1
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Everett T, Ten Eyck TW, Wu CH, Shelowitz AL, Stansbury SM, Firek A, Setlow B, McIntyre JC. Cilia loss on distinct neuron populations differentially alters cocaine-induced locomotion and reward. J Psychopharmacol 2024; 38:200-212. [PMID: 38151883 PMCID: PMC11078551 DOI: 10.1177/02698811231219058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.
Collapse
Affiliation(s)
- Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tyler W. Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Chang-Hung Wu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | | | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Alexandra Firek
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| |
Collapse
|
4
|
Guo DF, Williams PA, Laule C, Seaby C, Zhang Q, Sheffield VC, Rahmouni K. POMC Neuron BBSome Regulation of Body Weight is Independent of its Ciliary Function. FUNCTION 2023; 5:zqad070. [PMID: 38223458 PMCID: PMC10787280 DOI: 10.1093/function/zqad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - Paul A Williams
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Charles Seaby
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Gilloteaux J, De Swert K, Suain V, Nicaise C. Thalamic Neuron Resilience during Osmotic Demyelination Syndrome (ODS) Is Revealed by Primary Cilium Outgrowth and ADP-ribosylation factor-like protein 13B Labeling in Axon Initial Segment. Int J Mol Sci 2023; 24:16448. [PMID: 38003639 PMCID: PMC10671465 DOI: 10.3390/ijms242216448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
- Department of Anatomical Sciences, St George’s University School of Medicine, Newcastle upon Tyne NE1 JG8, UK
| | - Kathleen De Swert
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| | - Valérie Suain
- Laboratoire d’Histologie Générale, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium;
| | - Charles Nicaise
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| |
Collapse
|
6
|
Hong G, Fu X, Chen X, Zhang L, Han X, Ding S, Liu Z, Bi X, Li W, Chang M, Qiao R, Guo S, Tu H, Chai R. Dyslexia-Related Hearing Loss Occurs Mainly through the Abnormal Spontaneous Electrical Activity of Spiral Ganglion Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205754. [PMID: 37068190 DOI: 10.1002/advs.202205754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/25/2023] [Indexed: 06/04/2023]
Abstract
Dyslexia is a reading and spelling disorder due to neurodevelopmental abnormalities and is occasionally found to be accompanied by hearing loss, but the reason for the associated deafness remains unclear. This study finds that knockout of the dyslexia susceptibility 1 candidate 1 gene (Dyx1c1-/- ) in mice, the best gene for studying dyslexia, causes severe hearing loss, and thus it is a good model for studying the mechanism of dyslexia-related hearing loss (DRHL). This work finds that the Dyx1c1 gene is highly expressed in the mouse cochlea and that the spontaneous electrical activity of inner hair cells and type I spiral ganglion neurons is altered in the cochleae of Dyx1c1-/- mice. In addition, primary ciliary dyskinesia-related phenotypes such as situs inversus and disrupted ciliary structure are seen in Dyx1c1-/- mice. In conclusion, this study gives new insights into the mechanism of DRHL in detail and suggests that Dyx1c1 may serve as a potential target for the clinical diagnosis of DRHL.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xin Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Liyan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Xuan Han
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Shuqin Ding
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Ruifeng Qiao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Siwei Guo
- School of Life Science, Shandong University, 266237, Qingdao, China
| | - Hailong Tu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
7
|
Dwivedi I, Caldwell AB, Zhou D, Wu W, Subramaniam S, Haddad GG. Methadone alters transcriptional programs associated with synapse formation in human cortical organoids. Transl Psychiatry 2023; 13:151. [PMID: 37147277 PMCID: PMC10163238 DOI: 10.1038/s41398-023-02397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 05/07/2023] Open
Abstract
Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and behaviors linked with drug addiction. However, evidence of methadone's ability to readily accumulate in neural tissue, and cause long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 μM methadone for 50 days revealed a robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and matricellular proteins (MCPs). TGFβ1 was identified as an upstream regulator of this network and appeared as part of a highly interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of methadone's putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid addiction.
Collapse
Affiliation(s)
- Ila Dwivedi
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dan Zhou
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
8
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Bernard A, Ojeda Naharros I, Yue X, Mifsud F, Blake A, Bourgain-Guglielmetti F, Ciprin J, Zhang S, McDaid E, Kim K, Nachury MV, Reiter JF, Vaisse C. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight 2023; 8:e155900. [PMID: 36692018 PMCID: PMC9977312 DOI: 10.1172/jci.insight.155900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.
Collapse
Affiliation(s)
| | | | - Xinyu Yue
- Department of Medicine and The Diabetes Center
| | | | - Abbey Blake
- Department of Medicine and The Diabetes Center
| | | | | | - Sumei Zhang
- Department of Medicine and The Diabetes Center
| | - Erin McDaid
- Department of Medicine and The Diabetes Center
| | - Kellan Kim
- Department of Medicine and The Diabetes Center
| | | | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
10
|
Valentine MS, Van Houten J. Ion Channels of Cilia: Paramecium as a Model. J Eukaryot Microbiol 2022; 69:e12884. [PMID: 34995386 DOI: 10.1111/jeu.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
Holotrichous ciliates, like Paramecium, swim through their aqueous environment by beating their many cilia. They can alter swimming speed and direction, which seems to have mesmerized early microscopists of the 1600's. We know from extensive and elegant physiological studies and generation of mutants that these cells can be considered little swimming neurons because their ciliary beating is under bioelectric control of ion channels in the cilia. This chapter will focus on the ionic control of swimming behavior by ciliary ion channels, primarily in the holotrichous ciliate Paramecium. Voltage gated and calcium activated channels for calcium, magnesium, sodium, and potassium are regulated in a closely orchestrated manner that allows cilia to bend and propel the cell forward or backward. Sensory input that generates receptor potentials feeds into the control of this channel activity and allows the cell to turn or speed up. This in turn helps the cell to avoid predators or toxic conditions. While the focus is on P. tetraurelia and P. caudatum, the principles of ciliary ion channel activity and control are easily extendable to other ciliates and protists. The high conservation of channel and ion pump structures also extends the lessons from Paramecium to higher organisms.
