1
|
Useinovic N, Maksimovic S, Near M, Quillinan N, Jevtovic-Todorovic V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? Int J Mol Sci 2022; 23:ijms23031128. [PMID: 35163060 PMCID: PMC8834847 DOI: 10.3390/ijms23031128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Correspondence:
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Wang YY, Zhou N, Si YP, Bai ZY, Li M, Feng WS, Zheng XK. A UPLC-Q-TOF/MS-Based Metabolomics Study on the Effect of Corallodiscus flabellatus (Craib) B. L. Burtt Extract on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8868690. [PMID: 34135987 PMCID: PMC8177975 DOI: 10.1155/2021/8868690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
A UPLC-Q-TOF/MS-based metabolomics study was carried out to explore the intervening mechanism of Corallodiscus flabellatus (Craib) B. L. Burtt (CF) extract on Alzheimer's disease (AD). The AD model group consisted of senescence-accelerated mouse prone 8 (SAMP8) mice, and the control group consisted of senescence-accelerated mouse resistant 1 (SAMR1) mice. UPLC-Q-TOF/MS detection, multivariate statistical analysis, and pathway enrichment were jointly performed to research the change in metabolite profiling in the urine of AD mice. The result suggested that the metabolite profiling of SAMP8 mice significantly changed at the sixth month compared with SAMR1 mice of the same age, and the principal component analysis (PCA) score scatter plots of the CF group closely resembled those of the control and positive drug (huperzine A, HA) group. A total of 28 metabolites were considered potential biomarkers associated with the metabolism of beta-alanine, glycine, serine, threonine, cysteine, methionine, arginine, proline, and purines in AD mice. Furthermore, the CF group was clustered with the control and positive group and was clearly separated from the model group in the heat map. In conclusion, significant anti-AD effects were firstly observed in mice after treatment with the CF extract, and the urinary metabolomics approach assisted with dissecting the underlying mechanism.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ning Zhou
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yan-Po Si
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Zhi-Yao Bai
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Meng Li
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiao-Ke Zheng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
3
|
Abe K, Fujita M, Hayashi M, Takahashi A, Ohira H. The Efficacy of Levocarnitine Treatment in Relieving Fatigue in Patients with Cirrhosis but without Overt Hepatic Encephalopathy. Intern Med 2021; 60:3533-3542. [PMID: 34776465 PMCID: PMC8666222 DOI: 10.2169/internalmedicine.7175-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective In the present study, we prospectively examined the efficacy of levocarnitine in relieving symptoms of fatigue in patients with cirrhosis but without overt hepatic encephalopathy. Methods Twenty-one cirrhotic patients who were able to undergo fatigue symptom evaluations at our institution were enrolled. A total of 12 cirrhotic patients underwent levocarnitine treatment (1,200-1,800 mg/day), while 9 did not undergo levocarnitine treatment. As primary endpoints, we investigated whether or not levocarnitine treatment exerted any beneficial effects by assessing the symptoms of fatigue [8-item Short-Form Health Survey (SF-8) and Fisk Fatigue Severity Score (FFSS)] at baseline and three months after treatment. Furthermore, as exploratory secondary endpoints, we investigated whether or not levocarnitine treatment exerted ameliorative effects on oxidative stress by assessing the serum thioredoxin (TRX) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Results The median age of the patients was 73 years old. Three men and 18 women were categorized by their Child-Pugh class (A and B in 14 and 7 patients, respectively). There were no significant differences in the clinical laboratory values between the two groups. The FFSS and SF-8 scores were significantly improved in the patients with cirrhosis who underwent levocarnitine treatment (p<0.01) but not in those who did not undergo levocarnitine treatment. Furthermore, three months after levocarnitine treatment, the serum carnitine concentrations were significantly increased, and the serum thioredoxin levels were decreased in the patients with cirrhosis who underwent levocarnitine treatment (p<0.05). Conclusion These results suggest that levocarnitine treatment may relieve symptoms of fatigue in cirrhotic patients by reducing oxidative stress.
Collapse
Affiliation(s)
- Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Japan
| | - Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
4
|
Okubo H, Ando H, Ishizuka K, Kitagawa R, Okubo S, Saito H, Kokubu S, Miyazaki A, Ikejima K, Shiina S, Nagahara A. Carnitine insufficiency is associated with fatigue during lenvatinib treatment in patients with hepatocellular carcinoma. PLoS One 2020; 15:e0229772. [PMID: 32126131 PMCID: PMC7053710 DOI: 10.1371/journal.pone.0229772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Background Fatigue is a common adverse event during lenvatinib treatment in patients with hepatocellular carcinoma. One mechanism contributing to development of fatigue might involve abnormal adenosine triphosphate synthesis that is caused by carnitine deficiency. To address this possibility, we examined the relationship between carnitine levels and fatigue during lenvatinib treatment. Methods This prospective study evaluated 20 patients with hepatocellular carcinoma who underwent lenvatinib treatment. Both blood and urine samples were collected from the patients before starting lenvatinib therapy (day 0), and on days 3, 7, 14, and 28 thereafter. Plasma and urine concentrations of free and acyl carnitine (AC) were assessed at each time point. The changes in daily fatigue were evaluated using the Brief Fatigue Inventory (BFI). Results Plasma levels of free carnitine (FC) at days 3 and 7 were significantly higher compared with baseline (p = 0.005, p = 0.005, respectively). The urine FC level at day 3 was significantly higher compared with baseline (p = 0.030) and that of day 7 tended to be higher compared with baseline (p = 0.057). The plasma AC concentration at days 14 and 28 was significantly higher compared with that of baseline (p = 0.002, p = 0.005, respectively). The plasma AC-to-FC (AC/FC) ratio on days 14 and 28 was significantly higher compared with baseline (p = 0.001, p = 0.003, respectively). There were significant correlations between the plasma AC/FC ratio and the change in the BFI score at days 14 and 28 (r = 0.461, p = 0.041; r = 0.770, p = 0.002, respectively). Conclusions Longitudinal assessments of carnitine and fatigue in patients with hepatocellular carcinoma suggest that lenvatinib affects the carnitine system in patients undergoing lenvatinib therapy and that carnitine insufficiency increases fatigue. The occurrence of carnitine insufficiency may be a common cause of fatigue during the treatment.
Collapse
Affiliation(s)
- Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Kei Ishizuka
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Ryuta Kitagawa
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Shoki Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Hiroaki Saito
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Shigehiro Kokubu
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan.,Department of Gastroenterology, Shin-yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | - Akihisa Miyazaki
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Kępka A, Zwierz P, Chojnowska S, Ochocińska A, Skorupa E, Szczepański M, Szajda SD, Waszkiewicz N. Relation of plasma carnitine and aminotransferases to alcohol dose and time of dependence. Alcohol 2019; 81:62-69. [PMID: 31029632 DOI: 10.1016/j.alcohol.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Serum aspartate, alanine aminotransferases (AST, ALT), and plasma carnitine are all indirect biomarkers of alcohol abuse. Carnitine transfers long-chain fatty acids from cytoplasm to mitochondria for β-oxidation. The aim of the study was to determine the relationship between daily alcohol intake, time of alcohol dependence, plasma carnitine, and serum aminotransferases. PATIENTS We studied 26 men who were addicted for 2-30 years, consuming ethanol from 75 to 700 g/day (alcoholic group), as well as 17 healthy men (control group). RESULTS In alcoholics, compared to the controls, we found: a significant increase in serum: AST (p = 0.0014), ALT (p = 0.0071), AST/ALT ratio (p < 0.000); significantly lower plasma free carnitine (FC) (p = 0.0316) and total carnitine (TC) (p = 0.0349); and a significant negative correlation between FC (r = -0.6200; R2 = 0.3844; p = 0.0007), TC (r = -0.4365; R2 = 0.1905; p = 0.0258), and time of alcohol dependence, suggesting carnitine as an indirect marker of alcohol abuse. We did not find any significant correlation between FC, TC, and levels of alcohol or aminotransferase activity. CONCLUSION In the alcoholic group, there was an increase in serum activity of AST, ALT, and AST/ALT ratio that confirms liver injury. In addition, we found low plasma FC and TC, which may indicate damage to mitochondrial β-oxidation caused by alcohol metabolites. The significantly higher plasma FC and TC in patients consuming the most, compared to patients consuming smaller doses of alcohol, may be caused by a lower carnitine demand of injured liver cells, decreased urinary carnitine excretion by impaired renal tubules, and leakage of carnitine into the blood from damaged muscles by the higher quantities of alcohol. The negative correlation between carnitine concentration and time of alcohol dependence may suggest the potential use of carnitine for treatment of alcohol abuse.
