1
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
2
|
Yan W, Wu Q, Shi Y, You H, Jia J, Meng D, Ma L, Zhang X, Yu X, Tan W, Wei H. Low serum S100A6 levels are associated RP-ILD risk in anti-MDA5-positive dermatomyositis. Clin Rheumatol 2025; 44:341-348. [PMID: 39680260 DOI: 10.1007/s10067-024-07265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Anti-MDA5-positive dermatomyositis (anti-MDA5-DM) is a rare autoimmune disease that often leads to rapid-progressive interstitial lung disease (RP-ILD). The lack of effective prediction and treatment methods makes RP-ILD a major risk factor for death in patients with this condition. S100A6 is a member of the S100 Ca2 + - binding protein family, which plays important roles in inflammation, tumor, injury, and fibroblast reparation. This study aims to explore the correlation between serum S100A6 and RP-ILD in anti-MDA5-DM, and to determine whether S100A6 can be used as a specific biomarker to predict RP-ILD. METHODS The authors enrolled 80 participants, including 20 healthy volunteers, 20 patients with anti-synthase syndrome, and 40 patients with anti-MDA5-positive dermatomyositis. Serum samples were collected and the levels of S100A6 were measured using ELISA. Logistic regression was used to analyze the relationship between serum S100A6 levels and RP-ILD, along with other clinical and laboratory parameters. RESULTS: Serum S100A6 levels were significantly lower in anti-MDA5-DM patients with RP-ILD than those without RP-ILD (odds ratio:0.393 (95% CI, 0.164-0.943, p = 0.036)). High serum S100A6 level was found to be a protective factor for RP-ILD. This study shows that high serum S100A6 level may be a protective factor for RP-ILD in anti-MDA5-DM patients. Serum S100A6 may be used as a specific biomarker to predict whether RP-ILD occurs in anti-MDA5-DM. Key Points • This research discovers and reports a biomarker (S100A6) for distinguishing potential RP-ILD in Anti-MDA5 positive dermatomyositis.
Collapse
Affiliation(s)
- Wei Yan
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Qin Wu
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Yumeng Shi
- Division of Rheumatology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hanxiao You
- Division of Rheumatology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jieting Jia
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Defang Meng
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Li Ma
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Xuexiang Zhang
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Xindi Yu
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China
| | - Wenfeng Tan
- Division of Rheumatology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hua Wei
- Division of Rheumatology, Northern Jiangsu People's Hospital, Jiangsu, China.
| |
Collapse
|
3
|
Xu X, Gong C, Wang Y, Yin Z, Wang X, Wu X, Fang Z, Wei S. FOXF1 promotes ovarian cancer metastasis by facilitating HMGA2-mediated USP30-dependent S100A6 deubiquitination. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167633. [PMID: 39694080 DOI: 10.1016/j.bbadis.2024.167633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Ovarian cancer is the most common type of gynecological malignant tumor, with the highest mortality rate among female genital malignant tumors. In this study, we initially identified forkhead box F1 (FOXF1) as a potential prognostic biomarker of ovarian cancer through bioinformatics analysis. FOXF1 expression was higher in ovarian cancer tissue samples and served as an unfavorable prognostic factor. In vitro and in vivo experiments demonstrated that FOXF1 enhanced ovarian cancer cell migration and tumor dissemination. Chromatin immunoprecipitation-polymerase chain reaction and luciferase assays revealed that FOXF1 bound directly to the high-mobility group AT-hook 2 (HMGA2) promoter and significantly induced its transcriptional activity. Subsequent co-immunoprecipitation and mass spectrometry analyses demonstrated that HMGA2 stabilized S100 calcium-binding protein A6 (S100A6) protein through recruitment of the deubiquitinase, ubiquitin-specific peptidase 30 (USP30), thereby inhibiting S100A6 degradation. Rescue experiments further illustrated that FOXF1 induced ovarian cancer cell mobility in an HMGA2/S100A6-dependent manner. Additionally, FOXF1, HMGA2, USP30, and S100A6 were clinically relevant in patients with ovarian cancer. This is the first study to reveal the molecular mechanisms underlying FOXF1-mediated ovarian cancer metastasis and demonstrate that FOXF1 represents a potential therapeutic target in patients with metastatic ovarian cancer.
