1
|
Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study. Nutrients 2022; 14:nu14173644. [PMID: 36079901 PMCID: PMC9460211 DOI: 10.3390/nu14173644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022] Open
Abstract
Fish and omega-3 fatty acid consumption is known to be beneficial for cardiometabolic health. However, the related evidence for individuals with a relatively higher intake of fish or omega-3 unsaturated fatty acids, e.g., Japanese individuals, is scarce. Therefore, this study aimed to examine the association of fish and omega-3 fatty acid intakes with the carotid intima-media thickness (C-IMT) in the Japanese population. In total, 1803 Japanese men and women aged 30–84 years without a history of myocardial infarction or angina pectoris were included in the study. The fish and omega-3 fatty acid intakes were estimated using food frequency questionnaires. The C-IMT was measured using ultrasound imaging, and the participants were classified into three groups: normal, moderate (1.1 to 1.4 mm of maximum C-IMT), and severely increased C-IMT (≥1.5 mm). Multinomial logistic regression models were used to calculate the odds ratio (OR) and 95% confidence intervals (95% CI) of the presence of moderately and severely increased C-IMT. The omega-3 fatty acid intake was shown to be associated with lower odds of severely increased C-IMT. The multivariable-adjusted OR (95%CI) was 0.55 (0.31–0.97; p for trend = 0.04). We also found a borderline significant negative association between fish intake and the presence of severely increased C-IMT. In conclusion, omega-3 fatty acid intake might protect against the development of atherosclerosis in the Japanese population.
Collapse
|
2
|
Morin S, Simard M, Rioux G, Julien P, Pouliot R. Alpha-Linolenic Acid Modulates T Cell Incorporation in a 3D Tissue-Engineered Psoriatic Skin Model. Cells 2022; 11:cells11091513. [PMID: 35563819 PMCID: PMC9104007 DOI: 10.3390/cells11091513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is an autoimmune skin disease with an increased number of leukocytes infiltrating the dermal and epidermal compartments compared with normal skin. N-3 polyunsaturated fatty acids (n-3 PUFAs) are frequently used in the clinic in order to attenuate the symptoms of psoriasis. For psoriatic patients, a supplementation of the diet with alpha-linolenic acid (ALA) reduces the activation of T cell signaling pathways, leading to a significant reduction in inflammatory cytokine secretion. However, the precise mechanism of action of n-3 PUFAs in psoriasis is still not understood. In the present study, we elucidated the bioaction of ALA on the adaptive immune component of psoriasis by using a psoriatic skin model produced with the addition of activated T cells. Healthy and psoriatic skin substitutes were produced according to the self-assembly method, using culture media supplemented with 10 μM of ALA. T cells were isolated from blood samples using a negative selection isolation method. ALA supplementation regulated the hyperproliferation and abnormal cell differentiation of psoriatic keratinocytes stimulated by T cells. Additionally, the exogenous ALA was correctly incorporated into the phospholipids of keratinocytes, which resulted in increased levels of ALA, eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA). The infiltration of T cells into the epidermis was reduced when ALA was added to the culture medium, and significant decreases in the levels of inflammatory cytokines and chemokines such as CXCL1, interleukin-6 (IL-6) and interleukin-8 (IL-8) were consequently measured in psoriatic substitutes supplemented with this n-3 PUFA. Altogether, our results showed that in this psoriatic skin model enriched with T cells, ALA exerted its beneficial effect by decreasing the quantities of inflammatory mediators released by T cells.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec City, QC G1J 2Z4, Canada; (S.M.); (M.S.); (G.R.)
- Faculté de Pharmacie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec City, QC G1J 2Z4, Canada; (S.M.); (M.S.); (G.R.)
- Faculté de Pharmacie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec City, QC G1J 2Z4, Canada; (S.M.); (M.S.); (G.R.)
- Faculté de Pharmacie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Pierre Julien
- Centre de Recherche du CHU de Québec-Université Laval, Axe Endocrinologie et Néphrologie, Université Laval, Québec City, QC G1V 4G2, Canada;
- Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec City, QC G1J 2Z4, Canada; (S.M.); (M.S.); (G.R.)
- Faculté de Pharmacie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
3
|
Interaction between the level of immunoglobulins and number of somatic cells as a factor shaping the immunomodulating properties of colostrum. Sci Rep 2021; 11:15686. [PMID: 34344942 PMCID: PMC8333324 DOI: 10.1038/s41598-021-95283-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to investigate the association between immunoglobulins and SCC as a factor in shaping the content of the immunostimulatory components of colostrum. Seventy-eight multiparous Polish Holstein-Friesian cows were selected for the experiment. Colostrum samples were collected immediately after calving (up to a max. of 2 h). The cows were divided into groups according to the following levels: Immunoglobulins (IG class)-(IG1) over 50 g/L, (IG2) up to 50 g/L; SCC class-(SCC1) up to 400 000/ml, (SCC2) 400-800 000/ml, (SCC3) over 800 000/ml. Colostrum assigned to the IG1 SCC1 group had a statistically significant higher (p ≤ 0.01) concentration of both whey proteins and fatty acids compared to the IG1 SCC2 and SCC3 groups. The concentration of IgG, IgM, and IgA was shown to be higher in IG1 SCC1 than IG2 SCC3 by 226%, 149%, and 115%, respectively. The concentration of lactoferrin was shown to be higher in IG1 SCC1 than IG2 SCC3 by 149%. The determination of colostrum quality based on the concentration of immunoglobulins in the colostrum may not be sufficient because serum IgG concentrations at birth show a linear increase relative to colostrum SCC. A breakdown of colostrum into quality classes, taking into account the level of SCC, should therefore be introduced.
Collapse
|
4
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
5
|
Comparative anti-inflammatory effects of plant- and marine-derived omega-3 fatty acids explored in an endothelial cell line. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158662. [DOI: 10.1016/j.bbalip.2020.158662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/19/2022]
|
6
|
Nishizaki Y, Shimada K, Tani S, Ogawa T, Ando J, Takahashi M, Yamamoto M, Shinozaki T, Miyazaki T, Miyauchi K, Nagao K, Hirayama A, Yoshimura M, Komuro I, Nagai R, Daida H. Association between the ratio of serum n-3 to n-6 polyunsaturated fatty acids and acute coronary syndrome in non-obese patients with coronary risk factor: a multicenter cross-sectional study. BMC Cardiovasc Disord 2020; 20:160. [PMID: 32252654 PMCID: PMC7137439 DOI: 10.1186/s12872-020-01445-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies have reported that being overweight, obese, or underweight is a risk factor for ischemic cardiovascular disease (CVD); however, CVD also occurs in subjects with ideal body mass index (BMI). Recently, the balance of n-3/n-6 polyunsaturated fatty acids (PUFAs) has received attention as a risk marker for CVD but, so far, no study has been conducted that investigates the association between BMI and the balance of n-3/n-6 PUFAs for CVD risk. Methods We evaluated the association between n-3/n-6 PUFA ratio and acute coronary syndrome (ACS) in three BMI-based groups (< 25: low BMI, 25–27.5: moderate BMI, and ≥ 27.5: high BMI) that included 1666 patients who visited the cardiovascular medicine departments of five hospitals located in urban areas in Japan. Results The prevalence of ACS events was 9.2, 7.3, and 10.3% in the low, moderate, and high BMI groups, respectively. We analyzed the relationship between ACS events and several factors, including docosahexaenoic acid/arachidonic acid (DHA/AA) ratio by multivariate logistic analyses. In the low BMI group, a history of smoking (odds ratio [OR]: 2.47, 95% confidence interval [CI]: 1.40–4.35) and low DHA/AA ratio (OR: 0.30, 95% CI: 0.12–0.74) strongly predicted ACS. These associations were also present in the moderate BMI group but the magnitude of the association was much weaker (ORs are 1.47 [95% CI: 0.54–4.01] for smoking and 0.63 [95% CI: 0.13–3.10] for DHA/AA). In the high BMI group, the association of DHA/AA (OR: 1.98, 95% CI: 0.48–8.24) was reversed and only high HbA1c (OR: 1.46, 95% CI: 1.03–2.08) strongly predicted ACS. The interaction test for OR estimates (two degrees of freedom) showed moderate evidence for reverse DHA/AA ratio–ACS associations among the BMI groups (P = 0.091). Conclusions DHA/AA ratio may be a useful marker for risk stratification of ACS, especially in non-obese patients.
