1
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
2
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Cass SP, Goshgarian HG. Increased Glial Fibrillary Acidic Protein Immunoreactivity in Astrocytes within the Lateral Vestibular Nucleus of the Cat following Labyrinthectomy and Vestibular Neurectomy. Ann Otol Rhinol Laryngol 2020. [DOI: 10.1177/000348949009900312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unilateral vestibular injury evokes a characteristic pattern of acute disorganization of posture, locomotion, and eye movements. Following this acute stage, functional recovery occurs. In the present study, unilateral labyrinthectomy and vestibular neurectomy were performed in cats. The lateral vestibular nucleus (LVN) and vestibular nerve root entry zone on both sides of the brain stem were examined 24 hours 3 days and 8 weeks after operation by use of an immunochemical astrocyte marker, glial fibrillary acidic protein (GFAP). The results demonstrate extensive GFAP immunoreactivity within the ipsilateral nerve root following neurectomy, but not after labyrinthectomy Prominent GFAP-immunoreactive astrocytic processes were detected in the LVN both ipsilateral and contralateral to neurectomy and labyrinthectomy Within the ipsilateral LVN, the intensity of GFAP immunoreactivity was greater following neurectomy than after labyrinthectomy but the pattern of GFAP reactivity remained similar. In the contralateral LVN, GFAP reactivity was noted exclusively in the dorsal-rostral region corresponding to the zone of cerebellar afferents to the LVN. The results of the present study suggest that reactive astroglia may play an important role in the mechanism that leads to vestibular compensation.
Collapse
Affiliation(s)
- Stephen P. Cass
- Departments of Otolaryngology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
| | - Harry G. Goshgarian
- Departments of Otolaryngology and Anatomy and Cell Biology, Wayne State University, Detroit, Michigan
| |
Collapse
|
4
|
Spejo AB, Chiarotto GB, Ferreira ADF, Gomes DA, Ferreira RS, Barraviera B, Oliveira ALR. Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells. J Neuroinflammation 2018; 15:230. [PMID: 30107848 PMCID: PMC6092804 DOI: 10.1186/s12974-018-1268-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/02/2018] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Treatment of spinal cord injury is dependent on neuronal survival, appropriate synaptic circuit preservation, and inflammatory environment management. In this sense, mesenchymal stem cell (MSC) therapy is a promising tool that can reduce glial reaction and provide trophic factors to lesioned neurons. METHODS Lewis adult female rats were submitted to a unilateral ventral funiculus cut at the spinal levels L4, L5, and L6. The animals were divided into the following groups: IA (intramedullary axotomy), IA + DMEM (Dulbecco's modified Eagle's medium), IA + FS (fibrin sealant), IA + MSC (106 cells), and IA + FS + MSC (106 cells). Seven days after injury, qPCR (n = 5) was performed to assess gene expression of VEGF, BDNF, iNOS2, arginase-1, TNF-α, IL-1β, IL-6, IL-10, IL-4, IL-13, and TGF-β. The cellular infiltrate at the lesion site was analyzed by hematoxylin-eosin (HE) staining and immunohistochemistry (IH) for Iba1 (microglia and macrophage marker) and arginase-1. Fourteen days after injury, spinal alpha motor neurons (MNs), evidenced by Nissl staining (n = 5), were counted. For the analysis of astrogliosis in spinal lamina IX and synaptic detachment around lesioned motor neurons (GAP-43-positive cells), anti-GFAP and anti-synaptophysin immunohistochemistry (n = 5) was performed, respectively. Twenty-eight days after IA, the gait of the animals was evaluated by the walking track test (CatWalk; n = 7). RESULTS The site of injury displayed strong monocyte infiltration, containing arginase-1-expressing macrophages. The FS-treated group showed upregulation of iNOS2, arginase-1, proinflammatory cytokine (TNF-α and IL-1β), and antiinflammatory cytokine (IL-10, IL-4, and IL-13) expression. Thus, FS enhanced early macrophage recruitment and proinflammatory cytokine expression, which accelerated inflammation. Rats treated with MSCs displayed high BDNF-positive immunolabeling, suggesting local delivery of this neurotrophin to lesioned motoneurons. This BDNF expression may have contributed to the increased neuronal survival and synapse preservation and decreased astrogliosis observed 14 days after injury. At 28 days after lesion, gait recovery was significantly improved in MSC-treated animals compared to that in the other groups. CONCLUSIONS Overall, the present data demonstrate that MSC therapy is neuroprotective and, when associated with a FS, shifts the immune response to a proinflammatory profile.
Collapse
Affiliation(s)
- A. B. Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP Brazil
| | - G. B. Chiarotto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP Brazil
| | - A. D. F. Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - D. A. Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - R. S. Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - B. Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - A. L. R. Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP Brazil
| |
Collapse
|
5
|
Hizay A, Seitz M, Grosheva M, Sinis N, Kaya Y, Bendella H, Sarikcioglu L, Dunlop SA, Angelov DN. FGF-2 is required to prevent astrogliosis in the facial nucleus after facial nerve injury and mechanical stimulation of denervated vibrissal muscles. J Biomed Res 2016; 30:142-148. [PMID: 28276669 PMCID: PMC4820891 DOI: 10.7555/jbr.30.20140042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/28/2014] [Accepted: 04/10/2015] [Indexed: 01/20/2023] Open
Abstract
Recently, we have shown that manual stimulation of paralyzed vibrissal muscles after facial-facial anastomosis reduced the poly-innervation of neuromuscular junctions and restored vibrissal whisking. Using gene knock outs, we found a differential dependence of manual stimulation effects on growth factors. Thus, insulin-like growth factor-1 and brain-derived neurotrophic factor are required to underpin manual stimulation-mediated improvements, whereas FGF-2 is not. The lack of dependence on FGF-2 in mediating these peripheral effects prompted us to look centrally, i.e. within the facial nucleus where increased astrogliosis after facial-facial anastomosis follows "synaptic stripping". We measured the intensity of Cy3-fluorescence after immunostaining for glial fibrillary acidic protein (GFAP) as an indirect indicator of synaptic coverage of axotomized neurons in the facial nucleus of mice lacking FGF-2 (FGF-2-/- mice). There was no difference in GFAP-Cy3-fluorescence (pixel number, gray value range 17–103) between intact wildtype mice (2.12± 0.37×107) and their intact FGF-2-/- counterparts (2.12± 0.27×107) nor after facial-facial anastomosis +handling (wildtype: 4.06± 0.32×107; FGF-2-/-: 4.39±0.17×107). However, after facial-facial anastomosis, GFAP-Cy3-fluorescence remained elevated in FGF-2-/--animals (4.54±0.12×107), whereas manual stimulation reduced the intensity of GFAP-immunofluorescence in wild type mice to values that were not significantly different from intact mice (2.63± 0.39×10 ). We conclude that FGF-2 is not required to underpin the beneficial effects of manual stimulation at the neuro-muscular junction, but it is required to minimize astrogliosis in the brainstem and, by implication, restore synaptic coverage of recovering facial motoneurons.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Dumlupinar Bulvari 07058 Kampus, Antalya, Turkey
| | - Mark Seitz
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Strasse 9, D-50924 Cologne, FR Germany
| | - Maria Grosheva
- Department of Oto-Rhino-Laryngology, University Hospital Cologne, Joseph-Stelzmann-Strasse 9, D-50924 Cologne, FR Germany
| | - Nektarios Sinis
- Depeartment of Plastic-, Hand- and Reconstructive Microsurgery, Berlin, FR 12249, Germany
| | - Yasemin Kaya
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Dumlupinar Bulvari 07058 Kampus, Antalya, Turkey
| | - Habib Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Ostmerheimer Straße 200, 51109 Cologne, Germany
| | - Levent Sarikcioglu
- Department of Anatomy, Akdeniz University, Faculty of Medicine, Dumlupinar Bulvari 07058 Kampus, Antalya, Turkey
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia (M092) 35 Stirling Highway, CRAWLEY WA 6009, Australia
| | - Doychin N Angelov
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Strasse 9, D-50924 Cologne, FR Germany;
| |
Collapse
|
6
|
Neuronal BDNF signaling is necessary for the effects of treadmill exercise on synaptic stripping of axotomized motoneurons. Neural Plast 2015; 2015:392591. [PMID: 25918648 PMCID: PMC4397030 DOI: 10.1155/2015/392591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells.
