1
|
Kosińska A, Mrózek M, Łopyta-Mirocha M, Tomsia M. The smallest traces of crime: Trace elements in forensic science. J Trace Elem Med Biol 2024; 86:127527. [PMID: 39288558 DOI: 10.1016/j.jtemb.2024.127527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Securing the evidence in various investigative situations is often associated with trace analysis, including fingerprints or blood groups. However, when classic and conventional methods fail, trace elements, such as copper, zinc, fluorine, and many others found in exceedingly insignificant amounts in organisms, may prove useful and effective. METHODS The presented work reviews articles published between 2003 and 2023, describing the use of trace elements and the analytical methods employed for their analysis in forensic medicine and related sciences. RESULTS & CONCLUSION Trace elements can be valuable as traces collected at crime scenes and during corpse examination, aiding in determining characteristics like the sex or age of the deceased. Additionally, trace elements levels in the body can serve as alcohol or drug poisoning markers. In traumatology, trace elements enable the identification of various instruments and the injuries caused by their use.
Collapse
Affiliation(s)
- Agnieszka Kosińska
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marcella Mrózek
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marta Łopyta-Mirocha
- School of Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Street, Katowice 40-752, Poland.
| |
Collapse
|
2
|
Truby LK, Michelis K, Grodin JL. More Than Meets the Eye: Defining the Prevalence, Pathophysiology, and Approach to Myocardial Iron Overload. Am J Cardiol 2024; 219:38-43. [PMID: 38461925 DOI: 10.1016/j.amjcard.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Lauren K Truby
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katherine Michelis
- University of Texas Southwestern Medical Center, Dallas, Texas; Dallas VA Medical Center, Dallas, Texas
| | - Justin L Grodin
- University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Luo J, Liu Z, Wang Q, Tan S. Liver iron overload and fat content analyzed by magnetic resonance contribute to evaluatingthe progression of chronic hepatitis B. Biomed Rep 2024; 20:23. [PMID: 38169881 PMCID: PMC10758915 DOI: 10.3892/br.2023.1711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic hepatitis B (CHB) and its complications still have a major role in liver-related mortality. It has been indicated that hepatic iron and steatosis may influence liver fibrosis and carcinogenesis. The present study aimed to assess the liver iron and fat in patients with CHB by MRI in order to estimate the associations among liver iron, fat and the severity and progression of liver fibrosis. In the present retrospective study, consecutive patients with CHB examined from August 2018 to August 2020 were analyzed. Liver iron and fat content were assessed by MRI, which was measured as liver iron content (LIC) and proton density fat fraction (PDFF). A total of 340 patients were included in the current study. For LIC, the median value was 1.68 mg/g and elevated LIC was seen in 122 patients (35.9%). For liver fat content, the median value of PDFF was 3.1%, while only 15.0% of patients had liver steatosis (PDFF ≥5%). Age, total bilirubin and sex were independent predictive factors of liver iron overload [odds ratio (OR)=1.036, 1.005 and 8.834, respectively]. A higher platelet count (OR=1.005) and no portal hypertension (OR=0.381) independently predicted liver steatosis. The areas under the receiver operating characteristic curves of PDFF for the identification of liver cirrhosis estimated by different non-invasive tools ranged from 0.629 to 0.704. It was concluded that iron overload was common in patients with CHB, particularly in those with older age, male sex and high total bilirubin level, and liver steatosis was less common in CHB. Liver iron and fat content analyzed by MRI may contribute to the evaluation of the severity and progression of CHB.
Collapse
Affiliation(s)
- Jinni Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenzhen Liu
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qian Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
4
|
Suresh D, Li A, Miller MJ, Wijarnpreecha K, Chen VL. Associations between metabolic hyperferritinaemia, fibrosis-promoting alleles and clinical outcomes in steatotic liver disease. Liver Int 2024; 44:389-398. [PMID: 37971775 PMCID: PMC10872664 DOI: 10.1111/liv.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS Ferritin has been investigated as a biomarker for liver fibrosis and iron in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, whether metabolic hyperferritinaemia predicts progression of liver disease remains unknown. In this study, we sought to understand associations between hyperferritinaemia and (1) adverse clinical outcomes and (2) common genetic variants related to iron metabolism and liver fibrosis. METHODS This was a retrospective analysis of adults with MASLD seen at the University of Michigan Health System, where MASLD was defined by hepatic steatosis on imaging, biopsy or vibration-controlled transient elastography, plus metabolic risk factors in the absence of chronic liver diseases other than hemochromatosis. The primary predictor was serum ferritin level, which was dichotomized based on a cut-off of 300 or 450 mcg/L for women or men. Primary outcomes included (1) incident cirrhosis, liver-related events, congestive heart failure (CHF), and mortality and (2) distribution of common genetic variants associated with hepatic fibrosis and hereditary hemochromatosis. RESULTS Of 7333 patients with MASLD, 1468 (20%) had elevated ferritin. In multivariate analysis, ferritinaemia was associated with increased mortality (HR 1.68 [1.35-2.09], p < .001) and incident liver-related events (HR 1.92 [1.11-3.32], p = .019). Furthermore, elevated ferritin was associated with carriage of cirrhosis-promoting alleles including PNPLA3-rs738409-G allele (p = .0068) and TM6SF2-rs58542926-T allele (p = 0.0083) but not with common HFE mutations. CONCLUSIONS In MASLD patients, metabolic hyperferritinaemia was associated with increased mortality and higher incidence of liver-related events, and cirrhosis-promoting alleles but not with iron overload-promoting HFE mutations.
Collapse
Affiliation(s)
- Deepika Suresh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Li
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Miller
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Karn Wijarnpreecha
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Ali N, Ferrao K, Mehta KJ. Liver Iron Loading in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1427-1439. [PMID: 36306827 DOI: 10.1016/j.ajpath.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
Alcohol-associated liver disease (ALD) is a common chronic liver disease with increasing incidence worldwide. Alcoholic liver steatosis/steatohepatitis can progress to liver fibrosis/cirrhosis, which can cause predisposition to hepatocellular carcinoma. ALD diagnosis and management are confounded by several challenges. Iron loading is a feature of ALD which can exacerbate alcohol-induced liver injury and promote ALD pathologic progression. Knowledge of the mechanisms that mediate liver iron loading can help identify cellular/molecular targets and thereby aid in designing adjunct diagnostic, prognostic, and therapeutic approaches for ALD. Herein, the cellular mechanisms underlying alcohol-induced liver iron loading are reviewed and how excess iron in patients with ALD can promote liver fibrosis and aggravate disease pathology is discussed. Alcohol-induced increase in hepatic transferrin receptor-1 expression and up-regulation of high iron protein in Kupffer cells (proposed) facilitate iron deposition and retention in the liver. Iron is loaded in both parenchymal and nonparenchymal liver cells. Iron-loaded liver can promote ferroptosis and thereby contribute to ALD pathology. Iron and alcohol can independently elevate oxidative stress. Therefore, a combination of excess iron and alcohol amplifies oxidative stress and accelerates liver injury. Excess iron-stimulated hepatocytes directly or indirectly (through Kupffer cell activation) activate the hepatic stellate cells via secretion of proinflammatory and profibrotic factors. Persistently activated hepatic stellate cells promote liver fibrosis, and thereby facilitate ALD progression.
Collapse
Affiliation(s)
- Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Ferrao K, Ali N, Mehta KJ. Iron and iron-related proteins in alcohol consumers: cellular and clinical aspects. J Mol Med (Berl) 2022; 100:1673-1689. [PMID: 36214835 PMCID: PMC9691479 DOI: 10.1007/s00109-022-02254-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases. Its pathological spectrum includes the overlapping stages of hepatic steatosis/steatohepatitis that can progress to liver fibrosis and cirrhosis; both are risk factors for hepatocellular carcinoma. Moreover, ALD diagnosis and management pose several challenges. The early pathological stages are reversible by alcohol abstinence, but these early stages are often asymptomatic, and currently, there is no specific laboratory biomarker or diagnostic test that can confirm ALD etiology. Alcohol consumers frequently show dysregulation of iron and iron-related proteins. Examination of iron-related parameters in this group may aid in early disease diagnosis and better prognosis and management. For this, a coherent overview of the status of iron and iron-related proteins in alcohol consumers is essential. Therefore, here, we collated and reviewed the alcohol-induced alterations in iron and iron-related proteins. Reported observations include unaltered, increased, or decreased levels of hemoglobin and serum iron, increments in intestinal iron absorption (facilitated via upregulations of duodenal divalent metal transporter-1 and ferroportin), serum ferritin and carbohydrate-deficient transferrin, decrements in serum hepcidin, decreased or unaltered levels of transferrin, increased or unaltered levels of transferrin saturation, and unaltered levels of soluble transferrin receptor. Laboratory values of iron and iron-related proteins in alcohol consumers are provided for reference. The causes and mechanisms underlying these alcohol-induced alterations in iron parameters and anemia in ALD are explained. Notably, alcohol consumption by hemochromatosis (iron overload) patients worsens disease severity due to the synergistic effects of excess iron and alcohol.