Collapse
Affiliation(s)
- Yuji Nishizaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan. .,Medical Technology Innovation Center, Juntendo University, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigemasa Tani
- Department of Cardiology, Nihon University Hospital, 1-6 Kanda surugadai, Chiyoda-ku, Tokyo, 101-8309, Japan
| | - Takayuki Ogawa
- Divison of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Jiro Ando
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masao Takahashi
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Masato Yamamoto
- Department of Internal Medicine, Tokyo Takanawa Hospital, 3-10-11, Takanawa Minato-ku, Tokyo, 108-8606, Japan
| | - Tomohiro Shinozaki
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ken Nagao
- Department of Cardiology, Nihon University Hospital, 1-6 Kanda surugadai, Chiyoda-ku, Tokyo, 101-8309, Japan
| | - Atsushi Hirayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Ohyaguchi Kamichou Itabashi-ku, Tokyo, 173-8610, Japan
| | - Michihiro Yoshimura
- Divison of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryozo Nagai
- Jichi Medical University, 3311-1 Yakushiji Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan.,Faculty of Health Science, Juntendo University, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
8
|
Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr Res 2018; 60:87-95. [PMID: 30527263 DOI: 10.1016/j.nutres.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to evaluate the effectiveness of 3.0 g/d of omega-3 fatty acid (eicosapentaenoic acid and docosahexaenoic acid) supplementation combined with progressive resistance training to improve body composition and lower inflammatory cytokines in older men when compared to placebo and resistance training. We hypothesized that completing a 12-week omega-3 supplementation period along with whole body resistance exercise (3 times/wk) would result in a significantly greater improvement in lean tissue mass as well as a significant decrease in interleukin-6 and tumor necrosis factor-α when compared to placebo. A total of 23 older men (≥65 years old) were randomized to an omega-3 supplementation group (n = 11) or placebo group (n = 12), and all the participants completed the same whole body progressive resistance training program. Baseline and 12-week data collection included body composition, muscle strength, functional ability, and inflammatory cytokines. Results indicated a significant main effect for time (all P < .05) for percent body fat (-2.5%), lean tissue mass (+1.1%), lumbar bone mineral density (+1.1%), hip bone mineral content (+1.1%), chest press strength (+31%), leg press strength (+37%), timed-up-and-go (-6.6%), and 6-minute walk distance (+4.5%) from baseline to post 12 weeks. No significant effects were noted for the 2 inflammatory cytokines measured (P > .05). We conclude that progressive resistance training exercise is an excellent method to enhance parameters of body composition, skeletal muscle strength, and functional ability in older men, whereas omega-3 supplementation did nothing to enhance these parameters or influence inflammatory biomarkers.
Collapse
|
9
|
Importance of extracellular matrix and growth state for the EA.hy926 endothelial cell response to polyunsaturated fatty acids. PLoS One 2018; 13:e0197613. [PMID: 29763471 PMCID: PMC5953484 DOI: 10.1371/journal.pone.0197613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/04/2018] [Indexed: 12/31/2022] Open
Abstract
Consumption of different PUFAs (polyunsaturated fatty acids) can induce functional changes in blood vessels via endothelial cells, which interact with dietary factors in the circulation. The basement membrane that separates the endothelium from the smooth muscle cells of the medial layer can also influence the functional state of endothelial cells. However, the effect of basement membrane on the endothelial response to dietary PUFAs in relation to growth state (e.g. proliferation versus quiescence) has never been investigated. We therefore compared the viability (CCK kit) and proliferation (bromodeoxyuridine incorporation) of EA.hy926 endothelial cells grown on Matrigel or collagen versus non-coated plates. EA.hy926 viability and proliferation were also assessed after treatment with 0–150 μM of PUFAs [linoleic acid (LA), arachidonic acid (AA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]. Our study showed that only cells grown on Matrigel-coated plates reached quiescence after becoming confluent with a decreased level of MCM2 and p-cyclin D1 (T286), increased levels of p27kip1 and a low level of apoptosis and senescence. AA, EPA and DHA decreased the viability and proliferation of subconfluent cells grown on plastic dishes in a dose-dependent manner, while the presence of Matrigel made the cells resistant to these adverse effects. Confluent cell viability was less sensitive to higher concentrations of AA, EPA and DHA than subconfluent cells, and a significant increase in caspase-3 cleavage was only observed in confluent cells treated with DHA. Higher concentrations of AA, EPA and DHA suppressed DNA synthesis by both subconfluent and confluent cells, while precursor C18 PUFAs (LA and ALA) had no negative effects on viability and proliferation. Our study is the first to show that extracellular matrix and growth state are important factors in the EA.hy926 cell response to PUFAs, and that the mechanisms by which individual PUFAs operate may be growth state-dependent.
Collapse
|
10
|
Islam MS, Castellucci C, Fiorini R, Greco S, Gagliardi R, Zannotti A, Giannubilo SR, Ciavattini A, Frega NG, Pacetti D, Ciarmela P. Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells. J Cell Physiol 2018; 233:7143-7156. [PMID: 29574773 DOI: 10.1002/jcp.26537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Uterine leiomyomas (fibroids or myomas) are the most common benign tumors of premenopausal women and new medical treatments are needed. This study aimed to determine the effects of omega-3 fatty acids on the lipid profile, membrane architecture and gene expression patterns of extracellular matrix components (collagen1A1, fibronectin, versican, or activin A), mechanical signaling (integrin β1, FAK, and AKAP13), sterol regulatory molecules (ABCG1, ABCA1, CAV1, and SREBF2), and mitochondrial enzyme (CYP11A1) in myometrial and leiomyoma cells. Myometrial tissues had a higher amount of arachidonic acid than leiomyoma tissues while leiomyoma tissues had a higher level of linoleic acid than myometrial tissues. Treatment of primary myometrial and leiomyoma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) reduced the monounsaturated fatty acid (MUFA) content and increased the polyunsaturated fatty acid (PUFA) content in both cell types. Myometrial and leiomyoma cell membranes were in the liquid-crystalline phase, but EPA- and DHA-treated cells had decreased membrane fluidity. While we found no changes in the mRNA expression of ECM components, EPA and DHA treatment reduced levels of ABCG1, ABCA1, and AKAP13 in both cell types. EPA and DHA also reduced FAK and CYP11A1 expression in myometrial cells. The ability of omega-3 fatty acids to remodel membrane architecture and downregulate the expression of genes involved in mechanical signaling and lipid accumulation in leiomyoma cells offers to further investigate this compound as preventive and/or therapeutic option.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Biotechnology and Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Rosamaria Fiorini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | - Alessandro Zannotti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano R Giannubilo
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Natale G Frega
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Information Engineering, Università Politecnica delle , Marche, Ancona, Italy
| |
Collapse
|
11
|
Rutting S, Xenaki D, Lau E, Horvat J, Wood LG, Hansbro PM, Oliver BG. Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L922-L935. [PMID: 29368548 DOI: 10.1152/ajplung.00438.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Obesity is an important risk factor for developing severe asthma. Dietary fatty acids, which are increased in sera of obese individuals and after high-fat meals, activate the innate immune system and induce inflammation. This study investigated whether dietary fatty acids directly cause inflammation and/or synergize with obesity-induced cytokines in primary human pulmonary fibroblasts in vitro. Fibroblasts were challenged with BSA-conjugated fatty acids [ω-6 polyunsaturated fatty acids (PUFAs) and ω-3 PUFAs or saturated fatty acids (SFAs)], with or without TNF-α, and release of the proinflammatory cytokines, IL-6 and CXCL8, was measured. We found that the ω-6 PUFA arachidonic acid (AA), but not ω-3 PUFAs or SFAs, upregulates IL-6 and CXCL8 release. Combined AA and TNF-α challenge resulted in substantially greater cytokine release than either alone, demonstrating synergy. Synergistic upregulation of IL-6, but not CXCL8, was mainly mediated via cyclooxygenase (COX). Inhibition of p38 MAPK reduced CXCL8 release, induced by AA and TNF-α alone, but not in combination. Synergistic CXCL8 release, following AA and TNF-α challenge, was not medicated via a single signaling pathway (MEK1, JNK, phosphoinositide 3-kinase, and NF-κB) nor by hyperactivation of NF-κB or p38. To investigate if these findings occur in other airway cells, effects of AA in primary human airway smooth muscle (ASM) cells and human bronchial epithelial cells were also investigated. We found proinflammatory effects in ASM cells but not epithelial cells. This study suggests that diets rich in ω-6 PUFAs might promote airway inflammation via multiple pathways, including COX-dependent and -independent pathways, and in an obese person, may lead to more severe airway inflammation.