Collapse
|
6
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
7
|
Abstract
Among the various metabolic abnormalities documented in dialysis patients are abnormalities related to the metabolism of fatty acids. Aberrant fatty-acid metabolism has been associated with the promotion of free-radical production, insulin resistance, and cellular apoptosis. These processes have been identified as important contributors to the morbidity experienced by dialysis patients. There is evidence that levocarnitine supplementation can modify the deleterious effects of defective fatty-acid metabolism. Patients receiving hemodialysis and, to a lesser degree, peritoneal dialysis have been shown to be carnitine deficient, as manifested by reduced levels of plasma free carnitine and an increase in the acyl:free carnitine ratio. Cardiac and skeletal muscles are particularly dependent on fatty-acid metabolism for the generation of energy. A number of clinical abnormalities have been correlated with a low plasma carnitine status in dialysis patients. Clinical trials have examined the efficacy of levocarnitine therapy in a number of conditions common in dialysis patients, including skeletal-muscle weakness and fatigue, cardiomyopathy, dialysis-related hypotension, hyperlipidemia, and anemia poorly responsive to recombinant human erythropoietin therapy (rHuEPO). This review examines the evidence for carnitine deficiency in patients requiring dialysis, and documents the results of relevant clinical trials of levocarnitine therapy in this population. Consensus recommendations by expert panels are summarized and contrasted with present guidelines for access to levocarnitine therapy by dialysis patients.
Collapse
Affiliation(s)
- Brian Schreiber
- Dialysis Care, Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Guo X, Dumas M, Robinson BL, Ali SF, Paule MG, Gu Q, Kanungo J. Acetyl L-carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An in vivo assessment. J Appl Toxicol 2016; 37:192-200. [PMID: 27191126 DOI: 10.1002/jat.3340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/21/2023]
Abstract
Verapamil is a Ca2+ channel blocker and is highly prescribed as an anti-anginal, antiarrhythmic and antihypertensive drug. Ketamine, an antagonist of the Ca2+ -permeable N-methyl-d-aspartate-type glutamate receptors, is a pediatric anesthetic. Previously we have shown that acetyl l-carnitine (ALCAR) reverses ketamine-induced attenuation of heart rate and neurotoxicity in zebrafish embryos. Here, we used 48 h post-fertilization zebrafish embryos that were exposed to relevant drugs for 2 or 4 h. Heart beat and overall development were monitored in vivo. In 48 h post-fertilization embryos, 2 mm ketamine reduced heart rate in a 2 or 4 h exposure and 0.5 mm ALCAR neutralized this effect. ALCAR could reverse ketamine's effect, possibly through a compensatory mechanism involving extracellular Ca2+ entry through L-type Ca2+ channels that ALCAR is known to activate. Hence, we used verapamil to block the L-type Ca2+ channels. Verapamil was more potent in attenuating heart rate and inducing morphological defects in the embryos compared to ketamine at specific times of exposure. ALCAR reversed cardiotoxicity and developmental toxicity in the embryos exposed to verapamil or verapamil plus ketamine, even in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, an inhibitor of intracellular Ca2+ release suggesting that ALCAR acts via effectors downstream of Ca2+ . In fact, ALCAR's protective effect was blunted by oligomycin A, an inhibitor of adenosine triphosphate synthase that acts downstream of Ca2+ during adenosine triphosphate generation. We have identified, for the first time, using in vivo studies, a downstream effector of ALCAR that is critical in abrogating ketamine- and verapamil-induced developmental toxicities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.,Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological, Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
9
|
Sala PR, Ruijter G, Acquaviva C, Chabli A, de Sain-van der Velden MGM, Garcia-Villoria J, Heiner-Fokkema MR, Jeannesson-Thivisol E, Leckstrom K, Franzson L, Lynes G, Olesen J, Onkenhout W, Petrou P, Drousiotou A, Ribes A, Vianey-Saban C, Merinero B. Pilot Experience with an External Quality Assurance Scheme for Acylcarnitines in Plasma/Serum. JIMD Rep 2016; 30:23-31. [PMID: 26898293 DOI: 10.1007/8904_2016_533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022] Open
Abstract
The analysis of acylcarnitines (AC) in plasma/serum is established as a useful test for the biochemical diagnosis and the monitoring of treatment of organic acidurias and fatty acid oxidation defects. External quality assurance (EQA) for qualitative and quantitative AC is offered by ERNDIM and CDC in dried blood spots but not in plasma/serum samples. A pilot interlaboratory comparison between 14 European laboratories was performed over 3 years using serum/plasma samples from patients with an established diagnosis of an organic aciduria or fatty acid oxidation defect. Twenty-three different samples with a short clinical description were circulated. Participants were asked to specify the method used to analyze diagnostic AC, to give quantitative data for diagnostic AC with the corresponding reference values, possible diagnosis, and advice for further investigations.Although the reference and pathological concentrations of AC varied among laboratories, elevated marker AC for propionic acidemia, isovaleric acidemia, medium-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and multiple acyl-CoA dehydrogenase deficiencies were correctly identified by all participants allowing the diagnosis of these diseases. Conversely, the increased concentrations of dicarboxylic AC were not always identified, and therefore the correct diagnosis was not reach by some participants, as exemplified in cases of malonic aciduria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Misinterpretation occurred in those laboratories that used multiple-reaction monitoring acquisition mode, did not derivatize, or did not separate isomers. However, some of these laboratories suggested further analyses to clarify the diagnosis.This pilot experience highlights the importance of an EQA scheme for AC in plasma.
Collapse
Affiliation(s)
- P Ruiz Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IDIPAZ, CIBER de Enfermedades Raras, 28049, Madrid, Spain
| | - G Ruijter
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - C Acquaviva
- Service Maladies Héréditaires du Métabolisme, Centre de Biologie et Pathologie Est, Lyon, France
| | - A Chabli
- Biochimie métabolomique et protéomique, Hopital Necker Enfants Malades, Paris, France
| | | | - J Garcia-Villoria
- Department of Biochemistry and Molecular Genetics, Div Inborn Errors Metab, Hospital Clinic, IDIBAPS, CIBERER, Barcelona, Spain
| | - M R Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - E Jeannesson-Thivisol
- Service de Biochimie et Biologie Moléculaire, CHU de Nancy, Vandoeuvre-Nancy, France
| | - K Leckstrom
- Department Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L Franzson
- Department of Genetics and Molecular Medicine, Landspitali, Reykjavik, Iceland
| | - G Lynes
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - J Olesen
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - W Onkenhout
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - P Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - A Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - A Ribes
- Department of Biochemistry and Molecular Genetics, Div Inborn Errors Metab, Hospital Clinic, IDIBAPS, CIBERER, Barcelona, Spain
| | - C Vianey-Saban
- Service Maladies Héréditaires du Métabolisme, Centre de Biologie et Pathologie Est, Lyon, France
| | - B Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IDIPAZ, CIBER de Enfermedades Raras, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Hu W, Luo Z, Mai KS, Liu CX, Zheng JL. Ontogeny and kinetics of carnitine palmitoyltransferase I in hepatopancreas and skeletal muscle of grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1393-1401. [PMID: 26170093 DOI: 10.1007/s10695-015-0094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
The ontogeny and kinetics of carnitine palmitoyltransferase I (CPT I) were investigated in hepatopancreas and muscle throughout four developmental stages (newly hatched larvae, 1-month-old juvenile, 3-month-old, and 6-month-old, respectively) of grass carp Ctenopharyngodon idella. In hepatopancreas, the maximal velocity (Vmax) significantly increased from hatching to 1-month-old grass carp and then gradually declined at 6-month-old grass carp. In muscle, CPT I activity was the highest at 1-month-old grass carp, nearly twofold higher than that at hatching (P < 0.05). The Michaelis constant (Km) value was also the highest for 1-month-old in both tested tissues. Carnitine concentrations (FC, AC and TC) were the lowest for 3-month-old grass carp and remained relatively constant in both tissues from fish under the other developmental stages. The FC concentration in hepatopancreas and muscle at four developmental stages were less than the respective Km, indicating that grass carp required supplemental carnitine in their food to ensure that CPT I activity was not constrained by carnitine availability.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Kang-Sen Mai
- College of Fisheries, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Cai-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, People's Republic of China
- Bureau of Aquatic Products of Xiantao City, Xiantao, 433000, People's Republic of China
| | - Jia-Lang Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan, 430070, People's Republic of China
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| |
Collapse
|
11
|
Chen QL, Luo Z, Liu CX, Zheng JL, Zhu QL, Hu W, Zhuo MQ. Effects of waterborne copper exposure on carnitine composition, kinetics of carnitine palmitoyltransferases I (CPT I) and mRNA levels of CPT I isoforms in yellow catfish Pelteobagrus fulvidraco. CHEMOSPHERE 2015; 139:349-357. [PMID: 26171820 DOI: 10.1016/j.chemosphere.2015.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