Collapse
Affiliation(s)
- Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
9
|
Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Peña-Rosas JP. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst Rev 2021; 5:CD011817. [PMID: 34028001 PMCID: PMC8142307 DOI: 10.1002/14651858.cd011817.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Reference standard indices of iron deficiency and iron overload are generally invasive, expensive, and can be unpleasant or occasionally risky. Ferritin is an iron storage protein and its concentration in the plasma or serum reflects iron stores; low ferritin indicates iron deficiency, while elevated ferritin reflects risk of iron overload. However, ferritin is also an acute-phase protein and its levels are elevated in inflammation and infection. The use of ferritin as a diagnostic test of iron deficiency and overload is a common clinical practice. OBJECTIVES To determine the diagnostic accuracy of ferritin concentrations (serum or plasma) for detecting iron deficiency and risk of iron overload in primary and secondary iron-loading syndromes. SEARCH METHODS We searched the following databases (10 June 2020): DARE (Cochrane Library) Issue 2 of 4 2015, HTA (Cochrane Library) Issue 4 of 4 2016, CENTRAL (Cochrane Library) Issue 6 of 12 2020, MEDLINE (OVID) 1946 to 9 June 2020, Embase (OVID) 1947 to week 23 2020, CINAHL (Ebsco) 1982 to June 2020, Web of Science (ISI) SCI, SSCI, CPCI-exp & CPCI-SSH to June 2020, POPLINE 16/8/18, Open Grey (10/6/20), TRoPHI (10/6/20), Bibliomap (10/6/20), IBECS (10/6/20), SCIELO (10/6/20), Global Index Medicus (10/6/20) AIM, IMSEAR, WPRIM, IMEMR, LILACS (10/6/20), PAHO (10/6/20), WHOLIS 10/6/20, IndMED (16/8/18) and Native Health Research Database (10/6/20). We also searched two trials registers and contacted relevant organisations for unpublished studies. SELECTION CRITERIA We included all study designs seeking to evaluate serum or plasma ferritin concentrations measured by any current or previously available quantitative assay as an index of iron status in individuals of any age, sex, clinical and physiological status from any country. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods. We designed the data extraction form to record results for ferritin concentration as the index test, and bone marrow iron content for iron deficiency and liver iron content for iron overload as the reference standards. Two other authors further extracted and validated the number of true positive, true negative, false positive, false negative cases, and extracted or derived the sensitivity, specificity, positive and negative predictive values for each threshold presented for iron deficiency and iron overload in included studies. We assessed risk of bias and applicability using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool. We used GRADE assessment to enable the quality of evidence and hence strength of evidence for our conclusions. MAIN RESULTS Our search was conducted initially in 2014 and updated in 2017, 2018 and 2020 (10 June). We identified 21,217 records and screened 14,244 records after duplicates were removed. We assessed 316 records in full text. We excluded 190 studies (193 records) with reasons and included 108 studies (111 records) in the qualitative and quantitative analysis. There were 11 studies (12 records) that we screened from the last search update and appeared eligible for a future analysis. We decided to enter these as awaiting classification. We stratified the analysis first by participant clinical status: apparently healthy and non-healthy populations. We then stratified by age and pregnancy status as: infants and children, adolescents, pregnant women, and adults. Iron deficiency We included 72 studies (75 records) involving 6059 participants. Apparently healthy populations Five studies screened for iron deficiency in people without apparent illness. In the general adult population, three studies reported sensitivities of 63% to 100% at the optimum cutoff for ferritin, with corresponding specificities of 92% to 98%, but the ferritin cutoffs varied between studies. One study in healthy children reported a sensitivity of 74% and a specificity of 77%. One study in pregnant women reported a sensitivity of 88% and a specificity of 100%. Overall confidence in these estimates was very low because of potential bias, indirectness, and sparse and heterogenous evidence. No studies screened for iron overload in apparently healthy people. People presenting for medical care There were 63 studies among adults presenting for medical care (5042 participants). For a sample of 1000 subjects with a 35% prevalence of iron deficiency (of the included studies in this category) and supposing a 85% specificity, there would be 315 iron-deficient subjects correctly classified as having iron deficiency and 35 iron-deficient subjects incorrectly classified as not having iron deficiency, leading to a 90% sensitivity. Thresholds proposed by the authors of the included studies ranged between 12 to 200 µg/L. The estimated diagnostic odds ratio was 50. Among non-healthy adults using a fixed threshold of 30 μg/L (nine studies, 512 participants, low-certainty evidence), the pooled estimate for sensitivity was 79% with a 95% confidence interval of (58%, 91%) and specificity of 98%, with a 95% confidence interval of (91%, 100%). The estimated diagnostic odds ratio was 140, a relatively highly informative test. Iron overload We included 36 studies (36 records) involving 1927 participants. All studies concerned non-healthy populations. There were no studies targeting either infants, children, or pregnant women. Among all populations (one threshold for males and females; 36 studies, 1927 participants, very low-certainty evidence): for a sample of 1000 subjects with a 42% prevalence of iron overload (of the included studies in this category) and supposing a 65% specificity, there would be 332 iron-overloaded subjects correctly classified as having iron overload and 85 iron-overloaded subjects incorrectly classified as not having iron overload, leading to a 80% sensitivity. The estimated diagnostic odds ratio was 8. AUTHORS' CONCLUSIONS At a threshold of 30 micrograms/L, there is low-certainty evidence that blood ferritin concentration is reasonably sensitive and a very specific test for iron deficiency in people presenting for medical care. There is very low certainty that high concentrations of ferritin provide a sensitive test for iron overload in people where this condition is suspected. There is insufficient evidence to know whether ferritin concentration performs similarly when screening asymptomatic people for iron deficiency or overload.
