1
|
Bohnert S, Reinert C, Trella S, Cattaneo A, Preiß U, Bohnert M, Zwirner J, Büttner A, Schmitz W, Ondruschka B. Neuroforensomics: metabolites as valuable biomarkers in cerebrospinal fluid of lethal traumatic brain injuries. Sci Rep 2024; 14:13651. [PMID: 38871842 DOI: 10.1038/s41598-024-64312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a ubiquitous, common sequela of accidents with an annual prevalence of several million cases worldwide. In forensic pathology, structural proteins of the cellular compartments of the CNS in serum and cerebrospinal fluid (CSF) have been predominantly used so far as markers of an acute trauma reaction for the biochemical assessment of neuropathological changes after TBI. The analysis of endogenous metabolites offers an innovative approach that has not yet been considered widely in the assessment of causes and circumstances of death, for example after TBI. The present study, therefore, addresses the question whether the detection of metabolites by liquid-chromatography-mass spectrometry (LC/MS) analysis in post mortem CSF is suitable to identify TBI and to distinguish it from acute cardiovascular control fatalities (CVF). Metabolite analysis of 60 CSF samples collected during autopsies was performed using high resolution (HR)-LC/MS. Subsequent statistical and graphical evaluation as well as the calculation of a TBI/CVF quotient yielded promising results: numerous metabolites were identified that showed significant concentration differences in the post mortem CSF for lethal acute TBI (survival times up to 90 min) compared to CVF. For the first time, this forensic study provides an evaluation of a new generation of biomarkers for diagnosing TBI in the differentiation to other causes of death, here CVF, as surrogate markers for the post mortem assessment of complex neuropathological processes in the CNS ("neuroforensomics").
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Christoph Reinert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Stefanie Trella
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Andrea Cattaneo
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Preiß
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Werner Schmitz
- Institute of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Dennis KMJH, Heather LC. Post-translational palmitoylation of metabolic proteins. Front Physiol 2023; 14:1122895. [PMID: 36909239 PMCID: PMC9998952 DOI: 10.3389/fphys.2023.1122895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cellular proteins are post-translationally modified by addition of a lipid group to their structure, which dynamically influences the proteome by increasing hydrophobicity of proteins often impacting protein conformation, localization, stability, and binding affinity. These lipid modifications include myristoylation and palmitoylation. Palmitoylation involves a 16-carbon saturated fatty acyl chain being covalently linked to a cysteine thiol through a thioester bond. Palmitoylation is unique within this group of modifications, as the addition of the palmitoyl group is reversible and enzyme driven, rapidly affecting protein targeting, stability and subcellular trafficking. The palmitoylation reaction is catalyzed by a large family of Asp-His-His-Cys (DHHCs) motif-containing palmitoyl acyltransferases, while the reverse reaction is catalyzed by acyl-protein thioesterases (APTs), that remove the acyl chain. Palmitoyl-CoA serves an important dual purpose as it is not only a key metabolite fueling energy metabolism, but is also a substrate for this PTM. In this review, we discuss protein palmitoylation in regulating substrate metabolism, focusing on membrane transport proteins and kinases that participate in substrate uptake into the cell. We then explore the palmitoylation of mitochondrial proteins and the palmitoylation regulatory enzymes, a less explored field for potential lipid metabolic regulation.
Collapse
Affiliation(s)
- Kaitlyn M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Cannabidiol Downregulates Myocardial De Novo Ceramide Synthesis Pathway in a Rat Model of High-Fat Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms23042232. [PMID: 35216351 PMCID: PMC8880314 DOI: 10.3390/ijms23042232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
It is known that metabolic disturbances, including obesity, predispose to an increased incidence of cardiovascular diseases. Elevated consumption of dietary fat results in intramyocardial accumulation of lipids and their biologically active derivatives, which can disrupt the contractile function of the heart, its metabolism, and intracellular signaling pathways. Therefore, alternative methods, such as phytocannabinoids, are being sought for the treatment of obesity-related effects. In a model of rodent obesity (seven weeks of high-fat-diet (HFD) regime), we used cannabidiol—CBD therapy (intraperitoneal injections for 14 days; 10 mg/kg). High-performance and gas-liquid chromatographies were applied in order to determine sphingolipids in the heart and plasma as well as Western blotting for protein expression. Two-week CBD administration significantly inhibited the de novo ceramide synthesis pathway in the heart of HFD fed rats by lowering sphinganine and sphinganine-1-phosphate contents. The above reductions were accompanied by markedly diminished expressions of myocardial serine palmitoyltransferase 1 and 2 as well as ceramide synthase 5 and 6 in the HFD group with 2-week CBD treatment. To our knowledge, this research is the first that reveals unknown effects of CBD treatment on the heart, i.e., amelioration of de novo ceramide synthesis pathway in obese rats.
Collapse
|
4
|
Abstract
Albumin is widely conserved from vertebrates to invertebrates, and nature of mammalian albumins permit them to bind various endogenous ligands and drugs in the blood. It is known that at least two major ligand binding sites are present on the albumin molecule, which are referred to as Site I and Site II. These binding sites are thought to be almost completely conserved among mammals, even though the degree of binding to these sites are different depending on the physical and chemical properties of drugs and differences in the microenvironment in the binding pockets. In addition, the binding sites for medium and long-chain fatty acids are also well conserved among mammals, and it is considered that there are at least seven binding sites, including Site I and Site II. These bindings properties of albumin in the blood are also widely known to be important for transporting drugs and fatty acids to various tissues. It can therefore be concluded that albumin is one of the most important serum proteins for various ligands, and information on human albumin can be very useful in predicting the ligand binding properties of the albumin of other vertebrates.
Collapse
Affiliation(s)
- Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
- DDS Research Institute, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan.
- DDS Research Institute, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
5
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
6
|
Assessment of AMPK-Stimulated Cellular Long-Chain Fatty Acid and Glucose Uptake. Methods Mol Biol 2018. [PMID: 29480486 DOI: 10.1007/978-1-4939-7598-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Here we describe an assay for simultaneous measurement of cellular uptake rates of long-chain fatty acids (LCFA) and glucose that can be applied to cells in suspension. The uptake assay includes the use of radiolabeled substrates at such concentrations and incubation periods that exact information is provided about unidirectional uptakes rates. Cellular uptake of both substrates is under regulation of AMPK. The underlying mechanism includes the translocation of LCFA and glucose transporters from intracellular membrane compartments to the cell surface, leading to an increase in substrate uptake. In this chapter, we explain the principles of the uptake assay before detailing the exact procedure. We also provide information of the specific LCFA and glucose transporters subject to AMPK-mediated subcellular translocation. Finally, we discuss the application of AMPK inhibitors and activators in combination with cellular substrate uptake assays.