The present study was conducted to determine the effect of waterborne copper (Cu) exposure on carnitine concentration, carnitine palmitoyltransferases I (CPT I) kinetics, and expression levels of four CPT I isoforms in the liver, muscle and heart of yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6weeks. Waterborne Cu exposure increased maximal reaction rates (Vmax) in the liver and muscle, but not in the heart. Michaelis-Menten constants (Km) tended to increase in the liver, but decreased in the heart after Cu exposure. The contents of total carnitine (TC) and acylcarnitine (AC) in the liver, and free carnitine (FC) in the muscle increased with increasing waterborne Cu concentrations, while FC content in the muscle declined with the increase of Cu levels. Waterborne Cu exposure also significantly influenced carnitine composition and profiles in heart. The mRNA expression of CPT Iα1a, CPT Iα1b and CPT Iα2a in the liver, and CPT Iα1a, CPT Iα1b and CPT Iβ in the muscle as well as CPT Iα1a in the heart were up-regulated by Cu exposure. Additionally, correlations were observed in the expression levels of CPT I isoforms and Km for carnitine, and between CPT I isoform expression and CPT I activity. To our knowledge, for the first time, the present study provided evidence that waterborne Cu exposure could influence carnitine composition, CPT I kinetics and mRNA levels of four CPT I isoforms in yellow catfish, which served to increase our understanding of the mechanisms underlying lipid catabolism during Cu exposure.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Cai-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Jia-Lang Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Qing-Ling Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Wei Hu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
12
|
Chen QL, Luo Z, Liu CX, Zheng JL. Differential effects of dietary Cu deficiency and excess on carnitine status, kinetics and expression of CPT I in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:24-30. [PMID: 26086439 DOI: 10.1016/j.aquaculture.2013.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
The present study was conducted to determine the effect of dietary Cu deficiency and excess on carnitine status, kinetics and expression of CPT I in the liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish were fed 0.76 (Cu deficiency), 4.18 (adequate Cu) and 92.45 (Cu excess) mg Cu kg(-1) diet, respectively, for 8 weeks. In the liver, Cu deficiency did not significantly affect the contents of FC, TC and AC, and the ratios of AC/FC and FC/TC. However, Cu excess reduced FC, TC and AC contents, and the ratio of AC/FC, but increased FC/TC ratio. In the muscle, dietary Cu levels showed no significant effects on the contents of FC, TC and AC as well as the ratio of FC/TC, but Cu excess significantly increased the ratio of AC/FC. Compared to the adequate Cu group, dietary Cu deficiency did not significantly affect the Vmax and Km values, and the ratio of Vmax/Km in the liver and muscle. However, Cu excess decreased Vmax and Vmax/Km ratio in the liver, and increased Vmax in the muscle. The mRNA expression of CPT Iα1a, CPT Iα1b, CPT Iα2a and CPT Iβ in the liver and muscle was influenced by dietary Cu levels. To our knowledge, the present study provided, for the first time, evidence that dietary Cu deficiency and excess differentially influenced carnitine status, kinetics and expression profiles of CPT I of yellow catfish, which would extend our understanding on Cu nutrition in fish.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Cai-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Jia-Lang Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
13
|
Chen QL, Luo Z, Liu CX, Zheng JL. Differential effects of dietary Cu deficiency and excess on carnitine status, kinetics and expression of CPT I in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:24-30. [PMID: 26086439 DOI: 10.1016/j.cbpb.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
The present study was conducted to determine the effect of dietary Cu deficiency and excess on carnitine status, kinetics and expression of CPT I in the liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish were fed 0.76 (Cu deficiency), 4.18 (adequate Cu) and 92.45 (Cu excess) mg Cu kg(-1) diet, respectively, for 8 weeks. In the liver, Cu deficiency did not significantly affect the contents of FC, TC and AC, and the ratios of AC/FC and FC/TC. However, Cu excess reduced FC, TC and AC contents, and the ratio of AC/FC, but increased FC/TC ratio. In the muscle, dietary Cu levels showed no significant effects on the contents of FC, TC and AC as well as the ratio of FC/TC, but Cu excess significantly increased the ratio of AC/FC. Compared to the adequate Cu group, dietary Cu deficiency did not significantly affect the Vmax and Km values, and the ratio of Vmax/Km in the liver and muscle. However, Cu excess decreased Vmax and Vmax/Km ratio in the liver, and increased Vmax in the muscle. The mRNA expression of CPT Iα1a, CPT Iα1b, CPT Iα2a and CPT Iβ in the liver and muscle was influenced by dietary Cu levels. To our knowledge, the present study provided, for the first time, evidence that dietary Cu deficiency and excess differentially influenced carnitine status, kinetics and expression profiles of CPT I of yellow catfish, which would extend our understanding on Cu nutrition in fish.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Cai-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Jia-Lang Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
14
|
Rashidi-Nezhad A, Talebi S, Saebnouri H, Akrami SM, Reymond A. The effect of homozygous deletion of the BBOX1 and Fibin genes on carnitine level and acyl carnitine profile. BMC MEDICAL GENETICS 2014; 15:75. [PMID: 24986124 PMCID: PMC4184381 DOI: 10.1186/1471-2350-15-75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 06/26/2014] [Indexed: 11/10/2022]
Abstract
Background Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway. Case presentation We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal. Conclusions We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.
Collapse
Affiliation(s)
| | | | | | - Seyed Mohammad Akrami
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
15
|
Liu CX, Luo Z, Hu W, Tan XY, Zheng JL, Chen QL, Zhu QL. Kinetics of Carnitine Palmitoyltransferase I (CPT I) in Chinese sucker (Myxocyprinus asiaticus) Change with its Development. Lipids 2013; 49:173-81. [DOI: 10.1007/s11745-013-3864-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
|
16
|
Zheng JL, Luo Z, Liu CX, Chen QL, Zhu QL, Hu W, Gong Y. Differential effects of the chronic and acute zinc exposure on carnitine composition, kinetics of carnitine palmitoyltransferases I (CPT I) and mRNA levels of CPT I isoforms in yellow catfish Pelteobagrus fulvidraco. CHEMOSPHERE 2013; 92:616-625. [PMID: 23642637 DOI: 10.1016/j.chemosphere.2013.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
The present study is conducted to determine the effect of acute and chronic zinc (Zn) exposure on carnitine concentration, carnitine palmitoyltransferases I (CPT I) kinetics, and expression levels of CPT I isoforms in liver, muscle and heart of yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish are subjected to chronic waterborne Zn exposure (0.05 mg Zn L(-1), 0.35 mg Zn L(-1) and 0.86 mg Zn L(-1), respectively) for 8 weeks and acute Zn exposure (0.05 mg Zn L(-1) and 4.71 mg L(-1)Zn, respectively) for 96 h, respectively. Reduced Michaelis-Menten constants (Km) and maximal reaction rates (Vmax) values in liver and muscle are observed in fish exposed to chronic Zn concentration. In contrast, Vmax and Km values in heart increase with increasing Zn concentration. Chronic Zn exposure also significantly influences the contents of free carnitine (FC), total carnitine (TC) and acylcarnitine (AC) in liver and heart, but not in muscle. The acute Zn exposure significantly increases FC, AC, TC contents in liver and muscle, but reduces their contents in heart. The chronic and acute Zn exposure influences the mRNA levels of four CPT I isoforms (CPT Iα1b, CPT Iβ, CPT Iα2a and CPT Iα1a) in liver, muscle and heart. Furthermore, correlations are observed in the mRNA levels between CPT I isoforms and Km, and between isoforms expression and activity of CPT I. Thus, chronic and acute Zn exposure shows differential effects on carnitine content, CPT I kinetics and mRNA levels of four CPT I isoforms in yellow catfish, which provides new mechanism for Zn exposure on lipid metabolism and also novel insights into Zn toxicity in fish.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Studies on rodents and subhuman primates suggest that prolonged exposure to general anesthetics may induce widespread neuronal cell death and neurological sequelae; seriously questioning the safety of pediatric anesthesia. This review presents recent developments in this rapidly emerging field. There is mounting and convincing preclinical evidence in rodents and nonhuman primates that anesthetics in common clinical use are neurotoxic to the developing brain in vitro and cause long-term neurobehavioral abnormalities in vivo. Prior to the publication of animal data and after the publication of animal data, there are several human cohort studies that demonstrate the association of poor neurodevelopmental outcome in neonates, who underwent major surgery during their neonatal period. This review summarizes our present understanding of some of the key components responsible for anesthesia-induced neuroapoptosis and offers some of neuroprotective strategies that could be beneficial as adjunct therapy in preventing anesthesia-induced death of developing neurons in the neonates. A randomized literature search was carried out using search words apoptosis, general anesthetics, and developing brain from 1979 to 2011 for effects of general anesthetics on developing brain in PUBMED and relevant published literature reviewed. General anesthetics may produce neurotoxicity and enduring cognitive impairment in young and aged animals, but the issue has not been adequately studied in humans. It is premature to recommend a change clinical practice based on the present data.