Collapse
Affiliation(s)
| | - Sant-Rayn Pasricha
- Division: Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | | | | | - Juan Pablo Peña-Rosas
- Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| |
Collapse
|
10
|
Bloomer SA, Broadhurst KA, Maleah Mathahs M, Brown KE. Effects of long-term ethanol ingestion on hepatic iron metabolism in two mouse strains. Clin Exp Pharmacol Physiol 2021; 48:534-542. [PMID: 33319364 DOI: 10.1111/1440-1681.13445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023]
Abstract
The mechanisms responsible for dysregulation of iron metabolism in response to ethanol ingestion are poorly understood. Relatively brief ethanol exposures in rodents are associated with reduced hepatic hepcidin expression without increases in hepatic iron content. This study evaluated the effects of long-term ethanol treatment on hepatic iron metabolism in two mouse strains. Ethanol was administered in the drinking water to C57BL/6 and BALB/c mice for up to 11 months. Hepatic histology and iron concentrations (HIC) were assessed, along with expression of relevant genes and proteins by real-time RT-PCR and western blot, respectively. The livers of ethanol-consuming mice of both strains showed mild steatosis without inflammation or fibrosis. Stainable hepatocyte iron was modestly increased in both strains ingesting ethanol, although hepatic iron concentrations were significantly higher only in C57BL/6 mice. Long-term ethanol did not affect hepcidin mRNA (Hamp1 or Hamp2) in either strain, nor was the expression of several oxidative stress-responsive genes (glutamate cysteine ligase, gamma-glutamyl transpeptidase, heme oxygenase-1 and growth differentiation factor 15) altered in response to ethanol, suggesting that oxidative stress and suppression of hepcidin expression in short-term ethanol feeding models may be transient phenomena that resolve as mice adapt to ethanol exposure. This murine model of chronic ethanol ingestion demonstrates modest increases in hepatic iron without changes in hepcidin expression, markers of oxidative stress or significant histologic liver injury. Further investigations are needed to characterize the mechanisms of dysregulated iron metabolism resulting from chronic ethanol ingestion.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, Abington, PA, USA
| | - Kimberly A Broadhurst
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - M Maleah Mathahs
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kyle E Brown
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa City Veterans Administration Medical Center, Iowa City, IA, USA
- Program in Free Radical and Radiation Biology, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
11
|
Liu CY, Wang M, Yu HM, Han FX, Wu QS, Cai XJ, Kurihara H, Chen YX, Li YF, He RR. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 2020; 84:1621-1628. [PMID: 32419644 DOI: 10.1080/09168451.2020.1763155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A critical pathogenic factor in the development of lethal liver failure is cell death induced by the accumulation of lipid reactive oxygen species. In this study, we discovered and illuminated a new mechanism that led to alcoholic liver disease via ferroptosis, an iron-dependent regulated cell death. Study in vitro showed that both necroptosis inhibitor and ferroptosis inhibitors performed significantly protective effect on alcohol-induced cell death, while apoptosis inhibitor and autophagy inhibitor had no such effect. Our data also indicated that alcohol caused the accumulation of lipid peroxides and the mRNA expression of prostaglandin-endoperoxide synthase 2, reduced the protein expression of the specific light-chain subunit of the cystine/glutamate antiporter and glutathione peroxidase 4. Importantly, ferrostatin-1 significantly ameliorated liver injury that was induced by overdosed alcohol both in vitro and in vivo. These findings highlight that targeting ferroptosis serves as a hepatoprotective strategy for alcoholic liver disease treatment.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Hong-Min Yu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Fang-Xuan Han
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Qiong-Shi Wu
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Yong-Xing Chen
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Yi-Fang Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| |
Collapse
|
12
|
Paulke A, Söhling N, Held H, Wurglics M, Skopp G, Toennes SW. Chronic alcohol abuse may lead to high skin iron content, but not to hepatic siderosis. Forensic Sci Int 2019; 304:109851. [DOI: 10.1016/j.forsciint.2019.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
13
|
Makulo JR, Itokua KE, Lepira RK, Bundutidi GM, Aloni MN, Ngiyulu RM, Gini JL, Lepira FB. Magnitude of elevated iron stores and risk associated in steady state sickle cell anemia Congolese children: a cross sectional study. BMC HEMATOLOGY 2019; 19:3. [PMID: 30774961 PMCID: PMC6368684 DOI: 10.1186/s12878-019-0134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/09/2019] [Indexed: 11/10/2022]
Abstract
Background The serum ferritin assay is recommended in Sickle Cell Anemia (SCA) patients receiving regular transfusions. According to several authors, elevated iron stores indicating iron chelation corresponds to hyperferritinemia ≥500 ng/ml, and becomes detectable after twenty blood transfusions. The objectives of the study were to determine the prevalence of elevated iron stores and identify associated risk factors in a case series of Steady state SCA Congolese children. Material and methods Serum ferritin was assayed in Steady state SCA children followed in 2 specialized hospitals in Kinshasa. Elevated iron stores was defined as serum ferritin level ≥ 500 ng/ml, and the associated risk factors were identified using univariate analysis. Results Seventy patients (median age 9 years, 56% boys, 53% receiving hydroxyurea) were selected in the study. Serum ferritin levels ranged from 24 to 2584 ng / ml with 21.4% of children having elevated iron stores. Mean levels of LDH, indirect bilirubin, plasma free Hb and CRP were similar between the 2 groups whereas history of polytransfusions (> 3 during the last year) was more frequent among patients with elevated iron stores (73% vs. 44%, p = 0.078). Receiving > 3 transfusions in a year vs. 0 was the main risk factor associated with elevated iron stores [OR 6.17 (95% CI: 1.81–20.96)]. Conclusion In SCA children, hyperferritinemia requiring iron chelation is most strongly related to blood transfusion. This situation concerned almost one in five children in present study; this shows the magnitude of the problem which is underestimated.
Collapse
Affiliation(s)
- Jean-Robert Makulo
- 1Division of Nephrology, Nephrology Unit, Department of Internal Medicine, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa XI, PO.BOX 123, Democratic Republic of Congo
| | - Karen Efombola Itokua
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Rosette Kevani Lepira
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Gloire Mavinga Bundutidi
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Michel Ntetani Aloni
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - René Makuala Ngiyulu
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean Lambert Gini
- 2Division of Hemato-Oncology and Nephrology, Department of Pediatric, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - François Bompeka Lepira
- 1Division of Nephrology, Nephrology Unit, Department of Internal Medicine, University Hospital of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa XI, PO.BOX 123, Democratic Republic of Congo
| |
Collapse
|
14
|
Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Peña-Rosas JP. Are Current Serum and Plasma Ferritin Cut-offs for Iron Deficiency and Overload Accurate and Reflecting Iron Status? A Systematic Review. Arch Med Res 2018; 49:405-417. [DOI: 10.1016/j.arcmed.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
|
15
|
Zinc, Copper, and Iron in Oral Submucous Fibrosis: A Meta-Analysis. Int J Dent 2018; 2018:3472087. [PMID: 30046309 PMCID: PMC6038491 DOI: 10.1155/2018/3472087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 01/02/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a potentially malignant disorder which causes fibrosis and inflammation of the oral mucosa. Studies have reported altered levels of trace elements in oral submucous fibrosis subjects, but findings have been inconsistent. The objective of this research is to perform a meta-analysis to summarize studies that report zinc (Zn), copper (Cu), and iron (Fe) in patients, with and without OSF. A literature search of Embase, PubMed, Cochrane Library, and Web of Science electronic databases was conducted for studies up to January 2017. A total of 34 reports met the inclusion criteria. The standardized mean difference was utilized as the effect size. The robust variance estimation method was chosen to handle dependency of multiple related outcomes in meta-analysis. There was a significant increase in the levels of Cu (effect size = 1.17, p value < 0.05, 95% confidence interval (CI): 0.164–2.171) and a significant decrease in levels of Zn (effect size = −1.95, p value < 0.05, 95% CI: −3.524 to −0.367) and Fe (effect size = −2.77, p value < 0.01, 95% CI: −4.126 to −1.406) in OSF patients. The estimation of Zn, Cu, and Fe levels may serve as additional biomarkers in the diagnosis and prognosis of OSF along with the clinical features.
Collapse
|
16
|
Helfrich KK, Saini N, Kling PJ, Smith SM. Maternal iron nutriture as a critical modulator of fetal alcohol spectrum disorder risk in alcohol-exposed pregnancies. Biochem Cell Biol 2018; 96:204-212. [PMID: 29017023 PMCID: PMC5914169 DOI: 10.1139/bcb-2017-0206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption during pregnancy places the fetus at risk for permanent physical, cognitive, and behavioral impairments, collectively termed fetal alcohol spectrum disorder (FASD). However, prenatal alcohol exposure (PAE) outcomes vary widely, and growing evidence suggests that maternal nutrition is a modifying factor. Certain nutrients, such as iron, may modulate FASD outcomes. Untreated gestational iron deficiency (ID) causes persistent neurodevelopmental deficits in the offspring that affect many of the same domains damaged by PAE. Although chronic alcohol consumption enhances iron uptake and elevates liver iron stores in adult alcoholics, alcohol-abusing premenopausal women often have low iron reserves due to menstruation, childbirth, and poor diet. Recent investigations show that low iron reserves during pregnancy are strongly associated with a worsening of several hallmark features in FASD including reduced growth and impaired associative learning. This review discusses recent clinical and animal model findings that maternal ID worsens fetal outcomes in response to PAE. It also discusses underlying mechanisms by which PAE disrupts maternal and fetal iron homeostasis. We suggest that alcohol-exposed ID pregnancies contribute to the severe end of the FASD spectrum.