Collapse
|
7
|
Spejo AB, Oliveira ALR. Synaptic rearrangement following axonal injury: Old and new players. Neuropharmacology 2014; 96:113-23. [PMID: 25445484 DOI: 10.1016/j.neuropharm.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Aline Barroso Spejo
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Alexandre L R Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Takezawa Y, Kohsaka S, Nakajima K. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons. Brain Res 2014; 1586:34-45. [PMID: 25152465 DOI: 10.1016/j.brainres.2014.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022]
Abstract
In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult.
Collapse
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo 187-8502, Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
9
|
Tyzack GE, Sitnikov S, Barson D, Adams-Carr KL, Lau NK, Kwok JC, Zhao C, Franklin RJM, Karadottir RT, Fawcett JW, Lakatos A. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun 2014; 5:4294. [PMID: 25014177 PMCID: PMC4104454 DOI: 10.1038/ncomms5294] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023] Open
Abstract
The role of remote astrocyte (AC) reaction to central or peripheral axonal insult is not clearly understood. Here we use a transgenic approach to compare the direct influence of normal with diminished AC reactivity on neuronal integrity and synapse recovery following extracranial facial nerve transection in mice. Our model allows straightforward interpretations of AC-neuron signalling by reducing confounding effects imposed by inflammatory cells. We show direct evidence that perineuronal reactive ACs play a major role in maintaining neuronal circuitry following distant axotomy. We reveal a novel function of astrocytic signal transducer and activator of transcription-3 (STAT3). STAT3 regulates perineuronal astrocytic process formation and re-expression of a synaptogenic molecule, thrombospondin-1 (TSP-1), apart from supporting neuronal integrity. We demonstrate that, through this new pathway, TSP-1 is responsible for the remote AC-mediated recovery of excitatory synapses onto axotomized motor neurons in adult mice. These data provide new targets for neuroprotective therapies via optimizing AC-driven plasticity.
Collapse
Affiliation(s)
- Giulia E. Tyzack
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Sergey Sitnikov
- Department of Veterinary Medicine & Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- These authors contributed equally to this work
| | - Daniel Barson
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
- These authors contributed equally to this work
| | - Kerala L. Adams-Carr
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Nike K. Lau
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Jessica C. Kwok
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Chao Zhao
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
- Department of Veterinary Medicine & Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Robin J. M. Franklin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
- Department of Veterinary Medicine & Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ragnhildur T. Karadottir
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
- Department of Veterinary Medicine & Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| |
Collapse
|
10
|
Sajjan S, Holsinger RMD, Fok S, Ebrahimkhani S, Rollo JL, Banati RB, Graeber MB. Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping. Neuroscience 2014; 274:331-40. [PMID: 24907602 DOI: 10.1016/j.neuroscience.2014.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/07/2023]
Abstract
Axotomy of the rodent facial nerve represents a well-established model of synaptic plasticity. Post-traumatic "synaptic stripping" was originally discovered in this system. We report upregulation of matrix metalloproteinase MMP12 in regenerating motor neurons of the mouse and rat facial nucleus. Matrix metalloproteinases (matrix metallopeptidases, MMPs) are zinc-binding proteases capable of degrading components of the extracellular matrix and of regulating extracellular signaling networks including within synapses. MMP12 protein expression in facial motor neurons was enhanced following axotomy and peaked at day 3 after the operation. The peak of neuronal MMP12 expression preceded the peak of experimentally induced synaptic plasticity. At the same time, MMP12 redistributed intracellularly and became predominantly localized beneath the neuronal somatic cytoplasmic membrane. Both findings point to a role of MMP12 in the neuronal initiation of the synaptic stripping process. MMP12 is the first candidate molecule for such a trigger function and has potential as a therapeutic target. Moreover, since statins have been shown to increase the expression of MMP12, interference with synaptic stability may represent one mechanism by which these widely used drugs exert their side effects on higher CNS functions.
Collapse
Affiliation(s)
- S Sajjan
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - R M D Holsinger
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia; Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, The University of Sydney, Lidcombe, NSW, Australia
| | - S Fok
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - S Ebrahimkhani
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - J L Rollo
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - R B Banati
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Cumberland, NSW, Australia; Ramaciotti Imaging Center, Brain and Mind Research Institute, The University of Sydney, Camperdown, NSW, Australia; Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia
| | - M B Graeber
- Brain Tumor Research and Molecular Neuroscience & Neuropathology Laboratories, Brain and Mind Research Institute, Faculty of Medicine and Faculty of Health Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
11
|
Liu C, Ward PJ, English AW. The effects of exercise on synaptic stripping require androgen receptor signaling. PLoS One 2014; 9:e98633. [PMID: 24887087 PMCID: PMC4041790 DOI: 10.1371/journal.pone.0098633] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
Following peripheral nerve injury, synapses are withdrawn from axotomized motoneurons. Moderate daily treadmill exercise, which promotes axon regeneration of cut peripheral nerves, also influences this synaptic stripping. Different exercise protocols are required to promote axon regeneration in male and female animals, but the sex requirements for an effect of exercise on synaptic stripping are unknown. In male and female C57BL/6 mice, the sciatic nerve was transected in the mid-thigh. Mice were then exercised five days per week for two weeks, beginning on the third post-transection day. Half of the exercised mice were trained by walking slowly (10 M/min) on a level treadmill for one hour per day (continuous training). Other mice were interval trained; four short (two min) sprints at 20 M/min separated by five minute rest periods. A third group was untrained. The extent of synaptic contacts made by structures immunoreactive to vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 onto axotomized motoneurons was studied in confocal images of retrogradely labeled cells. Both types of presumed synaptic contacts were reduced markedly in unexercised mice following nerve transection, relative to intact mice. No significant reduction was found in continuous trained males or interval trained females. Reductions in these contacts in interval trained males and continuous trained females were identical to that observed in untrained mice. Treatments with the anti-androgen, flutamide, blocked the effect of sex-appropriate exercise on synaptic contacts in both males and females. Moderate daily exercise has a potent effect on synaptic inputs to axotomized motoneurons. Successful effects of exercise have different requirements in males and females, but require androgen receptor signaling in both sexes.
Collapse
Affiliation(s)
- Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia J. Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Arthur W. English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Graeber MB, Banati RB, Flügel A, Streit WJ, Tetzlaff W. Courage, luck and patience: in celebration of the 80th birthday of Georg W. Kreutzberg. Acta Neuropathol 2012; 124:593-8. [PMID: 22886135 DOI: 10.1007/s00401-012-1033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 11/24/2022]
|
13
|
Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. Acta Histochem 2010; 112:604-17. [PMID: 19665173 DOI: 10.1016/j.acthis.2009.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/13/2023]
Abstract
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments. In many cases, suitable treatment is problematic as the therapeutic target remains unknown. Basic fibroblast growth factor (bFGF, FGF-2) is involved in neuronal maintenance and wound repair following nervous system lesions. It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances. Peripheral cranial somatic motor neurons, i.e. hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF-2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system. FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life. Moreover, the modulatory effects of astroglial FGF-2 and the Ca+2-binding protein S100β have been postulated in paracrine mechanisms after neuronal lesions. In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72h or 11 days. Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, glial fibrillary acidic protein (GFAP, as a marker of astrocytes), S100β and FGF-2. The number of Nissl-positive neurons of axotomized XII nucleus did not differ from controls. The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection. An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72h and 11 days after the surgery. The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus; however, the nerve transection increased the number of FGF-2 glial profiles by 72h and 11 days. Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF-2 immunoreactivity in axotomized XII neurons by 72h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of glial nuclei by 72h and 11 days after the two lesions. S100β decreased in astrocytes of 11-day-transected XII nucleus. The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus. Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology.