Collapse
Affiliation(s)
- Megan S Valentine
- SUNY Plattsburgh, Department of Biological Sciences, 101 Broad Street, Plattsburgh, NY, USA, 518-564-3174
| | - Judith Van Houten
- University of Vermont, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, 802-434-4006
| |
Collapse
|
11
|
Primary Ciliary Deficits in the Dentate Gyrus of Fragile X Syndrome. Stem Cell Reports 2020; 15:454-466. [PMID: 32735823 PMCID: PMC7419715 DOI: 10.1016/j.stemcr.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is the non-motile cilium present in most mammalian cell types and functions as an antenna for cells to sense signals. Ablating primary cilia in postnatal newborn neurons of the dentate gyrus (DG) results in both reduced dendritic arborization and synaptic strength, leading to hippocampal-dependent learning and memory deficits. Fragile X syndrome (FXS) is a common form of inheritance for intellectual disabilities with a high risk for autism spectrum disorders, and Fmr1 KO mice, a mouse model for FXS, demonstrate deficits in newborn neuron differentiation, dendritic morphology, and memory formation in the DG. Here, we found that the number of primary cilia in Fmr1 KO mice is reduced, specifically in the DG of the hippocampus. Moreover, this cilia loss was observed postnatally mainly in newborn neurons generated from the DG, implicating that these primary ciliary deficits may possibly contribute to the pathophysiology of FXS. Primary cilia are significantly reduced in the DG of Fmr1 KO mice Fmr1 KO mice show age-dependent primary cilia deficits Neuronal ciliogenesis defects are shown in the DG of Fmr1 KO mice Primary cilia deficits are observed in newborn neurons from SGZ, but not from DNe
Collapse
|
12
|
Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex. Brain Struct Funct 2019; 225:387-401. [PMID: 31873798 PMCID: PMC6957562 DOI: 10.1007/s00429-019-02011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Inhibitory interneurons in the cerebral cortex contain specific proteins or peptides characteristic for a certain interneuron subtype. In mice, three biochemical markers constitute non-overlapping interneuron populations, which account for 80–90% of all inhibitory cells. These interneurons express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). SST is not only a marker of a specific interneuron subtype, but also an important neuropeptide that participates in numerous biochemical and signalling pathways in the brain via somatostatin receptors (SSTR1-5). In the nervous system, SST acts as a neuromodulator and neurotransmitter affecting, among others, memory, learning, and mood. In the sensory cortex, the co-localisation of GABA and SST is found in approximately 30% of interneurons. Considering the importance of interactions between inhibitory interneurons in cortical plasticity and the possible GABA and SST co-release, it seems important to investigate the localisation of different SSTRs on cortical interneurons. Here, we examined the distribution of SSTR1-5 on barrel cortex interneurons containing PV, SST, or VIP. Immunofluorescent staining using specific antibodies was performed on brain sections from transgenic mice that expressed red fluorescence in one specific interneuron subtype (PV-Ai14, SST-Ai14, and VIP-Ai14 mice). SSTRs expression on PV, SST, and VIP interneurons varied among the cortical layers and we found two patterns of SSTRs distribution in L4 of barrel cortex. We also demonstrated that, in contrast to other interneurons, PV cells did not express SSTR2, but expressed other SSTRs. SST interneurons, which were not found to make chemical synapses among themselves, expressed all five SSTR subtypes.
