1
|
Wang Y, Wu W, Zeng F, Meng X, Peng M, Wang J, Chen Z, Liu W. The role of kynurenine pathway metabolism mediated by exercise in the microbial-gut-brain axis in Alzheimer's disease. Exp Neurol 2025; 384:115070. [PMID: 39603488 DOI: 10.1016/j.expneurol.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.
Collapse
Affiliation(s)
- Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Chong-Nguyen C, Yilmaz B, Coles B, Sokol H, MacPherson A, Siepe M, Reineke D, Mosbahi S, Tomii D, Nakase M, Atighetchi S, Ferro C, Wingert C, Gräni C, Pilgrim T, Windecker S, Blasco H, Dupuy C, Emond P, Banz Y, Losmanovà T, Döring Y, Siontis GCM. A scoping review evaluating the current state of gut microbiota and its metabolites in valvular heart disease physiopathology. Eur J Clin Invest 2025:e14381. [PMID: 39797472 DOI: 10.1111/eci.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored. METHODS Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included. Eligible studies used 16S rRNA or shotgun sequencing, metabolite profiling by mass spectrometry, and examined osteogenesis or fibrosis signalling in valve cells. Methods and findings were qualitatively analysed, with data charted to summarize study design, materials and outcomes. RESULTS Thirteen studies were included in the review: five human, three animal and five in vitro. Of the nine studies on calcific aortic stenosis (CAS), elevated trimethylamine N-oxide (TMAO) levels were linked to an increased risk of cardiovascular events in cohort studies, with CAS patients showing higher levels of Bacteroides plebeius, Enterobacteriaceae, Veillonella dispar and Prevotella copri. In vivo, TMAO promoted aortic valve fibrosis, while tryptophan derivatives stimulated osteogenic differentiation and interleukin-6 secretion in valvular interstitial cells. Two studies on rheumatic mitral valve disease found altered microbiota profiles and lower short-chain fatty acid levels, suggesting potential impacts on immune regulation. Two studies on Barlow's mitral valve disease in animal models revealed elevated TMAO levels in dogs with congestive heart failure, reduced Paraprevotellaceae, increased Actinomycetaceae and dysbiosis involving Turicibacter and E. coli. CONCLUSIONS TMAO has been mainly identified as a prognostic marker in VHD. Gut microbiota dysbiosis has been observed in various forms of VHD and deserve further study.
Collapse
Affiliation(s)
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Bernadette Coles
- Velindre University NHS Trust Library and Knowledge Service, Cardiff, UK
| | - Harry Sokol
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Andrew MacPherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Reineke
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Selim Mosbahi
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daijiro Tomii
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Masaaki Nakase
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Sarah Atighetchi
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Cyril Ferro
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Wingert
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Hélène Blasco
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Camille Dupuy
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Patrick Emond
- Faculté de médecine, Equipe neurogénétique et neurométabolomique, INSERM U930, Université François Rabelais, Tours, France
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Tereza Losmanovà
- Institute of Tissue Medicine and Pathology, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - George C M Siontis
- Department of Cardiology, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
3
|
Lim CG, Gradinariu V, Liang Y, Rebholz CM, Talegawkar S, Temprosa M, Min YI, Sim X, Wilson JG, van Dam RM. Proteomic analysis identifies novel biological pathways that may link dietary quality to type 2 diabetes risk: evidence from African American and Asian cohorts. Am J Clin Nutr 2025; 121:100-110. [PMID: 39566683 DOI: 10.1016/j.ajcnut.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Diet affects the development of chronic diseases such as type 2 diabetes, but the underlying biological mechanisms are only partly understood. OBJECTIVES This study aimed to identify proteomic markers of the Alternative Healthy Eating Index (AHEI) and the Dietary Approaches to Stop Hypertension (DASH) diet and their association with type 2 diabetes risk. METHODS We examined the associations between the AHEI and DASH diet quality scores and 1317 plasma proteins in African American participants of the Jackson Heart Study (JHS, n = 1878). These findings were validated in a Singapore Multi-Ethnic Cohort (n = 2395) and examined in relation to type 2 diabetes incidence (n = 539 cases). We adjusted for multiple testing by using false discovery rate-adjusted q values. RESULTS We identified 13 proteins consistently associated with the AHEI or DASH scores with the strongest associations for the AHEI score and epidermal growth factor receptor (β:0.089; SE: 0.017; q < 0.001) and for the DASH score and tissue factor (β: -0.114; SE: 0.022; q < 0.001). Most of these proteins were related to inflammation, thrombosis, adipogenesis, and glucose metabolism. Concentrations of myeloperoxidase, epidermal growth factor receptor, hepatocyte growth factor receptor, coagulation factor Xa, contactin 4, kynureninase, neurogenic locus notch homolog protein 1, and vesicular integral-membrane protein VIP36 were associated with the risk of type 2 diabetes in the Asian cohort. The diabetes odds ratio for a 2-fold higher protein abundance concentration ranged from 0.03 (95% CI: 0.01, 0.08) for neurogenic locus notch homolog protein 1 to 3.04 (95% CI: 2.13, 4.33) for kynureninase. Furthermore, genetic markers for myeloperoxidase and hepatocyte growth factor receptor were significantly associated with diabetes risk. CONCLUSIONS Our study across geographically and ethnically diverse populations identified robust protein biomarkers for healthy dietary patterns. Furthermore, our findings suggest novel biological mechanisms linking dietary patterns with type 2 diabetes development.
Collapse
Affiliation(s)
- Charlie Gy Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Vlad Gradinariu
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Newark, Washington, DC, United States
| | - Yujian Liang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sameera Talegawkar
- Biostatistics Center and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD, United States
| | - Marinella Temprosa
- Biostatistics Center and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD, United States
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson Medical Mall, Jackson, MS, United States
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Newark, Washington, DC, United States.
| |
Collapse
|
4
|
Pan Y, Li Y, Peng Z, Zhang X, Ye S, Chen N, Zhang Z, Yang W. Indole derivatives and their associated microbial genera are associated with the 1-year changes in cardiometabolic risk markers in Chinese adults. Nutr J 2024; 23:160. [PMID: 39731110 DOI: 10.1186/s12937-024-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers. METHODS In a cohort of 318 community-dwelling adults, serum indole metabolites and fecal microbiota (16S ribosomal RNA) were measured at baseline. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose were repeatedly measured at baseline and again after 1 year. Brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were measured after 1 year. The association between indole derivatives and the 1-year changes in blood lipids and glucose, and association of indole derivatives with baPWV and ABI were investigated using linear regression models. RESULTS Each 1 µmol/L increase in indole-3-acetic acid (IAA) levels was associated with 5.08% (P = 0.046) decrease in LDL-C. IPA levels were inversely associated with baPWV (percentage difference = -1.32%, P = 0.036). Per 1 µmol/L increase in Indole-3-aldehyde (IAld) levels was associated with 1.91% (P = 0.004) decrease in TC and 0.58% (P = 0.019) increase in ABI, but 1.79% decrease in HDL-C with borderline significance (P = 0.050). We identified 18 bacterial genera whose relative abundance was positively associated with serum IPA concentrations (PFDR < 0.05) and constructed a microbial score to reflect the overall IPA-producing potential. This score was inversely associated with baPWV (percentage difference = -0.48%, P = 0.007). CONCLUSIONS Our results suggest that IAA, IPA, IAld, and IPA-predicting microbial score are favorably associated with several cardiometabolic risk markers, although IAld may decrease HDL-C levels.
Collapse
Affiliation(s)
- Yutong Pan
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Yamin Li
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhaohong Peng
- Department of Interventional Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaoyu Zhang
- Department of Physical Examination Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Shu Ye
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Na Chen
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhuang Zhang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wanshui Yang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- NHC Key Laboratory of study on abnormal gametes and reproductive tract, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
5
|
Ouyang F, Li Y, Wang H, Liu X, Tan X, Xie G, Zeng J, Zeng G, Luo Q, Zhou H, Chen S, Hou K, Fang J, Zhang X, Zhou L, Li Y, Gao A. Aloe Emodin Alleviates Radiation-Induced Heart Disease via Blocking P4HB Lactylation and Mitigating Kynurenine Metabolic Disruption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406026. [PMID: 39494721 DOI: 10.1002/advs.202406026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/22/2024] [Indexed: 11/05/2024]
Abstract
Aloe emodin is an anthraquinone of traditional Chinese medicine monomer, which plays a protective action in cardiovascular diseases. However, the regulatory mechanisms of aloe emodin in the protection of radiation-induced heart damage (RIHD) are unclear. As a novel post-translational modification, lactylation is considered as a critical mediator in inflammatory cascade and cardiac injury. Here, using a cross of differential omics and 4D label-free lactylation omics, protein disulfide-isomerase (P4HB) is identified as a novel target for lactylation, and aloe emodin inhibits the binding of lactate to the K311 site of P4HB. Aloe emodin stabilizes kynurenine metabolism through inhibition of aspartate aminotransferase (GOT2) accumulation on damaged mitochondria. Mechanistically, aloe emodin inhibits phosphorylated glycogen synthase kinase 3B (p-GSK3B) transcription in the nucleus to repress the interaction of prostaglandin G/H synthase 2 (PTGS2) with SH3 domain of SH3 domain-containing GRB2-like protein B1 (SH3GLB1), thereby disrupting the functions of mitochondrial complexes and reducing SH3GLB1-mediated mitoROS accumulation, eventually suppressing calcium-binding and coiled-coil domain-containing protein 2 (NDP52)-induced mitophagy. This study unveils the regulatory role of aloe emodin in RIHD alleviation through PTGS2/SH3GLB1/NDP52 axis, indicates aloe emodin stabilizes GOT2-mediated kynurenine metabolism through P4HB lactylation. Collectively, this study provides novel insights into the regulatory mechanisms underlying the protective role of aloe emodin in cardiac injury, and opens new avenues for therapeutic strategies of aloe emodin in preventing RIHD by regulating lactylation.