Collapse
|
14
|
Sekiya T, Matsumoto M, Kojima K, Ono K, Kikkawa YS, Kada S, Ogita H, Horie RT, Viola A, Holley MC, Ito J. Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J Neurosurg 2010; 114:414-25. [PMID: 20367075 DOI: 10.3171/2010.2.jns091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hearing levels following microsurgical treatment gradually deteriorate in a number of patients treated for vestibular schwannoma (VS), especially in the subacute postoperative stage. The cause of this late-onset deterioration of hearing is not completely understood. The aim of this study was to investigate the possibility that reactive gliosis is a contributory factor. METHODS Mechanical damage to nerve tissue is a feature of complex surgical procedures. To explore this aspect of VS treatment, the authors compressed rat auditory nerves with 2 different degrees of injury while monitoring the compound action potentials of the auditory nerve and the auditory brainstem responses. In this experimental model, the axons of the auditory nerve were quantitatively and highly selectively damaged in the cerebellopontine angle without permanent compromise of the blood supply to the cochlea. The temporal bones were processed for immunohistochemical analysis at 1 week and at 8 weeks after compression. RESULTS Reactive gliosis was induced not only in the auditory nerve but also in the cochlear nucleus following mechanical trauma in which the general shape of the auditory brainstem response was maintained. There was a substantial outgrowth of astrocytic processes from the transitional zone into the peripheral portion of the auditory nerve, leading to an invasion of dense gliotic tissue in the auditory nerve. The elongated astrocytic processes ran in parallel with the residual auditory neurons and entered much further into the cochlea. Confocal images disclosed fragments of neurons scattered in the gliotic tissue. In the cochlear nucleus, hypertrophic astrocytic processes were abundant around the soma of the neurons. The transverse diameter of the auditory nerve at and proximal to the compression site was considerably reduced, indicating atrophy, especially in rats in which the auditory nerve was profoundly compressed. CONCLUSIONS The authors found for the first time that mechanical stress to the auditory nerve causes substantial reactive gliosis in both the peripheral and central auditory pathways within 1-8 weeks. Progressive reactive gliosis following surgical stress may cause dysfunction in the auditory pathways and may be a primary cause of progressive hearing loss following microsurgical treatment for VS.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Makwana M, Serchov T, Hristova M, Bohatschek M, Gschwendtner A, Kalla R, Liu Z, Heumann R, Raivich G. Regulation and function of neuronal GTP-Ras in facial motor nerve regeneration. J Neurochem 2009; 108:1453-63. [PMID: 19284475 DOI: 10.1111/j.1471-4159.2009.05890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of Ras into the GTP-binding, 'ON' state is a key switch in the neurotrophin-mediated neuronal survival and neurite outgrowth, in vitro as well as in vivo. In the current study we explored changes in GTP-Ras levels following facial nerve injury and the ensuing regeneration and the effects of perturbing these changes in vivo using synapsin-promoter mediated neuronal expression of constitutively active Val12H-Ras (synRas). Quantification of GTP-Ras and total Ras revealed a precipitous drop in the relative GTP-Ras levels in the axotomized facial motor nucleus, to 40% of normal levels at 2 days after cut, followed by a partial recovery to 50-65% at 4-28 days. On western blots, control and axotomized nuclei from synRas mutants showed a 2.2- and 2.5-fold elevation in GTP-Ras, respectively, compared with their wild type littermate controls (p < 5%, anova, TUKEY post-hoc), with the levels in the axotomized synRas nucleus slightly but not significantly above that in the uninjured littermate control (p = 9.9%). Similar increase was also observed in the pERK but not pAKT targets of the Ras cascade. This moderate elevation of GTP-Ras strongly curtailed post-traumatic neuronal cell death (-65%), the influx of T-cells (-48%) as well as other parameters of neuroinflammatory response. Although synRas did not affect the speed of axonal regeneration or functional recovery it caused a very pronounced increase in central axonal sprouting. These current data emphasize the role of reduced active Ras, and by extension, the reduced overall level of retrograde neurotrophin signalling after axotomy, in mediating post-traumatic cell death and inflammation and in restricting the sprouting response. Moreover, the neuroprotective and central sprouting-enhancing effects of neuronal Val12H-Ras could help promote recovery in CNS injury.
Collapse
Affiliation(s)
- Milan Makwana
- Perinatal Brain Repair Group, Department of Obstetrics & Gynaecology, EGA Institute of Women's Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Cullheim S, Thams S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. ACTA ACUST UNITED AC 2007; 55:89-96. [PMID: 17509690 DOI: 10.1016/j.brainresrev.2007.03.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Microglia are the resident inflammatory cells of the central nervous system (CNS) extending a network of processes in the CNS parenchyma. Following axon lesion to neurons, most extensively studied in motoneurons, there is a typical retrograde response at the cell body level, including the removal or 'stripping' of synapses from the perikaryon and dendrites of affected cells. Microglia have been attributed a main and active role in this process, although also an involvement of activated astrocytes has been suggested. The signaling pathways for this 'synaptic stripping' have so far been unknown, but recently some classical immune recognition molecules, the MHC class I molecules, have been shown to have a strong influence on the strength and pattern of the synapse elimination response. Since there is an expression of MHC class I in both neurons and glia, in particular microglia, as well as MHC class I related receptors in axons and microglia, there are good reasons to believe that classical immune recognition signaling between neurons and glia underlies part of the 'stripping' response. A role for microglia in an interplay with synapses based on this type of signaling is further exemplified by the fact that, in the absence of some MHC class I related receptors normally found on microglia during development, profound effects on synaptic function and biochemistry have been demonstrated. Such effects may be linked to the development of various disorders of the CNS, such as degenerative disease.
Collapse
Affiliation(s)
- Staffan Cullheim
- Department of Neuroscience, Retzius v 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
18
|
Thams S, Oliveira A, Cullheim S. MHC class I expression and synaptic plasticity after nerve lesion. ACTA ACUST UNITED AC 2007; 57:265-9. [PMID: 17764750 DOI: 10.1016/j.brainresrev.2007.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/18/2007] [Indexed: 11/24/2022]
Abstract
An axon lesion to a bulbar or spinal motoneuron is followed by a typical retrograde response at the cell body level, including the removal or 'stripping' of synapses from the perikaryon and dendrites of affected cells. Both activated microglia and astrocytes have been attributed roles in this process. The signalling pathways for this 'synaptic stripping' have so far been unknown, but recently a classical set of immune recognition molecules, the MHC class I molecules, have been shown to have a strong influence on the strength and pattern of the synapse elimination response. Thus, when MHC class I signalling is severely impaired in mice lacking the MHC class I subunit beta2-microglobulin (beta2m) and transporter associated with antigen processing 1 (TAP 1) genes, both of which are necessary for surface expression of MHC class I, there is a stronger elimination of synapses from injured neurons, with the surplus elimination directed towards clusters of putatively inhibitory synapses. Moreover, the regenerative capacity of motoneurons in such mice is lower than in wild-type animals. The expression of MHC class I, as well as MHC class I-related receptors in both neurons and glia, lend support to a hypothesis that classical immune recognition signalling between neurons and glia underlie part of the 'stripping' response.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Neuroscience, Retzius v 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Yuan Q, Scott DE, So KF, Wu W. A subpopulation of reactive astrocytes at affected neuronal perikarya after hypophysectomy in adult rats. Brain Res 2007; 1159:18-27. [PMID: 17573051 DOI: 10.1016/j.brainres.2007.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 03/14/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023]
Abstract
Intermediate filaments (IFs) of nestin and vimentin are expressed in immature astrocytes. In this study, we examined the re-expression of these early glial traits in rat reactive astrocytes in affected neuronal perikarya in supraoptic (SON) and paraventricular (PVN) nuclei induced by hypophysectomy. Double-labeling immunofluorescence confocal laser microscopy demonstrated that by 7 days post-lesion, both nestin and vimentin were present intensely in hypertrophied GFAP-IR reactive astrocytes in the area of hypophysectomized magnocellular neurons in SON and PVN, while nestin and vimentin are absent in the normal or sham-operated animals. As the gliotic reaction progressed, the morphology of nestin or vimentin-positive reactive astrocytes in SON but not PVN changed from stellate form at 7 days to thin and elongated shape, morphologically compatible with radial glia during development, at 14 days post-lesion. By 28 days post-lesion, while vimentin-IR persisted in reactive astrocytes in SON and PVN, nestin-IR could hardly be detected. The spatiotemporal pattern of nestin-IR and/or vimentin-IR in reactive astrocytes suggests astrocytes attempt to revert to a more primitive glia form indicated by changes in morphology and phenotype following hypophysectomy, which may contribute to neuronal trophism and plasticity in the lesioned HNS favoring neuronal maintenance and fiber outgrowth.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
20
|
Canh MY, Serpe CJ, Sanders V, Jones KJ. CD4(+) T cell-mediated facial motoneuron survival after injury: Distribution pattern of cell death and rescue throughout the extent of the facial motor nucleus. J Neuroimmunol 2006; 181:93-9. [PMID: 17045343 DOI: 10.1016/j.jneuroim.2006.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/02/2006] [Accepted: 08/14/2006] [Indexed: 11/24/2022]
Abstract
We have previously demonstrated that CD4(+) T cells transiently rescue facial motoneurons (FMN) from axotomy-induced death in immunodeficient mice. Three subpopulations of motoneurons have been observed within the facial motor nucleus following axotomy: one that always survives axotomy (50%), one that is amenable to rescue from axotomy-induced death through the addition of neurotrophic factors or CD4(+) T cells (30-40%), and one that always dies after axotomy (10-15%). The objective of this study was to anatomically map the extent of axotomy-induced cell death and immune cell rescue in the facial nucleus to study the differential survival capabilities of each subpopulation. Wild-type (WT) mice, recombinase activating gene 2 knockout (RAG-2 KO) mice, and RAG-2 KO mice reconstituted with CD4(+) T cells were subjected to right facial nerve axotomy. At 4 weeks post-axotomy, topographical mapping of axotomy-induced cell death throughout the rostro-caudal extent of the facial nucleus was accomplished in accordance with previously published maps of the subnuclear arrangement of the facial neurons. The results indicate that all 3 subpopulations of FMN can be found in each of the subnuclear groups throughout the entire rostro-caudal extent of the facial nucleus. These data are discussed in context of recent work in amyotrophic lateral sclerosis, a fatal motoneuron disease.