Collapse
|
13
|
Saito M, Sato T. [Current situation of researches on a sensor organelle, primary cilium, to understand the pathogenesis of ciliopathy]. Nihon Yakurigaku Zasshi 2019; 153:117-123. [PMID: 30867380 DOI: 10.1254/fpj.153.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Primary cilium is a membrane-protruding immotile sensory organelle. It had been supposed that the cilium was a static organelle for long periods. However, recent studies have uncovered that the cilium is dynamically organized organelle in a cell cycle-dependent manner; it is formed during G0/G1 phase and resorbed when the cells enter cell division cycle. Despite the primary cilium is very short and its surface area is extremely small, the cilium possesses a few kinds of G protein-coupled receptors, growth factor receptors and ion channels. Therefore, it can function as a signaling receptor for selective bioactive ligands and mechanical stresses. Dysregulation of the ciliary dynamics is linked with hereditary disorders, so called "ciliopathy", with clinical manifestations of microcephaly, polycystic kidney, situs inversus, polydactyly, and so on. No effective medical treatment for the ciliopathies has been available. Increasing evidences about the molecular mechanisms of ciliary dynamics and ciliary functions have revealed that enormous number of molecules regulate a cycle of ciliogenesis, cilium-derived signaling, ciliary resorption and elimination. However, it is a fact that research progress is far inferior to the full disclosure of the molecular mechanisms. Further studies are required to clarify the pathogenesis of the cilipathies. Moreover, efficient medical treatments are expected to be developed by pharmacological approaches.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University School of Medicine
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University School of Medicine
| |
Collapse
|
14
|
Zhang P, Kiseleva AA, Korobeynikov V, Liu H, Einarson MB, Golemis EA. Microscopy-Based Automated Live Cell Screening for Small Molecules That Affect Ciliation. Front Genet 2019; 10:75. [PMID: 30809247 PMCID: PMC6379280 DOI: 10.3389/fgene.2019.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
The primary monocilium, or cilium, is a single antenna-like organelle that protrudes from the surface of most mammalian cell types, and serves as a signaling hub. Mutations of cilia-associated genes result in severe genetic disorders termed ciliopathies. Among these, the most common is autosomal dominant polycystic kidney disease (ADPKD); less common genetic diseases include Bardet–Biedl syndrome, Joubert syndrome, nephronophthisis, and others. Important signaling cascades with receptor systems localized exclusively or in part at cilia include Sonic Hedgehog (SHH), platelet derived growth factor alpha (PDGFRα), WNTs, polycystins, and others. Changes in ciliation during development or in pathological conditions such as cancer impacts signaling by these proteins. Notably, ciliation status of cells is coupled closely to the cell cycle, with cilia protruding in quiescent (G0) or early G1 cells, declining in S/G2, and absent in M phase, and has been proposed to contribute to cell cycle regulation. Because of this complex biology, the elaborate machinery regulating ciliary assembly and disassembly receives input from many cellular proteins relevant to cell cycle control, development, and oncogenic transformation, making study of genetic factors and drugs influencing ciliation of high interest. One of the most effective tools to investigate the dynamics of the cilia under different conditions is the imaging of live cells. However, developing assays to observe the primary cilium in real time can be challenging, and requires a consideration of multiple details related to the cilia biology. With the dual goals of identifying small molecules that may have beneficial activity through action on human diseases, and of identifying ciliary activities of existing agents that are in common use or development, we here describe creation and evaluation of three autofluorescent cell lines derived from the immortalized retinal pigmented epithelium parental cell line hTERT-RPE1. These cell lines stably express the ciliary-targeted fluorescent proteins L13-Arl13bGFP, pEGFP-mSmo, and tdTomato-MCHR1-N-10. We then describe methods for use of these cell lines in high throughput screening of libraries of small molecule compounds to identify positive and negative regulators of ciliary disassembly.
Collapse
Affiliation(s)
- Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China.,Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
15
|
Sterpka A, Chen X. Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 2018; 137:114-121. [PMID: 30291873 PMCID: PMC6410375 DOI: 10.1016/j.phrs.2018.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Primary cilia are tiny microtubule-based signaling devices that regulate a variety of physiological functions, including metabolism and cell division. Defects in primary cilia lead to a myriad of diseases in humans such as obesity and cancers. In the mature brain, both neurons and astrocytes contain a single primary cilium. Although neuronal primary cilia are not directly involved in synaptic communication, their pathophysiological impacts on obesity and mental disorders are well recognized. In contrast, research on astrocytic primary cilia lags far behind. Currently, little is known about their functions and molecular pathways in the mature brain. Unlike neurons, postnatal astrocytes retain the capacity of cell division and can become reactive and proliferate in response to various brain insults such as epilepsy, ischemia, traumatic brain injury, and neurodegenerative β-amyloid plaques. Since primary cilia derive from the mother centrioles, astrocyte proliferation must occur in coordination with the dismantling and ciliogenesis of astrocyte cilia. In this regard, the functions, signal pathways, and structural dynamics of neuronal and astrocytic primary cilia are fundamentally different. Here we discuss and compare the current understanding of neuronal and astrocytic primary cilia.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States.
| |
Collapse
|
16
|
Álvarez-Satta M, Matheu A. Primary cilium and glioblastoma. Ther Adv Med Oncol 2018; 10:1758835918801169. [PMID: 30302130 PMCID: PMC6170955 DOI: 10.1177/1758835918801169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) represents the most common, malignant and lethal primary brain tumour in adults. The primary cilium is a highly conserved and dynamic organelle that protrudes from the apical surface of virtually every type of mammalian cell. There is increasing evidence that abnormal cilia are involved in cancer progression, since primary cilia regulate cell cycle and signalling transduction. In this review, we summarize the role of primary cilium specifically with regard to GBM, where there is evidence postulating it as a critical mediator of GBM tumorigenesis and progression. This opens the way to the application of cilia-targeted therapies (‘ciliotherapy’) as a new approach in the fight against this devastating tumour.