Collapse
Affiliation(s)
- Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia.,Department of Respiratory Medicine, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Dia Xenaki
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia
| | - Edmund Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia.,School of Life Sciences, University of Technology Sydney , Sydney , Australia
| |
Collapse
|
12
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
13
|
Liu Y, Fang X, Zhang X, Huang J, He J, Peng L, Ye C, Wang Y, Xue F, Ai D, Li D, Zhu Y. Metabolic profiling of murine plasma reveals eicosapentaenoic acid metabolites protecting against endothelial activation and atherosclerosis. Br J Pharmacol 2017; 175:1190-1204. [PMID: 28771708 DOI: 10.1111/bph.13971] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis results from a maladaptive inflammatory response initiated by the intramural retention of LDL in susceptible areas of the arterial vasculature. The ω-3 polyunsaturated fatty acids (ω-3) have protective effects in atherosclerosis; however, their molecular mechanism is still largely unknown. The present study used a metabolomic approach to reveal the atheroprotective metabolites of ω-3 and investigate the underlying mechanisms. EXPERIMENTAL APPROACH We evaluated the development of atherosclerosis in LDL receptor-deficient mice (LDLR-/- ) fed a Western-type diet (WTD) plus ω-3 and also LDLR-/- and fat-1 transgenic (LDLR-/- -fat-1tg ) mice fed a WTD. The profiles of ω-3 in the plasma were screened by LC-MS/MS using unbiased systematic metabolomics analysis. We also studied the effect of metabolites of eicosapentaenoic acid (EPA) on endothelial activation in vitro. KEY RESULTS The ω-3 diet and fat-1 transgene decreased monocyte infiltration, inhibited the expression of pro-inflammatory genes and significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in LDLR-/- mice. The content of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EEQ), from the cytochrome P450 pathway of EPA, was significantly higher in plasma from both ω-3-treated LDLR-/- and LDLR-/- -fat-1tg mice as compared with WTD-fed LDLR-/- mice. In vitro in endothelial cells, 18-HEPE or 17,18-EEQ decreased inflammatory gene expression induced by TNFα via NF-κB signalling and thereby inhibited monocyte adhesion to endothelial cells. CONCLUSIONS AND IMPLICATIONS EPA protected against the development of atherosclerosis in atheroprone mice via the metabolites 18-HEPE and/or 17,18-EEQ, which reduced endothelial activation. These compounds may have therapeutic implications in atherosclerosis. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuan Fang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Huang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liyuan Peng
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dan Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Monastero RN, Karimi R, Nyland JF, Harrington J, Levine K, Meliker JR. Mercury exposure, serum antinuclear antibodies, and serum cytokine levels in the Long Island Study of Seafood Consumption: A cross-sectional study in NY, USA. ENVIRONMENTAL RESEARCH 2017; 156:334-340. [PMID: 28390301 DOI: 10.1016/j.envres.2017.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a well-known neurotoxin, and has been more recently studied specifically as an immunotoxin. In experimental and a few epidemiologic studies, Hg has been associated with distinct cytokine profiles and antinuclear antibody (ANA) positivity, though patterns at lower levels of exposure, typical of seafood consumers with a western diet, are not well characterized. Seafood consumers (n=287) recruited on Long Island, NY completed food frequency and health questionnaires and provided blood for analysis of Hg, poly-unsaturated fatty acids (omega-3 and omega-6 fatty acids), selenium (Se), ANA, and several cytokines (IL-1β, IL-4, IL-10, TNF-α, IL-17, IFN-γ, and IL-1ra). Logistic and linear regression analyses were conducted to evaluate associations between serum Hg and cytokines and ANA. Adjusted models accounted for gender, age, ethnicity, income, education, smoking, BMI, selenium, omega-3 fatty acids, omega-6 fatty acids, omega-6/omega-3 ratio, and fish intake. Sex-stratified models were also generated with the expectation that immune profiles would differ between women and men. Median blood Hg was 4.58µg/L with 90th %ile =19.8µg/L. Nine individuals displayed ANA positivity at serum titers above 1:80; many of the cytokines were below detection limits, and the ability to detect was used in the logistic regression analyses. In linear and logistic regression analyses, Hg was not significantly associated with any of the seven investigated cytokines or with ANA-positivity. Therefore, Hg was not associated with altered immune profiles in this population of seafood consumers.
Collapse
Affiliation(s)
- Rebecca N Monastero
- Undergraduate Studies, Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Stony Brook University, Stony Brook, NY 11794-8338, United States of America.
| | - Roxanne Karimi
- Stony Brook University, Stony Brook, NY 11794-8338, United States of America; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States of America; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794-5000, United States of America.
| | - Jennifer F Nyland
- Salisbury University Department of Biological Sciences, Henson Science Hall, 232, Salisbury, MD 21801, United States of America.
| | - James Harrington
- RTI International, Trace Inorganics Laboratory, RTP, NC 27709, United States of America.
| | - Keith Levine
- RTI International, Trace Inorganics Laboratory, RTP, NC 27709, United States of America.
| | - Jaymie R Meliker
- Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794-5000, United States of America; Program in Public Health, Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794-8338, United States of America.
| |
Collapse
|
15
|
Nishizaki Y, Shimada K, Daida H. The balance of omega-3 polyunsaturated fatty acids for -reducing residual risks in patients with coronary artery disease. Acta Cardiol 2017. [PMID: 28636510 DOI: 10.1080/00015385.2017.1305174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Residual risk, which cannot be prevented by statins alone, must be controlled for inhibiting the onset of coronary events. Omega-3 polyunsaturated fatty acids (PUFAs) play an important role in controlling residual risk. The Japan eicosapentaenoic acid (EPA) Lipid Intervention Study demonstrated the inhibitory effect of high-purity EPA preparations on the residual risk of cardiovascular events. Omega-3 PUFAs inhibit coronary artery disease (CAD) through various actions, including triglyceride-lowering action. Besides lipid metabolism, platelet aggregation inhibition, anti-inflammatory effects, improved vascular endothelium function, and anti-hypertensive action contribute to arteriosclerosis inhibition. Conversely, several recent studies did not demonstrate the efficacy of omega-3 PUFAs for CAD prevention. PUFAs levels may need to exceed a threshold for anti-arteriosclerotic action. The efficacy of EPA might depend on the baseline value of the EPA/arachidonic acid (AA) ratio prior to EPA administration. This baseline EPA/AA ratio value varies according to country and region as well as changes of dietary habits. More global research in this field is needed to identify an optimal omega-3 PUFAs administration strategy.