Collapse
Affiliation(s)
- Fan Ouyang
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
| | - Yaling Li
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
| | - Haoming Wang
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
| | - Xiangyang Liu
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
| | - Xiaoli Tan
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Genyuan Xie
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Junfa Zeng
- Department of Critical Care Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Gaofeng Zeng
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
| | - Qiong Luo
- Clinical Research Center for Arteriosclerotic Disease in Hunan Province, Hengyang, Hunan, 421001, P. R. China
| | - Hong Zhou
- Department of Radiology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Siming Chen
- Clinical Research Center for Arteriosclerotic Disease in Hunan Province, Hengyang, Hunan, 421001, P. R. China
| | - Kai Hou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Jinren Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xia Zhang
- Department of Ultrasound Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Linlin Zhou
- Zhuzhou Clinical College, Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, P. R. China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Hengyang, Hunan, 421001, P. R. China
| |
Collapse
|
6
|
Luo Z, Liu Y, Wang X, Fan F, Yang Z, Luo D. Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol 2024; 230:116554. [PMID: 39332693 DOI: 10.1016/j.bcp.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhenzhen Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
7
|
Babu AF, Palomurto S, Kärjä V, Käkelä P, Lehtonen M, Hanhineva K, Pihlajamäki J, Männistö V. Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients. Dig Liver Dis 2024; 56:2103-2110. [PMID: 38825414 DOI: 10.1016/j.dld.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Still, most patients with MASLD die from cardiovascular diseases indicating metabolic alterations related to both liver and cardiovascular pathology. AIMS AND METHODS The aim of this study was to assess biologic pathways behind MASLD progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) using non-targeted liquid chromatography-mass spectrometry analysis in 106 severely obese individuals (78 women, mean age 47.7 7 ± 9.2 years, body mass index 41.8 ± 4.3 kg/m²) undergoing laparoscopic Roux-en-Y gastric bypass. RESULTS We identified several metabolites that are associated with MASLD progression. Most importantly, we observed a decrease of lysophosphatidylcholines LPC(18:2), LPC(18:3), and LPC(20:3) and increase of xanthine when comparing those with steatosis to those with MASH. We found that indole propionic acid and threonine were negatively correlated to fibrosis, but not with the metabolic disturbances associated with cardiovascular risk. Xanthine, ketoleucine, and tryptophan were positively correlated to lobular inflammation and ballooning but also with insulin resistance, and dyslipidemia, respectively. The results did not change when taking into account the most important genetic risk factors of MASLD. CONCLUSIONS Our findings suggest that there are several separate biological pathways, some of them independent of insulin resistance and dyslipidemia, associating with MASLD.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Saana Palomurto
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, 70211 Kuopio, Finland; LC-MS Metabolomics Center, Biocenter Kuopio, 70211 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Jussi Pihlajamäki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
8
|
Tong J, Han X, Li Y, Wang Y, Liu M, Liu H, Pan J, Zhang L, Liu Y, Jiang M, Zhao H. Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population. Nutr Metab Cardiovasc Dis 2024:103789. [PMID: 39690044 DOI: 10.1016/j.numecd.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
AIMS Atherosclerosis is a life-threatening disease that develops when a plaque builds up inside an artery and progresses silently. Identifying the early pathological changes and the biomarkers of atherosclerosis deserves attention. We aimed to systematically study and integrate the various metabolites of atherosclerosis in the level of disease to provide more evidences to support early prevention and treatment of atherosclerosis. DATA SYNTHESIS The protocol was registered with PROPSERO (CRD42023441845). We searched 14,985 records via EMBASE, PubMed, Web of Science, WanFang data, VIP data, and CNKI databases. The collected metabolites were for qualitative and quantitative meta-analysis. The I2 statistic estimated heterogeneity, with over 50 % considered to adopt the random-effects model. A total of 49 articles were included in the meta-analysis. We finally integrated 83 and 16 metabolites presented more than two times in inclusion studies, respectively in blood (plasma and serum) and urine. Among them, the level of citric acid (SMD = -10.35 [95%CI -15.03, -5.67], p < 0.001), lactic acid (SMD = 6.32 [95%CI 0.12, 12.52], p < 0.001) and TMAO (SMD = 1.40 [95%CI 0.27, 2.53], p < 0.001) had significant differences between atherosclerosis and controls. And we observed blood stasis syndrome of atherosclerosis patients present arterial ischemia and energy disorder obviously. CONCLUSIONS The study provides an in-depth understanding of the roles of metabolites on atherosclerosis progression and prediction primarily in Chinese population, which contributing to development of prevention and therapeutic potential in the future.
Collapse
Affiliation(s)
- Jinlin Tong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyuan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuyao Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinghua Pan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Zhang
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Liu
- Fangta Hospital of Traditional Chinese Medicine, Shanghai, 201600, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Wang Y, Bai Y, Cai Y, Zhang Y, Shen L, Xi W, Zhou Z, Xu L, Liu X, Han B, Yao H. Circular RNA SCMH1 suppresses KMO expression to inhibit mitophagy and promote functional recovery following stroke. Theranostics 2024; 14:7292-7308. [PMID: 39659575 PMCID: PMC11626939 DOI: 10.7150/thno.99323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/29/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Metabolic dysfunction is one of the key pathological events after ischemic stroke. Disruption of cerebral blood flow impairs oxygen and energy substrate delivery, leading to mitochondrial oxidative phosphorylation dysfunction and cellular bioenergetic stress. Investigating the effects of circSCMH1, a brain repair-related circular RNA, on metabolism may identify novel therapeutic targets for stroke treatment. Methods: CircSCMH1 was encapsulated into brain-targeting extracellular vesicles (EVs) mediated by rabies virus glycoprotein (RVG). Using a mouse model of photothrombotic (PT) stroke, we employed metabolomics and transcriptomics, combined with western blotting and behavioral experiments, to identify the metabolic targets regulated in RVG-circSCMH1-EV-treated mice. Additionally, immunofluorescence staining, chromatin immunoprecipitation (ChIP), pull-down, and western blotting were utilized to elucidate the underlying mechanisms. Results: The targeted delivery of circSCMH1 via RVG-EVs was found to promote post-stroke brain repair by enhancing mitochondrial fusion and inhibiting mitophagy through suppression of kynurenine 3-monooxygenase (KMO) expression. Mechanistically, circSCMH1 exerted its inhibitory effect on KMO expression by binding to the transcription activator STAT5B, thereby impeding its nuclear translocation. Conclusions: Our study reveals a novel mechanism by which circSCMH1 downregulates KMO expression, thereby enhancing mitochondrial fusion and inhibiting mitophagy, ultimately facilitating post-stroke brain repair. These findings shed new light on the role of circSCMH1 in promoting stroke recovery and underscore its potential as a therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yang Cai
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Wen Xi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Zhongqiu Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Lian Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Xue Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Honghong Yao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Russo MA, Puccetti M, Costantini C, Giovagnoli S, Ricci M, Garaci E, Romani L. Human and gut microbiota synergy in a metabolically active superorganism: a cardiovascular perspective. Front Cardiovasc Med 2024; 11:1411306. [PMID: 39465131 PMCID: PMC11502352 DOI: 10.3389/fcvm.2024.1411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Despite significant advances in diagnosis and treatment over recent decades, cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in Western countries. This persistent burden is partly due to the incomplete understanding of fundamental pathogenic mechanisms, which limits the effectiveness of current therapeutic interventions. In this context, recent evidence highlights the pivotal role of immuno-inflammatory activation by the gut microbiome in influencing cardiovascular disorders, potentially opening new therapeutic avenues. Indeed, while atherosclerosis has been established as a chronic inflammatory disease of the arterial wall, accumulating data suggest that immune system regulation and anti-inflammatory pathways mediated by gut microbiota metabolites play a crucial role in a range of CVDs, including heart failure, pericardial disease, arrhythmias, and cardiomyopathies. Of particular interest is the emerging understanding of how tryptophan metabolism-by both host and microbiota-converges on the Aryl hydrocarbon Receptor (AhR), a key regulator of immune homeostasis. This review seeks to enhance our understanding of the role of the immune system and inflammation in CVD, with a focus on how gut microbiome-derived tryptophan metabolites, such as indoles and their derivatives, contribute to cardioimmunopathology. By exploring these mechanisms, we aim to facilitate the development of novel, microbiome-centered strategies for combating CVD.
Collapse
Affiliation(s)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| |
Collapse
|
11
|
Gáspár R, Nógrádi-Halmi D, Demján V, Diószegi P, Igaz N, Vincze A, Pipicz M, Kiricsi M, Vécsei L, Csont T. Kynurenic acid protects against ischemia/reperfusion injury by modulating apoptosis in cardiomyocytes. Apoptosis 2024; 29:1483-1498. [PMID: 39153038 PMCID: PMC11416393 DOI: 10.1007/s10495-024-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Acute myocardial infarction, often associated with ischemia/reperfusion injury (I/R), is a leading cause of death worldwide. Although the endogenous tryptophan metabolite kynurenic acid (KYNA) has been shown to exert protection against I/R injury, its mechanism of action at the cellular and molecular level is not well understood yet. Therefore, we examined the potential involvement of antiapoptotic mechanisms, as well as N-methyl-D-aspartate (NMDA) receptor modulation in the protective effect of KYNA in cardiac cells exposed to simulated I/R (SI/R). KYNA was shown to attenuate cell death induced by SI/R dose-dependently in H9c2 cells or primary rat cardiomyocytes. Analysis of morphological and molecular markers of apoptosis (i.e., membrane blebbing, apoptotic nuclear morphology, DNA double-strand breaks, activation of caspases) revealed considerably increased apoptotic activity in cardiac cells undergoing SI/R. The investigated apoptotic markers were substantially improved by treatment with the cytoprotective dose of KYNA. Although cardiac cells were shown to express NMDA receptors, another NMDA antagonist structurally different from KYNA was unable to protect against SI/R-induced cell death. Our findings provide evidence that the protective effect of KYNA against SI/R-induced cardiac cell injury involves antiapoptotic mechanisms, that seem to evoke independently of NMDA receptor signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Nógrádi-Halmi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Vincze
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE-Neuroscience Research Group, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary.