Collapse
Affiliation(s)
- Minh-Y Canh
- Department of Cell Biology, Neurobiology and Anatomy Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
21
|
Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Milligan CE, Oppenheim RW. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 2006; 26:8774-86. [PMID: 16928866 PMCID: PMC6674380 DOI: 10.1523/jneurosci.2315-06.2006] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022] Open
Abstract
The death of cranial and spinal motoneurons (MNs) is believed to be an essential component of the pathogenesis of amyotrophic lateral sclerosis (ALS). We tested this hypothesis by crossing Bax-deficient mice with mice expressing mutant superoxide dismutase 1 (SOD1), a transgenic model of familial ALS. Although Bax deletion failed to prevent neuromuscular denervation and mitochondrial vacuolization, MNs were completely rescued from mutant SOD1-mediated death. However, Bax deficiency extended lifespan and delayed the onset of motor dysfunction of SOD1 mutants, suggesting that Bax acts via a mechanism distinct from cell death activation. Consistent with this idea, Bax elimination delayed the onset of neuromuscular denervation, which began long before the activation of cell death proteins in SOD1 mutants. Additionally, we show that denervation preceded accumulation of mutant SOD1 within MNs and astrogliosis in the spinal cord, which are also both delayed in Bax-deficient SOD1 mutants. Interestingly, MNs exhibited mitochondrial abnormalities at the innervated neuromuscular junction at the onset of neuromuscular denervation. Additionally, both MN presynaptic terminals and terminal Schwann cells expressed high levels of mutant SOD1 before MNs withdrew their axons. Together, these data support the idea that clinical symptoms in the SOD1 G93A model of ALS result specifically from damage to the distal motor axon and not from activation of the death pathway, and cast doubt on the utility of anti-apoptotic therapies to combat ALS. Furthermore, they suggest a novel, cell death-independent role for Bax in facilitating mutant SOD1-mediated motor denervation.
Collapse
Affiliation(s)
- Thomas W. Gould
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | - Robert R. Buss
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | - Sharon Vinsant
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | - David Prevette
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | - Woong Sun
- Department of Anatomy, College of Medicine, Brain Korea 21, Korea University, Sungbuk-Gu, Seoul 136-705, Korea, and
| | - C. Michael Knudson
- Department of Pathology, The University of Iowa Roy J. and Lucille P. Carver College of Medicine, Iowa City, Iowa 52242
| | - Carol E. Milligan
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | - Ronald W. Oppenheim
- Department of Neurobiology and Anatomy and Program in Neuroscience, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| |
Collapse
|
22
|
Konishi H, Namikawa K, Kiyama H. Annexin III implicated in the microglial response to motor nerve injury. Glia 2006; 53:723-32. [PMID: 16506224 DOI: 10.1002/glia.20327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To identify proteins implicated in peripheral nerve regeneration, we performed two-dimensional polyacrylamide gel electrophoresis and subsequent mass spectrometry analysis using nerve-injured hypoglossal nuclei of rat. We have identified annexin III (ANX III/ANX A3) as an induced protein after rat hypoglossal nerve injury. ANX III is known as a Ca2+-dependent phospholipid-binding protein, but its physiological function is mostly unknown. By in situ hybridization and immunohistochemistry, we demonstrated that ANX III expression was induced specifically in activated (axotomy-stimulated) microglia after nerve injury. ANX III was the most prominent ANX expressed in microglia of the major ANX family members (ANX I-VI). Hybridization signals for other ANX mRNAs (II, IV, V, and VI) were mainly observed in neuronal cells, and no significant hybridization signal for ANX I mRNA was detected in hypoglossal nuclei. In cultured microglia, ATP treatment induced ANX III translocation to the ruffling membrane where F-actin was accumulated. Further in vitro studies revealed that ANX III was not secreted and had F-actin binding activity in a Ca2+-dependent manner. These results suggest that ANX III may be a Ca2+-dependent mediator between phospholipids and F-actin in microglia stimulated by peripheral nerve injury.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, Asahimachi, Osaka 545-8585, Japan
| | | | | |
Collapse
|
23
|
|
24
|
Nakajima K, Graeber MB, Sonoda M, Tohyama Y, Kohsaka S, Kurihara T. In vitro proliferation of axotomized rat facial nucleus-derived activated microglia in an autocrine fashion. J Neurosci Res 2006; 84:348-59. [PMID: 16673407 DOI: 10.1002/jnr.20882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transection of rat adult facial nerve leads to an increase in the number of activated microglia in the facial nucleus (FN), with a peak in proliferation 3 days after transection. To investigate the characteristics of these activated microglia, we isolated the cells with high purity from axotomized FN (axFN) 3 days after transection according to the previously reported procedure for explant culture. The isolated microglia exhibited immunocytochemical properties similar to those in vivo, and their numbers increased approximately five- to sevenfold over a period of 10 days without the addition of any mitogens, suggesting that self-reproduction was occurring. Actually, the microglia actively incorporated bromodeoxyuridine (BrdU) and strongly expressed an S-phase-specific protein marker, proliferating cell nuclear antigen (PCNA). To examine the mechanism underlying this proliferation, the expression of the mitogens and specific receptors of the microglia were analyzed in conditioned medium (CM) and cells. Macrophage-colony stimulating factor (M-CSF) and granulocyte macrophage-CSF (GM-CSF) were detected in the CM as well as in the cells. Their specific receptor proteins, c-Fms and GMCSFRalpha, were also detected in the cell homogenate. These proliferating microglia were not found to produce deleterious factors for neurons. In summary, the microglia isolated from the axFN were found to be proliferative in an autocrine fashion and to have some cellular properties in common with those observed in vivo.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Eleore L, Vassias I, Vidal PP, Triller A, de Waele C. Modulation of glycine receptor subunits and gephyrin expression in the rat facial nucleus after axotomy. Eur J Neurosci 2005; 21:669-78. [PMID: 15733085 DOI: 10.1111/j.1460-9568.2005.03887.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last decade, numerous studies have investigated molecular changes in excitatory glutamatergic receptors in axotomized motoneurons, but few data are available concerning the modulation of inhibitory amino acid receptors. We report here the effect of axotomy on the expression of glycine receptors, gephyrin, vesicular inhibitory amino acid transporter (VIAAT) and synapsin I in rat facial motor neurons as demonstrated by in situ hybridization and immunohistochemistry. The facial nerve trunk was sectioned unilaterally and rats were killed 1, 3, 8, 30 or 60 days after surgery. We investigated the mechanisms underlying the changes in production of these proteins following axotomy by perfusing the facial nerve with colchicine or tetrodotoxin, and injecting cardiotoxin or botulinum toxin independently and unilaterally into the whisker pads of normal rats. Animals were killed 8 days later and processed for immunohistochemistry. The abundance of GlyR subunits and gephyrin fell sharply in the axotomized facial nucleus. This decrease began 1 day after axotomy and was lowest at 8 days, with protein levels returning to normal by day 60. Abnormal synapsin immunolabelling was also observed between days 8 and 60 after axotomy but we detected no change in VIAAT immunoreactivity. The effect of colchicine was similar to, but weaker than, that of axotomy. In contrast, tetrodotoxin, cardiotoxin and botulinum toxin had no significant effect. Thus, axotomy-induced changes probably resulted from a loss of trophic factor transported from the periphery or a positive injury signal, or both. They did not seem to depend on the disruption of activity.