Collapse
Affiliation(s)
- María Álvarez-Satta
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, CP 20014 San Sebastian, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
17
|
Siljee JE, Wang Y, Bernard AA, Ersoy BA, Zhang S, Marley A, Von Zastrow M, Reiter JF, Vaisse C. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet 2018; 50:180-185. [PMID: 29311635 PMCID: PMC5805646 DOI: 10.1038/s41588-017-0020-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Jacqueline E Siljee
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Wang
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adelaide A Bernard
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Baran A Ersoy
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sumei Zhang
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Marley
- Department of Psychiatry and Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Von Zastrow
- Department of Psychiatry and Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Christian Vaisse
- Department of Medicine and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Youn YH, Han YG. Primary Cilia in Brain Development and Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:11-22. [PMID: 29030052 PMCID: PMC5745523 DOI: 10.1016/j.ajpath.2017.08.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
Abstract
The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
19
|
Formichi P, Battisti C, De Santi MM, Guazzo R, Tripodi SA, Radi E, Rossi B, Tarquini E, Federico A. Primary cilium alterations and expression changes of Patched1 proteins in niemann-pick type C disease. J Cell Physiol 2017; 233:663-672. [PMID: 28332184 DOI: 10.1002/jcp.25926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
Abstract
Niemann-Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease-causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3-ß-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A), a cholesterol transport-inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A-treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A-treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A-treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Elena Radi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Ermelinda Tarquini
- Unit of Clinic Neurology and Neurometabolic Diseases, AOU Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Nechipurenko IV, Berciu C, Sengupta P, Nicastro D. Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. eLife 2017; 6. [PMID: 28411364 PMCID: PMC5392363 DOI: 10.7554/elife.25686] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
The primary cilium is nucleated by the mother centriole-derived basal body (BB) via as yet poorly characterized mechanisms. BBs have been reported to degenerate following ciliogenesis in the C. elegans embryo, although neither BB architecture nor early ciliogenesis steps have been described in this organism. In a previous study (Doroquez et al., 2014), we described the three-dimensional morphologies of sensory neuron cilia in adult C. elegans hermaphrodites at high resolution. Here, we use serial section electron microscopy and tomography of staged C. elegans embryos to demonstrate that BBs remodel to support ciliogenesis in a subset of sensory neurons. We show that centriolar singlet microtubules are converted into BB doublets which subsequently grow asynchronously to template the ciliary axoneme, visualize degeneration of the centriole core, and define the developmental stage at which the transition zone is established. Our work provides a framework for future investigations into the mechanisms underlying BB remodeling. DOI:http://dx.doi.org/10.7554/eLife.25686.001
Collapse
Affiliation(s)
- Inna V Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
Goetz SC, Bangs F, Barrington CL, Katsanis N, Anderson KV. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 2017; 12:e0173399. [PMID: 28291807 PMCID: PMC5349470 DOI: 10.1371/journal.pone.0173399] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.
Collapse
Affiliation(s)
- Sarah C. Goetz
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Fiona Bangs
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| | - Chloe L. Barrington
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nicholas Katsanis
- Department of Cell Biology and Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States of America
| | - Kathryn V. Anderson
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| |
Collapse
|
22
|
Sarchielli E, Comeglio P, Squecco R, Ballerini L, Mello T, Guarnieri G, Idrizaj E, Mazzanti B, Vignozzi L, Gallina P, Maggi M, Vannelli GB, Morelli A. Tumor Necrosis Factor-α Impairs Kisspeptin Signaling in Human Gonadotropin-Releasing Hormone Primary Neurons. J Clin Endocrinol Metab 2017; 102:46-56. [PMID: 27736314 PMCID: PMC5413096 DOI: 10.1210/jc.2016-2115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
CONTEXT Inflammatory pathways may impair central regulatory networks involving gonadotropin-releasing hormone (GnRH) neuron activity. Studies in humans are limited by the lack of human GnRH neuron cell lines. OBJECTIVE To establish an in vitro model of human GnRH neurons and analyze the effects of proinflammatory cytokines. DESIGN The primary human fetal hypothalamic cells (hfHypo) were isolated from 12-week-old fetuses. Responsiveness to kisspeptin, the main GnRH neurons' physiological regulator, was evaluated for biological characterization. Tumor necrosis factor alpha (TNF-α) was used as a proinflammatory stimulus. Main Outcome Measures: Expression of specific GnRH neuron markers by quantitative reverse transcription-polymerase chain reaction, flow cytometry, and immunocytochemistry analyses; and GnRH-releasing ability and electrophysiological changes in response to kisspeptin. RESULTS The primary hfHypo showed a high percentage of GnRH-positive cells (80%), expressing a functional kisspeptin receptor (KISS1R) and able to release GnRH in response to kisspeptin. TNF-α exposure determined a specific inflammatory intracellular signaling and reduced GnRH secretion, KISS1R expression, and kisspeptin-induced depolarizing effect. Moreover, hfHypo possessed a primary cilium, whose assembly was inhibited by TNF-α. CONCLUSION The hfHypo cells represent a novel tool for investigations on human GnRH neuron biology. TNF-α directly affects GnRH neuron function by interfering with KISS1R expression and ciliogenesis, thereby impairing kisspeptin signaling.
Collapse
Affiliation(s)
| | | | | | - Lara Ballerini
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Tommaso Mello
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, 50134 Florence, Italy
| | | | | | - Benedetta Mazzanti
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | | | - Pasquale Gallina
- Neurosurgery School of Tuscany, Department of Surgery and Translational Medicine, University of Florence, 50139 Florence, Italy; and
| | - Mario Maggi
- Sexual Medicine and Andrology Unit and
- Istituto Nazionale Biostrutture e Biosistemi, 00136 Rome, Italy
| | | | | |
Collapse
|
23
|
Luesma MJ, Cantarero I, Ranera B, Remacha AR, Castiella T, Romero A, Martín I, Rodellar C, Junquera C. Primary Cilia in Chondrogenic Differentiation of Equine Bone Marrow Mesenchymal Stem Cells: Ultrastructural Study. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Agnati LF, Marcoli M, Maura G, Fuxe K, Guidolin D. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Rev Neurosci 2016; 27:347-63. [DOI: 10.1515/revneuro-2015-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
AbstractSeveral ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook’s hypothesis on ‘cell sentience’ is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field potentials.