Collapse
|
7
|
The ‘Goldilocks zone’ of fatty acid metabolism; to ensure that the relationship with cardiac function is just right. Clin Sci (Lond) 2017; 131:2079-2094. [DOI: 10.1042/cs20160671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Fatty acids (FA) are the main fuel used by the healthy heart to power contraction, supplying 60–70% of the ATP required. FA generate more ATP per carbon molecule than glucose, but require more oxygen to produce the ATP, making them a more energy dense but less oxygen efficient fuel compared with glucose. The pathways involved in myocardial FA metabolism are regulated at various subcellular levels, and can be divided into sarcolemmal FA uptake, cytosolic activation and storage, mitochondrial uptake and β-oxidation. An understanding of the critical involvement of each of these steps has been amassed from genetic mouse models, where forcing the heart to metabolize too much or too little fat was accompanied by cardiac contractile dysfunction and hypertrophy. In cardiac pathologies, such as heart disease and diabetes, aberrations in FA metabolism occur concomitantly with changes in cardiac function. In heart failure, FA oxidation is decreased, correlating with systolic dysfunction and hypertrophy. In contrast, in type 2 diabetes, FA oxidation and triglyceride storage are increased, and correlate with diastolic dysfunction and insulin resistance. Therefore, too much FA metabolism is as detrimental as too little FA metabolism in these settings. Therapeutic compounds that rebalance FA metabolism may provide a mechanism to improve cardiac function in disease. Just like Goldilocks and her porridge, the heart needs to maintain FA metabolism in a zone that is ‘just right’ to support contractile function.
Collapse
|
8
|
Hrometz SL, Ebert JA, Grice KE, Nowinski SM, Mills EM, Myers BJ, Sprague JE. Potentiation of Ecstasy-induced hyperthermia and FAT/CD36 expression in chronically exercised animals. Temperature (Austin) 2017; 3:557-566. [PMID: 28090559 PMCID: PMC5198810 DOI: 10.1080/23328940.2016.1166310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Fatal hyperthermia as a result of 3,4-methylenedioxymethamphetamine (MDMA) use involves non-esterified free fatty acids (NEFA) and the activation of mitochondrial uncoupling proteins (UCP). NEFA gain access into skeletal muscle via specific transport proteins, including fatty acid translocase (FAT/CD36). FAT/CD36 expression is known to increase following chronic exercise. Previous studies have demonstrated the essential role of NEFA and UCP3 in MDMA-induced hyperthermia. The aims of the present study were to use a chronic exercise model (swimming for two consecutive hours per day, five days per wk for six wk) to increase FAT/CD36 expression in order to: 1) determine the contribution of FAT/CD36 in MDMA (20 mg/kg, s.c.)-mediated hyperthermia; and 2) examine the effects of the FAT/CD36 inhibitor, SSO (sulfo-N-succinimidyl oleate), on MDMA-induced hyperthermia in chronic exercise and sedentary control rats. MDMA administration resulted in hyperthermia in both sedentary and chronic exercise animals. However, MDMA-induced hyperthermia was significantly potentiated in the chronic exercise animals compared to sedentary animals. Additionally, chronic exercise significantly reduced body weight, increased FAT/CD36 protein expression levels and reduced plasma NEFA levels. The FAT/CD36 inhibitor, SSO (40 mg/kg, ip), significantly attenuated the hyperthermia mediated by MDMA in chronic exercised but not sedentary animals. Plasma NEFA levels were elevated in sedentary and exercised animals treated with SSO prior to MDMA suggesting attenuation of NEFA uptake into skeletal muscle. Chronic exercise did not alter skeletal muscle UCP3 protein expression levels. In conclusion, chronic exercise potentiates MDMA-mediated hyperthermia in a FAT/CD36 dependent fashion.
Collapse
Affiliation(s)
- Sandra L Hrometz
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University , Fort Wayne, IN, USA
| | - Jeremy A Ebert
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University , Ada, OH, USA
| | - Karen E Grice
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University , Ada, OH, USA
| | - Sara M Nowinski
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Edward M Mills
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Brian J Myers
- Department of Chemistry and Biochemistry, The Getty College of Arts & Sciences, Ohio Northern University ; Ada, OH, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University , Bowling Green, OH, USA
| |
Collapse
|
9
|
The role of CD36 in the regulation of myocardial lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1450-60. [DOI: 10.1016/j.bbalip.2016.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
10
|
Arts T, Reneman RS, Bassingthwaighte JB, van der Vusse GJ. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte. PLoS Comput Biol 2015; 11:e1004666. [PMID: 26675003 PMCID: PMC4682637 DOI: 10.1371/journal.pcbi.1004666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
Despite the importance of oxidation of blood-borne long-chain fatty acids (Fa) in the cardiomyocytes for contractile energy of the heart, the mechanisms underlying the transfer of Fa from the coronary plasma to the cardiomyocyte is still incompletely understood. To obtain detailed insight into this transfer process, we designed a novel model of Fa transfer dynamics from coronary plasma through the endothelial cells and interstitium to the cardiomyocyte, applying standard physicochemical principles on diffusion and on the chemical equilibrium of Fa binding to carrier proteins Cp, like albumin in plasma and interstitium and Fatty Acid-Binding Proteins within endothelium and cardiomyocytes. Applying these principles, the present model strongly suggests that in the heart, binding and release of Fa to and from Cp in the aqueous border zones on both sides of the cell membranes form the major hindrance to Fa transfer. Although often considered, the membrane itself appears not to be a significant hindrance to diffusion of Fa. Proteins, residing in the cellular membrane, may facilitate transfer of Fa between Cp and membrane. The model is suited to simulate multiple tracer dilution experiments performed on isolated rabbit hearts administrating albumin and Fa as tracer substances into the coronary arterial perfusion line. Using parameter values on myocardial ultrastructure and physicochemical properties of Fa and Cp as reported in literature, simulated washout curves appear to be similar to the experimentally determined ones. We conclude therefore that the model is realistic and, hence, can be considered as a useful tool to better understand Fa transfer by evaluation of experimentally determined tracer washout curves. The energy required for pump work of the heart is generated primarily by oxidation of long-chain fatty acids (Fa), transferred to the heart by plasma albumin. In coronary capillaries, Fa detach from albumin, cross endothelial cells, pericapillary interstitium and cardiomyocyte membrane prior to oxidation. The exact mechanism underlying the transfer process, however, is unknown. We designed a computer model of this Fa transfer using parameter values in the physiological range. We postulate that known physical principles of diffusion, Fa-protein complex binding, and Fa solubility in water and lipid membranes can describe intra-cardiac transfer. Model simulations were compared with multiple indicator dilution experiments, administrating a bolus of labeled Fa and albumin into the coronary artery. The resulting dilution time courses of label concentrations in the coronary veins compared favorably with the model simulations. We conclude that the model appears to be realistic, providing a useful tool to study in detail the mechanisms of intra-cardiac Fa transfer.