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ebrahimi S, Pashayee-Khamene F, Abaj F, Radmehr M, Khalili P, Mehri Hajmir M, Mirzaei K. The interaction between dietary nitrates/nitrites intake and gut microbial metabolites on metabolic syndrome: a cross-sectional study. Front Public Health 2024; 12:1398460. [PMID: 39328991 PMCID: PMC11425044 DOI: 10.3389/fpubh.2024.1398460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background Metabolic syndrome (MetS) prevalence has increased globally.The evidence shows thatdiet and gut microbial metabolites includingtrimethylamine N-oxide (TMAO) and kynurenine (KYN) play an important role in developing MetS. However, there is a lack of evidence on associations between between diet and these metabolites. This study aimed to investigate the interaction between dietary nitrate/nitrite and gut microbial metabolites (TMAO, KYN) on MetS and its components. Methods This cross-sectional study included 250 adults aged 20-50 years. Dietary intake was assessed using food frequency questionnaires (FFQ), and serum TMAO and KYN levels were measured. MetS was defined usingthe National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III) criteria. Result The ATPIII index revealed an 11% prevalence of metabolic syndrome among the study participants. After adjusting for confounders, significant positive interactions were found: High animal-source nitrate intake and high TMAO levels with elevated triglycerides (TG) (p interaction = 0.07) and abdominal obesity (p interaction = 0.08). High animal-source nitrate intake and high KYN levels with increased TG (p interaction = 0.01) and decreased high-density lipoprotein cholesterol (HDL) (p interaction = 0.01).Individuals with high animal-source nitrite intake and high TMAO levels showed increased risk of hypertriglyceridemia (OR: 1.57, 95%CI: 0.35-2.87, p = 0.05), hypertension (OR: 1.53, 95%CI: 0.33-2.58, p = 0.06), and lower HDL (OR: 1.96, 95%CI: 0.42-2.03, p = 0.04). Similarly, high animal-source nitrite intake with high KYN levels showed lower HDL (OR: 2.44, 95%CI: 1.92-3.89, p = 0.07) and increased risk of hypertension (OR: 2.17,95%CI: 1.69-3.40, p = 0.05). Conversely, Negative interactions were found between high plant-source nitrate/nitrite intake with high KYN and TMAO levels on MetS and some components. Conclusion There is an interaction between dietary nitrate/nitrite source (animal vs. plant) and gut microbial metabolites (TMAO and KYN) on the risk of of MetS and its components. These findings highlight the importance of considering diet, gut microbiome metabolites, and their interactions in MetS risk assessment.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ebrahimi
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, VIC, Australia
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
14
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Exploring the interplay between kidney function and urinary metabolites in young adults: the African-PREDICT study. Amino Acids 2024; 56:53. [PMID: 39207612 PMCID: PMC11362211 DOI: 10.1007/s00726-024-03412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The exposure to modifiable risk factors at young ages have been linked to premature fatal and non-fatal cardiovascular and kidney outcomes. The use of urinary metabolomics has shown strong predictability of kidney function and cardiovascular disease (CVD). We therefore determined the associations between estimated glomerular filtration rate (eGFR) and urinary metabolites in young adults with and without CVD risk factors. Apparently healthy Black and White sexes were included (aged 20-30 years) and categorised by the presence or absence of risk factors, i.e., obesity, physical inactivity, smoking, excessive alcohol intake, masked hypertension, hyperglycemia, dyslipidemia and low socio-economic status, forming the CVD risk group (N = 1036), CVD risk clusters (i.e. presenting with 1 CVD risk factor (N = 344), 2 CVD risk factors (N = 360) and 3 + CVD risk factors (N = 332)) and the control group (N = 166). eGFR was calculated with CKD-EPI equations. A targeted metabolomics approach using liquid chromatography-tandem mass spectrometry was used to measure amino acids and acylcarnitines. Lower cystatin C-based eGFR were indicated in the CVD risk group, 2 and 3 + CVD risk clusters compared to the control group (all P ≤ 0.033). In the CVD risk group, eGFR associated positively with histidine, lysine, asparagine, glycine, serine, glutamine, dimethylglycine, threonine, alanine, creatine, cystine, methionine, tyrosine, pyroglutamic acid, leucine/isoleucine, aspartic acid, tryptophan, glutamic acid, free carnitine, acetylcarnitine, propionylcarnitine, isovalerylcarnitine, octanoylcarnitine and decanoylcarnitine (all P ≤ 0.044), with similar results found in the CVD risk clusters, particularly the 2 CVD risk cluster. eGFR was positively associated with metabolites linked to aromatic amino acid and branched-chain amino acid metabolism, energy metabolism and oxidative stress. These findings may indicate altered reabsorption of these metabolites or altered metabolic regulation to preserve renal health in the setting of CVD risk factors at this young age without established CVD.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Cardiovascular Pathophysiology and Genomics Research Unit (CPGRU), University of the Witwatersrand, Johannesburg, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
15
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
16
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
17
|
Liao FJ, Shen SL, Bao HL, Li H, Zhao QW, Chen L, Gong CW, Xiong CZ, Liu WP, Li W, Liu DN. Identification and experimental validation of KMO as a critical immune-associated mitochondrial gene in unstable atherosclerotic plaque. J Transl Med 2024; 22:668. [PMID: 39026250 PMCID: PMC11256392 DOI: 10.1186/s12967-024-05464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The heightened risk of cardiovascular and cerebrovascular events is associated with the increased instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection and treatment of this condition. METHODS Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the association between hub genes and immune cells, as well as their colocalization with mitochondria. RESULTS The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. However, among the three key genes mentioned above, only KMO showed a significant increase in expression in unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque stability in ApoE-/- mice. CONCLUSIONS The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Fu-Jun Liao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Shao-Liang Shen
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Hai-Long Bao
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Hui Li
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Quan-Wei Zhao
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Long Chen
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Cai-Wei Gong
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Cheng-Zhu Xiong
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Wu-Peng Liu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
- The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China
| | - Wei Li
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
- The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
| | - Da-Nan Liu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
- Institute of Medical Sciences, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
- School of Graduate Studies, Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
18
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
19
|
Özer Y, Cansever MŞ, Turan H, Bayramoğlu E, Bingöl Aydın D, İşat E, Ceyhun E, Zubarioğlu T, Aktuğlu Zeybek AÇ, Kıykım E, Evliyaoğlu O. Pteridine and tryptophan pathways in children with type 1 diabetes: Isoxanthopterin as an indicator of endothelial dysfunction. J Pharm Biomed Anal 2024; 243:116072. [PMID: 38437786 DOI: 10.1016/j.jpba.2024.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
AIM Type 1 diabetes (T1D) and its complications are known to be associated with oxidative stress. Pteridine derivatives and indoleamine 2,3-dioxygenase (IDO) activity can be used as biomarkers in the evaluation of oxidative stress. In this study, our aim is to compare the concentrations of serum and urinary pteridine derivatives, as well as serum IDO activity, in children and adolescents diagnosed with T1D and those in a healthy control group. METHOD A cross-sectional study was performed and included 93 patients with T1D and 71 healthy children. Serum and urine biopterin, neopterin, monapterin, pterin, isoxanthopterin, and pterin-6-carboxylic acid (6PTC) and serum tryptophan and kynurenine levels were analyzed and compared with healthy controls. High-performance liquid chromatography was used for the analysis of pteridine derivatives, tryptophan, and kynurenine. Xanthine oxidase (XO) activity, a marker of oxidative stress, was defined by measurement of serum and urine isoxanthopterin. As an indicator of indolamine 2,3-dioxygenase (IDO) activity, the ratio of serum kynurenine/tryptophan was used. RESULTS Serum isoxanthopterin and tryptophan concentrations were increased, and serum 6PTC concentration was decreased in children with T1D (p=0.01, p=0.021, p<0.001, respectively). In children with T1D, IDO activity was not different from healthy controls (p>0.05). Serum neopterin level and duration of diabetes were weakly correlated (p=0.045, r=0.209); urine neopterin/creatinine and isoxanthopterin/creatinine levels were weakly correlated with HbA1c levels (p=0.005, r=0.305; p=0.021, r=0.249, respectively). Urine pterin/creatinine level negatively correlated with body mass index-SDS. (p=0.015, r=-0.208). CONCLUSION We found for the first time that isoxanthopterin levels increased and 6PTC levels decreased in children and adolescents with T1D. Elevated isoxanthopterin levels suggest that the XO activity is increased in TID. Increased XO activity may be an indicator of vascular complications reflecting T1D-related endothelial dysfunction.
Collapse
Affiliation(s)
- Yavuz Özer
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey.