Collapse
Affiliation(s)
- Kaylee K Helfrich
- a UNC Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nipun Saini
- a UNC Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pamela J Kling
- b Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan M Smith
- a UNC Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Tan P, Liang H, Nie J, Diao Y, He Q, Hou B, Zhao T, Huang H, Li Y, Gao X, Zhou L, Liu Y. Establishment of an alcoholic fatty liver disease model in mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:61-68. [PMID: 27739874 DOI: 10.1080/00952990.2016.1217539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcoholic fatty liver disease (AFLD) defines an important stage in the progression of alcoholic liver disease (ALD), which is a major cause of morbidity and mortality worldwide. OBJECTIVE To establish a mouse model of AFLD. METHODS Male C57BL/6 mice were divided into the following two groups: (i) a control group, which was allowed free access to food and water and (ii) an alcohol-treated group, which was administered a 15% (v/v) alcohol solution instead of water. After 8-9 months of treatment, serum biochemical indexes, histopathological changes, liver triglyceride content, iron storage, and ferritin light chain protein expression were measured using an automatic biochemical analyzer, hematoxylin-eosin (HE) staining, a commercially available kit, Prussian blue staining, and Western blot analysis, respectively. RESULTS Compared with the control group, the alcohol-treated group displayed increased levels of serum LDH, ALT, and AST, decreased levels of ALB, and no significant change in levels of TP. Additionally, increased levels of serum TG, T-CHO, and LDL and decreased levels of serum GLU and HDL were observed in the alcohol-treated mice. HE staining showed that lipid vacuolization occurred in the livers of alcohol-treated mice. The alcohol-treated mice also exhibited increased liver triglyceride content. Moreover, Prussian blue staining and Western blot analysis demonstrated that chronic alcohol administration caused iron overloading of the liver. CONCLUSIONS Chronic administration of 15% (v/v) alcohol in the drinking water over 8-9 months caused AFLD in mice. Our results establish an AFLD model that represents a promising tool for the future study of the progression of ALD.
Collapse
Affiliation(s)
- Peizhu Tan
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Huan Liang
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China.,c Department of Clinical Laboratory , Harbin Medical University Cancer Hospital , Harbin , China
| | - Junhui Nie
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Yan Diao
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Qi He
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Baoyu Hou
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Tingting Zhao
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Hui Huang
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Yanze Li
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Xu Gao
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Lingyun Zhou
- a Department of Biochemistry and Molecular Biology , Harbin Medical University , Harbin , China.,b Translational Medicine Center of Northern China , Harbin , China
| | - Ying Liu
- d Department of Gastroenterology , Heilongjiang Province Hospital , Harbin , China
| |
Collapse
|
18
|
Huebner SM, Blohowiak SE, Kling PJ, Smith SM. Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders. J Nutr 2016; 146:1180-8. [PMID: 27146918 PMCID: PMC4877631 DOI: 10.3945/jn.115.227983] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) causes neurodevelopmental disabilities, and gestational iron deficiency (ID) selectively worsens learning and neuroanatomical and growth impairments in PAE. It is unknown why ID worsens outcomes in alcohol-exposed offspring. OBJECTIVE We hypothesized that PAE alters maternal-fetal iron distribution or its regulation. METHODS Nulliparous, 10-wk-old, Long-Evans rats were mated and then fed iron-sufficient (100 mg Fe/kg) or iron-deficient (≤4 mg Fe/kg) diets. On gestational days 13.5-19.5, dams received either 5.0 g ethanol/kg body weight (PAE) or isocaloric maltodextrin by oral gavage. On gestational day 20.5, maternal and fetal clinical blood counts, tissue mineral and iron transport protein concentrations, and hepatic hepcidin mRNA expression were determined. RESULTS In fetal brain and liver (P < 0.001) and in maternal liver (P < 0.005), ID decreased iron (total and nonheme) and ferritin content by nearly 200%. PAE reduced fetal bodyweight (P < 0.001) and interacted with ID (P < 0.001) to reduce it by an additional 20%. Independent of maternal iron status, PAE increased fetal liver iron (30-60%, P < 0.001) and decreased brain iron content (total and nonheme, 15-20%, P ≤ 0.050). ID-PAE brains had lower ferritin, transferrin, and transferrin receptor content (P ≤ 0.002) than ID-maltodextrin brains. PAE reduced fetal hematocrit, hemoglobin, and red blood cell numbers (P < 0.003) independently of iron status. Unexpectedly, and also independent of iron status, PAE increased maternal and fetal hepatic hepcidin mRNA expression >300% (P < 0.001). CONCLUSIONS PAE altered fetal iron distribution independent of maternal iron status in rats. The elevated iron content of fetal liver suggests that PAE may have limited iron availability for fetal erythropoiesis and brain development. Altered fetal iron distribution may partly explain why maternal ID substantially worsens growth and behavioral outcomes in PAE.
Collapse
Affiliation(s)
- Shane M Huebner
- From the Departments of Nutritional Sciences, College of Agriculture and Life Sciences, and
| | - Sharon E Blohowiak
- Pediatrics, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI
| | - Pamela J Kling
- Pediatrics, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI
| | - Susan M Smith
- From the Departments of Nutritional Sciences, College of Agriculture and Life Sciences, and
| |
Collapse
|
19
|
Decreased hepatic iron in response to alcohol may contribute to alcohol-induced suppression of hepcidin. Br J Nutr 2016; 115:1978-86. [PMID: 27080262 DOI: 10.1017/s0007114516001197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic Fe overload has often been reported in patients with advanced alcoholic liver disease. However, it is not known clearly whether it is the effect of alcohol that is responsible for such overload. To address this lacuna, a time-course study was carried out in mice in order to determine the effect of alcohol on Fe homoeostasis. Male Swiss albino mice were pair-fed Lieber-DeCarli alcohol diet (20 % of total energy provided as alcohol) for 2, 4, 8 or 12 weeks. Expression levels of duodenal and hepatic Fe-related proteins were determined by quantitative PCR and Western blotting, as were Fe levels and parameters of oxidative stress in the liver. Alcohol induced cytochrome P4502E1 and oxidative stress in the liver. Hepatic Fe levels and ferritin protein expression dropped to significantly lower levels after 12 weeks of alcohol feeding, with no significant effects at earlier time points. This was associated, at 12 weeks, with significantly decreased liver hepcidin expression and serum hepcidin levels. Protein expressions of duodenal ferroportin (at 8 and 12 weeks) and divalent metal transporter 1 (at 8 weeks) were increased. Serum Fe levels rose progressively to significantly higher levels at 12 weeks. Histopathological examination of the liver showed mild steatosis, but no stainable Fe in mice fed alcohol for up to 12 weeks. In summary, alcohol ingestion by mice in this study affected several Fe-related parameters, but produced no hepatic Fe accumulation. On the contrary, alcohol-induced decreases in hepatic Fe levels were seen and may contribute to alcohol-induced suppression of hepcidin.
Collapse
|
20
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | | | - Helmut K Seitz
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Sebastian Mueller
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Haim Mell
- Israel Antidrug and Alcohol Authority, Jerusalem, Israel
| | - Didier Samuel
- Liver Transplant Unit, Research Inserm-Paris XI Unit 785, Centre Hepatobiliaire, Hopital Paul Brousse, Villejuif, Paris, France
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
21
|
Yang F, Luo J. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity. Biomolecules 2015; 5:2538-53. [PMID: 26473940 PMCID: PMC4693246 DOI: 10.3390/biom5042538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.
Collapse
Affiliation(s)
- Fanmuyi Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
The role of iron in alcohol-mediated hepatocarcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:89-112. [PMID: 25427903 DOI: 10.1007/978-3-319-09614-8_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is the major liver disease in the developed world and characterized by hepatic iron overload in ca. 50% of all patients. This iron overload is an independent factor of disease progression, hepatocellular carcinoma and it determines survival. Since simple phlebotomy does not allow the efficient removal of excess iron in ALD, a better understanding of the underlying mechanisms is urgently needed to identify novel targeted treatment strategies. This review summarizes the present knowledge on iron overload in patients with ALD. Although multiple sides of the cellular and systemic iron homeostasis may be affected during alcohol consumption, most studies have focused on potential hepatic causes. However, it should not be overlooked that more than 90% of the major iron pool, the hemoglobin-associated iron, is efficiently recycled within the human body and it is also strongly affected by alcohol. The few available studies suggest various molecular mechanisms that involve iron regulatory protein (IRP1), transferrin receptor 1 (TfR1), and the systemic iron master switch hepcidin, but not classical mutations of the HFE gene. Notably, reactive oxygen species (ROS), namely, hydrogen peroxide (H2O2), are powerful modulators of these iron-steering proteins. For instance, depending on the level, H2O2 may both strongly suppress and induce the expression of hepcidin that could partly explain the anemia and iron overload observed in these patients. More studies with appropriate ROS models such as the novel GOX/CAT system are required to unravel the mechanisms of iron overload in ALD to consequently identify molecular-targeted therapies in the future.