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS (CNRS-Paris V), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
26
|
Streit WJ. Microglia and neuroprotection: implications for Alzheimer's disease. ACTA ACUST UNITED AC 2005; 48:234-9. [PMID: 15850662 DOI: 10.1016/j.brainresrev.2004.12.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 01/02/2023]
Abstract
The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, 32610-0244, USA.
| |
Collapse
|
27
|
Campos-Torres A, Touret M, Vidal PP, Barnum S, de Waele C. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat. Neuroscience 2005; 130:853-65. [PMID: 15652984 DOI: 10.1016/j.neuroscience.2004.08.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 11/25/2022]
Abstract
In this study, we investigated whether changes in the vestibular neuronal activity per se influence the pattern of astrocytes morphology, glial fibrillary acidic protein (GFAP) expression and ultimately their activation within the vestibular nuclei after unilateral transtympanic tetrodotoxin (TTX) injections and after unilateral inner ear lesion. The rationale was that, theoretically the noninvasive pharmacological functional blockade of peripheral vestibular inputs with TTX, allowed us to dissociate the signals exclusively related to the shutdown of the resting activity of the first-order vestibular neurons and from neuronal signals associated with trans-ganglionic changes in first order vestibular neurons induced by unilateral labyrinthectomy (UL). Since the cochlea was removed during the surgical procedure, we also studied the astrocytic reaction within the deafferented cochlear nuclei. No significant changes in the distribution or relative levels of GFAP mRNA expression, relative levels of GFAP protein or immunoreactivity for GFAP were found in the ipsilateral vestibular nuclei at any post-TTX injection times studied. In addition, no sign of microglia activation was observed. In contrast, a robust increase of the distribution and relative levels of GFAP mRNA expression, protein levels and immunoreactivity was observed in the deafferented vestibular and cochlear nuclei beginning at 1 day after inner ear lesion. GFAP mRNA expression and immunoreactivity in the cochlear nucleus was qualitatively stronger than in the ipsilateral vestibular nuclei. The results suggest that astrocyte activation in the vestibular nuclei is not related to drastic changes of vestibular nuclei neuronal activity per se. Early trans-ganglionic changes due to vestibular nerve dendrites lesion provoked by the mechanical destruction of vestibular receptors, most probably induced the glial reaction. Its functional role in the vestibular compensation process remains to be elucidated.
Collapse
Affiliation(s)
- A Campos-Torres
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB/842, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
28
|
Mader K, Andermahr J, Angelov DN, Neiss WF. Dual mode of signalling of the axotomy reaction: retrograde electric stimulation or block of retrograde transport differently mimic the reaction of motoneurons to nerve transection in the rat brainstem. J Neurotrauma 2004; 21:956-68. [PMID: 15307907 DOI: 10.1089/0897715041526113] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Axotomy of a peripheral nerve causes a complex central response of neuronal perikarya, astroglia and microglia. The signal initiating this axotomy reaction is currently explained either by deprivation of target-derived trophic factors after interruption of transport (trophic hypothesis) or by electrophysiological disturbances of the axotomized neurons (electric hypothesis). In 108 adult Wistar rats we have compared the time course and intensity of the axotomy reaction in the hypoglossal nucleus after (1) resection of the nerve (permanent axotomy), (2) one-time electric stimulation (intact nerve, brief transient electric disturbance), and (3) colchicine block of transport (intact nerve, prolonged transient loss of trophic factors). Nerve resection activated microglia at 2-35 days post-operation (dpo), elevated GFAP in astrocytes at 3-35 dpo and increased CGRP in motoneurons at 2-15 dpo. Fluorogold prelabeling revealed neurophagocytosis and 25% neuron loss at 25 dpo. Colchicine block similarly activated microglia at 5-35 dpo, elevated GFAP at 7-35 dpo and upregulated CGRP at 7-25 dpo. Neurophagocytosis and 15% motoneuron loss were evident at 25 dpo. Electric stimulation (15 min, 4 Hz, 0.1 msec impulse, 2 mAmp) of the intact nerve activated microglia at 1-10 dpo, elevated astroglial GFAP-expression at 7-35 dpo, and upregulated CGRP at 1-10 dpo, but no neuron death and neurophagocytosis were detected. Hence electric stimulation elicited a faster, shorter-lasting response, but transport block as well as axotomy a slower, longer-lasting response. This suggests a dual mode of signaling: Onset and early phase of the axotomy reaction are triggered by electric disturbances, late phase and neuron death by deprivation of trophic factors.
Collapse
Affiliation(s)
- Konrad Mader
- Klinik für Unfallchirurgie, Hand- und Wiederherstellungschirurgie, St. Vinzenz Hospital, Köln, Germany.
| | | | | | | |
Collapse
|
29
|
Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 2004; 45:397-407. [PMID: 15145554 DOI: 10.1016/j.neuint.2003.06.002] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 06/11/2003] [Accepted: 06/11/2003] [Indexed: 12/01/2022]
Abstract
Activated spinal glial cells have been strongly implicated in the development and maintenance of persistent pain states following a variety of stimuli including traumatic nerve injury. The present study was conducted to characterize the time course of surface markers indicative of microglial and astrocytic activation at the transcriptional level following an L5 nerve transection that results in behavioral hypersensitivity. Male Sprague-Dawley rats were divided into a normal group, a sham surgery group with an L5 spinal nerve exposure and an L5 spinal nerve transected group. Mechanical allodynia (heightened response to a non-noxious stimulus) of the ipsilateral hind paw was assessed throughout the study. Spinal lumbar mRNA levels of glial fibrillary acidic protein (GFAP), integrin alpha M (ITGAM), toll-like receptor 4 (TLR4) and cluster determinant 14 (CD14) were assayed using real-time reverse transcription polymerase chain reaction (RT-PCR) at 4 h, 1, 4, 7, 14 and 28 days post surgery. The spinal lumbar mRNA expression of ITGAM, TLR4, and CD14 was upregulated at 4 h post surgery, CD14 peaked 4 days after spinal nerve transection while ITGAM and TLR4 continued to increase until day 14 and returned to almost normal levels by postoperative day 28. In contrast, spinal GFAP mRNA did not significantly increase until postoperative day 4 and then continued to increase over the duration of the study. Our optimized real-time RT-PCR method was highly sensitive, specific and reproducible at a wide dynamic range. This study demonstrates that peripheral nerve injury induces an early spinal microglial activation that precedes astrocytic activation using mRNA for surface marker expression; the delayed but sustained expression of mRNA coding for GFAP implicates astrocytes in the maintenance phase of persistent pain states. In summary, these data demonstrate a distinct spinal glial response following nerve injury using real-time RT-PCR.
Collapse
Affiliation(s)
- F Y Tanga
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, HB 7125, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
30
|
Lan CT, Hsu JC, Tseng CY, Chang CN, Ling EA. Synaptic remodeling in the nucleus ambiguus following vagal–hypoglossal nerve anastomosis in the cat. Brain Res 2004; 1013:60-73. [PMID: 15196968 DOI: 10.1016/j.brainres.2004.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 02/06/2023]
Abstract
We reported recently the occurrence of a massive and selective elimination of synaptic boutons on motoneurons in the dorsal motor nucleus of the vagus (DMV) in the cat following vagal-hypoglossal nerve anastomosis (VHA) [J. Comp. Neurol. 458 (2003) 195]. This study was aimed to explore the synaptic reorganization in the other major nucleus associated with the vagus, namely, the nucleus ambiguus (NA) following the same treatment. In view of the tremendous difference in function, the NA and DMV are considered to be two ideal nuclei for explanatory studies seeking to elucidate how VHA could induce different plasticity of brainstem neurons influenced by the newly reestablished neural pathway. The present results showed that the vagal efferent neurons in the NA had responded to VHA in a different manner compared with those in the DMV. Firstly, the numbers of axon terminals containing round (R), round with dense-cored (R+D), pleomorphic (P) or flattened (F) synaptic vesicles contacting the NA motoneurons were markedly increased at 500-day postoperation, the longest reinnervation interval. The percent increases in the synapse frequency for R, R+D, P and F boutons were 8.6%, 274.4%, 238.3% and 400.0%, respectively. Secondly, the formation of astroglial ensheathment around the motoneurons in the DMV following VHA was not evident in the NA. Another striking difference was the extensive dendritic sprouting of the NA neurons as opposed to the dendritic retraction of the DMV neurons as shown by a significant increase in distal dendrites of NA motoneurons. The different modes of neural remodeling between NA and DMV may be attributed to the unique nature of the two nuclei to structures they normally supply and their different compatibility with the newly innervated target, viz. tongue skeletal musculature.