Collapse
Affiliation(s)
- S Velayudha Reddy
- Department of Anaesthesiology, Rajiv Gandhi Institute of Medical Sciences, Kadapa, Andhra Pradesh, India
| |
Collapse
|
18
|
Tetrick MA, Crenshaw TD, Benevenga NJ. Octanoate and nonaoate oxidation increases 50-80% over the first two days of life in piglet triceps brachii and gracilis muscle strips. J Nutr 2012; 142:999-1003. [PMID: 22513984 DOI: 10.3945/jn.111.150797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An in vitro muscle strip incubation system was developed to measure the rate of catabolism of 1 mmol/L [1-(14)C]octanoate, 1 mmol/L [1-(14)C]nonanoate, 1 mmol/L [9-(14)C]nonanoate, and 10 mmol/L [U-(14)C]glucose by measuring the recovery of (14)CO(2). Muscle strips (13 mm × 1.5 mm, ~50 mg) were isolated from triceps brachii and gracilis muscles of newborn and 2-d-old, small (<950 g) and large (>1450 g) piglets. The position of the (14)C label in the substrate affected the rate and amount of recovery in (14)CO(2). Therefore, comparisons were made between age groups (0 vs. 2 d old) within substrates but limited across substrates to comparisons of [1-(14)C]-labeled fatty acids. The medium-chain fatty acid (MCFA) oxidation rates [pmol/(h · mg)] in muscle strips isolated from piglets from the 2 weight groups (<950 and >1450 g) did not differ (P > 0.99), there was a trend towards a difference between triceps brachii and gracilis muscle (P = 0.09; data not shown), and there were no significant interactions involving pig weight or muscle type; therefore, results were pooled across these factors. During the first 2 d of life, MCFA oxidation [pmol/(h • · mg muscle strip)] increased (P < 0.05) 50-80%, but the glucose oxidation rate did not change (P > 0.82). By d 2, the oxidation rate of nonanoate as represented by the one carbon was 25% greater than for octanoate (P < 0.05). The conversion of [9-(14)C]nonanoate to (14)CO(2) indicated that muscle had the capacity to oxidize the propionyl-CoA produced by β-oxidation of nonanoate and that odd-chain C-9 MCFA provided anabolic carbon to the citric acid cycle.
Collapse
Affiliation(s)
- Mark A Tetrick
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
19
|
Inhibition of gene expression of organic cation/carnitine transporter and antioxidant enzymes in oxazaphosphorines-induced acute cardiomyopathic rat models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:452902. [PMID: 22701146 PMCID: PMC3369488 DOI: 10.1155/2012/452902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 02/02/2023]
Abstract
It is well documented that high therapeutic doses of oxazaphosphorines, cyclophosphamide (CP) and ifosfamide (IFO), are associated with cardiomyopathy. This study investigated whether oxazaphosphorines alter the expression of organic cation/carnitine transporter (OCTN2) and antioxidant genes and if so, whether these alterations contribute to CP and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of six treatment groups namely, control, L carnitine, CP, IFO, CP plus L carnitine and IFO plus L carnitine. In cardiac and kidney tissues, CP and IFO significantly decreased mRNA and protein expression of OCTN2. Oxazaphosphorines significantly increased serum acyl-carnitine/free carnitine ratio and urinary carnitine excretion and significantly decreased total carnitine in cardiac tissues. Interestingly, carnitine supplementation completely reversed the biochemical and gene expression changes-induced by oxazaphosphorines to the control values, except OCTN2 expression remained inhibited by IFO. Data from this study suggest that: (1) Oxazaphosphorines decreased myocardial carnitine content following the inhibition of OCTN2 mRNA and protein expression in cardiac tissues. (2) Oxazaphosphorine therapy increased urinary loss of carnitine secondary to the inhibition of OCTN2 mRNA and protein expression in proximal tubules of the kidney. (3) Carnitine supplementation attenuates CP but not IFO-induced inhibition of OCTN2 mRNA and protein expression in heart and kidney tissues.
Collapse
|
20
|
L-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos. Reprod Toxicol 2011; 33:205-12. [PMID: 22027688 DOI: 10.1016/j.reprotox.2011.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 02/07/2023]
Abstract
Ketamine, an antagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, is a pediatric anesthetic. Ketamine has been shown to be neurotoxic and cardiotoxic in mammals. Here, we show that after 2 h of exposure, 5 mM ketamine significantly reduced heart rate in 26 h old zebrafish embryos. In 52 h old embryos, 1 mM ketamine was effective after 2 h and 0.5 mM ketamine at 20 h of exposure. Ketamine also induced significant reductions in activated MAPK (ERK) levels. Treatment of the embryos with the ERK inhibitor, PD 98059, also significantly reduced heart rate whereas the p38/SAPK inhibitor, SB203580, was ineffective. Ketamine is known to inhibit lipolysis and a decrease of ATP content in the heart. Co-treatment with l-carnitine that enhances fatty acid metabolism effectively rescued ketamine-induced attenuated heart rate and ERK activity. These findings demonstrate that l-carnitine counteracts ketamine's negative effects on heart rate and ERK activity in zebrafish embryos.
Collapse
|
21
|
Jiang X, Tian Q, Wang Y, Zhou XW, Xie JZ, Wang JZ, Zhu LQ. Acetyl-L-Carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem 2011; 118:864-78. [DOI: 10.1111/j.1471-4159.2011.07355.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Corso G, D'Apolito O, Garofalo D, Paglia G, Dello Russo A. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:669-79. [PMID: 21683155 DOI: 10.1016/j.bbalip.2011.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022]
Abstract
Free carnitine and acylcarnitines play an important role in the metabolism of fatty acids. Sterols are structural lipids found in the membranes of many eukaryotic cells, and they also have functional roles such as the regulation of membrane permeability and fluidity, activity of membrane-bound enzymes and signals transduction. Abnormal profiles of these compounds in biological fluids may be useful markers of metabolic changes. In this review, we describe the subset of the lipidome represented by acylcarnitines and sterols, and we summarize how these compounds have been analyzed in the past. Over the last 50years, lipid mass spectrometry (MS) has evolved to become one of the most useful techniques for metabolic analysis. Today, the introduction of new ambient ionization techniques coupled to MS (AMS), which are characterized by the direct desorbing/ionizing of molecules from solid samples, is generating new possibilities for in situ analysis. Recently, we developed an AMS approach called APTDCI to desorb/ionize using a heated gas flow and an electrical discharge to directly analyze sterols and indirectly investigate acylcarnitines in dried blood or plasma spot samples. Here, we also describe the APTDCI method and some of its clinical applications, and we underline the common complications and issues that remain to be resolved.
Collapse
Affiliation(s)
- Gaetano Corso
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | |
Collapse
|
23
|
Karsidag T, Asensio JA, Kabukcuoglu F, Tuzun S. Preliminary study comparing the effects of locally and systemically applied L-carnitine on the healing of full-thickness skin defects. Scand J Surg 2010; 99:147-52. [PMID: 21044932 DOI: 10.1177/145749691009900309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS L-carnitine as an endogenous cofactor has a role in the regulation of energy flow between different oxidative sources. The purpose of this study is to investigate that the clinical and histopathologic effects of L-carnitine locally and systemically on secondary healing in wounds of full thickness defects. We also measured the effects of L-carnitine on wound tensile strength as mechanical. MATERIAL AND METHODS sixty adult male Sprague-Dawley rats were divided into three groups randomly; group 1 (control group, n = 20), group 2 (local experimental group, n = 20), group 3 (systemic experimental group, n = 20). Group 1 was not given any pharmacologic agents. L-carnitine was administered locally in the group 2, and systemically in group 3 for a total of 14 days. The healing days of all groups were recorded. On the 7th, 10th,14th and 21st postoperative days, biopsy specimens, including tissue samples both from healing wound sites and sur-rounding healthy skin were evaluated for neovascularization, inflammation, the amount of collagen deposit, fibroblast migration and re-epithelization. Tensile strength was measured in the samples which completed healing on the 30th day. The results were evaluated by nonparametric Kruskall-Wallis test followed by Mann Whitney-U test. RESULTS the mean clinical healing days were 18.25 days, 16.5 days, 15 days for the control group, local experimental and systemic group, respectively. The differences between groups were statistically significant (p < 0.005). Mean tensile strength values were 762.10 centinewton (cN), 801.69 cN and 786.13 cN for the control group, local experimental group and systemic experimental group, respectively. There were no statistically significant differences between groups (p > 0.05). There was no statistically significant difference in the histopathologic ex-amination on the 7th, 10th, 14th and 21st days in the neovascularization, inflammation and fibroblast migration. Collagen deposit was most prevalent in the systemic experimental group and was least in the control group. Complete wound closure rate was observed on the 7th day in the systemic administration group, on the 10th day in local administration group and on the 14th day in the control group. Re-epithelization thickness in the systemic carnitine group was more than the other groups. CONCLUSIONS L-carnitine administered locally or systemically has positive effects on wound healing rate and tensile strength in rats.
Collapse
Affiliation(s)
- T Karsidag
- General Surgery Department, Haseki Education and Research Hospital, Istanbul, Turkey.
| | | | | | | |
Collapse
|
24
|
Sayed-Ahmed MM. Role of carnitine in cancer chemotherapy-induced multiple organ toxicity. Saudi Pharm J 2010; 18:195-206. [PMID: 23960728 PMCID: PMC3730973 DOI: 10.1016/j.jsps.2010.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/29/2010] [Indexed: 01/27/2023] Open
Abstract
In the last few years, cancer chemotherapy has been successfully employed in the treatment of different types of human tumours. Unfortunately, the optimal clinical usefulness of this important treatment modality is usually limited secondary to the development of life-threatening multiple organ toxicity. Cancer chemotherapy may cause these toxic effects by mechanisms not involved in their anticancer activity that can severely affect the life of patients and represent a direct cause of death. Several experimental and clinical studies have demonstrated that some important anticancer drugs interfere with the absorption, synthesis, and excretion of carnitine in non-tumour tissues, resulting in a secondary carnitine deficiency which is reversed by carnitine treatment without affecting anticancer therapeutic efficacy. Prototypes of anticancer drugs that alter carnitine system are doxorubicin, cisplatin, carboplatin, oxaliplatin, cyclophosphamide and ifosfamide. Furthermore, cachectic cancer patients are especially at risk for carnitine deficiency due to decreased oral intake and/or increased renal losses. Altered serum and urine carnitine levels have been reported in cancer patients with various forms of malignant diseases. Recent studies in our laboratory have demonstrated that carnitine deficiency constitute a risk factor and should be viewed as a mechanism during development of oxazaphosphorines-induced cardiotoxicity in rats. Similarly, inhibition of gene expression of heart fatty acid-binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model has been reported. In view of these facts and in view of irreplaceability of these important anticancer drugs, this review aimed to highlight the role of carnitine depletion and supplementation during development of chemotherapy-induced multiple organ toxicity.
