells also expressed NPY. However, at birth (day 0) islet cell NPY mRNA was lacking. Postnatally the number and immunostaining intensity of NPY-IR islet cells rapidly declined, being non-detectable at P5. Cells containing PP immunoreactivity and PP mRNA were first detected at E21. The adult pattern of islet peptide distribution, with NPY confined to neuronal elements. PYY and PP exclusively in endocrine cells, was established at P5. The beta cell expression of NPY during the latter part of embryogenesis coincides with the prepartal glucocorticoid surge and with rapid islet cell replication and differentiation. This is compatible with steroid induction of NPY expression and with a role for NPY in the maturation of beta cells and their hormone release, which occurs in the immediate neonatal period.
Collapse
Affiliation(s)
- U Myrsén-Axcrona
- Department of Physiology and Neuroscience, Lund University Hospital, University of Lund, Sweden
| | | | | |
Collapse
|