Collapse
Affiliation(s)
- Yuji Nishizaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J 2017; 31:3719-3728. [PMID: 28507168 DOI: 10.1096/fj.201700080r] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023]
Abstract
IL-6 is a pleiotropic cytokine with a wide range of biologic effects. In response to prolonged exercise, IL-6 is synthesized by contracting skeletal muscle and released into circulation. Circulating IL-6 is thought to maintain energy status during exercise by acting as an energy sensor for contracting muscle and stimulating glucose production. If tissue damage occurs, immune cells infiltrate and secrete cytokines, including IL-6, to repair skeletal muscle damage. With adequate rest and nutrition, the IL-6 response to exercise is attenuated as skeletal muscle adapts to training. However, sustained elevations in IL-6 due to repeated bouts of unaccustomed activities or prolonged exercise with limited rest may result in untoward physiologic effects, such as accelerated muscle proteolysis and diminished nutrient absorption, and may impair normal adaptive responses to training. Recent intervention studies have explored the role of mixed meals or carbohydrate, protein, ω-3 fatty acid, or antioxidant supplementation in mitigating exercise-induced increases in IL-6. Emerging evidence suggests that sufficient energy intake before exercise is an important factor in attenuating exercise-induced IL-6 by maintaining muscle glycogen. We detail various nutritional interventions that may affect the IL-6 response to exercise in healthy human adults and provide recommendations for future research exploring the role of IL-6 in the adaptive response to exercise.-Hennigar, S. R., McClung, J. P., Pasiakos, S. M. Nutritional interventions and the IL-6 response to exercise.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA; .,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| |
Collapse
|
17
|
Calder PC. Long-chain polyunsaturated fatty acids and inflammation. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601066389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Philip C. Calder
- Institute of Human Nutrition, School of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
18
|
The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. MEDICINA-LITHUANIA 2016; 52:139-47. [PMID: 27496183 DOI: 10.1016/j.medici.2016.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/16/2016] [Accepted: 05/19/2016] [Indexed: 11/23/2022]
Abstract
This review aims to clarify the relation between the ratio of omega-6 to omega-3 fatty acids and the development of depression. It is explained how these fatty acids are involved in the production of eicosanoids and how these fatty acids can affect the membrane fluidity, by their incorporation into membrane phospholipids. In addition, it is described how omega-3 derivatives are shown to regulate gene transcription. In view of the pathophysiology of depression, the mechanisms of how an altered ratio of omega-6 to omega-3 could be involved in depression are discussed. Possible mechanisms could include an increased production of pro-inflammatory cytokines, which can activate the HPA axis and a changed membrane fluidity, which potentially affects membrane bound enzymes, ion channels, receptor activity and neurotransmitter binding. In view of clinical trials, it is also discussed whether omega-3 supplementation could have a beneficial effect in the treatment of depressive patient. There are strong indications that an increased ratio of membrane omega-6 to omega-3 is involved in the pathogenesis of depression and so far, omega-3 supplementation has shown positive effects in clinical trials.
Collapse
|
19
|
González-Gil EM, Santabárbara J, Siani A, Ahrens W, Sioen I, Eiben G, Günther K, Iacoviello L, Molnar D, Risé P, Russo P, Tornaritis M, Veidebaum T, Galli C, Moreno LA. Whole-blood fatty acids and inflammation in European children: the IDEFICS Study. Eur J Clin Nutr 2016; 70:819-23. [DOI: 10.1038/ejcn.2015.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023]
|
20
|
|
21
|
Omega 3 (n−3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol Dis 2015; 55:48-55. [DOI: 10.1016/j.bcmd.2015.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
|
22
|
Reinders I, Murphy RA, Song X, Visser M, Cotch MF, Lang TF, Garcia ME, Launer LJ, Siggeirsdottir K, Eiriksdottir G, Jonsson PV, Gudnason V, Harris TB, Brouwer IA. Polyunsaturated fatty acids in relation to incident mobility disability and decline in gait speed; the Age, Gene/Environment Susceptibility-Reykjavik Study. Eur J Clin Nutr 2015; 69:489-93. [PMID: 25585599 PMCID: PMC4752009 DOI: 10.1038/ejcn.2014.277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES Low intake of long chain polyunsaturated fatty acids (PUFAs) are associated with physical disability; however, prospective studies of circulating PUFAs are scarce. We examined associations between plasma phospholipid n-3 and n-6 PUFAs with risk of incident mobility disability and gait speed decline. SUBJECTS/METHODS Data are from a subgroup of the Age, Gene/Environment Susceptibility-Reykjavik Study, a population-based study of risk factors for disease and disability in old age. In this subgroup (n = 556, mean age 75.1 ± 5.0 years, 47.5% men), plasma phospholipid PUFAs were assessed at baseline using gas chromatography. Mobility disability and usual gait speed were assessed at baseline and after 5.2 ± 0.2 years. Mobility disability was defined as the following: having much difficulty, or being unable to walk 500 m or climb up 10 steps; decline in gait speed was defined as change ⩾ 0.10 m/s. Logistic regression analyses were performed to determine associations between sex-specific s.d. increments in PUFAs with risk of incident mobility disability and gait speed decline. Odds ratios (95% confidence intervals) adjusted for demographics, follow-up time, risk factors and serum vitamin D were reported. RESULTS In women, but not men, every s.d. increment increase of total n-3 PUFAs and docosahexaenoic acid (DHA) was associated with lower mobility disability risk, odds ratio 0.48 (0.25; 0.93) and odds ratio 0.45 (0.24; 0.83), respectively. There was no association between n-6 PUFAs and the risk of incident mobility disability or gait speed decline. CONCLUSIONS Higher concentrations of n-3 PUFAs and, particularly, DHA may protect women from impaired mobility but does not appear to have such an effect in men.
Collapse
Affiliation(s)
- I Reinders
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU UniversityAmsterdam, The Netherlands
| | - RA Murphy
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - X Song
- Biomarker Laboratory, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M Visser
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU UniversityAmsterdam, The Netherlands
- Department of Nutrition and Dietetics, Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - MF Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - TF Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - ME Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - LJ Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - K Siggeirsdottir
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - G Eiriksdottir
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
| | - PV Jonsson
- Department of Geriatrics, Landspitali National University Hospital and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - V Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - TB Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - IA Brouwer
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU UniversityAmsterdam, The Netherlands
| |
Collapse
|
23
|
Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem 2015; 26:571-84. [PMID: 25841249 DOI: 10.1016/j.jnutbio.2015.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease Prevention & Management, College of Health and Biomedicine, Victoria University, Melbourne VIC 3021, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia
| | - Hemant Poudyal
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
24
|
Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology 2015; 23:79-89. [PMID: 25676565 DOI: 10.1007/s10787-015-0228-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
Collapse
|
25
|
Ueda T, Hokari R, Higashiyama M, Yasutake Y, Maruta K, Kurihara C, Tomita K, Komoto S, Okada Y, Watanabe C, Usui S, Nagao S, Miura S. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine. World J Gastroenterol 2015; 21:177-186. [PMID: 25574090 PMCID: PMC4284333 DOI: 10.3748/wjg.v21.i1.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/11/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine.
METHODS: C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined.
RESULTS: In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P < 0.05). The mucosal damage induced by indomethacin was significantly lower in mice fed the safflower oil diet than in mice fed the beef tallow or fish oil diet (P < 0.05). Indomethacin increased monocyte and platelet migration to the intestinal mucosa, whereas safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05).