Collapse
Affiliation(s)
| | - Manuela Marcoli
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Guido Maura
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Kjell Fuxe
- 2Karolinska Institutet, Department of Neuroscience, S-17177 Stockholm, Sweden
| | - Diego Guidolin
- 4University of Padova, Department of Molecular Medicine, I-35122 Padova, Italy
| |
Collapse
|
25
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Recruitment of β-Arrestin into Neuronal Cilia Modulates Somatostatin Receptor Subtype 3 Ciliary Localization. Mol Cell Biol 2015; 36:223-35. [PMID: 26503786 DOI: 10.1128/mcb.00765-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Primary cilia are essential sensory and signaling organelles present on nearly every mammalian cell type. Defects in primary cilia underlie a class of human diseases collectively termed ciliopathies. Primary cilia are restricted subcellular compartments, and specialized mechanisms coordinate the localization of proteins to cilia. Moreover, trafficking of proteins into and out of cilia is required for proper ciliary function, and this process is disrupted in ciliopathies. The somatostatin receptor subtype 3 (Sstr3) is selectively targeted to primary cilia on neurons in the mammalian brain and is implicated in learning and memory. Here, we show that Sstr3 localization to cilia is dynamic and decreases in response to somatostatin treatment. We further show that somatostatin treatment stimulates β-arrestin recruitment into Sstr3-positive cilia and this recruitment can be blocked by mutations in Sstr3 that impact agonist binding or phosphorylation. Importantly, somatostatin treatment fails to decrease Sstr3 ciliary localization in neurons lacking β-arrestin 2. Together, our results implicate β-arrestin in the modulation of Sstr3 ciliary localization and further suggest a role for β-arrestin in the mediation of Sstr3 ciliary signaling.
Collapse
|
27
|
Schou KB, Pedersen LB, Christensen ST. Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015; 16:1099-113. [PMID: 26297609 DOI: 10.15252/embr.201540530] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Primary cilia are specialized microtubule-based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein-coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin-like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR-targeted drug strategies for the treatment of ciliopathies.
Collapse
|
28
|
Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN, Pohida K, Munasinghe J, Gotoh N, Wickstead B, Fariss RN, Dong L, Li T, Swaroop A. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet 2015; 24:3775-91. [PMID: 25859007 DOI: 10.1093/hmg/ddv123] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeeva Munasinghe
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and
| | | | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
29
|
Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A 2014; 111:10335-40. [PMID: 24982149 DOI: 10.1073/pnas.1403286111] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most central neurons in the mammalian brain possess an appendage called a primary cilium that projects from the soma into the extracellular space. The importance of these organelles is highlighted by the fact that primary cilia dysfunction is associated with numerous neuropathologies, including hyperphagia-induced obesity, hypogonadism, and learning and memory deficits. Neuronal cilia are enriched for signaling molecules, including certain G protein-coupled receptors (GPCRs), suggesting that neuronal cilia sense and respond to neuromodulators in the extracellular space. However, the impact of cilia on signaling to central neurons has never been demonstrated. Here, we show that the kisspeptin receptor (Kiss1r), a GPCR that is activated by kisspeptin to regulate the onset of puberty and adult reproductive function, is enriched in cilia projecting from mouse gonadotropin-releasing hormone (GnRH) neurons. Interestingly, GnRH neurons in adult animals are multiciliated and the percentage of GnRH neurons possessing multiple Kiss1r-positive cilia increases during postnatal development in a progression that correlates with sexual maturation. Remarkably, disruption of cilia selectively on GnRH neurons leads to a significant reduction in kisspeptin-mediated GnRH neuronal activity. To our knowledge, this result is the first demonstration of cilia disruption affecting central neuronal activity and highlights the importance of cilia for proper GPCR signaling.
Collapse
|
30
|
Lack of dopaminergic inputs elongates the primary cilia of striatal neurons. PLoS One 2014; 9:e97918. [PMID: 24830745 PMCID: PMC4022734 DOI: 10.1371/journal.pone.0097918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/26/2014] [Indexed: 01/09/2023] Open
Abstract
In the rodent brain, certain G protein-coupled receptors and adenylyl cyclase type 3 are known to localize to the neuronal primary cilium, a primitive sensory organelle protruding singly from almost all neurons. A recent chemical screening study demonstrated that many compounds targeting dopamine receptors regulate the assembly of Chlamydomonas reinhardtii flagella, structures which are analogous to vertebrate cilia. Here we investigated the effects of dopaminergic inputs loss on the architecture of neuronal primary cilia in the rodent striatum, a brain region that receives major dopaminergic projections from the midbrain. We first analyzed the lengths of neuronal cilia in the dorsolateral striatum of hemi-parkinsonian rats with unilateral lesions of the nigrostriatal dopamine pathway. In these rats, the striatal neuronal cilia were significantly longer on the lesioned side than on the non-lesioned side. In mice, the repeated injection of reserpine, a dopamine-depleting agent, elongated neuronal cilia in the striatum. The combined administration of agonists for dopamine receptor type 2 (D2) with reserpine attenuated the elongation of striatal neuronal cilia. Repeated treatment with an antagonist of D2, but not of dopamine receptor type 1 (D1), elongated the striatal neuronal cilia. In addition, D2-null mice displayed longer neuronal cilia in the striatum compared to wild-type controls. Reserpine treatment elongated the striatal neuronal cilia in D1-null mice but not in D2-null mice. Repeated treatment with a D2 agonist suppressed the elongation of striatal neuronal cilia on the lesioned side of hemi-parkinsonian rats. These results suggest that the elongation of striatal neuronal cilia following the lack of dopaminergic inputs is attributable to the absence of dopaminergic transmission via D2 receptors. Our results provide the first evidence that the length of neuronal cilia can be modified by the lack of a neurotransmitter's input.