| | - Mehmet Şerif Cansever
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Hande Turan
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Elvan Bayramoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Dilek Bingöl Aydın
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Esra İşat
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Emre Ceyhun
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatrics, Istanbul, Turkey
| | - Tanyel Zubarioğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Ayşe Çiğdem Aktuğlu Zeybek
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Ertuğrul Kıykım
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department Metabolic Diseases and Nutrition, Istanbul, Turkey
| | - Olcay Evliyaoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pediatric Endocrinology, Istanbul, Turkey
| |
Collapse
|
20
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Jankech T, Gerhardtova I, Majerova P, Piestansky J, Fialova L, Jampilek J, Kovac A. A Novel RP-UHPLC-MS/MS Approach for the Determination of Tryptophan Metabolites Derivatized with 2-Bromo-4'-Nitroacetophenone. Biomedicines 2024; 12:1003. [PMID: 38790965 PMCID: PMC11117999 DOI: 10.3390/biomedicines12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Many biologically active metabolites of the essential amino acid L-tryptophan (Trp) are associated with different neurodegenerative diseases and neurological disorders. Precise and reliable methods for their determination are needed. Variability in their physicochemical properties makes the analytical process challenging. In this case, chemical modification of analyte derivatization could come into play. Here, we introduce a novel fast reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with tandem mass spectrometry (MS/MS) method for the determination of Trp and its ten metabolites in human plasma samples after derivatization with 2-bromo-4'-nitroacetophenone (BNAP). The derivatization procedure was optimized in terms of incubation time, temperature, concentration, and volume of the derivatization reagent. Method development comprises a choice of a suitable stationary phase, mobile phase composition, and gradient elution optimization. The developed method was validated according to the ICH guidelines. Results of all validation parameters were within the acceptance criteria of the guideline, i.e., intra- and inter-day precision (expressed as relative standard deviation; RSD) were in the range of 0.5-8.2% and 2.3-7.4%, accuracy was in the range of 93.3-109.7% and 94.7-110.1%, limits of detection (LODs) were in the range of 0.15-9.43 ng/mL, coefficients of determination (R2) were higher than 0.9906, and carryovers were, in all cases, less than 8.8%. The practicability of the method was evaluated using the blue applicability grade index (BAGI) with a score of 65. Finally, the developed method was used for the analysis of Alzheimer's disease and healthy control plasma to prove its applicability. Statistical analysis revealed significant changes in picolinic acid (PA), anthranilic acid (AA), 5 hydroxyindole-3-acetic acid (5-OH IAA), and quinolinic acid (QA) concentration levels. This could serve as the basis for future studies that will be conducted with a large cohort of patients.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (T.J.); (I.G.); (P.M.); (J.P.); (L.F.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 68/73, 041 81 Kosice, Slovakia
| |
Collapse
|
22
|
Zhang YW, Pang X, Yang Y. Hydrogels containing KYNA promote angiogenesis and inhibit inflammation to improve the survival rate of multi-territory perforator flaps. Biomed Pharmacother 2024; 174:116454. [PMID: 38640710 DOI: 10.1016/j.biopha.2024.116454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND A new spray adhesive (KYNA-PF127) was established through the combination of thermosensitive hydrogel (Pluronic F127) and KYNA, aimed to investigate the effect of KYNA-PF127 on multi-territory perforator flaps and its possible molecular mechanism. MATERIALS AND METHODS 36 SD male rats with 250-300 g were randomly divided into 3 groups (n = 12): control group, blank glue group and KYNA-PF127 group. KYNA-PF127 hydrogel was prepared and characterized for its morphology and properties using scanning electron microscopy. CCK-8 assay, scratch wound assay, transwell assay, tube formation assay and Ki67 staining were used to study the effect of KYNA-PF127 on the proliferation, migration, and tube formation of HUVECs. VEGF and FGF2 were measured by qPCR to evaluate the angiogenesis capacity of HUVECs in vitro. In vivo, the effect of each group on the survival area of the cross-zone perforator flap was evaluated, and angiogenesis was evaluated by HE and immunofluorescence (CD31 and MMP-9). The effect of inflammation on skin collagen fibers was assessed by Masson. Immunohistochemistry (SOD1, IL-1β, TNF-α) was used to evaluate the effects of oxidative stress and inflammatory factors on multi-territory flaps. RESULTS KYNA-PF127 has good sustained release and biocompatibility at 25% concentration. KYNA-PF127 promoted the proliferation, migration, and angiogenesis of HUVECs in vitro. In vivo, the survival area of multi-territory perforator flaps and angiogenic capability have increased after KYNA-PF127 intervention. KYNA-PF127 could effectively reduce the oxidative stress and inflammation of multi-territory perforator flaps. CONCLUSION KYNA-PF127 promotes angiogenesis through its antioxidant stress and anti-inflammatory effects, and shows potential clinical value in promoting the survival viability and drug delivery of multi-territory perforator flaps.
Collapse
Affiliation(s)
- Ya-Wei Zhang
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyang Pang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yan Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Lee EJ, Kim DJ, Kang DW, Yang W, Jeong HY, Kim JM, Ko SB, Lee SH, Yoon BW, Cho JY, Jung KH. Targeted Metabolomic Biomarkers for Stroke Subtyping. Transl Stroke Res 2024; 15:422-432. [PMID: 36764997 DOI: 10.1007/s12975-023-01137-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke is a heterogeneous disease with various etiologies. The current subtyping process is complicated, time-consuming, and costly. Metabolite-based biomarkers have the potential to improve classification and deliver optimal treatments. We here aimed to identify novel, targeted metabolomics-based biomarkers to discriminate between large-artery atherosclerosis (LAA) and cardioembolic (CE) stroke. METHODS We acquired serum samples and clinical data from a hospital-based acute stroke registry (ischemic stroke within 3 days from symptom onset). We included 346 participants (169 LAA, 147 CE, and 30 healthy older adults) and divided them into training and test sets. Targeted metabolomic analysis was performed using quantitative and quality-controlled liquid chromatography with tandem mass spectrometry. A multivariate regression model using metabolomic signatures was created that could independently distinguish between LAA and CE strokes. RESULTS The training set (n = 193) identified metabolomic signatures that were different in patients with LAA and CE strokes. Six metabolomic biomarkers, i.e., lysine, serine, threonine, kynurenine, putrescine, and lysophosphatidylcholine acyl C16:0, could discriminate between LAA and CE stroke after adjusting for sex, age, body mass index, stroke severity, and comorbidities. The enhanced diagnostic power of key metabolite combinations for discriminating between LAA and CE stroke was validated using the test set (n = 123). CONCLUSIONS We observed significant differences in metabolite profiles in LAA and CE strokes. Targeted metabolomics may provide enhanced diagnostic yield for stroke subtypes. The pathophysiological pathways of the identified metabolites should be explored in future studies.
Collapse
Affiliation(s)
- Eung-Joon Lee
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Wan Kang
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Wookjin Yang
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Han-Yeong Jeong
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Byung-Woo Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu-si, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22:174. [PMID: 38462620 PMCID: PMC10926624 DOI: 10.1186/s12964-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a crucial role in influencing the development of digestive system tumors. Dysregulation of Trp and its metabolites has been identified in various digestive system cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers. Aberrantly expressed Trp metabolites are associated with diverse clinical features in digestive system tumors. Moreover, the levels of these metabolites can serve as prognostic indicators and predictors of recurrence risk in patients with digestive system tumors. Trp metabolites exert their influence on tumor growth and metastasis through multiple mechanisms, including immune evasion, angiogenesis promotion, and drug resistance enhancement. Suppressing the expression of key enzymes in Trp metabolism can reduce the accumulation of these metabolites, effectively impacting their role in the promotion of tumor progression and metastasis. Strategies targeting Trp metabolism through specific enzyme inhibitors or tailored drugs exhibit considerable promise in enhancing therapeutic outcomes for digestive system tumors. In addition, integrating these approaches with immunotherapy holds the potential to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Weibo Du
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
25
|
Gu C, Sun Y, Mao M, Liu J, Li X, Zhang X. Mechanism of simulated lunar dust-induced lung injury in rats based on transcriptomics. Toxicol Res (Camb) 2024; 13:tfad108. [PMID: 38179001 PMCID: PMC10762671 DOI: 10.1093/toxres/tfad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Lunar dust particles are an environmental threat to lunar astronauts, and inhalation of lunar dust can cause lung damage. The current study explored the mechanism of lunar dust simulant (CLDS-i) inducing inflammatory pulmonary injury. Wistar rats were exposed to CLDS-i for 4 h/d and 7d/week for 4 weeks. Pathological results showed that a large number of inflammatory cells gathered and infiltrated in the lung tissues of the simulated lunar dust group, and the alveolar structures were destroyed. Transcriptome analysis confirmed that CLDS-i was mainly involved in the regulation of activation and differentiation of immune inflammatory cells, activated signaling pathways related to inflammatory diseases, and promoted the occurrence and development of inflammatory injury in the lung. Combined with metabolomics analysis, the results of joint analysis of omics were found that the genes Kmo, Kynu, Nos3, Arg1 and Adh7 were involved in the regulation of amino acid metabolism in rat lung tissues, and these genes might be the key targets for the treatment of amino acid metabolic diseases. In addition, the imbalance of amino acid metabolism might be related to the activation of nuclear factor kappaB (NF-κB) signaling pathway. The results of quantitative real-time polymerase chain reaction and Western blot further confirmed that CLDS-i may promote the occurrence and development of lung inflammation and lead to abnormal amino acid metabolism by activating the B cell activation factor (BAFF)/ B cell activation factor receptor (BAFFR)-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chen Gu
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Yan Sun
- School of Pharmacy, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Meiqi Mao
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Jinguo Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Nanta Street 114, Shenyang 110016, China
| | - Xiongyao Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Lincheng West Road 99, Guiyang 550081, China
| | - Xiaoping Zhang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Weilong Road, Taipa, Macau 999078, China
| |
Collapse
|
26
|
Ambrosio LF, Volpini X, Quiroz JN, Brugo MB, Knubel CP, Herrera MR, Fozzatti L, Avila Pacheco J, Clish CB, Takenaka MC, Beloscar J, Theumer MG, Quintana FJ, Perez AR, Motrán CC. Association between altered tryptophan metabolism, plasma aryl hydrocarbon receptor agonists, and inflammatory Chagas disease. Front Immunol 2024; 14:1267641. [PMID: 38283348 PMCID: PMC10811785 DOI: 10.3389/fimmu.2023.1267641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Chagas disease causes a cardiac illness characterized by immunoinflammatory reactions leading to myocardial fibrosis and remodeling. The development of Chronic Chagas Cardiomyopathy (CCC) in some patients while others remain asymptomatic is not fully understood, but dysregulated inflammatory responses are implicated. The Aryl hydrocarbon receptor (AhR) plays a crucial role in regulating inflammation. Certain tryptophan (Trp) metabolites have been identified as AhR ligands with regulatory functions. Methods results and discussion We investigated AhR expression, agonist response, ligand production, and AhR-dependent responses, such as IDO activation and regulatory T (Treg) cells induction, in two T. cruzi-infected mouse strains (B6 and Balb/c) showing different polymorphisms in AhR. Furthermore, we assessed the metabolic profile of Trp catabolites and AhR agonistic activity levels in plasma samples from patients with chronic Chagas disease (CCD) and healthy donors (HD) using a luciferase reporter assay and liquid chromatography-mass spectrophotometry (LC-MS) analysis. T. cruzi-infected B6 mice showed impaired AhR-dependent responses compared to Balb/c mice, including reduced IDO activity, kynurenine levels, Treg cell induction, CYP1A1 up-regulation, and AhR expression following agonist activation. Additionally, B6 mice exhibited no detectable AhR agonist activity in plasma and displayed lower CYP1A1 up-regulation and AhR expression upon agonist activation. Similarly, CCC patients had decreased AhR agonistic activity in plasma compared to HD patients and exhibited dysregulation in Trp metabolic pathways, resulting in altered plasma metabolite profiles. Notably, patients with severe CCC specifically showed increased N-acetylserotonin levels in their plasma. The methods and findings presented here contribute to a better understanding of CCC development mechanisms and may identify potential specific biomarkers for T. cruzi infection and the severity of associated heart disease. These insights could be valuable in designing new therapeutic strategies. Ultimately, this research aims to establish the AhR agonistic activity and Trp metabolic profile in plasma as an innovative, non-invasive predictor of prognosis for chronic Chagas disease.