CONCLUSION: A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Blood Platelets/drug effects
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Cell Adhesion/drug effects
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Chemotaxis, Leukocyte/drug effects
- Diet
- Fatty Acids, Omega-6/administration & dosage
- Fish Oils/administration & dosage
- Fish Oils/toxicity
- Indomethacin/toxicity
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestine, Small/blood supply
- Intestine, Small/drug effects
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Male
- Meat Products/toxicity
- Mice, Inbred C57BL
- Microvessels/drug effects
- Microvessels/immunology
- Microvessels/metabolism
- RNA, Messenger/metabolism
- Safflower Oil/administration & dosage
- Time Factors
Collapse
|
26
|
Simon MC, Bilan S, Nowotny B, Dickhaus T, Burkart V, Schloot NC. Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. Clin Exp Immunol 2013; 172:383-93. [PMID: 23600826 DOI: 10.1111/cei.12071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/31/2022] Open
Abstract
Fatty acids, uric acid and glucose are thought to contribute to subclinical inflammation associated with diabetes mellitus. We tested whether co-incubation of free fatty acids and uric acid or glucose influences the secretion of immune mediators from stimulated human whole blood in vitro. Fresh whole blood samples from 20 healthy subjects, 20 patients with type 1 diabetes and 23 patients with type 2 diabetes were incubated for 24 h with palmitic acid (PAL), linolenic acid (LIN) or eicosapentaenoic acid (EPA) alone or together with elevated concentrations of uric acid or glucose. Concentrations of proinflammatory cytokines interleukin (IL)-1β, IL-2, IL-12(p70), IL-18, IFN-γ, of regulatory cytokines IL-4, IL-10, IL-17 and chemokine CCL2 (MCP-1) were measured by multiplex-bead technology from supernatants. Co-incubation of fatty acids with uric acid resulted in a significant reduction of IL-10, IL-12(p70), IFN-γ and CCL2 (MCP-1) concentrations in supernatants compared to incubation with uric acid alone (P < 0·0001). In contrast, IL-18 was up-regulated upon co-stimulation with fatty acids and uric acid. Similarly, co-incubation of fatty acids with glucose diminished secretion of IL-10, IFN-γ and CCL2 (monocyte chemotactic protein-1), while IL-8 was up-regulated (P < 0·001). Samples from healthy and diabetic subjects did not differ after adjustment for age, sex, body mass index and diabetes type. All three fatty acids similarly influenced whole blood cytokine release in vitro and modulated uric acid or glucose-stimulated cytokine secretion. Although the ω-3-fatty acid EPA showed slightly stronger effects, further studies are required to elaborate the differential effects of PAL, LIN and EPA on disease risk observed previously in epidemiological studies.
Collapse
Affiliation(s)
- M C Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz-Center for Diabetes Research at the Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Numerous effects of n-3 fatty acids EPA and DHA on functional responses of cells involved in inflammation and immunity have been described. Fatty acid-induced modifications in membrane order and in the availability of substrates for eicosanoid synthesis are long-standing mechanisms that are considered important in explaining the effects observed. More recently, effects on signal transduction pathways and on gene expression profiles have been identified. Over the last 10 years or so, significant advances in understanding the mechanisms of action of n-3 fatty acids have been made. These include the identification of new actions of lipid mediators that were already described and of novel interactions among those mediators and the description of an entirely new family of lipid mediators, resolvins and protectins that have anti-inflammatory actions and are critical to the resolution of inflammation. It is also recognised that EPA and DHA can inhibit activation of the prototypical inflammatory transcription factor NF-κB. Recent studies suggest three alternative mechanisms by which n-3 fatty acids might have this effect. Within T-cells, as well as other cells of relevance to immune and inflammatory responses, EPA and DHA act to disrupt very early events involving formation of the structures termed lipid rafts which bring together various proteins to form an effective signalling platform. In summary, recent research has identified a number of new mechanisms of action that help to explain previously identified effects of n-3 fatty acids on inflammation and immunity.
Collapse
|
28
|
Abimosleh SM, Tran CD, Howarth GS. Emu oil reduces small intestinal inflammation in the absence of clinical improvement in a rat model of indomethacin-induced enteropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:429706. [PMID: 23573127 PMCID: PMC3612469 DOI: 10.1155/2013/429706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
Abstract
Nonsteroidal-anti-inflammatory-drug (NSAID) enteropathy is characterized by small intestinal damage and ulceration. Emu Oil (EO) has previously been reported to reduce intestinal inflammation. Aim. We investigated EO for its potential to attenuate NSAID-enteropathy in rats. Methods. Male Sprague Dawley rats (n = 10/group) were gavaged with Water, Olive Oil (OO), or EO (0.5 mL; days 0-12) and with 0.5 mL Water or the NSAID, Indomethacin (8 mg/kg; days 5-12) daily. Disease activity index (DAI), 13C-sucrose breath test (SBT), organ weights, intestinal damage severity (IDS), and myeloperoxidase (MPO) activity were assessed. P < 0.05 was considered significant. Results. In Indomethacin-treated rats, DAI was elevated (days 10-12) and SBT values (56%) and thymus weight (55%) were decreased, relative to normal controls. Indomethacin increased duodenum (68%), colon (24%), SI (48%), caecum (48%), liver (51%) and spleen (88%) weights, IDS scores, and MPO levels (jejunum: 195%, ileum: 104%) compared to normal controls. Jejunal MPO levels were decreased (64%) by both EO and OO, although only EO decreased ileal MPO (50%), compared to Indomethacin controls. Conclusions. EO reduced acute intestinal inflammation, whereas other parameters of Indomethacin-induced intestinal injury were not affected significantly. Increased EO dose and/or frequency of administration could potentially improve clinical efficacy.
Collapse
Affiliation(s)
- Suzanne M. Abimosleh
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Cuong D. Tran
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gordon S. Howarth
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
29
|
Alcock J, Franklin ML, Kuzawa CW. Nutrient signaling: evolutionary origins of the immune-modulating effects of dietary fat. QUARTERLY REVIEW OF BIOLOGY 2012; 87:187-223. [PMID: 22970557 DOI: 10.1086/666828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many dietary fatty acids (FA) have potent effects on inflammation, which is not only energetically costly, but also contributes to a range of chronic diseases. This presents an evolutionary paradox: Why should the host initiate a costly and damaging response to commonly encountered nutrients? We propose that the immune system has evolved a capacity to modify expenditure on inflammation to compensate for the effects of dietary FA on gut microorganisms. In a comprehensive literature review, we show that the body preferentially upregulates inflammation in response to saturated FA that promote harmful microbes. In contrast, the host opften reduces inflammation in response to the many unsaturated FA with antimicrobial properties. Our model is supported by contrasts involving shorter-chain FA and omega-3 FA, but with less consistent evidence for trans fats, which are a recent addition to the human diet. Our findings support the idea that the vertebrate immune system has evolved a capacity to detect diet-driven shipfts in the composition of gut microbiota from the profile of FA consumed and to calibrate the costs of inflammation in response to these cues. We conclude by extending the nutrient signaling model to other nutrients, and consider implications for drug discovery and public health.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, University of New Mexico Albuquerque, New Mexico 87131, USA.