Collapse
Affiliation(s)
- Xi Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Yunfeng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhidong Yin
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xiaogang Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xuebiao Wu
- Center for Molecular Pathology, Department of Pathophysiology, Gannan Medical University, Ganzhou 341000, China.
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital, Sanmen 317100, China.
| | - Shumei Wei
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
4
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
5
|
Schulenburg A, Rüsing LZ, Bumberger A, Mitterbauer M, Rabitsch W. S100 as marker for immune effector cell-associated neurotoxicity syndrome. Wien Klin Wochenschr 2024:10.1007/s00508-024-02451-0. [PMID: 39365474 DOI: 10.1007/s00508-024-02451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a new and successful treatment for otherwise refractory malignancies but despite the growing number of applications, this form of treatment is still associated with significant toxicity. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) in particular are common and dangerous side effects. This report is about two patients who received CAR‑T cell therapy and subsequently developed ICANS. This was successfully treated. During CAR‑T cell therapy, a blood marker, S100, was monitored daily. It correlated with the occurrence and progression of ICANS.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Lina Z Rüsing
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armin Bumberger
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Margit Mitterbauer
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Werner Rabitsch
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Costa do Bomfim FR, Gonzalez Sella VR, Thomasini RL, Plapler H. Photobiomodulation Modulates Proliferation and Gene Expression Related to Calcium Signaling in Human Osteoblast Cells. J Lasers Med Sci 2024; 15:e45. [PMID: 39381787 PMCID: PMC11459251 DOI: 10.34172/jlms.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Photobiomodulation with low-level laser treatment can enhance bone formation by stimulating the cell division of osteoblasts and increasing the amount of protein deposition, thus encouraging the formation of new bone. The aim of this study was to evaluate the effects of photobiomodulation with a low-level laser on proliferation and gene expression related to calcium signaling in human osteoblasts. Methods: Osteoblastic cell lines of the hFOB1.19 lineage, human osteoblasts, were grown and assigned into two groups, control (C; n=78 cultured wells) and photobiomodulation (L; n=78 cultured wells) with n=6 per day of the experimental period. Cells were cultured (immature at 34 ºC), and after maturation at 37 ºC, group L cells were exposed to laser irradiation with a low-level laser device (gallium and aluminum arsenide), at a wavelength of 808 nm, a power output of 200 mW, and a power density of 200 mW/cm2. The energy delivered to the cells was 37 J/cm2, with a beam area of 0.02 mm2 and an exposure time of 5 seconds. This treatment was applied daily for a period of 13 days. Following this, the number of cells was counted, and RNA was isolated, measured, and then converted into cDNA for further quantification using a comparative Ct method with real-time polymerase chain reaction. The results were then subjected to statistical analysis through a Mann-Whitney test, with a significance level of P<0.05. Results: The cell count in the L group (37.25x10±4±22.02) was statistically higher compared to the control group (22.75x10±4±7.660) with a P value of 0.0259. The values of 2-ΔΔCt for S100A6, plasma membrane calcium ATPase (PMCA), and calmodulin genes indicated hyper-expression on the thirteenth day, while the osteocalcin gene showed hypo-expression. Conclusion: The study suggests that the photobiomodulation mechanism with a low-level laser may regulate gene expression in human osteoblasts in a dose-dependent and cumulative manner.