Collapse
Affiliation(s)
- Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung-Shan Medical University, No. 110, Sec. 1, Chien Kuo North Road, 402 Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors.
Collapse
Affiliation(s)
- Linda B Moran
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | |
Collapse
|
32
|
Flanary BE, Streit WJ. Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 2004; 45:75-88. [PMID: 14648548 DOI: 10.1002/glia.10301] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normal somatic cells have a finite replicative capacity. With each cell division, telomeres shorten progressively until they reach a critical length, at which point the cells enter replicative senescence. Some cells maintain their telomeres by the action of the telomerase enzyme. Glia, particularly microglia, are the only adult cell types in the central nervous system (CNS) that exhibit a significant mitotic potential, and are thus susceptible to telomere shortening. In this study, we show that telomere shortening accompanied by low to moderate telomerase activity, and ultimately senescence, occurs in rat microglia in vitro. When microglia are stimulated to divide with the mitogen granulocyte macrophage-colony stimulating factor (GM-CSF), longer telomeres are allowed to shorten, while shorter telomeres are lengthened. Telomerase activity is nearly 3-fold higher in GM-CSF-stimulated microglia initially, relative to unstimulated controls, and then declines to levels below those seen in controls before increasing again. Telomere attrition is also more rapid when microglia are grown in culture dishes of increasing size. Fluorescence in situ hybridization (FISH) analysis indicates that a nearly 3-fold variation in both inter- and intra-chromosomal telomere length exists in microglia. In contrast to microglia, cultured astrocytes exhibit a cyclical pattern of telomere lengthening and shortening over time, corresponding to a similar cycle of higher and lower telomerase activity. When astrocytes are passaged, mean telomere length increases initially from passage 1-2, remaining constant until passage 5, while the shortest telomeres are continually lengthened. In conclusion, the telomere shortening evident in microglia is accompanied by their progression to senescence by 32 days in vitro. In contrast, astrocytes, perhaps due to greater telomerase activity, have longer life spans and may be passaged repeatedly before entering senescence. Our findings provide an impetus to investigate the possibility that microglial telomere shortening may occur in vivo.
Collapse
Affiliation(s)
- Barry E Flanary
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida 32610-0244, USA
| | | |
Collapse
|
33
|
Tusell JM, Saura J, Serratosa J. Absence of the cell cycle inhibitor p21Cip1 reduces LPS-induced NO release and activation of the transcription factor NF-?B in mixed glial cultures. Glia 2004; 49:52-8. [PMID: 15390102 DOI: 10.1002/glia.20095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have studied possible differences in glial activation between cells from wild-type and p21Cip1-/- mice. We compared the effect of serum mitogenic stimulation on proliferation rate and on the total number of glial cells after 7 days of culture. No differences between wild-type and p21Cip1-/- glial cells were observed. We also compared the effect of lipopolysaccharide (LPS) from Escherichia coli, an agent widely used to induce glial activation. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) release, and nuclear factor kappa-B (NF-kappaB) activation were evaluated as indicators of glial activation. We observed an attenuation of NO release and NF-kappaB activation in p21Cip1-/- glial cells when compared with glial cells from wild-type mice. In contrast, TNF-alpha release was enhanced in p21Cip1-/- glia. These results suggest that the cell cycle inhibitor p21Cip1 plays a role in the inflammatory response induced by LPS.
Collapse
Affiliation(s)
- Josep Maria Tusell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Storer PD, Jones KJ. Glial fibrillary acidic protein expression in the hamster red nucleus: effects of axotomy and testosterone treatment. Exp Neurol 2003; 184:939-46. [PMID: 14769386 DOI: 10.1016/s0014-4886(03)00339-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 06/23/2003] [Accepted: 06/30/2003] [Indexed: 01/07/2023]
Abstract
Testosterone propionate (TP) administration coincident with facial nerve axotomy in the hamster attenuates glial fibrillary acidic protein (GFAP) expression in the facial nucleus that is normally increased following axotomy alone. This ability of TP to modulate astrocyte activity has been linked to the ability of steroid hormones to enhance the regenerative response of injured motor neurons. In an ongoing study designed to examine the potential influences of steroid hormones on centrally projecting motoneurons, the astrocyte reaction in the red nucleus was examined. In the present study, in situ hybridization was used to assess changes in GFAP mRNA in the hamster red nucleus following spinal cord injury (SCI) and TP treatment. Castrated male hamsters were subjected to right rubrospinal tract (RST) transection at spinal cord level T1, with half the animals implanted subcutaneously with Silastic capsules containing 100% crystalline TP and the remainder sham implanted. The uninjured red nucleus served as an internal control. Postoperative survival times were 1, 2, 7, and 14 days. Qualitative-quantitative analyses of emulsion autoradiograms were accomplished. Axotomy alone resulted in a significant but transient increase in GFAP mRNA levels at 2 days postoperative in the injured red nucleus compared with the contralateral uninjured red nucleus. However, in TP-treated animals, GFAP mRNA levels were no different than control levels at 2 dpo but were significantly increased at 7 dpo relative to contralateral control. Additionally, the increase in GFAP mRNA levels following TP treatment was significantly smaller than following axotomy alone. These data suggest that testosterone both delays and reduces the astrocytic reaction in the red nucleus following rubrospinal tract axotomy, and confirms a difference between peripheral and central glial responses to axotomy and steroid administration.
Collapse
Affiliation(s)
- Paul D Storer
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, Maywood, IL 60153, USA.
| | | |
Collapse
|
35
|
Lan CT, Hsu JC, Chang CN, Chuang HL, Ling EA. Synaptic remodeling in the dorsal motor nucleus of the vagus nerve following vagal-hypoglossal nerve anastomosis in the cat. J Comp Neurol 2003; 458:195-207. [PMID: 12596258 DOI: 10.1002/cne.10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Horseradish peroxidase (HRP) retrograde tracing techniques and morphometric analyses were performed to investigate synaptic remodeling associated with neuronal and glial changes in the dorsal motor nucleus of the vagus (DMV) of cats after vagal-hypoglossal nerve anastomosis (VHA). At 25 days postoperation (dpo), in the early target-reinnervation stage, there were 50% fewer presynaptic boutons containing round vesicles (R) or round and large dense-cored synaptic vesicles (R+D) contacting HRP-labeled DMV motoneurons. The loss of R boutons was maintained throughout the remaining postoperative intervals up to 500 dpo, whereas R+D boutons were further reduced at 123 dpo but were restored at 315 dpo, so that, by 500 dpo, 71.4% of them had gained access to the DMV motoneurons. Boutons containing pleomorphic synaptic vesicles (P) were completely disconnected from the DMV motoneurons at 25 dpo and did not reappear even in the long-term reinnervation stage. Loss and recovery of presynaptic boutons occurred in parallel with changes in astroglial ensheathment of the DMV motoneurons. It is suggested that synaptic remodeling associated with astroglial ensheathment in the DMV may be influenced by some retrogradely transported factors/signals derived from the newly acquired target organ, viz. tongue skeletal musculature. Our results further suggest that the observed changes in boutonal configurations may be attributable to modified functions of the DMV motoneurons induced by VHA.
Collapse
Affiliation(s)
- Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung-Shan Medical University, Taichung 402, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Kálmán M. Glial reaction and reactive glia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
37
|
Serpe CJ, Tetzlaff JE, Coers S, Sanders VM, Jones KJ. Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice. Brain Behav Immun 2002; 16:808-12. [PMID: 12480509 DOI: 10.1016/s0889-1591(02)00017-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The goal of the current study was to determine if T and B lymphocytes play a role in functional recovery after peripheral nerve injury. The time course of behavioral recovery following facial nerve crush injury at the stylomastoid foramen was established in scid mice which lack functional T and B cells and reconstituted scid mice as compared to wild-type mice. The average time necessary for recovery of full eye blink reflex and vibrissae movements in wild-type mice was 10.3+/-0.2 and 9.9+/-0.34 days, respectively. In contrast, recovery of full eye blink reflex and vibrissae movements took 14.8+/-0.54 and 12.3+/-0.41 days, respectively, in scid mice. Reconstitution of scid mice with whole splenocytes resulted in functional recovery times similar to wild-type, with eye blink reflex recovery and vibrissae movement being 10.5+/-0.3 and 10.0+/-0.0 days, respectively. These results suggest that the delayed behavioral recovery time observed in scid mice may be due to the absence of T and B lymphocytes.