| | | | | |
Collapse
|
30
|
Calder PC. The role of marine omega-3 (
n
-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res 2012; 56:1073-80. [DOI: 10.1002/mnfr.201100710] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Philip C. Calder
- Human Development and Health Academic Unit; Faculty of Medicine; University of Southampton; MP887 Southampton General Hospital; Southampton UK
| |
Collapse
|
31
|
Hileman CO, Carman TL, Storer NJ, Labbato DE, White CA, McComsey GA. Omega-3 fatty acids do not improve endothelial function in virologically suppressed HIV-infected men: a randomized placebo-controlled trial. AIDS Res Hum Retroviruses 2012; 28:649-55. [PMID: 21870979 DOI: 10.1089/aid.2011.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Omega-3 fatty acids decrease cardiovascular disease (CVD) mortality possibly due to antiinflammatory effect. Inflammation and endothelial dysfunction likely play a role in the heightened CVD risk in HIV. Our goal was to evaluate the effect of omega-3 fatty acids primarily on endothelial function and inflammation in HIV-infected adults with moderate CVD risk on stable antiretroviral therapy. We conducted a 24-week, randomized, double-blind, placebo-controlled study to evaluate the effect of omega-3-acid ethyl esters 1 g twice a day. Flow-mediated dilation (FMD) of the brachial artery, lipoproteins and markers of inflammation, endothelial activation, coagulation, and insulin resistance were measured at entry and week 24. There were no within- or between-group differences in change in FMD over 24 weeks (mean change in FMD -0.13% vs. 1.5% for treatment vs. placebo; p=0.21). There were no between-group differences in changes in lipoprotein levels or biomarkers tested, except soluble tumor necrosis factor receptor-I, which favored omega-3-acid ethyl esters. Omega-3 fatty acids did not improve endothelial function or activation, coagulation, or insulin resistance in virologically suppressed, HIV-infected men with moderate CVD risk; however, inflammation tended to improve. This suggests that omega-3 fatty acids may not be potent enough to counteract the enhanced inflammation and endothelial dysfunction due to HIV and antiretrovirals.
Collapse
Affiliation(s)
- Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Diseases, MetroHealth Medical Center, Cleveland, Ohio
- Case Western Reserve University, Cleveland, Ohio
| | - Teresa L. Carman
- Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Norma J. Storer
- Case Western Reserve University, Cleveland, Ohio
- Departments of Pediatrics and Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Danielle E. Labbato
- Case Western Reserve University, Cleveland, Ohio
- Departments of Pediatrics and Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Cynthia A. White
- Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Grace A. McComsey
- Case Western Reserve University, Cleveland, Ohio
- Departments of Pediatrics and Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
32
|
Effects of fatty acids on endothelial cells: inflammation and monocyte adhesion. J Surg Res 2012; 177:e35-43. [PMID: 22572621 DOI: 10.1016/j.jss.2012.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diet is known to have an important impact on cardiovascular health. n-3 Fatty acids (FAs), found in high quantity in fish oil, have demonstrated beneficial effects in patients with coronary artery disease. The role of n-6 FAs remains more controversial. The objective of this study was to examine the effect of arachidonic acid (AA), an n-6 FA, and eicosapentanoic acid (EPA), an n-3 FA, on the interaction between monocytes and endothelial cells (ECs). DESIGN We used a cellular model of ECs (EA.hy.926) and monocytes (human leukemic myelomonocytic U937). Confluent ECs were treated with AA or EPA, in the presence of tumor necrosis factor-alpha (TNF-α) or vehicle alone for either 4 or 24h. Adhesion of monocytes to the endothelial monolayer was performed. For gene expression, reverse transcription, followed by real-time quantitative polymerase chain reaction, was performed. RESULTS There was a significant increase in adhesion of monocytes to the endothelial monolayer in the presence of n-6 FAs, both in the presence and in the absence of TNF-α at 4 and 24h. The adhesion of monocytes to the endothelial monolayer was decreased with n-3 FAs at 24h. Intercellular adhesion molecule 1, vascular cell adhesion molecule 1, E-Selectin, Interleukin 6, and TNF-α were significantly increased in ECs treated with n-6 FAs. CONCLUSIONS We conclude that AA increases inflammation and enhances the ability of ECs to bind monocytes in vitro. EPA leads to a decrease in the ability of EA.hy.926 to bind monocytes, although the effect appears more modest. Taken together, these data indicate that the n-6 FA AA could potentiate inflammation and early events of atherosclerosis.
Collapse
|
33
|
Abstract
(n-3) PUFA are a family of biologically active fatty acids. The simplest member of this family, α-linolenic acid, can be converted to the more biologically active very long-chain (n-3) PUFA EPA and DHA; this process occurs by a series of desaturation and elongation reactions, with stearidonic acid being an intermediate in the pathway. Biological activity of α-linolenic and stearidonic acids most likely relates to their conversion to EPA. The very long-chain (n-3) PUFA have a range of physiological roles that relate to optimal cell membrane structure and optimal cell function and responses. Thus, (n-3) PUFA play a key role in preventing, and perhaps treating, many conditions of poor health and well-being. The multiple actions of (n-3) PUFA appear to involve multiple mechanisms that connect the cell membrane, the cytosol, and the nucleus. For some actions, (n-3) PUFA appear to act via receptors or sensors, so regulating signaling processes that influence patterns of gene expression. Some effects of (n-3) PUFA seem to involve changes in cell membrane fatty acid composition. Changing membrane composition can in turn affect membrane order, formation of lipid rafts, intracellular signaling processes, gene expression, and the production of both lipid and peptide mediators. Under typical Western dietary conditions, human cells tend to have a fairly high content of the (n-6) fatty acid arachidonic acid. Increased oral intake of EPA and DHA modifies the content of arachidonic acid as well as of EPA and DHA. Arachidonic acid is the substrate for eicosanoids involved in physiology and pathophysiology. The eicosanoids produced from EPA frequently have properties that are different from those that are produced from arachidonic acid. EPA and DHA are also substrates for production of resolvins and protectins, which seem to be biologically extremely potent. Increasing the contents of EPA and DHA in membranes modifies the pattern of production of these different lipid mediators.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition and Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
34
|
Abstract
Inflammation plays a key role in many common conditions and diseases. Fatty acids can influence inflammation through a variety of mechanisms acting from the membrane to the nucleus. They act through cell surface and intracellular receptors that control inflammatory cell signalling and gene expression patterns. Modifications of inflammatory cell membrane fatty acid composition can modify membrane fluidity, lipid raft formation and cell signalling leading to altered gene expression and can alter the pattern of lipid and peptide mediator production. Cells involved in the inflammatory response usually contain a relatively high proportion of the n-6 fatty acid arachidonic acid in their membrane phospholipids. Eicosanoids produced from arachidonic acid have well-recognised roles in inflammation. Oral administration of the marine n-3 fatty acids EPA and DHA increases the contents of EPA and DHA in the membranes of cells involved in inflammation. This is accompanied by a decrease in the amount of arachidonic acid present. EPA is a substrate for eicosanoid synthesis and these are often less potent than those produced from arachidonic acid. EPA gives rise to E-series resolvins and DHA gives rise to D-series resolvins and protectins. Resolvins and protectins are anti-inflammatory and inflammation resolving. Thus, the exposure of inflammatory cells to different types of fatty acids can influence their function and so has the potential to modify inflammatory processes.
Collapse
|
35
|
Association of serum n-3 polyunsaturated fatty acids with C-reactive protein in men. Eur J Clin Nutr 2011; 66:736-41. [PMID: 22113248 DOI: 10.1038/ejcn.2011.195] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES N-3 polyunsaturated fatty acids (PUFAs) have been associated with reduced inflammation. We tested the hypothesis that high serum concentrations of the n-3 PUFAs are associated with lower serum C-reactive protein (CRP) concentrations in healthy middle-aged Finnish men. We also examined whether exposure to mercury, an environmental contaminant in fish, which is also a major source of long-chain n-3 PUFA, was associated with CRP. SUBJECTS/METHODS Data from the prospective, population-based Kuopio Ischaemic Heart Disease Risk Factor Study were analyzed cross-sectionally to determine the associations between serum n-3 PUFAs, hair mercury and serum CRP in 1395 healthy men, aged 42-60 years. Linear regression analyses were performed to analyze the associations. RESULTS In the multivariate models, the mean serum CRP in quartiles of serum total n-3 PUFA concentration was 1.23, 1.27, 1.18 and 1.08 mg/l, P for trend = 0.01. Statistically significant inverse associations were also observed with the total serum long-chain n-3 PUFA concentration and with the individual long-chain n-3 PUFAs docosapentaenoic acid and docosahexaenoic acid, but not with eicosapentaenoic acid or with the intermediate-chain n-3 PUFA alpha-linolenic acid. Hair methylmercury content was not associated with serum CRP levels and it did not modify the associations between serum n-3 PUFAs and CRP either. CONCLUSIONS Serum n-3 PUFAs and especially the long-chain n-3 PUFA concentration, a marker of fish or fish oil consumption, were inversely associated with serum CRP in men. Exposure to mercury was not associated with serum CRP.