Collapse
Affiliation(s)
- Fernando Russo Costa do Bomfim
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
- Laboratory of Molecular Biology, Centro Universitário da Fundação Hermínio Ometto - FHO, Araras, SP, Brazil
| | - Valéria Regina Gonzalez Sella
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Ronaldo Luis Thomasini
- Medicine Faculty, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina, MG, Brazil
| | - Hélio Plapler
- Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Zhang C, Zeng M, Xu Y, Huang B, Shi P, Zhu X, Cao Y. S100A6 mediated epithelial-mesenchymal transition affects chemosensitivity of colorectal cancer to oxaliplatin. Gene 2024; 914:148406. [PMID: 38521111 DOI: 10.1016/j.gene.2024.148406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To investigate the mechanism by which S100 calcium-binding protein A6 (S100A6) affects colorectal cancer (CRC) cells to oxaliplatin (L-OHP) chemotherapy, and to explore new strategies for CRC treatment. METHODS S100A6 expression was assessed in both parental and L-OHP-resistant CRC cells using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assays (ELISA). Lentiviral vectors were utilized to induce the knockdown of S100A6 expression, followed by comprehensive evaluations of cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT). Additionally, RNA-seq analysis was conducted to identify genes associated with the knockdown of S100A6. RESULTS Elevated S100A6 expression in CRC tissues correlated with an adverse prognosis in patients with CRC. Higher expression of S100A6 was also observed in L-OHP-resistant CRC cells, which showed enhanced proliferation, migration, invasion, and antiapoptotic capabilities. Notably, the knockdown of S100A6 expression resulted in decreased proliferation, increased apoptosis, and suppression of EMT and tumorigenicity in L-OHP-resistant CRC cells. Transcriptome sequencing reveals a noteworthy association between S100A6 and vimentin expression. Application of the EMT agonist, transforming growth factor β (TGF-β), induces EMT in CRC cells. S100A6 expression positively correlates with TGF-β expression. TGF-β facilitated the expression of EMT-related molecules and reduced the chemosensitivity of L-OHP in S100A6-knockdown cells. CONCLUSION In conclusion, the knockdown of S100A6 may overcome the L-OHP resistance of CRC cells by modulating EMT.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Menglu Zeng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou, China
| | - Yihan Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pengchong Shi
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
8
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
9
|
Moreno E, Ciordia S, Fátima SM, Jiménez D, Martínez-Sanz J, Vizcarra P, Ron R, Sánchez-Conde M, Bargiela R, Sanchez-Carrillo S, Moreno S, Corrales F, Ferrer M, Serrano-Villar S. Proteomic snapshot of saliva samples predicts new pathways implicated in SARS-CoV-2 pathogenesis. Clin Proteomics 2024; 21:37. [PMID: 38778280 PMCID: PMC11112864 DOI: 10.1186/s12014-024-09482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Information on the microbiome's human pathways and active members that can affect SARS-CoV-2 susceptibility and pathogenesis in the salivary proteome is very scarce. Here, we studied a unique collection of samples harvested from April to June 2020 from unvaccinated patients. METHODS We compared 10 infected and hospitalized patients with severe (n = 5) and moderate (n = 5) coronavirus disease (COVID-19) with 10 uninfected individuals, including non-COVID-19 but susceptible individuals (n = 5) and non-COVID-19 and nonsusceptible healthcare workers with repeated high-risk exposures (n = 5). RESULTS By performing high-throughput proteomic profiling in saliva samples, we detected 226 unique differentially expressed (DE) human proteins between groups (q-value ≤ 0.05) out of 3376 unambiguously identified proteins (false discovery rate ≤ 1%). Major differences were observed between the non-COVID-19 and nonsusceptible groups. Bioinformatics analysis of DE proteins revealed human proteomic signatures related to inflammatory responses, central cellular processes, and antiviral activity associated with the saliva of SARS-CoV-2-infected patients (p-value ≤ 0.0004). Discriminatory biomarker signatures from human saliva include cystatins, protective molecules present in the oral cavity, calprotectins, involved in cell cycle progression, and histones, related to nucleosome functions. The expression levels of two human proteins related to protein transport in the cytoplasm, DYNC1 (p-value, 0.0021) and MAPRE1 (p-value, 0.047), correlated with angiotensin-converting enzyme 2 (ACE2) plasma activity. Finally, the proteomes of microorganisms present in the saliva samples showed 4 main microbial functional features related to ribosome functioning that were overrepresented in the infected group. CONCLUSION Our study explores potential candidates involved in pathways implicated in SARS-CoV-2 susceptibility, although further studies in larger cohorts will be necessary.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Santos Milhano Fátima