Collapse
Affiliation(s)
- Mohamed M. Sayed-Ahmed
- Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Ringseis R, Hanisch N, Seliger G, Eder K. Low availability of carnitine precursors as a possible reason for the diminished plasma carnitine concentrations in pregnant women. BMC Pregnancy Childbirth 2010; 10:17. [PMID: 20416111 PMCID: PMC2871259 DOI: 10.1186/1471-2393-10-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 04/25/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND It has been shown that plasma carnitine concentrations decrease markedly during gestation. A recent study performed with a low number of subjects suggested that this effect could be due to a low iron status which leads to an impairment of carnitine synthesis. The present study aimed to confirm this finding in a greater number of subjects. It was moreover intended to find out whether low carnitine concentrations during pregnancy could be due to a reduced availability of precursors of carnitine synthesis, namely trimethyllysine (TML) and gamma-butyrobetaine (BB). METHODS Blood samples of 79 healthy pregnant women collected at delivery were used for this study. RESULTS There was only a weak, non-significant (P > 0.05), correlation between plasma concentration of ferritin and those of free and total carnitine. There was no correlation between other parameters of iron status (plasma iron concentration, hemoglobin, MCV, MCH) and plasma concentration of free and total carnitine. There were, however, significant (P < 0.05) positive correlations between concentrations of TML and BB and those of free and total carnitine in plasma. CONCLUSIONS The results of this study suggest that an insufficient iron status is not the reason for low plasma carnitine concentrations observed in pregnant women. It is rather indicated that low plasma carnitine concentrations are caused by a low availability of precursors for carnitine synthesis during gestation.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, Germany
| | | | | | | |
Collapse
|
26
|
Activities of γ-butyrobetaine dioxygenase and concentrations of carnitine in tissues of pigs. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:324-31. [DOI: 10.1016/j.cbpa.2009.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/07/2009] [Accepted: 03/08/2009] [Indexed: 11/19/2022]
|
27
|
Abstract
In recent years, l-carnitine has been used increasingly as a supplement in livestock animals. The present review gives an overview of the effects of dietary l-carnitine supplementation on the reproductive performance of sows. Results concerning the effect of l-carnitine supplementation during pregnancy on litter sizes are controversial. There are some studies reporting an increased number of piglets born alive per litter, while others could not find such an effect. In contrast, most studies performed show consistently that l-carnitine supplementation to a sow diet low in native carnitine during gestation increases piglet and litter weights at birth and enhances growth of litters during the suckling period. Biochemical mechanisms underlying the favourable effect of carnitine on intra-uterine growth have not been fully elucidated. There is, however, some evidence that carnitine influences the insulin-like growth factor-axis in sows and leads to greater placentae, which in turn improves intra-uterine nutrition, and stimulates oxidation of glucose in the fetuses. These effects may, at least in part, be responsible for higher birth weights of piglets. The stimulating effect of carnitine on growth of the litters might be due to an improved suckling behaviour of piglets born to l-carnitine-supplemented sows, causing the sows' milk production to rise. In conclusion, recent studies have clearly shown that dietary l-carnitine supplementation increases the reproductive performance of sows. These findings suggest that endogenous de novo synthesis of carnitine is insufficient to meet the metabolic requirement of sows during gestation.
Collapse
|
28
|
Keller U, van der Wal C, Seliger G, Scheler C, Röpke F, Eder K. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur J Clin Nutr 2009; 63:1098-105. [DOI: 10.1038/ejcn.2009.36] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Malakauskas SM, Kourany WM, Zhang XY, Lu D, Stevens RD, Koves TR, Hohmeier HE, Muoio DM, Newgard CB, Le TH. Increased insulin sensitivity in mice lacking collectrin, a downstream target of HNF-1alpha. Mol Endocrinol 2009; 23:881-92. [PMID: 19246514 PMCID: PMC2691681 DOI: 10.1210/me.2008-0274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/19/2009] [Indexed: 01/05/2023] Open
Abstract
Collectrin is a downstream target of the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha), which is mutated in maturity-onset diabetes of the young subtype 3 (MODY3). Evidence from transgenic mouse models with collectrin overexpression in pancreatic islets suggests divergent roles for collectrin in influencing beta-cell mass and insulin exocytosis. To clarify the function of collectrin in the pancreas, we used a mouse line with targeted deletion of the gene. We examined pancreas morphology, glucose homeostasis by ip glucose tolerance testing (IPGTT) and insulin tolerance testing (IPITT), and pancreas function by in vivo acute-phase insulin response determination and glucose-stimulated insulin secretion from isolated islets. We find no difference in either pancreas morphology or function between wild-type and collectrin-deficient animals (Tmem27(-/y)). However, we note that by 6 months of age, Tmem27(-/y) mice exhibit increased insulin sensitivity by IPITT and decreased adiposity by dual-energy x-ray absorptiometry scanning compared with wild-type. We have previously reported that Tmem27(-/y) mice exhibit profound aminoaciduria due to failed renal recovery. We now demonstrate that Tmem27(-/y) animals also display inappropriate excretion of some short-chain acylcarnitines derived from amino acid and fatty acid oxidation. We provide further evidence for compensatory up-regulation of oxidative metabolism in Tmem27(-/y) mice, along with enhanced protein turnover associated with preserved lean mass even out to 1.5 yr of age. Our studies suggest that collectrin-deficient mice activate a number of adaptive mechanisms to defend energy homeostasis in the setting of ongoing nutrient losses.
Collapse
|
30
|
Wang C, Slikker W. Strategies and Experimental Models for Evaluating Anesthetics: Effects on the Developing Nervous System. Anesth Analg 2008; 106:1643-58. [DOI: 10.1213/ane.ob013e3181732c01] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Zou X, Sadovova N, Patterson T, Divine R, Hotchkiss C, Ali S, Hanig J, Paule M, Slikker W, Wang C. The effects of l-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 2008; 151:1053-65. [DOI: 10.1016/j.neuroscience.2007.12.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 12/05/2007] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
|
32
|
Schulpis KH, Papakonstantinou ED, Vlachos GD, Vlachos DG, Antsaklis A, Papassotiriou I, Tsakiris S. The effect of the mode of delivery on the maternal-neonatal carnitine blood levels and antioxidant status. Clin Chem Lab Med 2008; 46:680-6. [DOI: 10.1515/cclm.2008.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Sharma S, Sud N, Wiseman DA, Carter AL, Kumar S, Hou Y, Rau T, Wilham J, Harmon C, Oishi P, Fineman JR, Black SM. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 294:L46-56. [PMID: 18024721 DOI: 10.1152/ajplung.00247.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow.
Collapse
Affiliation(s)
- Shruti Sharma
- Program in Pulmonary Disease, Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahn EM, Cho SC, Lee M, Cha YS. Serum carnitine, triglyceride and cholesterol profiles in Korean neonates. Br J Nutr 2007; 98:373-9. [PMID: 17403272 DOI: 10.1017/s0007114507708814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated carnitine and lipid status of fifty Korean newborns. Each subject was assigned to two groups: one according to body weight at birth and the other according to gestational age. Serum total, HDL- and LDL-cholesterol were significantly lower and triacylglycerols were significantly higher, by 14 %, in the low birth weight infant (LBWI, 1310–2490 g) group compared with the normal birth weight infant (NBWI, 2570–4420 g) group. Neither birth weight nor gestational age affected serum total carnitine concentrations. However, serum ASAC (acid-soluble acylcarnitine) concentrations were 43 % higher (P < 0·001) in the LBWI group compared with the NBWI group, and approximately twice as high (P < 0·05) in the 28–32 gestational age group compared with the other gestational age groups. NEC (non-esterified acyl carnitine) fractions were significantly higher in the NBWI and 28–32 week groups (P < 0·001 andP < 0·05); consequently serum acyl/NEC carnitine ratios were four times higher in the LBWI group compared with the NBWI group and 2–3 times higher in the 25–32 week age group compared with the more advanced gestational age groups. Urinary carnitine excretion, including the NEC fraction and total carnitine, was significantly higher (P < 0·001) for LBWI than for NBWI. By gestational age, NEC excretion of the 28–32 week group was significantly (P < 0·05) higher than that of the other two groups, but total carnitine excretion was not different among the groups. This study demonstrated that Korean immature and preterm newborns have higher serum triacylglycerol concentrations but lower carnitine status than NBWI. Therefore, the lower carnitine status and moderately higher triacylglycerols may suggest that LBWI in Korea might be at risk for poor carnitine status and decreased capacity to utilise fatty acids for energy.