Collapse
Affiliation(s)
- Theo Arts
- Department of Biomedical Engineering, CARIM, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| | - Robert S. Reneman
- Department of Physiology, CARIM, Maastricht University, Maastricht, the Netherlands
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - James B. Bassingthwaighte
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ger J. van der Vusse
- Department of Physiology, CARIM, Maastricht University, Maastricht, the Netherlands
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
11
|
Matsubara A, Takahashi H, Saito A, Nomura A, Sithyphone K, Mcmahon CD, Fujino R, Shiotsuka Y, Etoh T, Furuse M, Gotoh T. Effects of a high milk intake during the pre-weaning period on nutrient metabolism and growth rate in Japanese Black cattle. Anim Sci J 2015; 87:1130-6. [DOI: 10.1111/asj.12547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Atsuko Matsubara
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | | | | | - Aoi Nomura
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | | | | | - Ryoichi Fujino
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | - Yuji Shiotsuka
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | - Tetsuji Etoh
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | - Mitsuhiro Furuse
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| | - Takafumi Gotoh
- Kuju Agricultural Research Center; Kyushu University; Oita Japan
| |
Collapse
|
12
|
Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification. Nucl Med Biol 2015; 42:685-90. [DOI: 10.1016/j.nucmedbio.2015.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
13
|
Prosteatotic genes are associated with unsaturated fat suppression of saturated fat-induced hepatic steatosis in C57BL/6 mice. Nutr Res 2015; 35:812-22. [PMID: 26277244 DOI: 10.1016/j.nutres.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
Both high sugar and fat diets can induce prosteatotic genes, leading to obesity and obesity-associated diseases, including hepatic steatosis. Unsaturated fat/fatty acid (USFA) reduces high sugar-induced hepatic steatosis by inhibiting the induced prosteatotic genes. In contrast, it is still unclear how USFA ameliorates saturated fat/fatty acid (SFA)-induced hepatic steatosis. As sugar and fat have different transport and metabolic pathways, we hypothesized that USFA suppressed SFA-induced hepatic steatosis via a different set of prosteatotic genes. To test this, we implemented high SFA vs USFA diets and a control diet in C57BL/6 mice for 16 weeks. Severe hepatic steatosis was induced in mice fed the SFA diet. Among a nearly complete set of prosteatotic genes, only the stearoyl-coenzyme a desaturase 1 (Scd1), cluster of differentiation 36 (Cd36), and peroxisome proliferator-activated receptor γ (Pparγ) genes that were differentially expressed in the liver could contribute to SFA-induced steatosis or the alleviative effect of USFA. That is, the SFA diet induced the expression of Cd36 and Pparγ but not Scd1, and the USFA diet suppressed Scd1 expression and the induction of Cd36 and Pparγ. These findings were mainly recapitulated in cultured hepatocytes. The essential roles of SCD1 and CD36 were confirmed by the observation that the suppression of SCD1 and CD36 with small interfering RNA or drug treatment ameliorated SFA-induced lipid accumulation in hepatocytes. We thus concluded that SCD1, CD36, and PPARγ were essential to the suppression of SFA-induced hepatic steatosis by main dietary USFA, which may provide different therapeutic targets for reducing high-fat vs sugar-induced hepatic steatosis.
Collapse
|
14
|
Tarhda Z, Semlali O, Kettani A, Moussa A, Abumrad NA, Ibrahimi A. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36. Bioinform Biol Insights 2013; 7:369-73. [PMID: 24348024 PMCID: PMC3859822 DOI: 10.4137/bbi.s12276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127-279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127-279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions.
Collapse
Affiliation(s)
- Zineb Tarhda
- Medical Biotechnology lab, Pharmacology and Toxicology Lab, Faculty of Medicine and Pharmacy, University Mohammed V Souissi, Rabat, Morocco
| | - Oussama Semlali
- Medical Biotechnology lab, Pharmacology and Toxicology Lab, Faculty of Medicine and Pharmacy, University Mohammed V Souissi, Rabat, Morocco
| | - Anas Kettani
- Faculty of Science, University Ben Msik, Casablanca, Morocco
| | | | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Azeddine Ibrahimi
- Medical Biotechnology lab, Pharmacology and Toxicology Lab, Faculty of Medicine and Pharmacy, University Mohammed V Souissi, Rabat, Morocco
| |
Collapse
|
15
|
Xu S, Jay A, Brunaldi K, Huang N, Hamilton JA. CD36 Enhances Fatty Acid Uptake by Increasing the Rate of Intracellular Esterification but Not Transport across the Plasma Membrane. Biochemistry 2013; 52:7254-61. [DOI: 10.1021/bi400914c] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Su Xu
- Department
of Physiology and Biophysics, Boston University, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Anthony Jay
- Department
of Physiology and Biophysics, Boston University, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Kellen Brunaldi
- Department
of Physiology and Biophysics, Boston University, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Nasi Huang
- Department
of Physiology and Biophysics, Boston University, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - James A. Hamilton
- Department
of Physiology and Biophysics, Boston University, 700 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
16
|
Reciprocal inhibition of in vitro substrate movement into avian skeletal muscle. ZOOLOGY 2013; 116:85-9. [PMID: 23384946 DOI: 10.1016/j.zool.2012.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/30/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
Plasma glucose and ketone concentrations are much higher in birds than in humans and birds exhibit resistance to insulin-mediated glucose uptake into muscle. Therefore, birds may offer a model in which to examine the effects of high plasma glucose and free fatty acid (FFA) concentrations on substrate preference. The present study examined the uptake of radiolabeled oleic acid (OA; C18:1) and radiolabeled glucose by skeletal muscle isolated from the forewing of English sparrows (Passer domesticus). In dose-response studies, unlabeled glucose and OA (20 mM each) inhibited the uptake of their respective radiolabeled counterparts. To examine the effects of glucose on OA uptake, muscles were incubated for 60 min in a buffer containing 20 mM glucose with the addition of radiolabeled OA. This level of glucose significantly decreased radiolabeled OA uptake by 36%. Using the same methodology, 20 mM OA significantly decreased radiolabeled glucose transport by 49%. Comparing control values for glucose (0.952 ± 0.04 μM/mg muscle) and OA uptake (2.20 ± 0.29 μM/mg muscle), it is evident that OA is preferentially taken up by avian skeletal muscle. As FFAs provide a greater amount of energy per mole (146 ATP/OA) than carbohydrates (36 ATP/glucose), storing and utilizing fats may be more energy-efficient for birds. As studies in mammals have shown that FFAs may impair glucose uptake pathways, it is suspected that high FFA uptake by avian skeletal muscle may induce their notably lower glucose transport.
Collapse
|
17
|
|
18
|
Wang Y, Van Oort MM, Yao M, Van der Horst DJ, Rodenburg KW. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36. Biol Trace Elem Res 2011; 142:735-47. [PMID: 20721637 DOI: 10.1007/s12011-010-8809-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 01/09/2023]
Abstract
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.