Collapse
|
31
|
Del Giudice E, Macca M, Imperati F, D'Amico A, Parent P, Pasquier L, Layet V, Lyonnet S, Stamboul-Darmency V, Thauvin-Robinet C, Franco B. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis 2014; 9:74. [PMID: 24884629 PMCID: PMC4113190 DOI: 10.1186/1750-1172-9-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/29/2014] [Indexed: 01/29/2023] Open
Abstract
Background Oral-facial-digital type 1 syndrome (OFD1; OMIM 311200) belongs to the expanding group of disorders ascribed to ciliary dysfunction. With the aim of contributing to the understanding of the role of primary cilia in the central nervous system (CNS), we performed a thorough characterization of CNS involvement observed in this disorder. Methods A cohort of 117 molecularly diagnosed OFD type I patients was screened for the presence of neurological symptoms and/or cognitive/behavioral abnormalities on the basis of the available information supplied by the collaborating clinicians. Seventy-one cases showing CNS involvement were further investigated through neuroimaging studies and neuropsychological testing. Results Seventeen patients were molecularly diagnosed in the course of this study and five of these represent new mutations never reported before. Among patients displaying neurological symptoms and/or cognitive/behavioral abnormalities, we identified brain structural anomalies in 88.7%, cognitive impairment in 68%, and associated neurological disorders and signs in 53% of cases. The most frequently observed brain structural anomalies included agenesis of the corpus callosum and neuronal migration/organisation disorders as well as intracerebral cysts, porencephaly and cerebellar malformations. Conclusions Our results support recent published findings indicating that CNS involvement in this condition is found in more than 60% of cases. Our findings correlate well with the kind of brain developmental anomalies described in other ciliopathies. Interestingly, we also described specific neuropsychological aspects such as reduced ability in processing verbal information, slow thought process, difficulties in attention and concentration, and notably, long-term memory deficits which may indicate a specific role of OFD1 and/or primary cilia in higher brain functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Brunella Franco
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
| | | |
Collapse
|
32
|
Khalouei S, Chow AM, Brown IR. Stress-induced localization of HSPA6 (HSP70B') and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells. Cell Stress Chaperones 2014; 19:321-7. [PMID: 24061851 PMCID: PMC3982026 DOI: 10.1007/s12192-013-0459-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022] Open
Abstract
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B') and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.
Collapse
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 ON Canada
| |
Collapse
|
33
|
Sarkisian MR, Guadiana SM. Influences of Primary Cilia on Cortical Morphogenesis and Neuronal Subtype Maturation. Neuroscientist 2014; 21:136-51. [DOI: 10.1177/1073858414531074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition that virtually every neuronal progenitor cell and neuron in the cerebral cortex is ciliated has triggered intense interest in neuronal cilia function. Here, we review recent studies that suggest the primary cilia of cortical progenitor cells are required for establishing and maintaining the organization within pools of proliferative cells. In addition, signaling via primary cilia differentially influence the migration and differentiation of excitatory and inhibitory neurons in the developing cortex. Specifically, the primary cilia of excitatory neurons appear to play a significant role in regulating the post-migratory differentiation of these neurons whereas cilia of inhibitory neurons appear to be required for the proper migration and positioning of those cells in cortex. Given the recently discovered functions of cilia in proliferation, neuronal migration, and differentiation, it is likely that further studies of cilia signaling will improve our understanding of how these basic developmental processes are regulated and may provide insight into how mutations in specific cilia genes linked to ciliopathies lead to the many neurological deficits associated with these diseases.
Collapse
Affiliation(s)
| | - Sarah M. Guadiana
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 2014; 3:e01948. [PMID: 24668170 PMCID: PMC3965213 DOI: 10.7554/elife.01948] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia-glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - James R Anderson
- Department of Ophthalmology, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
35
|
Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development. Mol Cell Biol 2014; 34:1310-21. [PMID: 24469395 DOI: 10.1128/mcb.01409-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins are conserved filament-forming GTP-binding proteins that act as cellular scaffolds or diffusion barriers in a number of cellular processes. However, the role of septins in vertebrate development remains relatively obscure. Here, we show that zebrafish septin 6 (sept6) is first expressed in the notochord and then in nearly all of the ciliary organs, including Kupffer's vesicle (KV), the pronephros, eye, olfactory bulb, and neural tube. Knockdown of sept6 in zebrafish embryos results in reduced numbers and length of cilia in KV. Consequently, cilium-related functions, such as the left-right patterning of internal organs and nodal/spaw signaling, are compromised. Knockdown of sept6 also results in aberrant cilium formation in the pronephros and neural tube, leading to cilium-related defects in pronephros development and Sonic hedgehog (Shh) signaling. We further demonstrate that SEPT6 associates with acetylated α-tubulin in vivo and localizes along the axoneme in the cilia of zebrafish pronephric duct cells as well as cultured ZF4 cells. Our study reveals a novel role of sept6 in ciliogenesis during early embryonic development in zebrafish.