Collapse
Affiliation(s)
- Eun-Mi Ahn
- Department of Food Science and Human Nutrition and Research Institute of Human Ecology, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Korea
| | | | | | | |
Collapse
|
35
|
Rogalidou ME, Stiakaki E, Evangeliou A, Kalmanti M. Childhood malignant diseases: which is the carnitine's role? J Pediatr Hematol Oncol 2007; 29:291-2. [PMID: 17483703 DOI: 10.1097/mph.0b013e318055644b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Maria E Rogalidou
- Paediatrics Department, University Hospital of Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
36
|
Wang C, Sadovova N, Ali HK, Duhart HM, Fu X, Zou X, Patterson TA, Binienda ZK, Virmani A, Paule MG, Slikker W, Ali SF. L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture. Neuroscience 2006; 144:46-55. [PMID: 17084538 DOI: 10.1016/j.neuroscience.2006.08.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/29/2006] [Indexed: 11/23/2022]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with an elevation of intracellular reactive oxygen species (ROS) and apoptosis. L-carnitine plays an integral role in attenuating the brain injury associated with mitochondrial neurodegenerative disorders. The present study investigates the effects of L-carnitine against the toxicity of MPP+ in rat forebrain primary cultures. Cells in culture were treated for 24 h with 100, 250, 500 and 1000 microM MPP+ alone or co-incubated with L-carnitine. MPP+ produced a dose-related increase in DNA fragmentation as measured by cell death ELISA (enzyme-linked immunosorbent assay), an increase in the number of TUNEL (terminal dUTP nick-end labeling)-positive cells and a reduction in the mitochondrial metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). No significant effect was observed with the release of lactate dehydrogenase (LDH), indicating that cell death presumably occurred via apoptotic mechanisms. Co-incubation of MPP+ with L-carnitine significantly reduced MPP+-induced apoptosis. Western blot analyses showed that neurotoxic concentrations of MPP+ decreased the ratio of BCL-X(L) to Bax and decreased the protein levels of polysialic acid neural cell adhesion molecules (PSA-NCAM), a neuron specific marker. L-carnitine blocked these effects of MPP+ suggesting its potential therapeutic utility in degenerative disorders such as Parkinson's disease, Alzheimer's disease, ornithine transcarbamylase deficiency and other mitochondrial diseases.
Collapse
Affiliation(s)
- C Wang
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang JY, Nam JH, Park H, Cha YS. Effects of resistance exercise and growth hormone administration at low doses on lipid metabolism in middle-aged female rats. Eur J Pharmacol 2006; 539:99-107. [PMID: 16687135 DOI: 10.1016/j.ejphar.2006.03.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/24/2006] [Accepted: 03/27/2006] [Indexed: 11/21/2022]
Abstract
hGH (human growth hormone) is a key factor for metabolism as well as for growth. Lack of hGH usually increases LDL (low-density lipoprotein) while impairing exercise capacity and cardiac function [Amato G., Carella C., Fazio S., La Montagna G., Cittadini A., Sabatini D., Marciano-Mone C., Sacca L., and Bellastella A., 1993. Body composition, bone metabolism, and heart structure and function in growth hormone (GH)-deficient adults before and after GH replacement therapy at low doses. J. Clin. Endocrinol. Metab. 77, 1671-1676.]. It is still unclear, however, whether the administration of hGH to humans or animals has a synergic effects on body composition and the desired metabolic parameters with endurance resistance exercise. Therefore, the present study seeks to establish whether or not lipid metabolism is altered by both recombinant GH (growth hormone) and X (resistance exercise) in middle-aged female rats. GH administration resulted in greater weight gain compared with control and exercised animals, but the effect was reduced when combined with exercise. The increased body weight was largely due to increased muscle mass. Exercise did not result in any additional effect of GH on muscle mass. In the exercise group, hepatic HDL (high density lipoprotein) increased compared to the C (control group). The GX (growth hormone+exercise) group's serum and X group's kidney IGF-I (Insulin-like growth factor-I) concentration increased compared to the C group. In G and GX groups, serum insulin and leptin concentrations were higher than in the control, suggesting that GH may induce an insulin resistant state. Any gains in muscle mass were minimal and were not synergistic with exercise. These results suggest that hGH may not be useful for increasing performance in athletes and may induce and acquired insulin resistance.
Collapse
Affiliation(s)
- Ji-Yeoun Yang
- Department of Food Science & Human Nutrition, and Research Center of Bioactive Materials, Chonbuk National University, 664-14 Duckjin-dong 1-ga, Jeonju, Jeonbuk, 561-756, South Korea
| | | | | | | |
Collapse
|
38
|
Wainwright MS, Kohli R, Whitington PF, Chace DH. Carnitine Treatment Inhibits Increases in Cerebral Carnitine Esters and Glutamate Detected by Mass Spectrometry After Hypoxia-Ischemia in Newborn Rats. Stroke 2006; 37:524-30. [PMID: 16385097 DOI: 10.1161/01.str.0000198892.15269.f7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral ischemic insults disrupt normal respiratory activity in mitochondria. Carnitine plays an essential role in mitochondrial metabolism and in modulating excess acyl-coenzyme A (acyl-CoA) levels. The effects of cerebral ischemia on carnitine metabolism are not well understood, although the newborn may be particularly vulnerable to carnitine deficiency. We used a newborn rat model of hypoxia-ischemia (HI) to test the hypothesis that HI alters acyl-CoA:CoA homeostasis and that this effect can be prevented by treatment with carnitine. METHODS A total of 120 postnatal day 7 rats were subjected to 70 minutes of HI after treatment with 16 mmol/kg intraperitoneal l-carnitine or diluent. Carnitine, acylcarnitines, and excitatory amino acids were measured by mass spectrometry, and carnitine acetyl transferase activity, superoxide, and levels of the mitochondrial phospholipid cardiolipin (CL) were measured at 2- and 24-hour recovery. RESULTS HI and hypoxia were associated with a significant increase in the ratio of acyl-CoA:CoA, which was prevented by treatment with carnitine. Carnitine treatment also prevented increases in glutamate, glycine, superoxide, and decrease of CL. CONCLUSIONS Carnitine metabolic pathways are compromised in HI and hypoxia. The protective effect of carnitine treatment on HI injury may be attributable to maintaining mitochondrial function.
Collapse
Affiliation(s)
- Mark S Wainwright
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
39
|
Schreiber BD. Debate Forum: Levocarnitine Therapy Is Rational and Justified in Selected Dialysis Patients. Blood Purif 2005; 24:128-39. [PMID: 16361853 DOI: 10.1159/000089449] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carnitine is a metabolic cofactor which is essential for normal fatty acid metabolism. Patients with chronic kidney disease on dialysis have been shown both to suffer from disordered fatty acid metabolism and to have a significant deficiency in plasma and tissue carnitine. Aberrant fatty acid metabolism has been associated with a number of cellular abnormalities such as increased mitochondrial permeability (a promoter of apoptosis), insulin resistance, and enhanced generation of free radicals. These cellular abnormalities have, in turn, been correlated with pathological clinical conditions common in dialysis patients including cardiomyopathy with attendant hypotension and resistance to the therapeutic effect of recombinant human erythropoietin (EPO). In 1999, the Food and Drug Administration approved levocarnitine injection for the prevention and treatment of carnitine deficiency in patients on dialysis based on documentation of free plasma carnitine levels in dialysis patients similar to other serious carnitine deficiency states for which treatment was required. Data analysis performed by expert panels convened by both the American Association of Kidney Patients and, subsequently, the National Kidney Foundation recommended a trial of levocarnitine therapy for specific subsets of dialysis patients including those with EPO resistance, dialysis-related hypotension, cardiomyopathy and muscle weakness. In 2003, the Centers for Medicare and Medicaid services convened a Medical Advisory Committee which established reimbursement on a national level for carnitine-deficient dialysis patients who had either dialysis-related hypotension or EPO resistance. Recently, a correlation between reductions in hospitalization rates of dialysis patients receiving levocarnitine therapy has been demonstrated in a large retrospective study. Despite data-based recommendations and national reimbursement, only a small minority of dialysis patients have been prescribed a therapeutic trial of levocarnitine. Whereas the reasons for the reluctance of nephrologists to prescribe this therapeutic trial are unclear, possible explanations include a lack of appreciation of the pivotal role played by carnitine in cellular metabolism and the strength of evidence for a substantial deficiency of carnitine in dialysis patients, an underestimation of the prognostic import of EPO resistance and dialysis-related hypotension, inadequate dissemination of the clinical trial data supporting the use of levocarnitine in dialysis patients, and the heterogeneous clinical response of dialysis patients to levocarnitine therapy. Difficulties in documenting both initial eligibility and evidence of improvement as a result of therapy may also be a contributing factor. This paper discusses the biological role of carnitine and its particular relevance to dialysis patients. Clinical trial data concerning an effect of therapy on EPO resistance and dialysis-related hypotension are summarized along with a discussion of the logic behind the use of levocarnitine in dialysis. Finally, the difficulties posed by a reimbursement policy based on clinical as opposed to laboratory endpoints and a heterogeneous response to therapy are addressed.