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Daniel Jiménez
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, 28049, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Facultad de Medicina, Universidad de Alcalá de Henares, 28801, Alcalá de Henares, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
10
|
Li J, Wang T, Dang D. S100A6 could not promote the differentiation of Calu-6 lung cancer cell line. Ann Med Surg (Lond) 2024; 86:2644-2650. [PMID: 38694326 PMCID: PMC11060216 DOI: 10.1097/ms9.0000000000001865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 05/04/2024] Open
Abstract
Background Our previous study demonstrated that S100 calcium binding protein A6 (S100A6) impairs tumorigenesis by Calu-6 lung cancer cells, as well as inhibit their growth. However, the role that S100A6 plays in tumor cell differentiation has not been previously explored. This study aimed to confirm the effect of S100A6 on the direction of differentiation in the human lung cancer cell linem Calu-6m based on our previous published research. Materials and methods A S100A6-overexpressing lentiviral vector was successfully constructed in our previous study. Nude mouse tumorigenicity was then applied successfully, and 15 mice were divided into three groups (Calu-6, Calu-6/neo, Calu-6/S100A6). After 5 weeks, we detected lung cancer markers with immunohistochemistry in mice tumor tissues, including the adenocarcinoma markers, TTF-1 and NapsinA, the squamous cell carcinoma markers, P40, CK5/6 and P63, and the small cell lung cancer markers CD56, Syn, CgA, TTF-1, CK, and Ki-67. Differences among the three groups were statistically compared. Results All the above-mentioned markers were positive in the tumor tissues of all three groups, and there were no significant differences. Conclusion S100A6 cannot promote differentiation of the undifferentiated human lung cancer cell line, Calu-6, into adenocarcinoma, squamous, or small cell carcinoma cell lines.
Collapse
Affiliation(s)
- Jie Li
- Department of Respiratory Medicine
| | | | - Dan Dang
- Department of Intensive Care Medicine, Xi’an People’s Hospital, Xi’an, People’s Republic of China
| |
Collapse
|
11
|
Chen T, Ruan Y, Ji L, Cai J, Tong M, Xue Y, Zhao H, Cai X, Xu J. S100A6 drives lymphatic metastasis of liver cancer via activation of the RAGE/NF-kB/VEGF-D pathway. Cancer Lett 2024; 587:216709. [PMID: 38350547 DOI: 10.1016/j.canlet.2024.216709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- TianYi Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - YeLing Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - JingWei Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Meng Tong
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - YangTao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - Hu Zhao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
| | - XiuJun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - JunJie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
12
|
Wang Q, Liu Y, Zhang Y, Zhang S, Zhao M, Peng Z, Xu H, Huang H. Characterization of macrophages in ischemia-reperfusion injury-induced acute kidney injury based on single-cell RNA-Seq and bulk RNA-Seq analysis. Int Immunopharmacol 2024; 130:111754. [PMID: 38428147 DOI: 10.1016/j.intimp.2024.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Acute kidney injury (AKI) is a complex disease, with macrophages playing a vital role in its progression. However, the mechanism of macrophage function remains unclear and strategies targeting macrophages in AKI are controversial. To address this issue, we used single-cell RNA-seq analysis to identify macrophage sub-types involved in ischemia-reperfusion-induced AKI, and then screened for associated hub genes using intersecting bulk RNA-seq data. The single-cell and bulk RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database. Screening of differentially-expressed genes (DEGs) and pseudo-bulk DEG analyses were used to identify common hub genes. Pseudotime and trajectory analyses were performed to investigate the progression of cell differentiation. CellChat analysis was performed to reveal the crosstalk between cell clusters. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify enriched pathways in the cell clusters. Immunofluorescence and RT-PCR were preformed to validate the expression of the identified hub genes. Four hub genes, Vim, S100a6, Ier3, and Ccr1, were identified in the infiltrated macrophages between normal samples and those 3 days after ischemia-reperfusion renal injury (IRI); all were associated with the progression of IRI-induced AKI. Increased expression of Vim, S100a6, Ier3, and Ccr1 in infiltrated macrophages may be associated with inflammatory responses and may mediate crosstalk between macrophages and renal tubular epithelial cells under IRI conditions. Our results reveal that Ier3 may be critical in AKI, and that Vim, S100a6, Ier3, and Ccr1 may act as novel biomarkers and potential therapeutic targets for IRI-induced AKI.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Siyuan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meifang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| |