Collapse
|
23
|
Dostalikova-Cimburova M, Balusikova K, Kratka K, Chmelikova J, Hejda V, Hnanicek J, Neubauerova J, Vranova J, Kovar J, Horak J. Role of duodenal iron transporters and hepcidin in patients with alcoholic liver disease. J Cell Mol Med 2014; 18:1840-50. [PMID: 24894955 PMCID: PMC4196659 DOI: 10.1111/jcmm.12310] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down-regulated by alcohol in cell lines and animal models. This down-regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real-time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down-regulation of hepcidin expression leading to up-regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.
Collapse
Affiliation(s)
- Marketa Dostalikova-Cimburova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Kamila Balusikova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Karolina Kratka
- Department of Medicine I, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Jitka Chmelikova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Vaclav Hejda
- 1st Dept. of Medicine, Charles University in Prague, Medical School and Teaching Hospital in PilsenPilsen, Czech Republic
| | - Jan Hnanicek
- Department of Medicine II, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Jitka Neubauerova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Jana Vranova
- Department of Medical Biophysics and Informatics, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| | - Jan Kovar
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
- *Correspondence to: Prof. Jan KOVAR, Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University Prague, Ruska 87, 100 00 Prague 10, Czech Republic. Tel.: +420 2 67102 658 Fax: +420 2 67102 650 E-mail:
| | - Jiri Horak
- Department of Medicine I, Third Faculty of Medicine, Charles University PraguePrague, Czech Republic
| |
Collapse
|
24
|
Ellingsen DG, Chashchin M, Berlinger B, Konz T, Zibarev E, Aaseth J, Chashchin V, Thomassen Y. Biomarkers of iron status and trace elements in welders. J Trace Elem Med Biol 2014; 28:271-7. [PMID: 24703374 DOI: 10.1016/j.jtemb.2014.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 11/15/2022]
Abstract
Iron status was studied in 137 welders exposed to a geometric mean (GM) air concentration of 214 μg/m(3) (range 1-3230) of manganese (Mn), in 137 referents and in 34 former welders. The GM concentrations of S-ferritin were 119 (3-1498), 112 (9-1277) and 98 (12-989) μg/L (p=0.24) in the three groups, respectively. Also the GM concentrations of S-hepcidin were not significantly different between the groups (8.4 μg/L (2.8-117); 6.6 μg/L (1.8-100); 6.5 μg/L (1.2-22)) (p=0.22). Multiple linear regression analysis including all welders and referents showed an increase in the concentration of S-ferritin associated with having serum carbohydrate deficient transferrin (S-CDT) above the upper reference limit of ≥1.7%, indicating high alcohol consumption. Serum C-reactive protein was not associated with exposure as welders, but an association with S-ferritin was shown. The GM S-ferritin concentrations among all welders and referents with S-CDT≥1.7% were 157 μg/L (95% CI 113-218) as compared to 104 μg/L (95% CI 94-116) (p=0.02) in those with S-CDT<1.7%. The GM concentrations of Mn in biological fluids were higher in the welders as compared to the referents, while S-Fe, S-Co and B-Co were statistically significantly lower. This could suggest a competitive inhibition from Mn on the uptake of Fe and Co. Increasing concentrations of S-CDT was associated with higher S-Mn, S-Fe and B-Co in the multiple linear regression analysis. The association between S-CDT and S-Fe remained when all subjects with high S-CDT (≥1.7%) were excluded, suggesting increased uptake of Fe even at lower alcohol consumption.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033 Oslo, Norway.
| | - Maxim Chashchin
- Northwest Public Health Research Centre, 2-Sovetskaya 4, St. Petersburg 191036, Russia
| | - Balazs Berlinger
- National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033 Oslo, Norway
| | - Tobias Konz
- Department of Physical and Analytical Chemistry of the University of Oviedo, ES-33006, Spain
| | - Evgenij Zibarev
- Northwest Public Health Research Centre, 2-Sovetskaya 4, St. Petersburg 191036, Russia
| | - Jan Aaseth
- Department of Medicine, Innlandet Hospital Trust, N-2226 Kongsvinger, Norway
| | - Valery Chashchin
- Northwest Public Health Research Centre, 2-Sovetskaya 4, St. Petersburg 191036, Russia; North-Western State Medical University, St. Petersburg 191015, Russia
| | - Yngvar Thomassen
- National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033 Oslo, Norway
| |
Collapse
|
25
|
|
26
|
Kent S, Weinberg ED, Stuart-Macadam P. Dietary and prophylactic iron supplements : Helpful or harmful? HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2013; 1:53-79. [PMID: 24222023 DOI: 10.1007/bf02692146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/1989] [Accepted: 05/30/1989] [Indexed: 12/19/2022]
Abstract
Mild hypoferremia represents an aspect of the ability of the body to withhold iron from pathogenic bacteria, fungi, and protozoa, and from neoplastic cells. However, our iron-withholding defense system can be thwarted by practices that enhance iron overload such as indiscriminate iron fortification of foods, medically prescribed iron supplements, alcohol ingestion, and cigarette smoking. Elevated standards for normal levels of iron can be misleading and even dangerous for individuals faced with medical insults such as chronic infection, neoplasia, cardiomyopathy, and arthritis. We are becoming increasingly aware that the wide-spread hypoferremia in human populations is a physiological response to insult rather than a pathological cause of insult, and that attempts to correct the condition by simply raising iron levels may not only be misguided but may actually impair host defense.
Collapse
Affiliation(s)
- S Kent
- Anthropology Program, Old Dominion University, 23529, Norfolk, VA
| | | | | |
Collapse
|
27
|
Abstract
As the main iron storage site in the body and the main source of the iron-regulatory hormone, hepcidin, the liver plays a pivotal role in iron homeostasis. A variable degree of hepatic iron accumulation has long been recognized in a number of chronic liver diseases. Both alcoholic and non-alcoholic steatohepatitis display increased iron deposits in the liver, with an hepatocellular, mesenchymal, or mixed pattern, and recent reports have documented a concomitant aberrant hepcidin expression that could be linked to different coincidental pathogenic events (e.g. the etiological agent itself, necroinflammation, metabolic derangements, genetic predisposition). The present study reviews the pathogenic mechanisms of iron accumulation in steatohepatitis during alcoholic and non-alcoholic liver disease and the role of excess iron in chronic disease progression.
Collapse
Affiliation(s)
- Elena Corradini
- Division of Internal Medicine 2 and Center for Hemochromatosis, Mario Coppo Liver Research Center, University Hospital of Modena, Modena, Italy
| | | |
Collapse
|
28
|
Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ, Nelson JE. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2012; 55:77-85. [PMID: 21953442 PMCID: PMC3245347 DOI: 10.1002/hep.24706] [Citation(s) in RCA: 370] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED Serum ferritin (SF) levels are commonly elevated in patients with nonalcoholic fatty liver disease (NAFLD) because of systemic inflammation, increased iron stores, or both. The aim of this study was to examine the relationship between elevated SF and NAFLD severity. Demographic, clinical, histologic, laboratory, and anthropometric data were analyzed in 628 adult patients with NAFLD (age, ≥ 18 years) with biopsy-proven NAFLD and an SF measurement within 6 months of their liver biopsy. A threshold SF >1.5 × upper limit of normal (ULN) (i.e., >300 ng/mL in women and >450 ng/mL in men) was significantly associated with male sex, elevated serum alanine aminotransferase, aspartate aminotransferase, iron, transferrin-iron saturation, iron stain grade, and decreased platelets (P < 0.01). Histologic features of NAFLD were more severe among patients with SF >1.5 × ULN, including steatosis, fibrosis, hepatocellular ballooning, and diagnosis of NASH (P < 0.026). On multiple regression analysis, SF >1.5 × ULN was independently associated with advanced hepatic fibrosis (odds ratio [OR], 1.66; 95% confidence interval [CI], 1.05-2.62; P = 0.028) and increased NAFLD Activity Score (NAS) (OR, 1.99; 95% CI, 1.06-3.75; P = 0.033). CONCLUSIONS A SF >1.5 × ULN is associated with hepatic iron deposition, a diagnosis of NASH, and worsened histologic activity and is an independent predictor of advanced hepatic fibrosis among patients with NAFLD. Furthermore, elevated SF is independently associated with higher NAS, even among patients without hepatic iron deposition. We conclude that SF is useful to identify NAFLD patients at risk for NASH and advanced fibrosis.