Collapse
Affiliation(s)
- Brian D Schreiber
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 54956, USA.
| |
Collapse
|
40
|
Dionyssopoulou E, Vassiliadis S, Evangeliou A, Koumantakis EE, Athanassakis I. Constitutive or induced elevated levels of l-carnitine correlate with the cytokine and cellular profile of endometriosis. J Reprod Immunol 2005; 65:159-70. [PMID: 15811520 DOI: 10.1016/j.jri.2004.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 08/09/2004] [Accepted: 12/14/2004] [Indexed: 11/16/2022]
Abstract
During the past decade, accumulated evidence indicates an association between endometriosis and an alteration of humoral and cell-mediated immunity. While the role of L-carnitine in the regulation of energy metabolism is well established, it is only recently that L-carnitine has been recognized to modify the immune response in mice after in vitro or in vivo treatment. The present study has examined whether administration of L-carnitine to young female mice alters the percentage of immune cells in peritoneal exudates and the uterus as well as the levels of IFN-gamma, TNF-alpha, IL-2, IL-4, IL-6, VEGF, GM-CSF and IGF-I in blood serum, peritoneal fluid and supernatants of uterine cultured cells as tested by immunofluorescence or ELISA techniques, respectively, leading to a pathological disorder resembling human endometriosis. The results showed that, except from infertility, L-carnitine treatment resulted in a significant increase of macrophages and to a lesser degree an increase of T-cells, while elevated levels of IFN-gamma and TNF-alpha were detected in both serum and peritoneal fluid compared to controls. Although levels of L-carnitine measured in mouse serum samples using a radioisotopic method showed an increase as compared to controls, levels of acyl-L-carnitine measured in the murine peritoneal fluid samples showed a decrease similar to that measured in peritoneal fluid samples from patients with endometriosis in stage IV of the disease. These results indicate that L-carnitine administration to female mice alters the cellular and growth factor profile in the uterus and peritoneum towards a phenotypical pathology similar to that of clinical endometriosis.
Collapse
Affiliation(s)
- E Dionyssopoulou
- Department of Biology, University of Crete, P.O. Box 2208, Heraklion 714-09, Crete, Greece
| | | | | | | | | |
Collapse
|
41
|
Mamoulakis D, Galanakis E, Dionyssopoulou E, Evangeliou A, Sbyrakis S. Carnitine deficiency in children and adolescents with type 1 diabetes. J Diabetes Complications 2004; 18:271-4. [PMID: 15337500 DOI: 10.1016/s1056-8727(03)00091-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 07/28/2003] [Accepted: 09/19/2003] [Indexed: 10/26/2022]
Abstract
Carnitine is essential for the lipid and carbohydrate metabolism, and proper metabolic control in type 1 diabetes has potential impact on long-term complications. The plasma total, free, and acylcarnitine levels in 47 children and adolescents with type 1 diabetes were determined by a radioisotopic assay and compared to the values of a series of anthropometric measurements and metabolic parameters, including blood glycosylated hemoglobin Alc, serum cholesterol and triglycerides, and urine microalbumin levels. Plasma values for total, free, and acylcarnitine were 30.1+/-7.26, 20.0+/-4.50, and 10.2+/-6.47 micromol/l, respectively. Acyl/free carnitine ratio was 0.544+/-0.369. Individuals with type 1 diabetes had significantly lower total and free carnitine levels and significantly higher acyl/free carnitine ratios than controls (P<.001). Plasma total and free carnitine levels were inversely correlated to the duration of diabetes (P=.036 and P=.071, respectively). No statistical relationship was documented between carnitine levels and the remaining anthropometric and metabolic variables. In conclusion, total and free carnitine levels are decreased in children and adolescents with type 1 diabetes. This reduction is time related and may have potential interactions with the long-term complications of type 1 diabetes. Larger studies are required for final conclusions to be drawn on the precise role of carnitine and the possible benefit, if any, of carnitine supplementation in diabetic patients.
Collapse
Affiliation(s)
- Dimitrios Mamoulakis
- Department of Paediatrics, University of Crete, P.O. Box 1393, Heraklion 71500, Greece
| | | | | | | | | |
Collapse
|
42
|
Athanassakis I, Dionyssopoulou E, Papanikou S, Evangeliou A, Vassiliadis S. Early events of the exogenously provided L-Carnitine in murine macrophages, T- and B-lymphocytes: modulation of prostaglandin E1 and E2 production in response to arachidonic acid. J Nutr Biochem 2003; 14:350-7. [PMID: 12873717 DOI: 10.1016/s0955-2863(03)00058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L-carnitine is an essential energy-providing compound to the cell since it transports long chain fatty acids through the mitochondrial membrane and delivers them to the beta-oxidation pathway for catabolism and/or entrance to biosynthetic pathways. Some of the early events taking place in immune cells after L-carnitine inoculation in vitro are defined in this report. Using arachidonic acid as a fatty acid source, we determined the utilization rate of L-carnitine by murine T-, B-lymphocytes and macrophages within two hours of cell culture, its effect on prostaglandin E1 and E2 production and the levels of beta-hydroxy-butyrate. The results show that although all immune cells consume a small portion of L-carnitine, beta-hydroxy-butyrate decreases upon addition of arachidonic acid and/or L-carnitine indicating that active biosynthetic pathways are induced. L-carnitine is shown to increase the arachidonic acid-induced production of prostaglandins E1 and E2 in macrophages, while their secretion from T- and B-lymphocytes is decreased. These findings indicate the L-carnitine may very rapidly alter the activation state of immune cells and lead to the development of various reactions, beneficial or not to the organism.
Collapse
|
43
|
Chace DH, Pons R, Chiriboga CA, McMahon DJ, Tein I, Naylor EW, De Vivo DC. Neonatal blood carnitine concentrations: normative data by electrospray tandem mass spectometry. Pediatr Res 2003; 53:823-9. [PMID: 12612202 DOI: 10.1203/01.pdr.0000059220.39578.3d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite a number of published reports, there is limited information about carnitine metabolism in the newborn. To establish normative data, we analyzed whole-blood carnitine concentrations in 24,644 newborns at age 1.85 +/- 0.95 d and umbilical cord whole blood and plasma carnitine concentrations in 50 full-term newborns. Total carnitine (TC), free carnitine (FC), and acylcarnitine (AC) were measured by electrospray tandem mass spectrometry. AC/FC ratios were derived from these measurements. The entire cohort was stratified according to TC values into a middle TC group representing 90% of the population and lower and upper TC groups representing 5% of the population, respectively. Normative data were derived from the middle TC group of full-term infants (N = 19,595). TC was 72.42 +/- 20.75 microM, FC was 44.94 +/- 14.99 microM, AC was 27.48 +/- 8.05 microM, and AC/FC ratio was 0.64 +/- 0.19 (+/-SD). These values differed significantly from umbilical cord whole blood TC values of 31.27 +/- 10.54 microM determined in 50 samples. No meaningful correlation was found between TC and gestational age or birth weight in any group. In controlled analyses, prematurity was not associated with TC levels, whereas low birth weight (<2500 g) and male sex were significantly associated with higher TC levels. The association of low birth weight with higher TC values may be related to decreased tissue carnitine uptake. The sex effect may be related to hormonal influences on carnitine metabolism. Our study provides normative data of carnitine values measured by the highly precise method of electrospray tandem mass spectrometry in a large cohort of newborns and provides the basis for future studies of carnitine metabolism in health and disease states during the neonatal period.
Collapse
Affiliation(s)
- Donald H Chace
- Neo Gen Screening, Division of BioAnalytical Chemistry and Mass Spectrometry, Bridgeville, PA 15017, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Athanassakis I, Zarifi I, Evangeliou A, Vassiliadis S. L-carnitine accelerates the in vitro regeneration of neural network from adult murine brain cells. Brain Res 2002; 932:70-8. [PMID: 11911863 DOI: 10.1016/s0006-8993(02)02283-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development, growth and regeneration of nerve cells remain an unresolved issue. The up-to-date reported brain repair mechanisms are numerous and evidence suggests that, apart from the required trophism, tropism, microenvironment and specificity of the brain, a plethora of chemical, physiological and immunological compounds can contribute to such events. Among these compounds, we concentrated our interest on L-carnitine (L-Cn), which regulates the beta-oxidation of long chain fatty acids necessary for brain development, myelinization and growth. In contrast to fetal brain cells that grow easily in culture, adult brain cells show limited neurogenesis. Here, using adult brain cells from experimental mice, we show that although L-Cn does not improve their proliferative activity in short-term cultures, it accelerates the growth and differentiation of neurons, astrocytes, oligodendrocytes and ependymal cells from neurospheres in long-term cultures. Thus, the formation of a confluent neural network requires a 2-month period in culture. These observations provide new insights for in vivo use of L-Cn to support brain cell development in cases of injury or brain degenerative diseases.