Collapse
|
36
|
Neuronal primary cilia: an underappreciated signaling and sensory organelle in the brain. Neuropsychopharmacology 2014; 39:244-5. [PMID: 24317320 PMCID: PMC3857650 DOI: 10.1038/npp.2013.203] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
38
|
Localization of primary cilia in mouse retina. Acta Histochem 2013; 115:789-94. [PMID: 23608602 DOI: 10.1016/j.acthis.2013.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
The primary cilia are considered as "cellular antennae" that sense and interchange information with the extracellular environment. Nearly all mammalian cells have a single primary cilium. In the retina, the outer segment of the photoreceptor is known to be a specialized form of primary cilium, but studies on cilia in other layers of the retina are scarce. In this study, we investigated the expression of primary cilia in the whole thickness of the mouse retina using immunofluorescence with three different ciliary markers: Arl13b, acetylated α-tubulin and adenylyl cyclase III. Our results show positive reactions in the photoreceptor layer, outer plexiform layer and ganglion cell layer, which might suggest the possible presence of primary cilia in these areas, but we could not directly prove the strand-like shape of cilia in those areas. In the outer plexiform layer, all three markers showed intense staining along the neuronal synapses, which suggests that the neuronal processes themselves might share the features of cilia.
Collapse
|
39
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
40
|
Wojtyniak M, Brear AG, O'Halloran DM, Sengupta P. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 2013; 126:4381-95. [PMID: 23886944 DOI: 10.1242/jcs.127274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
Collapse
Affiliation(s)
- Martin Wojtyniak
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
41
|
Soetedjo L, Glover DA, Jin H. Targeting of vasoactive intestinal peptide receptor 2, VPAC2, a secretin family G-protein coupled receptor, to primary cilia. Biol Open 2013; 2:686-94. [PMID: 23862016 PMCID: PMC3711036 DOI: 10.1242/bio.20134747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Primary cilia protrude from the cell surface of many cell types in the human body and function as cellular antennae via ciliary membrane localized receptors. Neurons and glial cells in the brain possess primary cilia, and the malfunction of primary cilia may contribute to neurological deficits present in many cilia-associated disorders. Several rhodopsin family G-protein coupled receptors (GPCRs) are specifically localized to a subset of neuronal primary cilia. However, whether other family GPCRs target to neuronal cilia and whether glial primary cilia harbor any GPCRs are not known. We conducted a screening of GPCRs to determine their ability to target to primary cilia, and identified a secretin family member, Vasoactive Intestinal Receptor 2 (VPAC2), as a novel ciliary GPCR. Here, we show that endogenous VPAC2 targets to primary cilia in various brain regions, including the suprachiasmatic nuclei and the thalamus. Surprisingly, VPAC2 not only localizes to neuronal cilia but also to glial cilia. In addition, we show that VPAC2's C-terminus is both necessary and sufficient for its ciliary targeting and we define a novel ciliary targeting signal: the tetrapeptide RDYR motif in the C-terminus of VPAC2. Furthermore, we demonstrate that VPAC2 ciliary targeting is dependent on Tubby, the BBSome (a complex of Bardet-Biedl syndrome proteins) and the BBSome targeting factor, Arl6.
Collapse
Affiliation(s)
- Livana Soetedjo
- Department of Biological Sciences, University of Illinois at Chicago , Chicago, IL 60607 , USA
| | | | | |
Collapse
|
42
|
Arborization of dendrites by developing neocortical neurons is dependent on primary cilia and type 3 adenylyl cyclase. J Neurosci 2013; 33:2626-38. [PMID: 23392690 DOI: 10.1523/jneurosci.2906-12.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of primary cilia is a highly choreographed process that can be disrupted in developing neurons by overexpressing neuromodulatory G-protein-coupled receptors GPCRs or by blocking intraflagellar transport. Here, we examined the effects of overexpressing the ciliary GPCRs, 5HT6 and SSTR3, on cilia structure and the differentiation of neocortical neurons. Neuronal overexpression of 5HT6 and SSTR3 was achieved by electroporating mouse embryo cortex in utero with vectors encoding these receptors. We found that overexpression of ciliary GPCRs in cortical neurons, especially 5HT6, induced the formation of long (>30 μm) and often forked cilia. These changes were associated with increased levels of intraflagellar transport proteins and accelerated ciliogenesis in neonatal neocortex, the induction of which required Kif3a, an anterograde motor critical for cilia protein trafficking and growth. GPCR overexpression also altered the complement of signaling molecules within the cilia. We found that SSTR3 and type III adenylyl cyclase (ACIII), proteins normally enriched in neuronal cilia, were rarely detected in 5HT6-elongated cilia. Intriguingly, the changes in cilia structure were accompanied by changes in neuronal morphology. Specifically, disruption of normal ciliogenesis in developing neocortical neurons, either by overexpressing cilia GPCRs or a dominant-negative form of Kif3a, significantly impaired dendrite outgrowth. Remarkably, coexpression of ACIII with 5HT6 restored ACIII to cilia, normalized cilia structure, and restored dendrite outgrowth, effects that were not observed in neurons coexpressing ACIII and dominant-negative form of Kif3a. Collectively, our data suggest the formation of neuronal dendrites in developing neocortex requires structurally normal cilia enriched with ACIII.