Collapse
Affiliation(s)
- Craig J Serpe
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
38
|
Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 2002; 114:279-83. [PMID: 12204197 DOI: 10.1016/s0306-4522(02)00279-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies have been done on the effect of nerve injury on neurons of sensory ganglia but little is known about the contribution of satellite glial cells (SCs) in these ganglia to post-injury events. We investigated cell-to-cell coupling and ultrastructure of SCs in mouse dorsal root ganglia after nerve injury (axotomy). Under control conditions SCs were mutually coupled, but mainly to other SCs around a given neuron. After axotomy SCs became extensively coupled to SCs that enveloped other neurons, apparently by gap junctions. Serial section electron microscopy showed that after axotomy SC sheaths enveloping neighboring neurons formed connections with each other. Such connections were absent in control ganglia. The number of gap junctions between SCs increased 6.5-fold after axotomy. We propose that axotomy induces growth of perineuronal SC sheaths, leading to contacts between SCs enveloping adjacent neurons and to formation of new gap junctions between SCs. These changes may be an important mode of glial plasticity and can contribute to neuropathic pain.
Collapse
MESH Headings
- Animals
- Cell Communication/physiology
- Female
- Ganglia, Spinal/injuries
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Gap Junctions/pathology
- Gap Junctions/physiology
- Gap Junctions/ultrastructure
- Isoquinolines
- Male
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron
- Neuralgia/pathology
- Neuralgia/physiopathology
- Neuronal Plasticity/physiology
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Neurons, Afferent/ultrastructure
- Peripheral Nervous System Diseases/pathology
- Peripheral Nervous System Diseases/physiopathology
- Satellite Cells, Perineuronal/pathology
- Satellite Cells, Perineuronal/physiology
- Satellite Cells, Perineuronal/ultrastructure
- Up-Regulation/physiology
Collapse
Affiliation(s)
- M Hanani
- Laboratory of Experimental Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel.
| | | | | | | | | |
Collapse
|
39
|
Solà C, Casal C, Tusell JM, Serratosa J. Astrocytes enhance lipopolysaccharide-induced nitric oxide production by microglial cells. Eur J Neurosci 2002; 16:1275-83. [PMID: 12405988 DOI: 10.1046/j.1460-9568.2002.02199.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. We characterized NO production in microglial, astroglial and mixed glial cell cultures treated with lipopolysaccharide, measured as nitrite accumulation in the culture media. We also identified the NO-producing cells by immunocytochemistry, using specific markers for the inducible NO synthase (iNOS) isoform, microglial and astroglial cells. Only microglial cells showed iNOS immunoreactivity. Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.
Collapse
Affiliation(s)
- Carme Solà
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Barcelona, Spain.
| | | | | | | |
Collapse
|
40
|
Dumoulin FL, Raivich G, Streit WJ, Kreutzberg GW. Differential Regulation of Calcitonin Gene-related Peptide (CGRP) in Regenerating Rat Facial Nucleus and Dorsal Root Ganglion. Eur J Neurosci 2002; 3:338-342. [PMID: 12106191 DOI: 10.1111/j.1460-9568.1991.tb00820.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The content of calcitonin gene-related peptide (CGRP) and CGRP-mRNA were determined in axotomized rat facial motor nucleus and sensory fifth lumbar dorsal root ganglion (L5 DRG) using radioimmunoassay and Northern blot analysis. After facial nerve transection CGRP levels in the facial nucleus showed a biphasic, approximately five-fold increase. A first peak occurred at postoperative day 3 and, after a transient decrease to normal levels at day 9, another increase was observed reaching a peak around the time of reinnervation (postoperative day 21). CGRP-mRNA showed a similar, biphasic increase. The first peak in CGRP mRNA preceded the peptide peak by 2 days, the second peak was approximately day 21. In contrast, a decrease in CGRP levels is seen in L5 DRG after sciatic nerve section, reaching minimal levels of 45% of control during the second postoperative week. CGRP-mRNA in axotomized DRG also decreases preceding the decrease in peptide levels. No recovery to normal levels is seen for either peptide or mRNA levels in regenerating DRG up to 45 days after injury. Thus, axotomy leads to a differential regulation of both CGRP and CGRP-mRNA in regenerating facial motor nucleus and sensory L5 DRG. This difference may be due to different regulating factors present in both the respective target tissues and the CNS regions and could reflect different functions of CGRP in regenerating motor and sensory neurons.
Collapse
Affiliation(s)
- F. L. Dumoulin
- Department of Neuromorphology, Max-Planck-Institute for Psychiatry, D-8033 Martinsried, FRG
| | | | | | | |
Collapse
|
41
|
Abstract
The central nervous system response to injury includes astrocyte proliferation and hypertrophy as well as microglial activation and proliferation. However, not all glial cells enter the cell cycle following damage, and the mechanism that determines which glial cells will proliferate and which will remain quiescent has yet to be elucidated. Protein tyrosine phosphorylation has been shown to play an important role in the regulation of the cell cycle in a number of different systems and has been implicated in both astrocyte proliferation and differentiation. Of particular interest is the protein tyrosine phosphatase SHP-1 (Src homology 2-containing protein tyrosine phosphatase 1), which: (1) modulates cellular proliferation in the hematopoietic system, (2) is involved in various growth factor second messenger signaling cascades, and (3) has been demonstrated by our laboratory to increase in immunoreactivity within a subpopulation of astrocytes following deafferentation of the chicken auditory brainstem. These SHP-1+ cells appear to be those which fail to enter the cell cycle following deafferentation. The present study examines whether manipulation of cellular proliferation in vitro modifies the expression of SHP-1 immunoreactivity in mixed neural/glial cultures of the avian auditory brainstem. In addition, the effect of the protein tyrosine phosphatase inhibitor sodium orthovanadate on cellular proliferation was assessed in these cultures. Our results demonstrate that SHP-1 expression can be modulated by changes in proliferation and that inhibiting tyrosine phosphatase activity results in increased proliferation. Taken together, these results indicate that SHP-1 may play central role in negatively regulating glial proliferation following injury.
Collapse
Affiliation(s)
- Jeffrey D Sorbel
- Department of Pharmaceutical Sciences, School of Pharmacy and Allied Health Sciences, University of Montana, Missoula, Montana 59812-1552, USA
| | | | | |
Collapse
|
42
|
Coers S, Tanzer L, Jones KJ. Testosterone treatment attenuates the effects of facial nerve transection on glial fibrillary acidic protein (GFAP) levels in the hamster facial motor nucleus. Metab Brain Dis 2002; 17:55-63. [PMID: 12083337 DOI: 10.1023/a:1015415226799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Testosterone propionate (TP) administration coincident with facial nerve injury accelerates the recovery rate from facial muscle paralysis in the hamster. One mechanism by which TP could augment peripheral nerve regeneration is through glial fibrillary acidic protein (GFAP) regulation in the facial motor nucleus. In a previous study, axotomy alone induces increases in GFAP mRNA. with TP significantly attenuating the axotomy-induced increases in GFAP mRNA. In the present study, immunoblotting techniques were used to extend our previous GFAP mRNA studies to the protein level. Castrated male hamsters were subjected to a right facial nerve transection, with half of the animals receiving subcutaneous implants of 100% crystalline TP. The left facial motor nucleus of each animal served as an internal control. Postoperative survival times include Days 4, 7, and 14. In non-TP-treated animals, facial nerve transections alone increased GFAP levels at all time points, relative to internal controls. As previously observed at the mRNA level, TP treatment attenuated but did not eliminate the axotomy-induced increase in GFAP levels at all time points tested. These results suggest that the regulatory actions of gonadal steroids on GFAP expression manifested in parallel at the mRNA/protein levels.