Collapse
Affiliation(s)
- Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan Nahuel Quiroz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Belén Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Paola Knubel
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Melisa Rocío Herrera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Julián Avila Pacheco
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Maisa C. Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan Beloscar
- Servicio de Cardiología, Departamento de Chagas, Hospital Provincial del Centenario y Cátedra de Cardiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martín Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Francisco Javier Quintana
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Rosa Perez
- Instituto de Inmunología Clínica y Experimental de Rosario-CONICET-Universidad Nacional de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
27
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
28
|
Zhou Y, Wang T, Fan H, Liu S, Teng X, Shao L, Shen Z. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Curr Probl Cardiol 2024; 49:102040. [PMID: 37595858 DOI: 10.1016/j.cpcardiol.2023.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeng F, Zhou P, Wang M, Xie L, Huang X, Wang Y, Huang J, Shao X, Yang Y, Liu W, Gu M, Yu Y, Sun F, He M, Li Y, Zhang Z, Gong W, Wang Y. ACMSD mediated de novo NAD + biosynthetic impairment in cardiac endothelial cells as a potential therapeutic target for diabetic cardiomyopathy. Diabetes Res Clin Pract 2023; 206:111014. [PMID: 37977551 DOI: 10.1016/j.diabres.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
OBJECT The highly conserved α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is the key enzyme that regulates the de novo NAD+ synthesis from tryptophan. NAD+ metabolism in diabetic cardiomyopathy (DCM) was not elucidated yet. METHODS Mice were assigned to non-diabetic (NDM) group, streptozocin (STZ)-induced diabetic (DM) group, and nicotinamide (NAM) treated (DM + NAM) group. ACMSD mediated NAD+ metabolism were studied both in mice and patients with diabetes. RESULTS NAD+ level was significantly lower in the heart of DM mice than that of the NDM group. Supplementation with NAM could partially increased myocardial capillary density and ameliorated myocardial fibrosis by increasing NAD+ level through salvage pathway. Compared with NDM mice, the expression of ACMSD in myocardial endothelial cells of DM mice was significantly increased. It was further confirmed that in endothelial cells, high glucose promoted the expression of ACMSD. Inhibition of ACMSD could increase de novo NAD+ synthesis and improve endothelial cell function by increasing Sirt1 activity. Targeted mass spectrometry analysis indicated increased ACMSD enzyme activity in diabetic patients, higher ACMSD activity increased risk of heart diastolic dysfunction. CONCLUSION In summary, increased expression of ACMSD lead to impaired de novo NAD+ synthesis in diabetic heart. Inhibition of ACMSD could potentially improve DCM.
Collapse
Affiliation(s)
- Fangfang Zeng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Peng Zhou
- Department of Cardiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijie Xie
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinmei Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yilin Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinya Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqing Shao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yeping Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjuan Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maocheng Gu
- Department of Cardiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fei Sun
- Department of Endocrinology and Metabolism, Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yi Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
31
|
Zhang S, Lin T, Zhang D, Chen X, Ge Y, Gao Q, Fan J. Use of the selected metal-dependent enzymes for exploring applicability of human annexin A1 as a purification tag. J Biosci Bioeng 2023; 136:423-429. [PMID: 37805288 DOI: 10.1016/j.jbiosc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/09/2023]
Abstract
Several fusion tags have been developed for non-chromatographic fusion protein purification. Previously, we identified that human annexin A1 as a novel N-terminal purification tag was used for purifying the fusion proteins produced in Escherichia coli through precipitation in 10 mM Ca2+ buffer, and redissolution of the precipitate in 15 mM EDTA buffer. In this work, we selected four metal-dependent enzymes including E. coli 5-aminolevulinate dehydratase, yeast 3-hydroxyanthranilate 3,4-dioxygenase, maize serine racemase and copper amine oxidase for investigating the annexin A1 tag applicability. Fusion of the His6-tag or the enzyme changed the behavior of precipitation-redissolution. The relatively high recovery yields of three tagged enzymes with the improved purities were obtained through two rounds of purification, whereas low recovery yield of the annexin A1 tagged maize amine oxidase was prepared. The added EDTA displayed different abilities to redissolve the fusion proteins precipitates in two precipitation-redissolution cycles. It inactivated three enzymes and obviously inhibited the activity of the fused maize serine racemase. Based on current findings, we believe that four enzymes could be applied for evaluating applicability of the proteins or peptides as affinity tags for chromatographic purification in a calcium dependent manner.
Collapse
Affiliation(s)
- Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
32
|
Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL, Hanssen NMJ. Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis 2023; 387:117344. [PMID: 37945449 DOI: 10.1016/j.atherosclerosis.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) remains the largest cause of death globally due to various risk factors. One novel potential contributor to CVD might be the metabolism of the essential amino acid tryptophan (Trp), which through many pathways can produce immunomodulatory metabolites such as kynurenine, indole-3-propionate and serotonin. We aim to identify the metabolites with the strongest association with cardiovascular disease, utilizing a substantial and diverse cohort of individuals. In our pursuit of this aim, our primary focus is to validate and reinforce the findings from previous cross-sectional studies. METHODS We used the community-based EPIC-Norfolk cohort (46.3 % men, age 59.8 ± 9.0) with a median follow-up of 22.1 (17.6-23.3) years to study associations between the relative levels of Trp metabolites measured with untargeted metabolomics and incident development of CVD. Serum from n = 11,972 apparently healthy subjects was analysed, of which 6982 individuals had developed CVD at the end of follow-up. Cox proportional hazard models were used to study associations, adjusted for sex, age, conventional cardiovascular risk factors and CRP. All metabolites were Ln-normalised prior to analysis. RESULTS Higher levels of Trp were inversely associated with mortality (HR 0.73; CI 0.64-0.83) and fatal CVD (HR 0.76; CI 0.59-0.99). Higher levels of kynurenine (HR 1.33; CI 1.19-1.49) and the [Kynurenine]/[Tryptophan]-ratio (HR 1.24; CI 1.14-1.35) were associated with a higher incident development of CVD. Serotonin was not associated with overall CVD, but we did find associations for myocardial infarction and stroke. Adjustment for CRP did not yield any discernible differences in effect size. CONCLUSIONS Tryptophan levels were inversely correlated with CVD, while several of its major metabolites (especially kynurenine and serotonin) were positively correlated. These findings indicate that mechanistic studies are required to understand the role of Trp metabolism in CVD with the goal to identify new therapeutic targets.
Collapse
Affiliation(s)
- Charlotte J Teunis
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands.
| | - Erik S G Stroes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia; Department of Immunology, Monash University, Melbourne, 3004, Australia
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Eryavuz Onmaz D, Tezcan D, Yilmaz S, Onmaz M, Unlu A. Altered kynurenine pathway metabolism and association with disease activity in patients with systemic lupus. Amino Acids 2023; 55:1937-1947. [PMID: 37925676 DOI: 10.1007/s00726-023-03353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by increased release of proinflammatory cytokines that are known to activate the indoleamine 2,3-dioxygenase (IDO-1) enzyme, which catalyzes the rate-limiting step of the kynurenine pathway (KP). This study aimed to measure KP metabolite levels in patients with SLE and investigate the relationship between disease activity, clinical findings, and KP. The study included 100 patients with SLE and 100 healthy controls. Serum tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid (3HAA), 3-hydroxykynurenine (3HK), quinolinic acid (QA) concentrations were measured with tandem mass spectrometry. Serum KYN, KYNA, 3HAA, 3HK, and QA levels of the patients with SLE were significantly higher than the control group. Serum QA levels were elevated in patients with neurological involvement (four patients with peripheral neuropathy and two patients with mononeuropathy), serum KYN levels and KYN/TRP ratio increased in patients with joint involvement, and serum KYN, 3HK, and 3HAA levels and the KYN/TRP ratio were increased in patients with renal involvement. Moreover, KYN and KYN/TRP ratios were positively correlated with the disease activity score. These findings indicated that imbalances in KP metabolites may be associated with the pathogenesis, activation, and clinical manifestations of SLE.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Alaaddin Keykubat Campus, Selcuklu, 42075, Konya, Turkey.