Collapse
|
13
|
Chen Y, Sun Y, Wang L, Xu K, Wang DW. Genetic insights into associations of multisite chronic pain with common diseases and biomarkers using data from the UK Biobank. Br J Anaesth 2024; 132:372-382. [PMID: 38104003 DOI: 10.1016/j.bja.2023.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Chronic pain is a common, complex, and challenging condition, for which specialised healthcare is required. We investigated the relationship between multisite chronic pain (MCP) and different disease traits identify safe biomarker interventions that can prevent MCP. METHODS Univariable and multivariable Mendelian randomisation (MR) analysis were conducted to investigate associations between MCP and 36 common diseases in the UK Biobank. Subsequently, we estimated the potential effect of expression of 4774 proteins on MCP utilising existing plasma protein quantitative trait locus data. For the significant biomarkers, we performed phenome-wide MR (Phe-MR) with 1658 outcomes to predict potential safety profiles linked to biomarker intervention. RESULTS Multisite chronic pain had a substantial impact on psychiatric and neurodevelopmental traits (major depression and attention deficit hyperactivity disorder), cardiovascular diseases (myocardial infarction, coronary artery disease, and heart failure), respiratory outcomes (asthma, chronic obstructive pulmonary disease, and sleep apnoea), arthropathies, type 2 diabetes mellitus, and cholelithiasis. Higher genetically predicted levels of S100A6, DOCK9, ferritin, and ferritin light chain were associated with a risk of MCP, whereas PTN9 and NEUG were linked to decreased MCP risk. Phe-MR results suggested that genetic inhibition of DOCK9 increased the risk of 21 types of disease, whereas the other biomarker interventions were relatively safe. CONCLUSIONS We established that MCP has an effect on health conditions covering various physiological systems and identified six novel biomarkers for intervention. In particular, S100A6, PTN9, NEUG, and ferritin light chain represent promising targets for MCP prevention, as no significant side-effects were predicted in our study.
Collapse
Affiliation(s)
- Yanghui Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR of China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR of China
| | - Linlin Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR of China
| | - Ke Xu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR of China.
| |
Collapse
|
14
|
Li MY, Wang Y, Wu Y, Zhao XY, Yang ZS, Li B, Chen ST, He YY, Yang ZM. Blastocyst-Derived Lactic Acid May Regulate S100A6 Expression and Function in Mouse Decidualization via Stimulation of Uterine Epithelial Arachidonic Acid Secretion. Cells 2024; 13:206. [PMID: 38334598 PMCID: PMC10854550 DOI: 10.3390/cells13030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
(1) Background: Inflammatory responses are implicated in embryo implantation, decidualization, pregnancy maintenance and labor. Both embryo implantation and decidualization are essential to successful pregnancy in rodents and primates. S100A6 is involved in inflammation, tumor development, apoptosis and calcium homeostasis. S100A6 is strongly expressed in mouse decidua, but the underlying mechanisms of how S100A6 regulates implantation and decidualization are poorly defined. (2) Methods: Mouse endometrial stromal and epithelial cells are isolated from day 4 pseudopregnant mouse uteri. Both immunofluorescence and Western blotting are used to analyze the expression and localization of proteins. The molecular mechanism is verified in vitro by Western blotting and the quantitative polymerase chain reaction. (3) Results: From days 4 to 8 of pregnancy, S100A6 is specifically expressed in mouse subluminal stromal cells. Blastocyst-derived lactic acid induces AA secretion by activating the luminal epithelial p-cPLA2. The epithelial AA induces stromal S100A6 expression through the COX2/PGI2/PPAR δ pathway. Progesterone regulates S100A6 expression through the progesterone receptor (PR). S100A6/RAGE signaling can regulate decidualization via EGFR/ERK1/2 in vitro. (4) Conclusions: S100A6, as an inflammatory mediator, is important for mouse implantation and decidualization.