Collapse
|
43
|
Goetz SC, Liem KF, Anderson KV. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 2013; 151:847-858. [PMID: 23141541 DOI: 10.1016/j.cell.2012.10.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 12/15/2022]
Abstract
The primary cilium has critical roles in human development and disease, but the mechanisms that regulate ciliogenesis are not understood. Here, we show that Tau tubulin kinase 2 (TTBK2) is a dedicated regulator of the initiation of ciliogenesis in vivo. We identified a null allele of mouse Ttbk2 based on loss of Sonic hedgehog activity, a signaling pathway that requires the primary cilium. Despite a normal basal body template, Ttbk2 mutants lack cilia. TTBK2 acts at the distal end of the basal body, where it promotes the removal of CP110, which caps the mother centriole, and promotes recruitment of IFT proteins, which build the ciliary axoneme. Dominant truncating mutations in human TTBK2 cause spinocerebellar ataxia type 11 (SCA11); these mutant proteins do not promote ciliogenesis and inhibit ciliogenesis in wild-type cells. We propose that cell-cycle regulators target TTBK2 to the basal body, where it modifies specific targets to initiate ciliogenesis.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Karel F Liem
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
44
|
Luesma MJ, Cantarero I, Castiella T, Soriano M, Garcia-Verdugo JM, Junquera C. Enteric neurons show a primary cilium. J Cell Mol Med 2012. [PMID: 23205631 PMCID: PMC3823144 DOI: 10.1111/j.1582-4934.2012.01657.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells.
Collapse
Affiliation(s)
- Ma José Luesma
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012; 1:22. [PMID: 23351659 PMCID: PMC3563624 DOI: 10.1186/2046-2530-1-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/19/2012] [Indexed: 02/08/2023] Open
Abstract
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins - CEP290 and RPGR - that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
Collapse
|
46
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Subcellular distribution of patched and smoothened in the cerebellar neurons. CEREBELLUM (LONDON, ENGLAND) 2012; 11:972-81. [PMID: 22477363 PMCID: PMC3495249 DOI: 10.1007/s12311-012-0374-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Sonic hedgehog (Shh) signaling pathway carries out a wide range of biological functions such as patterning of the embryonic neural tube and expansion of cerebellar granule cell precursors. We previously have found that the Shh signaling receptors, Patched1 (Ptch1) and Smoothened (Smo), are expressed in hippocampal neurons of developing and adult rats, suggesting the continued presence of Shh signaling in postmitotic, differentiated neurons. Here, we report that Ptch1 and Smo are present in the processes and growth cones of immature neurons in the developing cerebellum, and that, in the mature cerebellum, Ptch1 and Smo are expressed by several types of neurons including Purkinje cells, granule cells, and interneurons. Within these neurons, Ptch1 and Smo are predominantly localized in the postsynaptic side of the synapses, a distribution pattern similar to that found in hippocampal neurons. Our findings provide morphological evidence that Shh signaling events are not confined to neuronal precursors and are likely to have ongoing roles within the postmitotic neurons of the developing and adult cerebellum.
Collapse
Affiliation(s)
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD 20892, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Pamela J. Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA. Laboratory of Neurosciences, NIA/NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
47
|
Chakravarthy B, Gaudet C, Ménard M, Brown L, Atkinson T, Laferla FM, Ito S, Armato U, Dal Prà I, Whitfield J. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human Aβ(1-42) and tau. Biochem Biophys Res Commun 2012; 427:218-22. [PMID: 22995307 DOI: 10.1016/j.bbrc.2012.09.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 11/19/2022]
Abstract
The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatin receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75(NTR)). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both Aβ(1-42) and the mutant human tau protein tau(P301L,) the dentate granule cells still had immunostainable SSTR3- and p75(NTR)-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of Aβ(1-42) or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of Aβ(1-42) and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.
Collapse
Affiliation(s)
- Balu Chakravarthy
- Human Health Therapeutics, National Research Council of Canada, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Heteromerization of ciliary G protein-coupled receptors in the mouse brain. PLoS One 2012; 7:e46304. [PMID: 23029470 PMCID: PMC3459911 DOI: 10.1371/journal.pone.0046304] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022] Open
Abstract
Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1) and somatostatin receptor 3 (Sstr3) colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.
Collapse
|
49
|
Arellano JI, Guadiana SM, Breunig JJ, Rakic P, Sarkisian MR. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol 2012; 520:848-73. [PMID: 22020803 DOI: 10.1002/cne.22793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal primary cilia are not generally recognized, but they are considered to extend from most, if not all, neurons in the neocortex. However, when and how cilia develop in neurons are not known. This study used immunohistochemistry for adenylyl cyclase III (ACIII), a marker of primary cilia, and electron microscopic analysis to describe the development and maturation of cilia in mouse neocortical neurons. Our results indicate that ciliogenesis is initiated in late fetal stages after neuroblast migration, when the mother centriole docks with the plasma membrane, becomes a basal body, and grows a cilia bud that we call a procilium. This procilium consists of a membranous protrusion extending from the basal body but lacking axonemal structure and remains undifferentiated until development of the axoneme and cilia elongation starts at about postnatal day 4. Neuronal cilia elongation and final cilia length depend on layer position, and the process extends for a long time, lasting 8-12 weeks. We show that, in addition to pyramidal neurons, inhibitory interneurons also grow cilia of comparable length, suggesting that cilia are indeed present in all neocortical neuron subtypes. Furthermore, the study of mice with defective ciliogenesis suggested that failed elongation of cilia is not essential for proper neuronal migration and laminar organization or establishment of neuronal polarity. Thus, the function of this organelle in neocortical neurons remains elusive.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
50
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|