Collapse
Affiliation(s)
- Yiqun Wang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
19
|
Puthanveetil P, Wang Y, Zhang D, Wang F, Kim MS, Innis S, Pulinilkunnil T, Abrahani A, Rodrigues B. Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a FoxO1-iNOS-CD36 pathway. Free Radic Biol Med 2011; 51:352-63. [PMID: 21545834 DOI: 10.1016/j.freeradbiomed.2011.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/29/2011] [Accepted: 04/06/2011] [Indexed: 01/30/2023]
Abstract
Obesity due to nutrient excess leads to chronic pathologies including type 2 diabetes and cardiovascular disease. Related to nutrient excess, FoxO1 has a role in regulating fatty acid uptake and oxidation and triglyceride (TG) storage by mechanisms that are largely unresolved. We examined the mechanism behind palmitate (PA)-induced TG accumulation in cardiomyocytes. To mimic lipid excess, rat ventricular myocytes were incubated with albumin-bound PA (1 mM) or rats were administered Intralipid (20%). PA-treated cardiomyocytes showed a substantial increase in TG accumulation, accompanied by amplification of nuclear migration of phospho-p38 and FoxO1, iNOS induction, and translocation of CD36 to the plasma membrane. PA also increased Cdc42 protein and its tyrosine nitration, thereby rearranging the cytoskeleton and facilitating CD36 translocation. These effects were duplicated by TNF-α and reversed by the iNOS inhibitor 1400 W. PA increased the nuclear interaction between FoxO1 and NF-κB, reduced the nuclear presence of PGC-1α, and downregulated expression of oxidative phosphorylation proteins. In vivo a robust increase in cardiac TGs after Intralipid administration was also associated with augmentation of nuclear FoxO1 and iNOS expression. Impeding this FoxO1-iNOS-CD36 pathway could decrease cardiac lipid accumulation and oxidative/nitrosative stress and help ameliorate the cardiovascular complications associated with obesity and diabetes.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
21
|
Holloway GP, Snook LA, Harris RJ, Glatz JFC, Luiken JJFP, Bonen A. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. J Physiol 2010; 589:169-80. [PMID: 21041527 DOI: 10.1113/jphysiol.2010.198663] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We aimed to determine whether an increased rate of long-chain fatty acid (LCFA) transport and/or a reduction in mitochondrial oxidation contributes to lipid deposition in hearts, as lipid accumulation within cardiac muscle has been associated with heart failure. In hearts of lean and obese Zucker rats we examined: (a) triacylglycerol (TAG) and mitochondrial content and distribution using transmission electron microscopy (TEM), (b) LCFA oxidation in cardiac myocytes, and in isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria, and (c) rates of LCFA transport into cardiac vesicles. Compared to lean rats, in obese Zucker rats, lipid droplet size was similar but there were more (P < 0.05) droplets, and TAG esterification rates and contents were markedly increased. TEM analyses and biochemical determinations showed that SS and IMF mitochondria in obese animals did not appear to be different in their appearance, area, density and number, nor in citrate synthase, β-hydroxy-acyl-CoA dehydrogenase and carnitine palmitoyl-transferase-I enzymatic activities, electron transport chain proteins, nor in their rates of LCFA oxidation either in cardiac myocytes or in isolated SS and IMF mitochondria (P > 0.05). In contrast, sarcolemmal plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (FAT/CD36) protein and palmitate transport rates into cardiac vesicles were increased (P < 0.05; +50%) in obese animals. Collectively these data indicate that mitochondrial dysfunction in LCFA oxidation is not responsible for lipid accumulation in obese Zucker rat hearts. Rather, increased sarcolemmal LCFA transport proteins and rates of LCFA transport result in a greater number of lipid droplets within cardiac muscle.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health & Nutritional Sciences, University of Guelph, Guelph, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol Biol Rep 2010; 38:2161-6. [DOI: 10.1007/s11033-010-0344-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/04/2010] [Indexed: 12/15/2022]
|
23
|
Bogachus LD, Turcotte LP. Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol 2010; 299:C1549-61. [PMID: 20844250 DOI: 10.1152/ajpcell.00279.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metformin is known to improve insulin sensitivity in part via a rise in AMP-activated protein kinase (AMPK) activity and alterations in muscle metabolism. However, a full understanding of how metformin alters AMPK-α(1) vs. AMPK-α(2) activation remains unknown. To study this question, L6 skeletal muscle cells were treated with or without RNAi oligonucleotide sequences to downregulate AMPK-α(1) or AMPK-α(2) protein expression and incubated with or without 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or metformin and/or insulin. In contrast to AICAR, which preferentially activated AMPK-α(2), metformin preferentially activated AMPK-α(1) in a dose- and time-dependent manner. Metformin increased (P < 0.05) glucose uptake and plasma membrane (PM) Glut4 in a dose- and time-dependent manner. Metformin significantly reduced palmitate uptake (P < 0.05) and oxidation (P < 0.05), and this was accompanied by a similar decrease (P < 0.05) in PM CD36 content but with no change in acetyl-CoA carboxylase (ACC) phosphorylation (P > 0.05). AICAR and metformin similarly increased (P < 0.05) nuclear silent mating-type information regulator 2 homolog 1 (SIRT1) activity. Downregulation of AMPK-α(1) completely prevented the metformin-induced reduction in palmitate uptake and oxidation but only partially reduced the metformin-induced increase in glucose uptake. Downregulation of AMPK-α(2) had no effect on metformin-induced glucose uptake, palmitate uptake, and oxidation. The increase in SIRT1 activity induced by metformin was not affected by downregulation of either AMPK-α(1) or AMPK-α(2). Our data indicate that, in muscle cells, the inhibitory effects of metformin on fatty acid metabolism occur via preferential phosphorylation of AMPK-α(1), and the data indicate that cross talk between AMPK and SIRT1 does not favor either AMPK isozyme.
Collapse
Affiliation(s)
- Lindsey D Bogachus
- Department of Biological Sciences, College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089-0652, USA
| | | |
Collapse
|
24
|
Veskoukis AS, Kyparos A, Stagos D, Kouretas D. Differential effects of xanthine oxidase inhibition and exercise on albumin concentration in rat tissues. Appl Physiol Nutr Metab 2010; 35:244-50. [DOI: 10.1139/h10-013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Albumin is a protein present in almost all kinds of mammalian cells. It has binding sites for several molecules, and possesses antioxidant and other important properties. The aim of this study was to examine the effects of 2 different oxidative stress stimuli — exercise and allopurinol administration — and their combination on albumin concentration in several rat tissues. Samples of soleus, extensor digitorum longus (EDL), and gastrocnemius muscles, and the liver and heart were collected before, immediately after, and 5 h after exercise, and collected at the respective time points after allopurinol administration. Albumin dimmers, markers of oxidative stress, were also assessed in EDL muscle. Albumin concentration increased in the skeletal muscles examined, whereas it decreased in the heart and remained unaffected in the liver after exercise. Allopurinol alone did not affect albumin concentration in any of the tissues. Albumin concentration increased in soleus and EDL muscles, decreased in gastrocnemius muscle and the liver, and remained unaffected in the heart after exercise and allopurinol combination. Albumin dimmers also increased postexercise in EDL muscle. Our findings suggest that the increase in albumin concentration in skeletal muscles may be an antioxidant mechanism response, but may depend on the type of oxidative stress and be stimulation- and tissue-specific.