| | - Dilek Tezcan
- Division of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Sema Yilmaz
- Division of Rheumatology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Mustafa Onmaz
- Faculty of Medicine, Department of Family Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Alaaddin Keykubat Campus, Selcuklu, 42075, Konya, Turkey
| |
Collapse
|
34
|
Hu Y, Li J, Wang B, Zhu L, Li Y, Ivey KL, Lee KH, Eliassen AH, Chan A, Huttenhower C, Hu FB, Qi Q, Rimm EB, Sun Q. Interplay between diet, circulating indolepropionate concentrations and cardiometabolic health in US populations. Gut 2023; 72:2260-2271. [PMID: 37739776 PMCID: PMC10841831 DOI: 10.1136/gutjnl-2023-330410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES To identify indolepropionate (IPA)-predicting gut microbiota species, investigate potential diet-microbiota interactions, and examine the prospective associations of circulating IPA concentrations with type 2 diabetes (T2D) and coronary heart disease (CHD) risk in free-living individuals. DESIGN We included 287 men from the Men's Lifestyle Validation Study, a substudy of the Health Professionals Follow-Up Study (HPFS), who provided up to two pairs of faecal samples and two blood samples. Diet was assessed using 7-day diet records. Associations between plasma concentrations of tryptophan metabolites and T2D CHD risk were examined in 13 032 participants from Nurses' Health Study (NHS), NHSII and HPFS. RESULTS We identified 17 microbial species whose abundance was significantly associated with plasma IPA concentrations. A significant association between higher tryptophan intake and higher IPA concentrations was only observed among men who had higher fibre intake and a higher microbial species score consisting of the 17 species (p-interaction<0.01). Dietary and plasma concentrations of tryptophan and most kynurenine pathway metabolites were positively associated with T2D risk (HRQ5 vs Q1 ranged from 1.17 to 1.46) while a significant inverse association was found for IPA (HRQ5 vs Q1 (95% CI) 0.70 (0.56 to 0.88)). No associations were found in CHD for any plasma tryptophan metabolites. CONCLUSIONS Specific microbial species and dietary fibre jointly predicted significantly higher circulating IPA concentrations at higher tryptophan intake. Dietary and plasma tryptophan, as well as its kynurenine pathway metabolites, demonstrated divergent associations from those for IPA, which was significantly predictive of lower risk of T2D.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Biqi Wang
- Department of Medicine, UMASS Medical School, Worcester, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Yanping Li
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
- Eli and Edythe L. Broad Institute of Harvard and MIT, Flinders University College of Nursing and Health Sciences, Cambridge, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Miquelestorena-Standley E, da Silva AVV, Monnier M, Chadet S, Piollet M, Héraud A, Lemoine R, Bochaton T, Derumeaux G, Roger S, Ivanes F, Angoulvant D. Human peripheral blood mononuclear cells display a temporal evolving inflammatory profile after myocardial infarction and modify myocardial fibroblasts phenotype. Sci Rep 2023; 13:16745. [PMID: 37798364 PMCID: PMC10556078 DOI: 10.1038/s41598-023-44036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France.
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France.
| | - Ana Valéria Vinhais da Silva
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marina Monnier
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Stéphanie Chadet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marie Piollet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Audrey Héraud
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Thomas Bochaton
- Service de Cardiologie, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Derumeaux
- Service de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Sébastien Roger
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Fabrice Ivanes
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Denis Angoulvant
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| |
Collapse
|
36
|
Kamel R, Baetz D, Gueguen N, Lebeau L, Barbelivien A, Guihot AL, Allawa L, Gallet J, Beaumont J, Ovize M, Henrion D, Reynier P, Mirebeau-Prunier D, Prunier F, Tamareille S. Kynurenic Acid: A Novel Player in Cardioprotection against Myocardial Ischemia/Reperfusion Injuries. Pharmaceuticals (Basel) 2023; 16:1381. [PMID: 37895852 PMCID: PMC10610491 DOI: 10.3390/ph16101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.
Collapse
Affiliation(s)
- Rima Kamel
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Delphine Baetz
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
| | - Naïg Gueguen
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Lucie Lebeau
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Agnès Barbelivien
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Anne-Laure Guihot
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Louwana Allawa
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Jean Gallet
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Justine Beaumont
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Michel Ovize
- Laboratoire CarMeN, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69500 Bron, France; (D.B.); (M.O.)
- Service d’Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69000 Lyon, France
| | - Daniel Henrion
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| | - Pascal Reynier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Delphine Mirebeau-Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Biochimie et Biologie Moléculaire, CHU Angers, F-49000 Angers, France
| | - Fabrice Prunier
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
- Service de Cardiologie, CHU Angers, F-49000 Angers, France;
| | - Sophie Tamareille
- MITOVASC, SFR ICAT, CNRS 6015, INSERM U1083, Université d’Angers, F-49000 Angers, France; (R.K.); (N.G.); (L.L.); (A.-L.G.); (L.A.); (D.H.); (P.R.); (D.M.-P.); (F.P.)
| |
Collapse
|
37
|
Patra D, Banerjee D, Ramprasad P, Roy S, Pal D, Dasgupta S. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes. Front Mol Biosci 2023; 10:1224982. [PMID: 37842639 PMCID: PMC10575740 DOI: 10.3389/fmolb.2023.1224982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
An imbalance in microbial homeostasis, referred to as dysbiosis, is critically associated with the progression of obesity-induced metabolic disorders including type 2 diabetes (T2D). Alteration in gut microbial diversity and the abundance of pathogenic bacteria disrupt metabolic homeostasis and potentiate chronic inflammation, due to intestinal leakage or release of a diverse range of microbial metabolites. The obesity-associated shifts in gut microbial diversity worsen the triglyceride and cholesterol level that regulates adipogenesis, lipolysis, and fatty acid oxidation. Moreover, an intricate interaction of the gut-brain axis coupled with the altered microbiome profile and microbiome-derived metabolites disrupt bidirectional communication for instigating insulin resistance. Furthermore, a distinct microbial community within visceral adipose tissue is associated with its dysfunction in obese T2D individuals. The specific bacterial signature was found in the mesenteric adipose tissue of T2D patients. Recently, it has been shown that in Crohn's disease, the gut-derived bacterium Clostridium innocuum translocated to the mesenteric adipose tissue and modulates its function by inducing M2 macrophage polarization, increasing adipogenesis, and promoting microbial surveillance. Considering these facts, modulation of microbiota in the gut and adipose tissue could serve as one of the contemporary approaches to manage T2D by using prebiotics, probiotics, or faecal microbial transplantation. Altogether, this review consolidates the current knowledge on gut and adipose tissue dysbiosis and its role in the development and progression of obesity-induced T2D. It emphasizes the significance of the gut microbiota and its metabolites as well as the alteration of adipose tissue microbiome profile for promoting adipose tissue dysfunction, and identifying novel therapeutic strategies, providing valuable insights and directions for future research and potential clinical interventions.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| |
Collapse
|
38
|
Paczkowska K, Rachoń D, Berg A, Rybka J, Kapczyńska K, Bolanowski M, Daroszewski J. Alteration of Branched-Chain and Aromatic Amino Acid Profile as a Novel Approach in Studying Polycystic Ovary Syndrome Pathogenesis. Nutrients 2023; 15:4153. [PMID: 37836437 PMCID: PMC10574162 DOI: 10.3390/nu15194153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects reproductive-age women and predisposes them to the development of metabolic disturbances. Recent research has shown that several metabolic factors may play a role in PCOS pathogenesis, and it has been suggested that an alteration in the amino acid profile might be a predictive sign of metabolic disorders. Metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) are concepts that have attracted scientific attention; however, a universal definition has not been established yet for these terms. Already existing definitions of MHO involve the coexistence of obesity with the absence or minimal presence of other metabolic syndrome parameters. A group of 326 women, 209 diagnosed with PCOS and 117 healthy individuals, participated in this study. Multiple parameters were assessed, including anthropometrical, biochemical, and hormonal ones, and gas-liquid chromatography, combined with tandem mass spectrometry, was used to investigate the amino acid profile. Statistical analysis revealed noticeably higher levels of all aromatic amino acids in PCOS women compared to the control group: phenylalanine 47.37 ± 7.0 vs. 45.4 ± 6.09 nmol/mL (p = 0.01), tyrosine 61.69 ± 9.56 vs. 58.08 ± 8.89 nmol/mL (p < 0.01), and tryptophan 53.66 ± 11.42 vs. 49.81 ± 11.18 nmol/mL (p < 0.01); however, there was no significant difference in the "tryptophan ratio" between the PCOS and control group (p = 0.88). A comparison of MHO and MUO PCOS women revealed that LAP, leucine, and isoleucine concentrations were significantly higher among the MUO subgroup: respectively, 101.98 ± 34.74 vs. 55.80 ± 24.33 (p < 0.001); 153.26 ± 22.26 vs. 137.25 ± 25.76 nmol/mL (p = 0.04); and 92.92 ± 16.09 vs. 82.60 ± 18.70 nmol/mL (p = 0.02). No significant differences in BMI, fasting glucose, and HOMA-IR between MHO and MUO were found: respectively, 35.0 ± 4.8 vs. 36.1 ± 4.6 kg/m2 (p = 0.59); 88.0 ± 6.0 vs. 87.73 ± 6.28 mg/dL (p = 0.67); and 3.36 ± 1.70 vs. 4.17 ± 1.77 (p = 0.1). The identification of altered amino acid profiles in PCOS holds potential clinical implications. Amino acids may serve as biomarkers for diagnosing and monitoring the metabolic status of individuals with PCOS. The alteration of BCAAs and AAAs may be involved in PCOS pathogenesis, but the underlying mechanism should be further investigated.
Collapse
Affiliation(s)
- Katarzyna Paczkowska
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.P.)
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Andrzej Berg
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jacek Rybka
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Katarzyna Kapczyńska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.P.)
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.P.)
| |
Collapse
|
39
|
Seryapina AA, Malyavko AA, Polityko YK, Yanshole LV, Tsentalovich YP, Markel AL. Metabolic profile of blood serum in experimental arterial hypertension. Vavilovskii Zhurnal Genet Selektsii 2023; 27:530-538. [PMID: 37867609 PMCID: PMC10587007 DOI: 10.18699/vjgb-23-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 10/24/2023] Open
Abstract
The etiology of essential hypertension is intricate, since it employs simultaneously various body systems related to the regulation of blood pressure in one way or another: the sympathetic nervous system, renin-angiotensin-aldosterone and hypothalamic-pituitary-adrenal systems, renal and endothelial mechanisms. The pathogenesis of hypertension is influenced by a variety of both genetic and environmental factors, which determines the heterogeneity of the disease in human population. Hence, there is a need to perform research on experimental models - inbred animal strains, one of them being ISIAH rat strain, which is designed to simulate inherited stress-induced arterial hypertension as close as possible to primary (or essential) hypertension in humans. To determine specific markers of diseases, various omics technologies are applied, including metabolomics, which makes it possible to evaluate the content of low-molecular compounds - amino acids, lipids, carbohydrates, nucleic acids fragments - in biological samples available for clinical analysis (blood and urine). We analyzed the metabolic profile of the blood serum of male ISIAH rats with a genetic stress-dependent form of arterial hypertension in comparison with the normotensive WAG rats. Using the method of nuclear magnetic resonance spectroscopy (NMR spectroscopy), 56 metabolites in blood serum samples were identified, 18 of which were shown to have significant interstrain differences in serum concentrations. Statistical analysis of the data obtained showed that the hypertensive status of ISIAH rats is characterized by increased concentrations of leucine, isoleucine, valine, myo-inositol, isobutyrate, glutamate, glutamine, ornithine and creatine phosphate, and reduced concentrations of 2-hydroxyisobutyrate, betaine, tyrosine and tryptophan. Such a ratio of the metabolite concentrations is associated with changes in the regulation of glucose metabolism (metabolic markers - leucine, isoleucine, valine, myo-inositol), of nitric oxide synthesis (ornithine) and catecholamine pathway (tyrosine), and with inflammatory processes (metabolic markers - betaine, tryptophan), all of these changes being typical for hypertensive status. Thus, metabolic profiling of the stress-dependent form of arterial hypertension seems to be an important result for a personalized approach to the prevention and treatment of hypertensive disease.