Collapse
Affiliation(s)
- Kris V. Kowdley
- Center for Liver Disease, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, WA,Benaroya Research Institute at Virginia Mason Medical Center, Seattle, WA
| | - Patricia Belt
- Johns Hopkins University School of Public Health, Baltimore, MD
| | - Laura A. Wilson
- Johns Hopkins University School of Public Health, Baltimore, MD
| | | | | | | | | | - James E. Nelson
- Benaroya Research Institute at Virginia Mason Medical Center, Seattle, WA
| | | |
Collapse
|
29
|
Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int 2011; 2012:216450. [PMID: 22110961 PMCID: PMC3205771 DOI: 10.1155/2012/216450] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.
Collapse
|
30
|
Tuoi Do TH, Gaboriau F, Ropert M, Moirand R, Cannie I, Brissot P, Loréal O, Lescoat G. Ethanol Effect on Cell Proliferation in the Human Hepatoma HepaRG Cell Line: Relationship With Iron Metabolism. Alcohol Clin Exp Res 2010; 35:408-19. [DOI: 10.1111/j.1530-0277.2010.01358.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron overload cardiomyopathy: better understanding of an increasing disorder. J Am Coll Cardiol 2010; 56:1001-12. [PMID: 20846597 PMCID: PMC2947953 DOI: 10.1016/j.jacc.2010.03.083] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/26/2010] [Accepted: 03/18/2010] [Indexed: 11/20/2022]
Abstract
The prevalence of iron overload cardiomyopathy (IOC) is increasing. The spectrum of symptoms of IOC is varied. Early in the disease process, patients may be asymptomatic, whereas severely overloaded patients can have terminal heart failure complaints that are refractory to treatment. It has been shown that early recognition and intervention may alter outcomes. Biochemical markers and tissue biopsy, which have traditionally been used to diagnose and guide therapy, are not sensitive enough to detect early cardiac iron deposition. Newer diagnostic modalities such as magnetic resonance imaging are noninvasive and can assess quantitative cardiac iron load. Phlebotomy and chelating drugs are suboptimal means of treating IOC; hence, the roles of gene therapy, hepcidin, and calcium channel blockers are being actively investigated. There is a need for the development of clinical guidelines in order to improve the management of this emerging complex disease.
Collapse
Affiliation(s)
- Pradeep Gujja
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0542, USA.
| | | | | | | |
Collapse
|
32
|
Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World J Hepatol 2010; 2:302-10. [PMID: 21161013 PMCID: PMC2999297 DOI: 10.4254/wjh.v2.i8.302] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/07/2010] [Indexed: 02/06/2023] Open
Abstract
The regulation of iron metabolism involves multiple organs including the duodenum, liver and bone marrow. The recent discoveries of novel iron-regulatory proteins have brought the liver to the forefront of iron homeostasis. The iron overload disorder, genetic hemochromatosis, is one of the most prevalent genetic diseases in individuals of Caucasian origin. Furthermore, patients with non-hemochromatotic liver diseases, such as alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis, often exhibit elevated serum iron indices (ferritin, transferrin saturation) and mild to moderate hepatic iron overload. Clinical data indicate significant differences between men and women regarding liver injury in patients with alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis. The penetrance of genetic hemochromatosis also varies between men and women. Hepcidin has been suggested to act as a modifier gene in genetic hemochromatosis. Hepcidin is a circulatory antimicrobial peptide synthesized by the liver. It plays a pivotal role in the regulation of iron homeostasis. Hepcidin has been shown to be regulated by iron, inflammation, oxidative stress, hypoxia, alcohol, hepatitis C and obesity. Sex and genetic background have also been shown to modulate hepcidin expression in mice. The role of gender in the regulation of human hepcidin gene expression in the liver is unknown. However, hepcidin may play a role in gender-based differences in iron metabolism and liver diseases. Better understanding of the mechanisms associated with gender-related differences in iron metabolism and chronic liver diseases may enable the development of new treatment strategies.
Collapse
Affiliation(s)
- Duygu D Harrison-Findik
- Duygu D Harrison-Findik, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5820, United States
| |
Collapse
|
33
|
Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: Past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:760-9. [PMID: 20304033 PMCID: PMC2893236 DOI: 10.1016/j.bbagen.2010.03.011] [Citation(s) in RCA: 523] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serum ferritin was discovered in the 1930s, and was developed as a clinical test in the 1970s. Many diseases are associated with iron overload or iron deficiency. Serum ferritin is widely used in diagnosing and monitoring these diseases. SCOPE OF REVIEW In this chapter, we discuss the role of serum ferritin in physiological and pathological processes and its use as a clinical tool. MAJOR CONCLUSIONS Although many aspects of the fundamental biology of serum ferritin remain surprisingly unclear, a growing number of roles have been attributed to extracellular ferritin, including newly described roles in iron delivery, angiogenesis, inflammation, immunity, signaling and cancer. GENERAL SIGNIFICANCE Serum ferritin remains a clinically useful tool. Further studies on the biology of this protein may provide new biological insights.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
34
|
Ren Y, Deng F, Zhu H, Wan W, Ye J, Luo B. Effect of epigallocatechin-3-gallate on iron overload in mice with alcoholic liver disease. Mol Biol Rep 2010; 38:879-86. [PMID: 20490691 DOI: 10.1007/s11033-010-0180-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/06/2010] [Indexed: 02/08/2023]
Abstract
Iron has long been related to the pathological process of alcoholic liver disease (ALD). Liver iron overload is known to accelerate the development of ALD. In the present study we aimed to examine the effect of epigallocatechin-3-gallate (EGCG) on iron overload of ALD and to explore the potential mechanisms involved in its protection against ALD in mice. Male C57BL/6J mice were given alcohol by intragastric administration for 12 weeks. At the end of 8th week, ALD mice were treated for 4 weeks for 10, 20 and 30 mg kg(-1) EGCG by intraperitoneal injection. Liver injuries were assessed by histopathologic examination and Serum Alanine Aminotransferase (ALT) levels. Serum iron content, hepatic iron concentration and liver malondialdehyde (MDA) contents were examined. In addition, hepcidin mRNA levels and transferrin (Tf) and transferrin receptor 1 (TfR1) protein levels of liver tissue were also evaluated. Compared with model group, treatment of ALD mice with EGCG ameliorated liver injuries, decreased serum iron level, hepatic iron levels and liver MDA contents, increased hepcidin mRNA level and decreased Tf and TfR1 protein expression in the liver. The results of our study explain a new point of view that the protective effect of EGCG on ALD is associated with its iron-chelating property. The possible mechanisms are that EGCG affects hepatic iron uptake and inhibits iron absorption in the small intestinal.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Child and Adolescent Health, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Iqbal T, Diab A, Ward DG, Brookes MJ, Tselepis C, Murray J, Elias E. Is iron overload in alcohol-related cirrhosis mediated by hepcidin? World J Gastroenterol 2009; 15:5864-6. [PMID: 19998511 PMCID: PMC2791283 DOI: 10.3748/wjg.15.5864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this case report we describe the relationship between ferritin levels and hepcidin in a patient with alcohol-related spur cell anemia who underwent liver transplantation. We demonstrate a reciprocal relationship between serum or urinary hepcidin and serum ferritin, which indicates that inadequate hepcidin production by the diseased liver is associated with elevated serum ferritin. The ferritin level falls with increasing hepcidin production after transplantation. Neither inflammatory indices (IL6) nor erythropoietin appear to be related to hepcidin expression in this case. We suggest that inappropriately low hepcidin production by the cirrhotic liver may contribute substantially to elevated tissue iron stores in cirrhosis and speculate that hepcidin replacement in these patients may be of therapeutic benefit in the future.