Collapse
|
36
|
Otton R, Marin DP, Bolin AP, de Cássia Santos Macedo R, Campoio TR, Fineto C, Guerra BA, Leite JR, Barros MP, Mattei R. Combined fish oil and astaxanthin supplementation modulates rat lymphocyte function. Eur J Nutr 2011; 51:707-18. [PMID: 21972007 DOI: 10.1007/s00394-011-0250-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/16/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE Higher intakes of n-3 polyunsaturated fatty acids that are abundant in marine fishes have been long described as a "good nutritional intervention" with increasing clinical benefits to cardiovascular health, inflammation, mental, and neurodegenerative diseases. The present study was designed to investigate the effect of daily fish oil (FO-10 mg EPA/kg body weight (BW) and 7 mg DHA/kg BW) intake by oral gavage associated with the antioxidant astaxanthin (ASTA-1 mg/kg BW) on the redox metabolism and the functional properties of lymphocytes from rat lymph nodes. METHODS This study was conducted by measurements of lymphocyte proliferation capacity, ROS production [superoxide (O₂(•-)) and hydrogen peroxide (H₂O₂)], nitric oxide (NO(•)) generation, intracellular calcium release, oxidative damage to lipids and proteins, activities of major antioxidant enzymes, GSH/GSSG content, and cytokines release. RESULTS After 45 days of FO + ASTA supplementation, the proliferation capacity of activated T- and B-lymphocytes was significantly diminished followed by lower levels of O₂(•-), H₂O₂ and NO(•) production, and increased activities of total/SOD, GR and GPx, and calcium release in cytosol. ASTA was able to prevent oxidative modification in cell structures through the suppression of the oxidative stress condition imposed by FO. L: -selectin was increased by FO, and IL-1β was decreased only by ASTA supplementation. CONCLUSION We can propose that association of ASTA with FO could be a good strategy to prevent oxidative stress induced by polyunsaturated fatty acids and also to potentiate immuno-modulatory effects of FO.
Collapse
Affiliation(s)
- Rosemari Otton
- Postgraduate Program, Health Sciences, CBS, Cruzeiro do Sul University, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fatty acids and inflammation: The cutting edge between food and pharma. Eur J Pharmacol 2011; 668 Suppl 1:S50-8. [DOI: 10.1016/j.ejphar.2011.05.085] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
|
38
|
Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 2011; 668 Suppl 1:S70-80. [PMID: 21810417 DOI: 10.1016/j.ejphar.2011.07.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders, characterized by impairments in social interaction and communication and the presence of limited, repetitive and stereotyped interests and behavior. Bowel symptoms are frequently reported in children with ASD and a potential role for gastrointestinal disturbances in ASD has been suggested. This review focuses on the importance of (allergic) gastrointestinal problems in ASD. We provide an overview of the possible gut-to-brain pathways and discuss opportunities for pharmaceutical and/or nutritional approaches for therapy.
Collapse
|
39
|
Canales A, Sánchez-Muniz FJ, Bastida S, Librelotto J, Nus M, Corella D, Guillen M, Benedi J. Effect of walnut-enriched meat on the relationship between VCAM, ICAM, and LTB4 levels and PON-1 activity in ApoA4 360 and PON-1 allele carriers at increased cardiovascular risk. Eur J Clin Nutr 2011; 65:703-10. [PMID: 21407247 DOI: 10.1038/ejcn.2011.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND/OBJECTIVE Cardiovascular risk depends largely on paraoxonase (PON-1) and apolipoprotein A4 (APOA4) gene polymorphisms. To compare the effects of consumption of walnut-enriched meat versus low-fat meat (LM) on selected soluble adhesion molecules and leukotrienes (LTB4). SUBJECTS/METHODS In all 22 subjects at increased cardiovascular risk were taken. It is a non-blinded, cross-over, placebo-controlled study. Two 5-week experimental periods separated by 4-6 week wash-out interval. Participants consumed walnut-enriched meat during one period and LM during the other. Diet characteristics, HDLc, Apo A1, paraoxonase, sVCAM-1, sICAM-1 and LTB4 were analysed. PON-1 55, PON-1 192 and APOA4 360 polymorphism effects were also assessed. RESULTS Individuals consuming walnut-enriched meat displayed higher paraoxonase activity (P<0.001), lower levels of sICAM and aVCAM (P=0.046, P=0.012, respectively) and leukotriene B4 (P=0.044), and lower paraoxonase-1/HDLc and paraoxonase-1/Apo A1 ratios (both, P<0.001) than those consuming LM. Paraoxonase levels correlated negatively with those of sICAM (r=-0.471, P<0.01). Significant decreases (at least P<0.05) were observed in sICAM concentrations in PON-1 55LM+MM, PON-1 QQ192 and APOA4-2 carriers while decreases in sVCAM in QR+RR and APOA4-1 carriers were observed. Paraoxonase-1/HDLc and paraoxonase-1/Apo A1 ratios were significantly influenced by paraoxonase polymorphisms. CONCLUSIONS Walnut-enriched meat appears as a functional meat as consumed in the framework of a mix diet lowered the concentration of some selected inflammatory chemoattractant biomarkers. This effect was largely influenced by PON-1 and Apo A4-360 polymorphisms.