Collapse
Affiliation(s)
- Susanna Coers
- Department of Cell Biology, Neurobiology, and Anatomy, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153, USA.
| | | | | |
Collapse
|
43
|
Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 2001; 14:327-41. [PMID: 11553283 DOI: 10.1046/j.0953-816x.2001.01647.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nerve injury triggers numerous changes in the injured neurons and surrounding non-neuronal cells. Of particular interest are molecular signals that play a role in the overall orchestration of this multifaceted cellular response. Here we investigated the function of interleukin-6 (IL6), a multifunctional neurotrophin and cytokine rapidly expressed in the injured nervous system, using the facial axotomy model in IL6-deficient mice and wild-type controls. Transgenic deletion of IL6 caused a massive decrease in the recruitment of CD3-positive T-lymphocytes and early microglial activation during the first 4 days after injury in the axotomized facial nucleus. This was accompanied by a more moderate reduction in peripheral regeneration at day 4, lymphocyte recruitment (day 14) and enhanced perikaryal sprouting (day 14). Motoneuron cell death, phagocytosis by microglial cells and recruitment of granulocytes and macrophages into injured peripheral nerve were not affected. In summary, IL6 lead to a variety of effects on the cellular response to neural trauma. However, the particularly strong actions on lymphocytes and microglia suggest that this cytokine plays a central role in the initiation of immune surveillance in the injured central nervous system.
Collapse
Affiliation(s)
- M Galiano
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalla R, Liu Z, Xu S, Koppius A, Imai Y, Kloss CU, Kohsaka S, Gschwendtner A, Möller JC, Werner A, Raivich G. Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: Impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-defici. J Comp Neurol 2001. [DOI: 10.1002/cne.1060] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Lan CT, Liu JC, Hsu JC, Ling EA. Different astroglial reaction between the vagal dorsal motor nucleus and nucleus ambiguus following vagal-hypoglossal nerve anastomosis in cats. Brain Res 2000; 881:222-6. [PMID: 11036164 DOI: 10.1016/s0006-8993(00)02813-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (NA) were both traced with horseradish peroxidase (HRP) retrograde labelling technique after vagal-hypoglossal nerve anastomosis (VHA). By light microscopy, reinnervation of the new target, viz. tongue skeletal musculature, by DMV and NA was established at 22 days postoperation (dpo) as shown by the neuronal labelling with HRP. Ultrastructurally, signs of retrograde degeneration occurred in some DMV and NA neurons between 3 and 25 days after VHA. The incidence of darkened dendrites, an early sign of dendritic loss, was more common in the DMV compared to the NA. Accompanying the neuronal alteration were drastic astrocytic reactions in the DMV, but not in the NA. Between 3 and 7 dpo, the astrocytes in the DMV showed extensively hypertrophied processes and by 22 dpo, the somata and dendrites of HRP-labelled DMV neurons, but not NA's, appeared to be delineated by the increased lamellar astrocytic processes. Such a feature was sustained throughout the remaining postoperative intervals up to 500 dpo. It is concluded that the DMV motoneurons being autonomic in nature are probably not conducive to the newly acquired target organ. Hence, the insulation of the regenerating DMV motoneurons by the astroglial ensheathment would be vital in the neuronal remodelling and reconstruction of the vagal-hypoglossal pathway.
Collapse
Affiliation(s)
- C T Lan
- Department of Anatomy, Chung-Shan Medical and Dental College, No. 110, Sec. 1, Chien Kuo North Road, Taichung, Taiwan.
| | | | | | | |
Collapse
|
46
|
Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL. Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000; 61:10-20. [PMID: 10861795 DOI: 10.1002/1097-4547(20000701)61:1<10::aid-jnr2>3.0.co;2-e] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using reverse transcription polymerase chain reaction (RT-PCR), we have studied the temporal expression of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), transforming growth factor-beta 1 (TGF-beta 1), and tumor necrosis factor-alpha (TNF-alpha) mRNAs in three axotomy paradigms with distinct functional outcomes. Axotomy of adult rat facial motoneurons results in neuronal regeneration, axotomy of neonatal facial motoneurons results in neuronal apoptosis, and axotomy of rubrospinal neurons results in neuronal atrophy. Our RT-PCR findings show that a significant and sustained upregulation of IL-6 mRNA is associated uniquely with the regeneration of adult facial motoneurons. Histochemical studies using IL-6 immunohistochemistry show intense IL-6 immunoreactivity in axotomized adult facial motoneurons. Assessment of reactive glial changes with astroglial and microglial markers reveals that the reactive gliosis following adult facial nerve axotomy is more intense than that observed in either of the other two paradigms. Exposure of cultured microglial cells to IL-6 stimulates microglial proliferation in a dose-dependent manner. Cultured microglia also show expression of IL-6 receptor mRNA, as determined by RT-PCR. Our findings support the idea that reactive gliosis is required for neuron regeneration to occur, and more specifically, they suggest that neuron-derived IL-6 serves as a signalling molecule that induces microglial proliferation during motoneuron regeneration.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and Brain Institute, Gainesville 32611, Florida, USA.
| | | | | | | |
Collapse
|
47
|
Lurie DI, Solca F, Fischer EH, Rubel EW. Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000529)421:2<199::aid-cne6>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
López-Redondo F, Nakajima K, Honda S, Kohsaka S. Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:429-35. [PMID: 10762723 DOI: 10.1016/s0169-328x(00)00022-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glutamate transporters play an important role in the re-uptake of glutamate after its release from glutamatergic synapses. So far five of such transporters subtypes have been cloned from rodent and human brains. The densities of glutamate transporters are recognised to be developmentally regulated, but the role of glutamate transporters in the mechanisms underlying the occurrence of neuronal traumatic injury has not been widely studied. In the present study quantitative Western blotting and immunohistochemical technique were employed to study the expression of GLT-1/EAAT2 in the facial nuclei of adult rats following unilateral facial nerve axotomy. The total content of GLT-1 protein decreased in the ipsilateral axotomised rat facial nucleus. However, activated microglia surrounding motoneurons showed high expression of GLT-1 after facial nerve axotomy. Parallel studies revealed that primary cultured microglial cells also showed GLT-1-immunoreactivity. To our knowledge, this is the first direct demonstration of the expression of GLT-1 protein in activated microglial cells, suggesting a neuroprotective role of microglia against glutamate excitotoxicity following nerve axotomy.
Collapse
Affiliation(s)
- F López-Redondo
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1, Ogawahigashi, Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Abstract
The interplay between growing axons and the extracellular substrate is pivotal for directing axonal outgrowth during development and regeneration. Here we show an important role for the neuronal cell adhesion molecule alpha7beta1 integrin during peripheral nerve regeneration. Axotomy led to a strong increase of this integrin on regenerating motor and sensory neurons, but not on the normally nonregenerating CNS neurons. alpha7 and beta1 subunits were present on the axons and their growth cones in the regenerating facial nerve. Transgenic deletion of the alpha7 subunit caused a significant reduction of axonal elongation. The associated delay in the reinnervation of the whiskerpad, a peripheral target of the facial motor neurons, points to an important role for this integrin in the successful execution of axonal regeneration.
Collapse
|
50
|
Ito D, Tanaka K, Nagata E, Suzuki S, Dembo T, Fukuuchi Y. Uncoupling of cerebral blood flow and glucose utilization in the regenerating facial nucleus after axotomy. Neurosci Res 1999; 35:207-15. [PMID: 10605944 DOI: 10.1016/s0168-0102(99)00088-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Axotomy is known to activate various metabolic processes including protein synthesis and glucose utilization in the motor nucleus. Although it is generally assumed that the local cerebral blood flow (CBF) fluctuates in response to the axonal reaction, there has been no direct evidence for changes in CBF in the motor nucleus following axotomy. In this study, the CBF in the facial nuclei was measured after axotomy of the facial nerve employing the [14C]iodoantipyrine method to evaluate the relation between the CBF and axonal reaction. Following unilateral facial nerve axotomy in neonates, which induced neuronal degeneration in the facial nucleus, the CBF and glucose uptake was significantly decreased on the operated nucleus, suggesting that CBF and glucose metabolism are coupled in the degenerating nucleus. In contrast, after axotomy in adults, which induced regeneration of neurons and glial reactions, glucose uptake was increased on the operated nucleus, while the CBF did not differ significantly between the operated and unoperated nucleus. These findings imply that glucose metabolism and CBF are uncoupled in the regenerating nucleus, suggesting that the relation between CBF and metabolism in the regenerating nucleus following axotomy may clearly contradict the classical concept of a tight coupling between CBF and metabolism.
Collapse
Affiliation(s)
- D Ito
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|