Collapse
|
36
|
Cylwik B, Chrostek L, Daniluk M, Koput A, Szmitkowski M. The assessment of serum soluble transferrin receptor in alcoholics. Clin Exp Med 2009; 10:73-9. [DOI: 10.1007/s10238-009-0062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 08/08/2009] [Indexed: 02/08/2023]
|
37
|
Breitkopf K, Nagy LE, Beier JI, Mueller S, Weng H, Dooley S. Current experimental perspectives on the clinical progression of alcoholic liver disease. Alcohol Clin Exp Res 2009; 33:1647-55. [PMID: 19645734 DOI: 10.1111/j.1530-0277.2009.01015.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic alcohol abuse is an important cause of morbidity and mortality throughout the world. Liver damage due to chronic alcohol intoxication initially leads to accumulation of lipids within the liver and with ongoing exposure this condition of steatosis may first progress to an inflammatory stage which leads the way for fibrogenesis and finally cirrhosis of the liver. While the earlier stages of the disease are considered reversible, cirrhotic destruction of the liver architecture beyond certain limits causes irreversible damage of the organ and often represents the basis for cancer development. This review will summarize current knowledge about the molecular mechanisms underlying the different stages of alcoholic liver disease (ALD). Recent observations have led to the identification of new molecular mechanisms and mediators of ALD. For example, plasminogen activator inhibitor 1 was shown to play a central role for steatosis, the anti-inflammatory adipokine, adiponectin profoundly regulates liver macrophage function and excessive hepatic deposition of iron is caused by chronic ethanol intoxication and increases the risk of hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Katja Breitkopf
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Karlsson M, Ikkala E, Reunanen A, Takkunen H, Vuori E, Mäkinen J. Prevalence of hemochromatosis in Finland. ACTA MEDICA SCANDINAVICA 2009; 224:385-90. [PMID: 3188989 DOI: 10.1111/j.0954-6820.1988.tb19599.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transferrin saturation was determined in 11,431 men and 10,639 women aged 15 or more drawn from different areas in southern and central Finland and attending a multiphasic health screening examination in 1967-1972. All the 163 men and 66 women with transferrin saturation greater than or equal to 70% at the initial examination and still alive at the end of 1983 were invited to a re-examination. Of the invited persons, 76% attended the re-examination. Transferrin saturation and serum ferritin were the initial screening methods in the re-examination. All persons with suspected hemochromatosis were clinically examined and a laparoscopy was performed. Four men and four women were found with unequivocal hemochromatosis. Only one of these cases was diagnosed beforehand. According to these data the prevalence of hemochromatosis in Finland is about 50/100,000.
Collapse
Affiliation(s)
- M Karlsson
- Second Department of Medicine, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
39
|
Harrison-Findik DD. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease? World J Gastroenterol 2009; 15:1186-93. [PMID: 19291818 PMCID: PMC2658862 DOI: 10.3748/wjg.15.1186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite heavy consumption over a long period of time, only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors, besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver, which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes. It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease.
Collapse
|
40
|
Ritland S, Aaseth J. Trace elements and the liver. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 59 Suppl 7:195-201. [PMID: 3776562 DOI: 10.1111/j.1600-0773.1986.tb02743.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: From research to clinic. World J Gastroenterol 2009; 15:538-51. [PMID: 19195055 PMCID: PMC2653344 DOI: 10.3748/wjg.15.538] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By modulating hepcidin production, an organism controls intestinal iron absorption, iron uptake and mobilization from stores to meet body iron need. In recent years there has been important advancement in our knowledge of hepcidin regulation that also has implications for understanding the physiopathology of some human disorders. Since the discovery of hepcidin and the demonstration of its pivotal role in iron homeostasis, there has been a substantial interest in developing a reliable assay of the hormone in biological fluids. Measurement of hepcidin in biological fluids can improve our understanding of iron diseases and be a useful tool for diagnosis and clinical management of these disorders. We reviewed the literature and our own research on hepcidin to give an updated status of the situation in this rapidly evolving field.
Collapse
|
42
|
Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 2008; 286:38-43. [PMID: 19081672 DOI: 10.1016/j.canlet.2008.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 11/04/2008] [Indexed: 01/09/2023]
Abstract
The liver is the main storage site for iron in the body. Excess accumulation of iron in the liver has been well-documented in two human diseases, hereditary hemochromatosis and dietary iron overload in the African. Hepatic iron overload in these conditions often results in fibrosis and cirrhosis and may be complicated by the development of hepatocellular carcinoma. Malignant transformation usually occurs in the presence of cirrhosis, suggesting that free iron-induced chronic necroinflammatory hepatic disease plays a role in the hepatocarcinogenesis. However, the supervention of hepatocellular carcinoma in the absence of cirrhosis raises the possibility that ionic iron may also be directly hepatocarcinogenic. Support for this possibility is provided by a recently described animal model of dietary iron overload in which iron-free preneoplastic nodules and hepatocellular carcinoma developed in the absence of fibrosis or cirrhosis. The mechanisms by which iron induces malignant transformation have yet to be fully characterized but the most important appears to be the generation of oxidative stress. Free iron generates reactive oxygen intermediates that disrupt the redox balance of the cells and cause chronic oxidative stress. Oxidative stress leads to lipid peroxidation of unsaturated fatty acids in membranes of cells and organelles. Cytotoxic by-products of lipid peroxidation, such as malondialdehyde and 4-hydroxy-2'-nonenal, are produced and these impair cellular function and protein synthesis and damage DNA. Deoxyguanosine residues in DNA are also hydroxylated by reactive oxygen intermediates to form 8-hydroxy-2'-deoxyguanosine, a major promutagenic adduct that causes G:C to T:A transversions and DNA unwinding and strand breaks. Free iron also induces immunologic abnormalities that may decrease immune surveillance for malignant transformation.
Collapse
|
43
|
Zhang Z, Jin J, Shi L. Protective function of cis-mulberroside A and oxyresveratrol from Ramulus mori against ethanol-induced hepatic damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:325-330. [PMID: 21791383 DOI: 10.1016/j.etap.2008.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 06/19/2008] [Accepted: 06/29/2008] [Indexed: 05/31/2023]
Abstract
The aim of the study was to investigate the protective effects of oxyresveratrol and cis-mulberroside A isolated from Ramulus mori on the liver of mice intoxicated with ethanol. Animals were pretreated with different doses (30 and 60mg/kg of body weight) of oxyresveratrol and cis-mulberroside A prior to the ethanol (9g/kg of body weight) orally for 7 days. Ethanol treatment induced the decrease of reduced glutathione level and antioxidant enzymes activities, the elevation of the lipid peroxidation and cytochrome P450 2E1 activity accompanied with the increase of iron concentration and mitochondrial permeability transition. Pretreatment with oxyresveratrol and cis-mulberroside A restored the changes in the above parameters up to the basal level. The protective effects of the two active compounds were further supported by attenuation of the degree of tissue damage and the regulation of the expression of TNF-α. It could be concluded that oxyresveratrol and cis-mulberroside A from R. mori could protect mice against ethanol-induced hepatic damage.
Collapse
Affiliation(s)
- Zuofa Zhang
- College of Animal Sciences, Zhejiang University, Kaixuan Road 268#, Hangzhou 310029, China
| | | | | |
Collapse
|
44
|
Fujita N, Sugimoto R, Urawa N, Araki J, Mifuji R, Yamamoto M, Horiike S, Tanaka H, Iwasa M, Kobayashi Y, Adachi Y, Kaito M. Hepatic iron accumulation is associated with disease progression and resistance to interferon/ribavirin combination therapy in chronic hepatitis C. J Gastroenterol Hepatol 2007; 22:1886-93. [PMID: 17914965 DOI: 10.1111/j.1440-1746.2006.04759.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Liver iron accumulation in patients with chronic hepatitis C (CHC) has received increasing attention in recent years. The aim of this study was to determine the prevalence and severity of liver iron deposition in CHC, to assess its relationship with clinical, biochemical and histological characteristics, and to study its influence on the response to interferon (IFN) plus ribavirin combination therapy. METHODS We studied liver biopsy specimens from 103 hepatitis C virus (HCV) and 34 hepatitis B virus (HBV) infected patients and total iron score (TIS) was measured. Seventy patients infected with HCV genotype 1b were treated with IFN/ribavirin for 24 weeks. RESULTS CHC patients had a significantly higher TIS than chronic hepatitis B (CHB) patients (7.03 +/- 5.34 vs 4.41 +/- 4.49, P = 0.0056). TIS was significantly correlated with alcohol intake (P = 0.0213, r = 0.290), transaminase level (P = 0.0126, r = 0.247), platelet count (P = 0.0002, r = -0.369), histological grading (P = 0.0121, r = 0.248) and staging (P = 0.0003, r = 0.356) in CHC patients. Pretreatment TIS was significantly higher in non-sustained virological responders (SVR) than in SVR to IFN/ribavirin treatment (TIS = 7.69 +/- 5.76 vs 4.39 +/- 3.27, P = 0.0310). Multiple regression analysis showed that TIS was the only independent variable associated with resistance to IFN/ribavirin (P = 0.0277). CONCLUSIONS Liver iron deposition was common in CHC compared to CHB and was associated with liver disease progression. Increased hepatic iron stores in CHC were related to resistance to IFN/ribavirin treatment.