Collapse
Affiliation(s)
- A Canales
- Departamento de Nutrición y Bromatología I, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The endothelium is critical for the maintenance of a proper vessel function. Disturbances of endothelial function, called endothelial dysfunction, have serious implications, and lead to the development of atherosclerosis. It is well established that the risk for atherosclerosis development is influenced by nutritional factors such as the intake of certain fatty acids. Due to the fundamental role of the endothelium for atherosclerosis development, it is, therefore, likely that fatty acids directly influence the function of endothelial cells. The present review aims to explain the divergent effects of different types of fatty acids on cardiovascular disease risk by summarizing in vitro-data on the effects of fatty acids on (1) important signalling pathways involved in the modulation of endothelial cell function, and (2) endothelial cell functional properties, namely vasoactive mediator release and mononuclear cell recruitment, both of which are typically dysregulated during endothelial dysfunction.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | |
Collapse
|
41
|
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010; 2:355-374. [PMID: 22254027 PMCID: PMC3257651 DOI: 10.3390/nu2030355] [Citation(s) in RCA: 598] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022] Open
Abstract
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
42
|
|
43
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
44
|
Higgins LJ, Rutledge JC. Inflammation associated with the postprandial lipolysis of triglyceriderich lipoproteins by lipoprotein lipase. Curr Atheroscler Rep 2009; 11:199-205. [DOI: 10.1007/s11883-009-0031-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Chiu WC, Wang YC, Chien YW, Hou YC, Hu YM, Yeh SL. Effects of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in hypercholesterolemic mice with sepsis. J Nutr Biochem 2009; 20:254-60. [DOI: 10.1016/j.jnutbio.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/18/2008] [Accepted: 03/05/2008] [Indexed: 12/18/2022]
|
46
|
Takahashi M, Hiyama Y, Yokoyama M, Yu S, Hu Y, Melford K, Bensadoun A, Goldberg IJ. In vivo arterial lipoprotein lipase expression augments inflammatory responses and impairs vascular dilatation. Arterioscler Thromb Vasc Biol 2008; 28:455-62. [PMID: 18258818 DOI: 10.1161/atvbaha.107.153239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although epidemiologic data suggest that hypertriglyceridemia and elevated plasma levels of fatty acids are toxic to arteries, in vitro correlates have been inconsistent. To investigate whether increased endothelial cell expression of lipoprotein lipase (LpL), the primary enzyme creating free fatty acids from circulating triglycerides (TG), affects vascular function, we created transgenic mice that express human LpL (hLpL) driven by the promoter and enhancer of the Tie2 receptor. METHODS AND RESULTS Mice expressing this transgene, denoted EC-hLpL and L for low and H for high expression, had decreased plasma TG levels compared with wild-type mice (WT): 106+/-31 in WT, 37+/-17 (line H), and 63+/-31 mg/dL (line L) because of a reduction in VLDL TG; plasma cholesterol and HDL levels were unaltered. Crossing a high expressing EC-hLpL transgene onto the LpL knockout background allowed for survival of the pups; TG in these mice was approximately equal to that of heterozygous LpL knockout mice. Surprisingly, under control conditions the EC-hLpL transgene did not alter arterial function or endothelial cell gene expression; however, after tumor necrosis factor (TNF)-alpha treatment, arterial vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and endogenous TNF-alpha mRNA levels were increased and arteries had impaired endothelium-dependent vasodilatation. This was associated with reduced eNOS dimers. CONCLUSIONS Therefore, we hypothesize that excess vascular wall LpL augments vascular dysfunction in the setting of inflammation.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Luu NT, Madden J, Calder PC, Grimble RF, Shearman CP, Chan T, Dastur N, Howell WM, Rainger GE, Nash GB. Dietary supplementation with fish oil modifies the ability of human monocytes to induce an inflammatory response. J Nutr 2007; 137:2769-74. [PMID: 18029497 DOI: 10.1093/jn/137.12.2769] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monocytes/macrophages are key orchestrators of inflammation and are involved in the pathogenesis of chronic inflammatory disorders, including atherosclerosis. (n-3) Fatty acids, found in fish oil, have been shown to have protective effects in such disorders. To investigate possible modes of action, we used a monocyte:endothelial cell (EC) coculture model to investigate the pro-inflammatory potential of monocytes. Monocytes were isolated from the blood of donors with peripheral arterial disease (PAD) or control donors, before and after a 12-wk supplementation of their diet with fish oil. The monocytes were cultured with human umbilical vein EC (HUVEC) for 24 h, after which the ability of the HUVEC to recruit flowing neutrophils was tested. Monocytes from either group of donors stimulated the EC to support the adhesion and migration of neutrophils. Fish oil supplementation reduced the potency of monocytes from normal subjects, but not those from patients with PAD, to induce recruitment. Concurrent medication may have acted as a complicating factor. On subgroup analysis, only those free of medication showed a significant effect of fish oil. Responses before or after supplementation were not closely linked to patterns of secretion of cytokines by cultured monocytes, tested in parallel monocultures. These results suggest that fish oil can modulate the ability of monocytes to stimulate EC and that this might contribute to their protective effects against chronic inflammatory disorders. Benefits, however, may depend on existing medical status and on other treatments being received.
Collapse
Affiliation(s)
- Nguyet-Thin Luu
- Centre for Cardiovascular Sciences, Department of Physiology, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Aghdassi E, Wendland BE, Stapleton M, Raman M, Allard JP. Adequacy of nutritional intake in a Canadian population of patients with Crohn's disease. ACTA ACUST UNITED AC 2007; 107:1575-80. [PMID: 17761234 DOI: 10.1016/j.jada.2007.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Indexed: 12/12/2022]
Abstract
Crohn's disease is frequently associated with nutritional deficiencies, often a result of disease activity and poor oral intake. This study investigated the adequacy of dietary intake, based on the Canadian Dietary Reference Intake, in ambulatory patients with Crohn's disease and a normal body mass index (BMI; calculated as kg/m(2)). This was a cross-sectional study of 74 patients with mean age of 35.7+/-1.4 years and BMI of 23.05+/-0.45. All patients completed a 7-day food record and a diary for the Crohn's Disease Activity Index. Mean Crohn's Disease Activity Index was 138.99+/-11.38. Energy and protein intakes were within the recommended levels of intake, but total carbohydrates, fat, and saturated fat intake exceeded the recommended levels of <55%, <35%, and <10% in 39.2%, 27%, and 59.5% of the patients, respectively. Micronutrient intakes were suboptimal most notably for folate, vitamins C, E, and calcium. There were no substantial differences between patients with active and inactive disease in terms of failure to meet the Dietary Reference Intake. In conclusion, in this population sample, a large number of ambulatory patients with Crohn's disease have suboptimal dietary patterns despite a normal BMI and inactive disease. Dietary counseling and supplementation may be warranted in this patient population.
Collapse
|
49
|
Chiu WC, Hou YC, Yeh CL, Hu YM, Yeh SL. Effect of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in diabetic mice with sepsis. Br J Nutr 2007; 97:685-91. [PMID: 17349081 DOI: 10.1017/s0007114507450310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigated the effect ofn-3 fatty acids on adhesion molecules and tissue myeloperoxidase (MPO) activity in diabetic mice with sepsis. Diabetes was induced by a streptozotocin injection. Mice with blood glucose levels exceeding 2000 mg/l were considered diabetic. Diabetic mice were assigned to two groups with a medium-fat (10 %, w/w) diet either provided by soyabean oil (SO,n30) or fish oil (FO,n30).n-3 fatty acids provided 4·3 % of the total energy and then-3/n-6 fatty acid ratio was 1:2 in the FO diet. After feeding the respective diet for 3 weeks, all mice had sepsis induced by caecal ligation and puncture (CLP) and were killed at 0, 6 or 24 h after CLP, with ten mice at each time-point. The result showed that compared with the SO group, FO group had lower PGE2and TNF-α levels in peritoneal lavage fluid after CLP. Lymphocyte CD11a/CD18 expressions were higher at 6 h, whereas the percentage was lower at 24 h in the SO group than in the FO group. Neutrophil CD11b/CD18 expressions were significantly higher in the SO group than in the FO group at 0 h. The FO group had lower organ MPO activities at various time-points after CLP when compared with those of the SO group. The present findings suggest that compared with the diabetic mice fed SO, a low-dosen-3 fatty acid supplementation may attenuate leucocyte adhesion and infiltration into tissues in diabetic mice complicated with sepsis.
Collapse
Affiliation(s)
- Wan-Chun Chiu
- Graduate Institute of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
50
|
Abstract
During the last century much evidence has accumulated to suggest that from a public health perspective the type of fat is more important than the amount of fat. Saturated andtrans-fatty acids increase and bothn-6 andn-3 PUFA decrease the risk of CHD. Most of the knowledge about the effects of dietary fatty acids on CHD risk is based on observational studies and controlled dietary experiments with intermediate end points (e.g. blood lipoprotein fractions). Information from high-quality randomised controlled trials on fatty acids and CHD is lacking. The Netherlands Institute for Public Health has calculated the potential health gain that can be achieved if the fatty acid composition of the current Dutch diet is replaced by the recommended fatty acid composition. The recommendations of The Netherlands Health Council are: saturated fatty acids <10% energy intake;trans-fatty acids <1% energy intake; fish consumption (an indicator ofn-3 PUFA) once or twice weekly. Implementation of this recommendation could reduce the incidence of CHD in The Netherlands by about 25 000/year and the number of CHD-related deaths by about 6000/year and increase life expectancy from age 40 years onwards by 0.5 year. These projections indicate the public health potential of interventions that modify the fatty acid composition of the diet.
Collapse
Affiliation(s)
- Jayne V Woodside
- Division of Human Nutrition, Wageningen University, The Netherlands.
| | | |
Collapse
|