Collapse
Affiliation(s)
- A A Seryapina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Malyavko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu K Polityko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L V Yanshole
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu P Tsentalovich
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A L Markel
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
40
|
Liu Z, Jin L, Ma Z, Nizhamuding X, Zeng J, Zhang T, Zhang J, Zhou W, Zhang C. Abnormal kynurenine-pathway metabolites in gout: Biomarkers exploration based on orthogonal partial least squares-discriminant analysis. Clin Chim Acta 2023; 549:117531. [PMID: 37673380 DOI: 10.1016/j.cca.2023.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND This study aims to investigate serological characteristics of kynurenine pathway (KP) metabolites in healthy controls (HC) and gout patients and explore possible differential metabolites. METHODS A total of 191 individual fresh residual sera was collected from 129 HC and 62 gout patients. A liquid chromatography-tandem mass spectrometry method was fully validated to measure 6 metabolites, including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), and neopterin (NEO). Supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) and differential metabolite screening with fold change (FC) were performed to identify intrinsic variations and differential levels of KP metabolites between the HC and gout groups. Logistic regression was used to assess the contributions of KP metabolites to gout. RESULTS There were significant decreases of TRP, 5HT, XA, and NEO and increases of KYN, KA, KA/KYN, and KYN/TRP in gout patients compared to the HC group (all p < 0.05). KP metabolites of the gout group showed good discrimination from those of the HC group (Q2: 0.892). Two distinct different metabolites were identified in gout, i.e., XA (FC: 0.56, p < 0.01) and NEO (FC: 0.34, p < 0.01). Of the KP metabolites, KYN was strongly associated with gout (OR: 7.91, p < 0.01). CONCLUSIONS Abnormal levels of serum KP metabolites were observed in gout. XA and NEO are promising biomarkers that were relevant to the status of gout. The level of KYN could be an attractive checkpoint for the management of gout. Continuous monitoring of KP metabolism in gout provides new opportunities to predict therapeutic efficacy and prognosis.
Collapse
Affiliation(s)
- Zhenni Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zijia Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaerbanu Nizhamuding
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China
| | - Weiyan Zhou
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
41
|
Bigelman E, Pasmanik-Chor M, Dassa B, Itkin M, Malitsky S, Dorot O, Pichinuk E, Kleinberg Y, Keren G, Entin-Meer M. Kynurenic acid, a key L-tryptophan-derived metabolite, protects the heart from an ischemic damage. PLoS One 2023; 18:e0275550. [PMID: 37616231 PMCID: PMC10449225 DOI: 10.1371/journal.pone.0275550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Renal injury induces major changes in plasma and cardiac metabolites. Using a small- animal in vivo model, we sought to identify a key metabolite whose levels are significantly modified following an acute kidney injury (AKI) and to analyze whether this agent could offer cardiac protection once an ischemic event has occurred. METHODS AND RESULTS Metabolomics profiling of cardiac lysates and plasma samples derived from rats that underwent AKI 1 or 7 days earlier by 5/6 nephrectomy versus sham-operated controls was performed. We detected 26 differential metabolites in both heart and plasma samples at the two selected time points, relative to sham. Out of which, kynurenic acid (kynurenate, KYNA) seemed most relevant. Interestingly, KYNA given at 10 mM concentration significantly rescued the viability of H9C2 cardiac myoblast cells grown under anoxic conditions and largely increased their mitochondrial content and activity as determined by flow cytometry and cell staining with MitoTracker dyes. Moreover, KYNA diluted in the drinking water of animals induced with an acute myocardial infarction, highly enhanced their cardiac recovery according to echocardiography and histopathology. CONCLUSION KYNA may represent a key metabolite absorbed by the heart following AKI as part of a compensatory mechanism aiming at preserving the cardiac function. KYNA preserves the in vitro myocyte viability following exposure to anoxia in a mechanism that is mediated, at least in part, by protection of the cardiac mitochondria. A short-term administration of KYNA may be highly beneficial in the treatment of the acute phase of kidney disease in order to attenuate progression to reno-cardiac syndrom and to reduce the ischemic myocardial damage following an ischemic event.
Collapse
Affiliation(s)
- Einat Bigelman
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Cardiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dorot
- Bio-Imaging Core, Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv, Israel
| | - Edward Pichinuk
- Bio-Imaging Core, Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Kleinberg
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Bio-Imaging Core, Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv, Israel
| | - Gad Keren
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Cardiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Entin-Meer
- Laboratory of Cardiovascular Research, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Cardiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
42
|
Jiang Y, Cui W, Zhang Y, Wang T, Zheng X, Li H, Shang J. FG-4592 relieves diabetic kidney disease severity by influencing metabolic profiles via gut microbiota reconstruction in both human and mouse models. Front Physiol 2023; 14:1195441. [PMID: 37654676 PMCID: PMC10465800 DOI: 10.3389/fphys.2023.1195441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Objective: Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is highly associated with devastating outcomes. Hypoxia-inducible factor (HIF), the main transcription factor that regulates cellular responses to hypoxia, plays an important role in regulating erythropoietin (EPO) synthesis. FG-4592 is the HIF stabilizer that is widely used in patients with renal anemia. We investigated the effect of FG-4592 on DKD phenotypes and the pharmacologic mechanism from the perspective of gut microbiota and systemic metabolism. Design: We collected the clinical data of 73 participants, including 40 DKD patients with combined renal anemia treated with FG-4592, and 33 clinical index-matched DKD patients without FG-4592 treatment from The First Affiliated Hospital of Zhengzhou University at the beginning and after a 3-6-month follow-up period. We established DKD mouse models treated by FG-4592 and performed fecal microbiota transplantation from FG-4592-treated DKD mice to investigate the effects of FG-4592 on DKD and to understand this mechanism from a microbial perspective. Untargeted metabolome-microbiome combined analysis was implemented to globally delineate the mechanism of FG-4592 from both microbial and metabolomic aspects. Result: DKD phenotypes significantly improved after 3-6 months of FG-4592 treatment in DKD patients combined with renal anemia, including a decreased level of systolic blood pressure, serum creatinine, and increased estimated glomerular infiltration rate. Such effects were also achieved in the DKD mouse model treated with FG-4592 and can be also induced by FG-4592-influenced gut microbiota. Untargeted plasma metabolomics-gut microbiota analysis showed that FG-4592 dramatically altered both the microbial and metabolic profiles of DKD mice and relieved DKD phenotypes via upregulating beneficial gut microbiota-associated metabolites. Conclusion: FG-4592 can globally relieve the symptoms of DKD patients combined with renal anemia. In the animal experiment, FG-4592 can reconstruct the intestinal microbial profiles of DKD to further upregulate the production of gut-associated beneficial metabolites, subsequently improving DKD phenotypes.
Collapse
Affiliation(s)
- Yumin Jiang
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
43
|
Bai L, Han X, Kee HJ, He X, Kim SH, Jeon MJ, Zhou H, Jeong SM, Kee SJ, Jeong MH. Protocatechuic acid prevents isoproterenol-induced heart failure in mice by downregulating kynurenine-3-monooxygenase. J Cell Mol Med 2023; 27:2290-2307. [PMID: 37482908 PMCID: PMC10424289 DOI: 10.1111/jcmm.17869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Xiaonan He
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Seong Hoon Kim
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Mi Jin Jeon
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Min Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
44
|
Shi B, Zhang X, Song Z, Dai Z, Luo K, Chen B, Zhou Z, Cui Y, Feng B, Zhu Z, Zheng J, Zhang H, He X. Targeting gut microbiota-derived kynurenine to predict and protect the remodeling of the pressure-overloaded young heart. SCIENCE ADVANCES 2023; 9:eadg7417. [PMID: 37450589 PMCID: PMC10348671 DOI: 10.1126/sciadv.adg7417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Pressure-overloaded left ventricular remodeling in young population is progressive and readily degenerate into heart failure. The aims of this study were to identify a plasma metabolite that predicts and is mechanistically linked to the disease. Untargeted metabolomics determined elevated plasma kynurenine (Kyn) in both the patient cohorts and the mice model, which was correlated with remodeling parameters. In vitro and in vivo evidence, combined with single-nucleus RNA sequencing (snRNA-seq), demonstrated that Kyn affected both cardiomyocytes and cardiac fibroblasts by activating aryl hydrocarbon receptors (AHR) to up-regulate hypertrophy- and fibrosis-related genes. Shotgun metagenomics and fecal microbiota transplantation revealed the existence of the altered gut microbiota-Kyn relationship. Supplementation of selected microbes reconstructed the gut microbiota, reduced plasma Kyn, and alleviated ventricular remodeling. Our data collectively discovered a gut microbiota-derived metabolite to activate AHR and its gene targets in remodeling young heart, a process that could be prevented by specific gut microbiota modulation.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhiying Song
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Zihao Dai
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bo Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zijie Zhou
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Yue Cui
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bei Feng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine; 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
45
|
Ballesteros J, Rivas D, Duque G. The Role of the Kynurenine Pathway in the Pathophysiology of Frailty, Sarcopenia, and Osteoporosis. Nutrients 2023; 15:3132. [PMID: 37513550 PMCID: PMC10383689 DOI: 10.3390/nu15143132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tryptophan is an essential nutrient required to generate vitamin B3 (niacin), which is mainly involved in energy metabolism and DNA production. Alterations in tryptophan metabolism could have significant effects on aging and musculoskeletal health. The kynurenine pathway, essential in tryptophan catabolism, is modulated by inflammatory factors that are increased in older persons, a process known as inflammaging. Osteoporosis, sarcopenia, osteosarcopenia, and frailty have also been linked with chronically increased levels of inflammatory factors. Due to the disruption of the kynurenine pathway by chronic inflammation and/or changes in the gut microbiota, serum levels of toxic metabolites are increased and are associated with the pathophysiology of those conditions. In contrast, anabolic products of this pathway, such as picolinic acid, have demonstrated a positive effect on skeletal muscle and bone. In addition, physical activity can modulate this pathway by promoting the secretion of anabolic kynurenines. According to the evidence collected, kynurenines could have a promising role as biomarkers for osteoporosis sarcopenia, osteosarcopenia, and frailty in older persons. In addition, some of these metabolites could become important targets for developing new pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Juan Ballesteros
- Servicio de Geriatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Rivas
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
46
|
Yang P, Zhang J. Indoleamine 2,3-Dioxygenase (IDO) Activity: A Perspective Biomarker for Laboratory Determination in Tumor Immunotherapy. Biomedicines 2023; 11:1988. [PMID: 37509627 PMCID: PMC10377333 DOI: 10.3390/biomedicines11071988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme involved in catalyzing the conversion of tryptophan (Trp) into kynurenine (Kyn) at the first rate-limiting step in the kynurenine pathway of L-tryptophan metabolism. It has been found to be involved in several biological functions such as aging, immune microorganism, neurodegenerative and infectious diseases, and cancer. IDO1 plays an important role in immune tolerance by depleting tryptophan in the tumor microenvironment and inhibiting the proliferation of effector T cells, which makes it an important emerging biomarker for cancer immunotherapy. Therefore, the research and development of IDO1 inhibitors are of great importance for tumor therapy. Of interest, IDO activity assays are of great value in the screening and evaluation of inhibitors. Herein, we mainly review the biological functions of IDO1, immune regulation, key signaling molecules in the response pathway, and the development of IDO1 inhibitors in clinical trials. Furthermore, this review provides a comprehensive overview and, in particular, a discussion of currently available IDO activity assays for use in the evaluation of IDO inhibitors in human blood. We believe that the IDO activity is a promising biomarker for the immune escape and laboratory evaluation of tumor immunotherapy.