Collapse
Affiliation(s)
- I Athanassakis
- Department of Biology, University of Crete, P.O. Box 2208, 714-09 Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
45
|
Bayés R, Campoy C, Goicoechea A, Peinado JM, Pedrosa T, Baena RM, López C, Rivero M, Molina-Font JA. Role of intrapartum hypoxia in carnitine nutritional status during the early neonatal period. Early Hum Dev 2001; 65 Suppl:S103-10. [PMID: 11755041 DOI: 10.1016/s0378-3782(01)00212-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We analyze markers of carnitine insufficiency and deficiency, lysine (LYS) and methionine (MET), in 39 neonates with intrapartum hypoxia (selection criteria: umbilical artery pH <7.20, lactate >1.8 mmol/l and PaO2 <25 mm Hg), and in 35 healthy newborn infants (control group) in the early neonatal period (1-7 days of life). Free (FC), total (TC) carnitine and acylcarnitines (AC=short-chain+long-chain acylcarnitines) were measured using a radioisotopic micromethod; LYS and MET were determined by high-pressure liquid chromatography. AC and TC plasma concentrations and AC/FC ratio were higher while FC/TC ratio was lower in the hypoxic neonates than in the control group. Hypoxic newborn infants (59%) presented "carnitine deficiency" (FC/TC <0.7) and 60% of them "carnitine insufficiency" (AC/FC ratio >0.4) vs. 31% and 28%, respectively, for the neonates of the control group (p<0.05). In the healthy neonates group, MET correlated with FC/TC and the AC/FC ratio. FC, TC, AC, AC/FC and umbilical artery pH (pHua) were inversely correlated. FC/TC and MET correlated with pHua. We conclude that: (1) an important percentage of newborn infants with intrapartum hypoxia suffer carnitine deficiency and carnitine insufficiency in the early neonatal period, related to MET plasma levels; (2) the carnitine deficiency or insufficiency in the neonate is determined by the degree of intrapartum acidosis.
Collapse
Affiliation(s)
- R Bayés
- Department of Paediatrics, School of Medicine, University of Granada, Avda. de Madrid, 11, 18012, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Campoy C, Bayés R, Peinado JM, Rivero M, López C, Molina-Font JA. Evaluation of carnitine nutritional status in full-term newborn infants. Early Hum Dev 1998; 53 Suppl:S149-64. [PMID: 10102662 DOI: 10.1016/s0378-3782(98)00072-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carnitine supplements may be advisable not only in premature but also in artificially-fed full-term babies. The acyl-carnitine/free carnitine (AC/FC) and FC/total carnitine (FC/TC) ratios have been considered markers of "carnitine insufficiency" and "carnitine deficiency", respectively. Values of AC/FC>0.40 are considered abnormal and mean that FC has a low bioavailability to the cells and so reflects a "carnitine insufficiency". Values of FC/TC<0.7 indicate "carnitine deficiency". We analyze the validity of such ratios and the limits for them in three groups of full-term neonates (n=66): 22 breast-fed (BF), 22 with formula (F); and 22 fed with carnitine-supplemented formula. Several studies have shown the need to give supplements of carnitine to the neonate because of its "essentiality", but no one has demonstrated the adequate dosages. We therefore propose to establish new limit levels for these ratios to control carnitine nutritional status in neonates, based on the control of percentile ranges for normal BF infants (in this study: 97th percentile of AC/FC>0.83; 3rd percentile of FC/TC<0.54) and on evaluating the needs of neonates and dosages required to supplement F. The supplement of 2.2 mg of L-carnitine/100 ml in the cow's milk formula used in the present study produces a similar biochemical pattern of plasma carnitine and ACs to that observed in BF infants, together with a lower risk of developing "carnitine deficiency" or "carnitine insufficiency" than those babies fed with nonenriched F. Considering that human milk is the best source of nutrition for full-term infants, the limit established for AC/FC and FC/TC ratios at other ages of life seems to be "inadequate" for neonates.
Collapse
Affiliation(s)
- C Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Alhomida AS. Investigation of the effect of theophylline administration on total, free, short-chain acyl and long-chain acyl carnitine distributions in rat renal tissues. Cell Biochem Funct 1998; 16:165-71. [PMID: 9747508 DOI: 10.1002/(sici)1099-0844(199809)16:3<165::aid-cbf782>3.0.co;2-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study is conducted to investigate the effect of oral theophylline administration on total (TC), free (FC), short-(SC), long-chain acyl (LC), acyl (AC) carnitine distributions as well as the ratio of acyl to free carnitine (AC/FC) in rat renal tissues. Theophylline was administrated at 100 mg kg-1 body weight day-1, and effects were monitored after a treatment period that lasted between 1 week and 5 weeks. The results indicated that theophylline administration leads to significantly higher concentrations of TC, FC, SC, L and AC in renal tissues as compared to those of control and placebo groups (P < 0.001). Moreover, the ratio of AC/FC was significantly increased (P < 0.001) as compared to either control or placebo groups. These changes may result from theophylline-enhanced mobilization of lipids from adipose tissues, which consequently stimulates an increased carnitine transport into the renal tissues to form acylcarnitines for subsequent beta-oxidation inside the renal mitochondria.
Collapse
Affiliation(s)
- A S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
48
|
Costa CG, Dorland L, de Almeida IT, Jakobs C, Duran M, Poll-The BT. The effect of fasting, long-chain triglyceride load and carnitine load on plasma long-chain acylcarnitine levels in mitochondrial very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1998; 21:391-9. [PMID: 9700596 DOI: 10.1023/a:1005354624735] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied a 10-year-old patient with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency who was originally (mis)diagnosed as having systemic carnitine deficiency. He was subjected to a fasting test, a long-chain triglyceride (LCT) loading test (1.5 g/kg) and an intravenous carnitine clearance test (0.25 mumol/kg per min). Plasma acylcarnitines were analysed using a quantitative GC-CI-MS method. During fasting, all long-chain acylcarnitines with a chain length of C14 and higher (especially C14:1) increased dramatically. Total plasma long-chain acylcarnitine reached a concentration of 28.6 mumol/L. LCT loading resulted in a moderate increase, mainly of the C18 esters. The carnitine infusion, which led to a supranormal plasma free carnitine concentration, gave only a slight but generalized rise of long-chain acylcarnitines. Although only one patient could be tested, the results suggest that the accumulation of potentially toxic long-chain acylcarnitines in VLCAD deficiency is provoked by fasting, LCT loading and carnitine supplementation. Therapy should be adjusted accordingly.
Collapse
Affiliation(s)
- C G Costa
- Free University Hospital, Department of Clinical Chemistry, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Alhomida AS. Investigations of the effects of theophylline administration on carnitine acetyltransferase activity of rat heart. JOURNAL OF ENZYME INHIBITION 1997; 12:291-302. [PMID: 9502050 DOI: 10.3109/14756369709035821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of oral theophylline administration (100 mg/kg b.w./day) on the activity of carnitine acetyltransferase (CAT) of rat heart for five-week interval treatment were studied. The result indicated that the body weights of placebo groups were not significantly changed as compared to control groups (P < 0.1), but theophylline treatment caused a significant decrease in the body weights of rat (P < 0.01) as compared to either control or placebo groups throughout the five-week interval treatments. Daily administration of theophylline to rats did not significantly affect heart weights as compared to either control or placebo groups (P < 0.1) for the five week-interval treatments. Our data indicated that the activity of CAT was not significantly changed in placebo groups as compared to control groups (P < 0.1), however, there was a significant increase in the activity of CAT in heart of theophylline-treated groups (P < 0.01) as compared to either control or placebo groups. The increase in the activity of CAT was noticed in the first three weeks of theophylline treatments followed by a gradual return toward normal activity by the fourth and fifth weeks of continued treatment. The observed changes in activity of CAT of heart might be due to theophylline-enhanced mobilization of lipid from adipose tissues which consequently stimulated increased L-carnitine transport into the heart tissues to form fatty acyl-carnitine groups for subsequent beta-oxidation inside the heart mitochondria. Accumulations of acyl-carnitine groups in heart mitochondria may increase the catalytic action of CAT and possible mechanisms are discussed.
Collapse
Affiliation(s)
- A S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
50
|
Alhomida AS. Study of the effects of theophylline-related changes in total, free, short- chain acyl and long-chain acyl carnitine concentrations in rat heart. Toxicology 1997; 121:205-13. [PMID: 9231698 DOI: 10.1016/s0300-483x(97)00067-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study is conducted to investigate the effect of oral theophylline administration on total (TC), free (FC), short-(SC), long-chain acyl (LC), acyl (AC) carnitine concentrations and acyl to free carnitine (AC/FC) ratio in rat heart. Theophylline was administrated at 100 mg/kg wt/day, and effects were monitored after a treatment period that lasted between a week and five weeks. The results indicated that theophylline feeding leads to significantly higher concentrations of TC, FC, SC, LC and AC in heart tissue as compared to those of control and placebo groups (P < 0.001). Moreover, the ratio of AC/FC was significantly increased (P < 0.001) as compared to either control or placebo groups. These changes may result from theophylline-enhanced mobilization of lipids from adipose tissues, which consequently stimulates an increased carnitine transport into the heart tissues to form fatty acylcarnitines for subsequent beta-oxidation inside the heart mitochondria.
Collapse
Affiliation(s)
- A S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|