Collapse
MESH Headings
- Adult
- Aged
- Alcohol Drinking/adverse effects
- Antiviral Agents/therapeutic use
- Disease Progression
- Drug Resistance, Multiple, Viral
- Drug Therapy, Combination
- Female
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/pathology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/metabolism
- Hepatitis C, Chronic/pathology
- Humans
- Interferon alpha-2
- Interferon-alpha/therapeutic use
- Iron/metabolism
- Iron Overload/metabolism
- Iron Overload/pathology
- Iron Overload/virology
- Liver/metabolism
- Liver/pathology
- Liver/virology
- Male
- Middle Aged
- Platelet Count
- Recombinant Proteins
- Ribavirin/therapeutic use
- Risk Factors
- Severity of Illness Index
- Sex Factors
- Transaminases/blood
- Treatment Outcome
Collapse
Affiliation(s)
- Naoki Fujita
- Department of Gastroenterology and Hepatology, Division of Clinical Medicine and Biomedical Science, Institute of Medical Science, Mie University Graduate School of Medicine, Mie, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Patients with alcoholic liver disease frequently exhibit increased body iron stores, as reflected by elevated serum iron indices (transferrin saturation, ferritin) and hepatic iron concentration. Even mild to moderate alcohol consumption has been shown to increase the prevalence of iron overload. Moreover, increased hepatic iron content is associated with greater mortality from alcoholic cirrhosis, suggesting a pathogenic role for iron in alcoholic liver disease. Alcohol increases the severity of disease in patients with genetic hemochromatosis, an iron overload disorder common in the Caucasian population. Both iron and alcohol individually cause oxidative stress and lipid peroxidation, which culminates in liver injury. Despite these observations, the underlying mechanisms of iron accumulation and the source of the excess iron observed in alcoholic liver disease remain unclear. Over the last decade, several novel iron-regulatory proteins have been identified and these have greatly enhanced our understanding of iron metabolism. For example, hepcidin, a circulatory antimicrobial peptide synthesized by the hepatocytes of the liver is now known to play a central role in the regulation of iron homeostasis. This review attempts to describe the interaction of alcohol and iron-regulatory molecules. Understanding these molecular mechanisms is of considerable clinical importance because both alcoholic liver disease and genetic hemochromatosis are common diseases, in which alcohol and iron appear to act synergistically to cause liver injury.
Collapse
Affiliation(s)
- Duygu Dee Harrison-Findik
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
46
|
Abstract
Iron is an essential element involved in various biological pathways. When present in excess within the cell, iron can be toxic due to its ability to catalyse the formation of damaging radicals, which promote cellular injury and cell death. Within the liver, iron related oxidative stress can lead to fibrosis and ultimately to cirrhosis. Here we review the role of excessive iron in the pathologies associated with various chronic diseases of the liver. We also describe the molecular mechanism by which iron contributes to the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Marie-A Philippe
- Hepatic Fibrosis Group, The Queensland Institute of Medical Research, PO Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Since the discovery of the hepatitis C virus (HCV), extensive literature has emerged on alcohol and HCV interaction. GOAL To understand the impact of alcohol and HCV infection on the severity of liver disease and the mechanisms of interaction between the two. STUDY Of 1269 articles (1991 to 2006) searched through MEDLINE and cited cross references, 133 were thoroughly reviewed to assess: (a) prevalence of combined alcohol use and HCV, (b) severity of liver disease (c) treatment response, and (d) mechanisms of interaction between HCV and alcohol. Data on study design, patient demographics, diagnostic tests used, and study outcomes were extracted for critical analysis. RESULTS Prevalence of HCV is 3-fold to 30-fold higher in alcoholics compared with the general population. Patients with HCV infection and alcohol abuse develop more severe fibrosis with higher rate of cirrhosis and hepatocellular cancer compared with nondrinkers. Increased oxidative stress seems to be the dominant mechanism for this synergism between alcohol and the HCV. Abstinence is the key to the management of liver disease due to HCV and alcohol. Data have shown that lower response rates to interferon in alcoholics with HCV infection are likely due to noncompliance. CONCLUSIONS Alcoholics with HCV infection have more severe liver disease compared with nondrinkers. Patients should be encouraged to enroll in rehabilitation programs so as to improve treatment adherence and response.
Collapse
Affiliation(s)
- Ashwani K Singal
- James J Peters Bronx Veterans Affairs Medical Center, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10468, USA.
| | | |
Collapse
|
48
|
Abstract
Dietary iron overload occurs commonly in parts of sub-Saharan Africa. It results from the consumption of large volumes of traditional beer that is home-brewed in iron pots or drums and consequently has a high iron content. The liver becomes iron overloaded and may develop portal fibrosis or, less often, cirrhosis. A genetic predisposition to the condition has been suggested, but no putative gene has yet been identified. Although originally believed not to cause hepatocellular carcinoma, recent case-control studies have shown African Blacks with dietary iron overload to be at increased risk for the tumour and a causal association has been confirmed in an animal model. The mechanisms of iron-induced malignant transformation are yet to be fully characterised, but the close association between cirrhosis and hepatocellular carcinoma in patients with hereditary haemochromatosis and the lesser association in those with dietary iron overload, suggests that chronic necroinflammatory hepatic disease contributes to the malignant transformation. Increased hepatic iron may, however, also be directly carcinogenic. Probable mechanisms include the generation of reactive oxygen intermediates and the resultant chronic oxidative stress that damages hepatocytes and proteins, causes lipid peroxidation, and induces strand breaks, DNA unwinding, and mutations in tumour-suppressor genes and critical DNA repair genes.
Collapse
Affiliation(s)
- Michael C Kew
- MRC/CANSA/University Molecular Hepatology Research Unit, Department of Medicine, Baragwanath Hospital, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
49
|
Abstract
Trata-se de revisão sobre a porfiria cutânea tardia em que são abordados a fisiopatogenia, as características clínicas, as doenças associadas, os fatores desencadeantes, a bioquímica, a histopatologia, a microscopia eletrônica, a microscopia de imunofluorescência e o tratamento da doença.
Collapse
|
50
|
Harrison-Findik DD, Schafer D, Klein E, Timchenko NA, Kulaksiz H, Clemens D, Fein E, Andriopoulos B, Pantopoulos K, Gollan J. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem 2006; 281:22974-82. [PMID: 16737972 DOI: 10.1074/jbc.m602098200] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with alcoholic liver disease frequently exhibit iron overload in association with increased hepatic fibrosis. Even moderate alcohol consumption elevates body iron stores; however, the underlying molecular mechanisms are unknown. Hepcidin, a circulatory peptide synthesized in the liver, is a key mediator of iron metabolism. Ethanol metabolism significantly down-regulated both in vitro and in vivo hepcidin mRNA and protein expression. 4-Methylpyrazole, a specific inhibitor of the alcohol-metabolizing enzymes, abolished the effects of ethanol on hepcidin. However, ethanol did not alter the expression of transferrin receptor1 and ferritin or the activation of iron regulatory RNA-binding proteins, IRP1 and IRP2. Mice maintained on 10-20% ethanol for 7 days displayed down-regulation of liver hepcidin expression without changes in liver triglycerides or histology. This was accompanied by elevated duodenal divalent metal transporter1 and ferroportin protein expression. Injection of hepcidin peptide negated the effect of ethanol on duodenal iron transporters. Ethanol down-regulated hepcidin promoter activity and the DNA binding activity of CCAAT/enhancer-binding protein alpha (C/EBPalpha) but not beta. Interestingly, the antioxidants vitamin E and N-acetylcysteine abolished both the alcohol-mediated down-regulation of C/EBPalpha binding activity and hepcidin expression in the liver and the up-regulation of duodenal divalent metal transporter 1. Collectively, these findings indicate that alcohol metabolism-mediated oxidative stress regulates hepcidin transcription via C/EBPalpha, which in turn leads to increased duodenal iron transport.
Collapse
Affiliation(s)
- Duygu Dee Harrison-Findik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5820, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|