Collapse
Affiliation(s)
- Pengbo Yang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
47
|
Stepaniuk A, Baran A, Flisiak I. Kynurenine Pathway in Psoriasis-a Promising Link? Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00958-4. [PMID: 37326759 PMCID: PMC10366053 DOI: 10.1007/s13555-023-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Psoriasis is a common dermatosis which affects the patient's skin and general well-being because of its link to diseases such as depression, kidney disease and metabolic syndrome. Pathogenesis remains unknown; however, genetic, environmental and immunological factors seem to play a role in the development of the disease. Due to a lack of complete understanding of the psoriasis pathology, effective treatment is yet to be developed. The kynurenine pathway is one of the ways amino acid tryptophan is metabolised. In comorbidities typical for psoriasis such as chronic kidney disease, depression and atherosclerotic alterations in the activation of the kynurenine pathway were observed, which were mainly characterised by higher activity compared to that in healthy individuals. However, the kynurenine pathway has not been thoroughly studied among patients with psoriasis even though increased levels of L-kynurenine, one of the enzymes in the kynurenine pathway, were found in psoriatic skin lesions. Given the unknown pathogenesis of the disease, this finding seems to be a potential new field of study and shows a possible link between psoriasis and its comorbidities that could also lead to novel effective treatment for this chronic condition.
Collapse
Affiliation(s)
- A Stepaniuk
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - A Baran
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| | - I Flisiak
- Department of Dermatology and Venerology, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland
| |
Collapse
|
48
|
Giesbertz P, Brandl B, Volkert D, Hauner H, Skurk T. Age-related metabolite profiles and their relation to clinical outcomes in young adults, middle-aged individuals, and older people. FASEB J 2023; 37:e22968. [PMID: 37178008 DOI: 10.1096/fj.202101930r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Age is a significant risk factor for common noncommunicable diseases, yet the physiological alterations of aging are poorly understood. We were interested in metabolic patterns between cross-sectional cohorts of different age ranges with particular emphasis on waist circumference. We recruited three cohorts of healthy subjects with different age ranges (adolescents 18-25 years, adults 40-65 years, and older citizens 75-85 years) and stratified these based on waist circumference. Using targeted LC-MS/MS metabolite profiling, we analyzed 112 analytes in plasma (amino acids, acylcarnitines, and derivatives). We associated age-related alterations with various anthropometric and functional parameters such as insulin sensitivity and handgrip strength. Strongest age-dependent increases were found for fatty acid-derived acylcarnitines. Amino acid-derived acylcarnitines displayed increased associations with BMI and adiposity. Some essential amino acids changed in opposite directions, being lower at increased age and higher with increasing adiposity. τ-methylhistidine was elevated in older subjects, especially on an adiposity background, suggesting an increased protein turnover. Both aging and adiposity are associated with impaired insulin sensitivity. Skeletal muscle mass decreased with age and increased with adiposity. Profound differences in the metabolite signatures during healthy aging and elevated waist circumference/body weight were found. Opposite changes in skeletal muscle mass as well as possible differences in insulin signaling (relative insulin deficiency in older subjects versus hyperinsulinemia associated with adiposity), might be underlying origins for the observed metabolite signatures. We describe novel associations between metabolites and anthropometric factors during aging which underlines the complex interplay of aging, insulin resistance, and metabolic health.
Collapse
Affiliation(s)
- Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Beate Brandl
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| | - Dorothee Volkert
- Institute of Biomedicine of Ageing (IBA), Friedrich-Alexander University Erlangen Nürnberg (FAU), Nürnberg, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Skurk
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| |
Collapse
|
49
|
Truter N, Malan L, Essop MF. Glial cell activity in cardiovascular diseases and risk of acute myocardial infarction. Am J Physiol Heart Circ Physiol 2023; 324:H373-H390. [PMID: 36662577 DOI: 10.1152/ajpheart.00332.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence indicates that the pathophysiological link between the brain and heart underlies cardiovascular diseases, specifically acute myocardial infarction (AMI). Astrocytes are the most abundant glial cells in the central nervous system and provide support/protection for neurons. Astrocytes and peripheral glial cells are emerging as key modulators of the brain-heart axis in AMI, by affecting sympathetic nervous system activity (centrally and peripherally). This review, therefore, aimed to gain an improved understanding of glial cell activity and AMI risk. This includes discussions on the potential role of contributing factors in AMI risk, i.e., autonomic nervous system dysfunction, glial-neurotrophic and ischemic risk markers [glial cell line-derived neurotrophic factor (GDNF), astrocytic S100 calcium-binding protein B (S100B), silent myocardial ischemia, and cardiac troponin T (cTnT)]. Consideration of glial cell activity and related contributing factors in certain brain-heart disorders, namely, blood-brain barrier dysfunction, myocardial ischemia, and chronic psychological stress, may improve our understanding regarding the pathological role that glial dysfunction can play in the development/onset of AMI. Here, findings demonstrated perturbations in glial cell activity and contributing factors (especially sympathetic activity). Moreover, emerging AMI risk included sympathovagal imbalance, low GDNF levels reflecting prothrombic risk, hypertension, and increased ischemia due to perfusion deficits (indicated by S100B and cTnT levels). Such perturbations impacted blood-barrier function and perfusion that were exacerbated during psychological stress. Thus, greater insights and consideration regarding such biomarkers may help drive future studies investigating brain-heart axis pathologies to gain a deeper understanding of astrocytic glial cell contributions and unlock potential novel therapies for AMI.
Collapse
Affiliation(s)
- Nina Truter
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leoné Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
50
|
du Toit WL, Kruger R, Gafane-Matemane LF, Schutte AE, Louw R, Mels CMC. Markers of arterial stiffness and urinary metabolomics in young adults with early cardiovascular risk: the African-PREDICT study. Metabolomics 2023; 19:28. [PMID: 36988718 PMCID: PMC10060307 DOI: 10.1007/s11306-023-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/04/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Increased exposure to risk factors in the young and healthy contributes to arterial changes, which may be accompanied by an altered metabolism. OBJECTIVES To increase our understanding of early metabolic alterations and how they associate with markers of arterial stiffness, we profiled urinary metabolites in young adults with cardiovascular disease (CVD) risk factor(s) and in a control group without CVD risk factors. METHODS We included healthy black and white women and men (N = 1202), aged 20-30 years with a detailed CVD risk factor profile, reflecting obesity, physical inactivity, smoking, excessive alcohol intake, masked hypertension, hyperglycemia, dyslipidemia and low socio-economic status, forming the CVD risk group (N = 1036) and the control group (N = 166). Markers of arterial stiffness, central systolic blood pressure (BP) and pulse wave velocity were measured. A targeted metabolomics approach was followed by measuring amino acids and acylcarnitines using a liquid chromatography-tandem mass spectrometry method. RESULTS In the CVD risk group, central systolic BP (adjusted for age, sex, ethnicity) was negatively associated with histidine, arginine, asparagine, serine, glutamine, dimethylglycine, threonine, GABA, proline, methionine, pyroglutamic acid, aspartic acid, glutamic acid, branched chain amino acids (BCAAs) and butyrylcarnitine (all P ≤ 0.048). In the same group, pulse wave velocity (adjusted for age, sex, ethnicity, mean arterial pressure) was negatively associated with histidine, lysine, threonine, 2-aminoadipic acid, BCAAs and aromatic amino acids (AAAs) (all P ≤ 0.044). In the control group, central systolic BP was negatively associated with pyroglutamic acid, glutamic acid and dodecanoylcarnitine (all P ≤ 0.033). CONCLUSION In a group with increased CVD risk, markers of arterial stiffness were negatively associated with metabolites related to AAA and BCAA as well as energy metabolism and oxidative stress. Our findings may suggest that metabolic adaptations may be at play in response to increased CVD risk to maintain cardiovascular integrity.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|