Collapse
Affiliation(s)
- Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos and Aiolou St., Larissa 41221, Greece
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - Antonios Kyparos
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos and Aiolou St., Larissa 41221, Greece
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos and Aiolou St., Larissa 41221, Greece
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos and Aiolou St., Larissa 41221, Greece
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece
| |
Collapse
|
25
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1505] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
26
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
27
|
|
28
|
Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions. Metabolism 2009; 58:1694-702. [PMID: 19767038 DOI: 10.1016/j.metabol.2009.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 06/15/2009] [Indexed: 11/16/2022]
Abstract
The plant alkaloid berberine (BBR) has been reported to have antidiabetic effect in humans and animals. However, the mechanism of action is not well understood. The present study was conducted to determine the effect and mechanism of action of BBR on the free-fatty-acid (FFA)-induced insulin resistance in muscle cells. The FFA-induced insulin-resistant cell model was established in L6 myotubes by treating them with 250 mumol/L of palmitic acid. The inclusion of FFA in the medium increased peroxisome proliferator-activated receptor gamma (PPARgamma) and fatty acid transferase (FAT/CD36) expressions by 26% and 50% and decreased glucose consumption by 43% and insulin-mediated glucose uptake by 63%, respectively. Berberine treatment increased the glucose consumption and insulin-stimulated glucose uptake in normal cells and improved glucose uptake in the FFA-induced insulin-resistant cells. The improved glucose uptake by BBR was accompanied with a dose-dependent decrease in PPARgamma and FAT/CD36 protein expressions. In insulin-resistant myotubes, BBR (5 micromol/L) decreased PPARgamma and FAT/CD36 proteins by 31% and 24%, whereas PPARgamma antagonist GW9662 reduced both proteins by 56% and 46%, respectively. In contrast, PPARgamma agonist rosiglitazone increased the expression of PPARgamma and FAT/CD36 by 34% and 21%, respectively. Our results suggest that BBR improves the FFA-induced insulin resistance in myotubes through inhibiting fatty acid uptake at least in part by reducing PPARgamma and FAT/CD36 expressions.
Collapse
Affiliation(s)
- Yanfeng Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | | | | | | | | |
Collapse
|
29
|
Abstract
In 1963, Lancet published a paper by Randle et al. that proposed a "glucose-fatty acid cycle" to describe fuel flux between and fuel selection by tissues. The original biochemical mechanism explained the inhibition of glucose oxidation by fatty acids. Since then, the principle has been confirmed by many investigators. At the same time, many new mechanisms controlling the utilization of glucose and fatty acids have been discovered. Here, we review the known short- and long-term mechanisms involved in the control of glucose and fatty acid utilization at the cytoplasmic and mitochondrial level in mammalian muscle and liver under normal and pathophysiological conditions. They include allosteric control, reversible phosphorylation, and the expression of key enzymes. However, the complexity is formidable. We suggest that not all chapters of the Randle cycle have been written.
Collapse
Affiliation(s)
- Louis Hue
- Université Catholique de Louvain and de Duve Institute, Hormone and Metabolic Research Unit, Brussels, Belgium.
| | | |
Collapse
|
30
|
Luiken JJFP. Sarcolemmal fatty acid uptake vs. mitochondrial beta-oxidation as target to regress cardiac insulin resistance. Appl Physiol Nutr Metab 2009; 34:473-80. [PMID: 19448717 DOI: 10.1139/h09-040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiomyopathy and heart failure are frequent comorbid conditions in type-2 diabetic patients. However, it has become increasingly evident that insulin resistance, type-2 diabetes, and cardiomyopathy are not independent variables, and are linked through changes in metabolism. Specifically, elevated intracellular levels of long-chain fatty acid (LCFA) metabolites are a central feature in the development of cardiac insulin resistance, and their prolonged accumulation is an important cause of heart failure. In the insulin-resistant heart, the abundance of the LCFA transporters CD36 and FABPpm at the sarcolemma of cardiac myocytes appears to be markedly increased. Because circulating LCFA levels are increased in insulin resistance, the cardiac LCFA metabolizing machinery is confronted with drastic increases in substrate supply. Indeed, LCFA esterification into triacylglycerol and other lipid intermediates is increased, as is beta-oxidation and reactive oxygen species production. Therapeutic strategies to normalize the cardiac LCFA flux would be most successful when the target is the rate-limiting step in cardiac LCFA utilization. Carnitine palmitoyltransferase (CPT)-I has long been considered to be this rate-limiting site and, accordingly, pharmacological inhibition of CPT-I, or beta-oxidation enzymes, has been proposed as an insulin-resistance-antagonizing strategy. However, recent evidence indicates that, instead, sarcolemmal LCFA transport mediated by CD36 in concert with FABPpm provides a major site of flux control. In this review, it is proposed that a pharmacologically imposed net internalization of CD36 and FABPpm is the preferable strategy to limit LCFA entry and accumulation of LCFA metabolites, to regress cardiac insulin resistance and, eventually, prevent diabetic heart failure.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, NL-6200 MD Maastricht, the Netherlands.
| |
Collapse
|
31
|
Goyenechea E, Collins LJ, Parra D, Liu G, Snieder H, Swaminathan R, Spector TD, Martínez JA, O'Dell SD. CD36 gene promoter polymorphisms are associated with low density lipoprotein-cholesterol in normal twins and after a low-calorie diet in obese subjects. Twin Res Hum Genet 2009; 11:621-8. [PMID: 19016618 DOI: 10.1375/twin.11.6.621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Common polymorphisms of the CD36 fatty acid transporter gene have been associated with lipid metabolism and cardiovascular disease. Association of a CD36 promoter single nucleotide polymorphism genotype with anthropometry and serum lipids was investigated in normal subjects, and in obese subjects during an 8-week low calorie diet and 6-month weight-maintenance period. 2728 normal female Twins UK subjects (mean body mass index 24.8 +/- 4.4 kg/m2; age 47.3 +/- 12.5 y) and 183 obese male and female Spanish subjects (mean body mass index 30.6 +/- 3.0 kg/m2; age 35.0 +/- 5.0 y) were genotyped for the CD36-22674 T/C (rs2151916) promoter single nucleotide polymorphism. In the Twins UK full cohort, the C-allele was associated with lower low density lipoprotein-cholesterol (p = .02, N = 2396). No associations were found in the obese Spanish subjects at baseline, but 6 months after the end of the low-calorie diet, the C-allele was associated with lower total- (p = .03) and low density lipoprotein-cholesterol (p = .01) and higher high density lipoprotein-cholesterol (p = .01). Intake of saturated fatty acids was lower in carriers of the C-allele at baseline, but not significantly so (p = .11). However, 6 months after the end of the low-calorie diet, elements of the lipid profile were correlated with saturated fatty acid intake: total cholesterol r = .21, p = .060; low density lipoprotein-cholesterol: r = .25, p = .043; high density lipoprotein-cholesterol: r = -.26, p = .007. CD36 promoter SNP allele -22674C is therefore associated with lower serum low-density lipoprotein-cholesterol in normal female twins and with improved lipid profile during weight loss and maintenance in obese subjects.
Collapse
Affiliation(s)
- Estibaliz Goyenechea
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Holloway GP, Luiken JJFP, Glatz JFC, Spriet LL, Bonen A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol (Oxf) 2008; 194:293-309. [PMID: 18510711 DOI: 10.1111/j.1748-1716.2008.01878.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long chain fatty acids (LCFAs) are an important substrate for ATP production within the skeletal muscle. The process of LCFA delivery from adipose tissue to muscle mitochondria involves many regulatory steps. Recently, it has been recognized that LCFA oxidation is not only dependent on LCFA delivery to the muscle, but also on regulatory steps within the muscle. Increasing selected fatty acid binding proteins/transporters on the plasma membrane facilitates a very rapid LCFA increase into the muscle, independent of any changes in LCFA delivery to the muscle. Such a mechanism of LCFA transporter translocation is activated by muscle contraction. Intramuscular triacylglycerols may also be hydrolysed to provide fatty acids for mitochondrial oxidation, particularly during exercise, when hormone-sensitive lipase and other enzymes are activated. Mitochondrial LCFA entry is also highly regulated. This however does not involve only the malonyl CoA carnitine palmitoyltransferase-I (CPTI) axis. Exercise-induced fatty acid entry into mitochondria is also regulated by at least one of the proteins (FAT/CD36) that also regulates plasma membrane fatty acid transport. Among individuals, differences in mitochondrial fatty acid oxidation appear to be correlated with the content of mitochondrial CPTI and FAT/CD36. This paper provides a brief overview of mechanisms that regulate LCFA uptake and oxidation in skeletal muscle during exercise and in obesity. We focus largely on our own work on FAT/CD36, which contributes to regulating, in a coordinated fashion, LCFA uptake across the plasma membrane and the mitochondrial membrane. Very little is known about the roles of FATP1-6 on fatty acid transport in skeletal muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Human Health and Nutritional Sciences University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
34
|
Huynh M, Luiken JJJP, Coumans W, Bell RC. Dietary fructose during the suckling period increases body weight and fatty acid uptake into skeletal muscle in adult rats. Obesity (Silver Spring) 2008; 16:1755-62. [PMID: 18483476 DOI: 10.1038/oby.2008.268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The suckling period is one potentially "critical" period during which nutritional intake may permanently "program" metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. METHODS AND PROCEDURES Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose-containing formula (Fructose), or galactose-containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC-Fructose). This continued until animals were 12 weeks old and the study ended. RESULTS At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC-Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC-Fructose group. (3)H-Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. DISCUSSION Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.
Collapse
Affiliation(s)
- Minh Huynh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
35
|
Schwenk RW, Luiken JJFP, Bonen A, Glatz JFC. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res 2008; 79:249-58. [PMID: 18469026 DOI: 10.1093/cvr/cvn116] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circulating long-chain fatty acids (LCFA) and glucose are the main sources for energy production in the heart. In the healthy heart the ratio of glucose and LCFA oxidation is sensitively balanced and chronic alterations in this substrate mix are closely associated with cardiac dysfunction. While it has been accepted for several years that cardiac glucose uptake is mediated by facilitated transport, i.e. by means of the glucose transport proteins GLUT1 and GLUT4, only in the last few years it has become clear that proteins with high-affinity binding sites to LCFA, referred to as LCFA transporters, are responsible for bulk LCFA uptake. Similar to the GLUTs, the LCFA transporters CD36 and FABP(pm) can be recruited from an intracellular storage compartment to the sarcolemma to increase the rate of substrate uptake. Permanent relocation of LCFA transporters, mainly CD36, from intracellular stores to the sarcolemma is accompanied by accumulation of lipids and lipid metabolites in the heart. As a consequence, insulin signalling and glucose utilization are impaired, leading to decreased contractile activity of the heart. These observations underline the particular role and interplay of substrate carriers for glucose and LCFA in modulating cardiac metabolism, and the development of heart failure. The signalling and trafficking pathways and subcellular machinery regulating translocation of glucose and LCFA transporters are beginning to be unravelled. More knowledge on substrate transporter recycling, especially the similarities and differences between glucose and LCFA transporters, is expected to enable novel therapies aimed at changing the subcellular distribution of glucose and LCFA transporters, thereby manipulating the substrate preference of the diseased heart to help restore cardiac function.
Collapse
Affiliation(s)
- Robert W Schwenk
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Koonen DPY, Jacobs RL, Febbraio M, Young ME, Soltys CLM, Ong H, Vance DE, Dyck JRB. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007; 56:2863-71. [PMID: 17728375 DOI: 10.2337/db07-0907] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid transport protein (CD36) in the liver during DIO contributes to the dyslipidemia that precedes development of type 2 diabetes. RESEARCH DESIGN AND METHODS We determined the effect DIO has on hepatic CD36 protein expression and the functional consequence of this in terms of hepatic triglyceride storage and secretion. In addition, in vivo adenoviral gene delivery of CD36 to the livers of lean mice was performed to determine if increased hepatic CD36 protein was sufficient to alter hepatic fatty acid uptake and triglyceride storage and secretion. RESULTS During DIO, CD36 protein levels in the liver are significantly elevated, and these elevated levels correlate with increased hepatic triglyceride storage and secretion. These alterations in liver lipid storage and secretion were also observed upon forced expression of hepatic CD36 in the absence of DIO and were accompanied with a marked rise in hepatic fatty acid uptake in vivo, demonstrating that increased CD36 expression is sufficient to recapitulate the aberrant liver lipid handling observed in DIO. CONCLUSIONS Increased expression of hepatic CD36 protein in response to DIO is sufficient to exacerbate hepatic triglyceride storage and secretion. As these CD36-mediated effects contribute to the dyslipidemia that often precedes the development of type 2 diabetes, increased hepatic CD36 expression likely plays a causative role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol Cell Biochem 2007. [PMID: 16988889 PMCID: PMC1915649 DOI: 10.1007/s11010-006-9372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Glatz JF. Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol Cell Biochem 2007; 299:5-18. [PMID: 16988889 PMCID: PMC1915649 DOI: 10.1007/s11010-005-9030-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the primary cause of death in obesity and type-2 diabetes mellitus (T2DM). Alterations in substrate metabolism are believed to be involved in the development of both cardiac dysfunction and insulin resistance in these conditions. Under physiological circumstances the heart utilizes predominantly long-chain fatty acids (LCFAs) (60-70%), with the remainder covered by carbohydrates, i.e., glucose (20%) and lactate (10%). The cellular uptake of both LCFA and glucose is regulated by the sarcolemmal amount of specific transport proteins, i.e., fatty acid translocase (FAT)/CD36 and GLUT4, respectively. These transport proteins are not only present at the sarcolemma, but also in intracellular storage compartments. Both an increased workload and the hormone insulin induce translocation of FAT/CD36 and GLUT4 to the sarcolemma. In this review, recent findings on the insulin and contraction signalling pathways involved in substrate uptake and utilization by cardiac myocytes under physiological conditions are discussed. New insights in alterations in substrate uptake and utilization during insulin resistance and its progression towards T2DM suggest a pivotal role for substrate transporters. During the development of obesity towards T2DM alterations in cardiac lipid homeostasis were found to precede alterations in glucose homeostasis. In the early stages of T2DM, relocation of FAT/CD36 to the sarcolemma is associated with the myocardial accumulation of triacylglycerols (TAGs) eventually leading to an impaired insulin-stimulated GLUT4-translocation. These novel insights may result in new strategies for the prevention of development of cardiac dysfunction and insulin resistance in obesity and T2DM.
Collapse
Affiliation(s)
- Jan F.C. Glatz
- Department of Molecular Genetics, CARIM, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
40
|
Habets DDJ, Coumans WA, Voshol PJ, den Boer MAM, Febbraio M, Bonen A, Glatz JFC, Luiken JJFP. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 2007; 355:204-10. [PMID: 17292863 DOI: 10.1016/j.bbrc.2007.01.141] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/26/2007] [Indexed: 02/07/2023]
Abstract
CD36, also named fatty acid translocase, has been identified as a putative membrane transporter for long-chain fatty acids (LCFA). In the heart, contraction-induced 5' AMP-activated protein kinase (AMPK) signaling regulates cellular LCFA uptake through translocation of CD36 and possibly of other LCFA transporters from intracellular storage compartments to the sarcolemma. In this study, isolated cardiomyocytes from CD36(+/+)- and CD36(-/-) mice were used to investigate to what extent basal and AMPK-mediated LCFA uptake are CD36-dependent. Basal LCFA uptake was not altered in CD36(-/-) cardiomyocytes, most likely resulting from a (1.8-fold) compensatory upregulation of fatty acid-transport protein-1. The stimulatory effect of contraction-mimetic stimuli, oligomycin (2.5-fold) and dipyridamole (1.6-fold), on LCFA uptake into CD36(+/+) cardiomyocytes was almost completely lost in CD36(-/-) cardiomyocytes, despite that AMPK signaling was fully intact. CD36 is almost entirely responsible for AMPK-mediated stimulation of LCFA uptake in cardiomyocytes, indicating a pivotal role for CD36 in mediating changes in cardiac LCFA fluxes.
Collapse
Affiliation(s)
- Daphna D J Habets
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985) 2006; 102:1439-47. [PMID: 17170203 DOI: 10.1152/japplphysiol.01098.2006] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our aim was to examine the effects of seven high-intensity aerobic interval training (HIIT) sessions over 2 wk on skeletal muscle fuel content, mitochondrial enzyme activities, fatty acid transport proteins, peak O(2) consumption (Vo(2 peak)), and whole body metabolic, hormonal, and cardiovascular responses to exercise. Eight women (22.1 +/- 0.2 yr old, 65.0 +/- 2.2 kg body wt, 2.36 +/- 0.24 l/min Vo(2 peak)) performed a Vo(2 peak) test and a 60-min cycling trial at approximately 60% Vo(2 peak) before and after training. Each session consisted of ten 4-min bouts at approximately 90% Vo(2 peak) with 2 min of rest between intervals. Training increased Vo(2 peak) by 13%. After HIIT, plasma epinephrine and heart rate were lower during the final 30 min of the 60-min cycling trial at approximately 60% pretraining Vo(2 peak). Exercise whole body fat oxidation increased by 36% (from 15.0 +/- 2.4 to 20.4 +/- 2.5 g) after HIIT. Resting muscle glycogen and triacylglycerol contents were unaffected by HIIT, but net glycogen use was reduced during the posttraining 60-min cycling trial. HIIT significantly increased muscle mitochondrial beta-hydroxyacyl-CoA dehydrogenase (15.44 +/- 1.57 and 20.35 +/- 1.40 mmol.min(-1).kg wet mass(-1) before and after training, respectively) and citrate synthase (24.45 +/- 1.89 and 29.31 +/- 1.64 mmol.min(-1).kg wet mass(-1) before and after training, respectively) maximal activities by 32% and 20%, while cytoplasmic hormone-sensitive lipase protein content was not significantly increased. Total muscle plasma membrane fatty acid-binding protein content increased significantly (25%), whereas fatty acid translocase/CD36 content was unaffected after HIIT. In summary, seven sessions of HIIT over 2 wk induced marked increases in whole body and skeletal muscle capacity for fatty acid oxidation during exercise in moderately active women.
Collapse
Affiliation(s)
- Jason L Talanian
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
42
|
An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006; 291:H1489-506. [PMID: 16751293 DOI: 10.1152/ajpheart.00278.2006] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with diabetes, an increased risk of symptomatic heart failure usually develops in the presence of hypertension or ischemic heart disease. However, a predisposition to heart failure might also reflect the effects of underlying abnormalities in diastolic function that can occur in asymptomatic patients with diabetes alone (termed diabetic cardiomyopathy). Evidence of cardiomyopathy has also been demonstrated in animal models of both Type 1 (streptozotocin-induced diabetes) and Type 2 diabetes (Zucker diabetic fatty rats and ob/ob or db/db mice). During insulin resistance or diabetes, the heart rapidly modifies its energy metabolism, resulting in augmented fatty acid and decreased glucose consumption. Accumulating evidence suggests that this alteration of cardiac metabolism plays an important role in the development of cardiomyopathy. Hence, a better understanding of this dysregulation in cardiac substrate utilization during insulin resistance and diabetes could provide information as to potential targets for the treatment of cardiomyopathy. This review is focused on evaluating the acute and chronic regulation and dysregulation of cardiac metabolism in normal and insulin-resistant/diabetic hearts and how these changes could contribute toward the development of cardiomyopathy.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Mice
- Mice, Obese
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Zucker
Collapse
Affiliation(s)
- Ding An
- Div. of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Chabowski A, Górski J, Bonen A. Regulation of fatty acid transport: from transcriptional to posttranscriptional effects. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:259-63. [PMID: 16724206 DOI: 10.1007/s00210-006-0075-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Brinkmann JFF, Pelsers MMAL, van Nieuwenhoven FA, Tandon NN, van der Vusse GJ, Glatz JFC. Purification, immunochemical quantification and localization in rat heart of putative fatty acid translocase (FAT/CD36). Mol Cell Biochem 2006; 284:127-34. [PMID: 16541201 DOI: 10.1007/s11010-005-9033-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 04/21/2005] [Indexed: 10/24/2022]
Abstract
Evidence is accumulating that the heavily glycosylated integral membrane protein fatty acid translocase (FAT/CD36) is involved in the transport of long-chain fatty acids across the sarcolemma of heart muscle cells. The aim of this study was to analyse the distribution between FAT/CD36 present in cardiac myocytes and endothelial cells. We therefore developed a method to purify FAT/CD36 from total rat heart and isolated cardiomyocytes, and used the proteins as standards in an immunochemical assay. Two steps, chromatography on wheat germ agglutinin-agarose and anion-exchange chromatography on Q-Sepharose fast flow, were sufficient for obtaining the protein in a > 95% pure form. When used to isolate FAT/CD36 from total heart tissue, the FAT/CD36 yield of the method was 9% and the purification factor was 64. Purifying FAT/CD36 from isolated cardiomyocytes yielded the same 88 kDa protein band on SDS-PAGE gels and reactivity of this band on western blots was comparable to that of the FAT/CD36 isolated from total hearts. Quantifying FAT/CD36 contents by western blotting showed that the amounts of FAT/CD36 that are present in isolated cardiomyocytes (10 +/- 3 microg/mg protein) and total hearts (14 +/- 4 microg/mg protein) are of comparable magnitude. Immunofluorescence labelling showed that at least a part of the FAT/CD36 present in the cardiomyocyte is associated with the sarcolemma. This study established that FAT/CD36 is a relatively abundant protein in the cardiomyocyte. In addition, the further developed purification procedure is the first method for isolating FAT/CD36 from rat heart and cardiomyocyte FAT/CD36.
Collapse
Affiliation(s)
- Joep F F Brinkmann
- Department of Physiology, Cardiovascular Research Institute Maastricht, CARIM, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Bezaire V, Bruce CR, Heigenhauser GJF, Tandon NN, Glatz JFC, Luiken JJJF, Bonen A, Spriet LL. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation. Am J Physiol Endocrinol Metab 2006; 290:E509-15. [PMID: 16219667 DOI: 10.1152/ajpendo.00312.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 muM) palmitate oxidation was decreased by 95% (P<0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P<0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.
Collapse
Affiliation(s)
- Veronic Bezaire
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids liberated from adipose tissue adhering to the muscle cells. The regulation of utilization of the different lipid sources in skeletal muscle during exercise is reviewed, and the influence of diet, training, and gender is discussed. Major points deliberated are the methods utilized to measure uptake and oxidation of LCFA during exercise in humans. The role of the various lipid-binding proteins in transmembrane and cytosolic transport of lipids is considered as well as regulation of lipid entry into the mitochondria, focusing on the putative role of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), and carnitine during exercise. The possible contribution to fuel provision during exercise of circulating VLDL-TG as well as the role of IMTG is discussed from a methodological point of view. The contribution of IMTG for energy provision may not be large, covering ∼10% of total energy provision during fasting exercise in male subjects, whereas in females, IMTG may cover a larger proportion of energy delivery. Molecular mechanisms involved in breakdown of IMTG during exercise are also considered focusing on hormone-sensitive lipase (HSL). Finally, the role of lipids in development of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed.
Collapse
Affiliation(s)
- Bente Kiens
- Copenhagen Muscle Research Centre, Dept. of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
47
|
Lidén M, Eriksson U. Development of a versatile reporter assay for studies of retinol uptake and metabolism in vivo. Exp Cell Res 2005; 310:401-8. [PMID: 16150442 DOI: 10.1016/j.yexcr.2005.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 11/17/2022]
Abstract
The two isomers of retinoic acid (RA), all-trans RA and 9-cis RA, are produced in several tissues in order to allow specific control of target gene transcription. Given the high potency of these receptor ligands, it seems likely that the cellular uptake and metabolic activation of the precursor, retinol (vitamin A), should be a highly regulated process. Several retinol dehydrogenases and components involved in the downstream events have been identified and partially characterized. However, less is known about the cellular uptake of retinol, and the isomerase activity giving rise to the 9-cis and 11-cis branches of the pathway. In this work, we show that the 9-cis RA biosynthesis pathway can be fully reconstituted in cultured HEK293A cells expressing a reporter system, including an endogenous isomerase activity converting all-trans retinol into 9-cis retinol. This assay allows for functional studies of known components, as well as screening for yet unidentified genes involved in the pathway. In addition to free all-trans retinol, we find that these cells can take up retinol from plasma retinol binding protein (RBP) by a mechanism that can be efficiently inhibited by blocking antibodies, suggesting that the uptake may involve a cellular receptor. We also demonstrate that overexpression of CRBPI can drive the accumulation of intracellular retinol from unbound retinol added to the medium. Thus, this versatile cellular assay can be used to study several aspects of retinol uptake and metabolism in vivo.
Collapse
Affiliation(s)
- Martin Lidén
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
48
|
Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:163-80. [PMID: 16198626 DOI: 10.1016/j.bbalip.2005.08.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Cellular long-chain fatty acid (LCFA) uptake constitutes a process that is not yet fully understood. LCFA uptake likely involves both passive diffusion and protein-mediated transport. Several lines of evidence support the involvement of a number of plasma membrane-associated proteins, including fatty acid translocase (FAT)/CD36, plasma membrane-bound fatty acid binding protein (FABPpm), and fatty acid transport protein (FATP). In heart and skeletal muscle primary attention has been given to unravel the mechanisms by which FAT/CD36 expression and function are regulated. It appears that both insulin and contractions induce the translocation of intracellular stored FAT/CD36 to the plasma membrane to increase cellular LCFA uptake. This review focuses on this novel mechanism of regulation of LCFA uptake in heart and skeletal muscle in health and disease. The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4. Finally, it is hypothesized that malfunctioning of recycling of these transporters may lead to intracellular triacylglycerol (TAG) accumulation and cellular insulin resistance. Current data indicate a pivotal role for FAT/CD36 in the regulation of LCFA utilization in heart and skeletal muscle under normal conditions as well as during the altered LCFA utilization observed in obesity and insulin resistance. Hence, FAT/CD36 might provide a useful therapeutic target for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
49
|
Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 2005; 280:11948-54. [PMID: 15653672 DOI: 10.1074/jbc.m412629200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an integral membrane protein expressed in the plasma and internal membranes of the small intestine and adipocyte as well as in the brain, kidney, liver, skin, and heart. FATP4 has been hypothesized to be bifunctional, exhibiting both fatty acid transport and acyl-CoA synthetase activities that work in concert to mediate fatty acid influx across biological membranes. To determine whether FATP4 is an acyl-CoA synthetase, the murine protein was engineered to contain a C-terminal FLAG epitope tag, expressed in COS1 cells via adenovirus-mediated infection and purified to near homogeneity using alpha-FLAG affinity chromatography. Kinetic analysis of the enzyme was carried out for long chain (palmitic acid, C16:0) and very long chain (lignoceric acid, C24:0) fatty acids as well as for ATP and CoA. FATP4 exhibited substrate specificity for C16:0 and C24:0 fatty acids with a V(max)/K(m) (C16:0)/V(max)/K(m) (C24:0) of 1.5. Like purified FATP1, FATP4 was insensitive to inhibition by triacsin C but was sensitive to feedback inhibition by acyl-CoA. Although purified FATP4 exhibited high levels of palmitoyl-CoA and lignoceroyl-CoA synthetase activity, extracts from the skin and intestine of FATP4 null mice exhibited reduced esterification for C24:0, but not C16:0 or C18:1, suggesting that in vivo, defects in very long chain fatty acid uptake may underlie the skin disorder phenotype of null mice.
Collapse
Affiliation(s)
- Angela M Hall
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
50
|
Shearer J, Fueger PT, Rottman JN, Bracy DP, Martin PH, Wasserman DH. AMPK stimulation increases LCFA but not glucose clearance in cardiac muscle in vivo. Am J Physiol Endocrinol Metab 2004; 287:E871-7. [PMID: 15265760 DOI: 10.1152/ajpendo.00125.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.
Collapse
Affiliation(s)
- Jane Shearer
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|