Collapse
Affiliation(s)
- Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Xu-Yu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.-Y.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Li H, Zhu X, Cao X, Lu Y, Zhou J, Zhang X. Single-cell analysis reveals lysyl oxidase (Lox) + fibroblast subset involved in cardiac fibrosis of diabetic mice. J Adv Res 2023; 54:223-237. [PMID: 36706988 DOI: 10.1016/j.jare.2023.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Myocardial fibrosis and cardiac dysfunction are the main characteristics of diabetic heart disease. However, the molecular mechanisms underlying diabetic myocardial fibrosis remain unclear. OBJECTIVES This study aimed to investigate the heterogeneity of cardiac fibroblasts in diabetic mice and its possible mechanism in the development of diabetic myocardial fibrosis. METHODS We established a diabetic mouse model by injecting mice with streptozotocin. The overall cell profiles in diabetic hearts were analyzed using single-cell RNA transcriptomic techniques. Cardiac function was evaluated by echocardiography. Cardiac fibrosis was assessed by Masson's trichrome and Sirius red staining. Protein expression was analyzed using Western blotting and immunofluorescence staining. RESULTS A total of 11,585 cells were captured in control (Ctrl) and diabetic (DM) hearts. Twelve cell types were identified in this study. The number of fibroblasts was significantly higher in the DM hearts than in the Ctrl group. The fibroblasts were further re-clustered into nine subsets. Interestingly, cluster 4 fibroblasts were significantly increased in diabetic hearts compared with other fibroblast clusters. Lysyl oxidase (Lox) was highly expressed in DM fibroblasts (especially in cluster 4). Beta-aminopropionitrile, a Lox inhibitor, inhibited collagen expression and alleviated cardiac dysfunction in the diabetic group. Lysyl oxidase inhibition also reduced high glucose-induced collagen protein upregulation in primary fibroblasts. Moreover, a TGF-β receptor inhibitor not only prevented an increase in Lox and Col I but also inhibited the phosphorylation of Smad2/3 in fibroblasts. CONCLUSIONS This study revealed the heterogeneity of cardiac fibroblasts in diabetic mice for the first time. Fibroblasts with high expression of Lox (cluster 4 fibroblasts) were identified to play a crucial role in fibrosis in diabetic heart disease. The findings of this study may provide a possible therapeutic target for interstitial fibrosis.
Collapse
Affiliation(s)
- Heyangzi Li
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Zhu
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xi Cao
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yicheng Lu
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoming Zhang
- Department of Basic Medicine Sciences, and Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Hong B, Zhang H, Xiao Y, Shen L, Qian Y. S100A6 is a potential diagnostic and prognostic biomarker for human glioma. Oncol Lett 2023; 26:458. [PMID: 37736555 PMCID: PMC10509776 DOI: 10.3892/ol.2023.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
S100 calcium-binding protein A6 (S100A6) is a protein that belongs to the S100 family. The present study aimed to investigate the function of S100A6 in the diagnosis and survival prediction of glioma and elucidated the potential processes affecting glioma development. The Cancer Genome Atlas database was searched to identify the relationship among S100A6 expression, immune cell infiltration, clinicopathological parameters and glioma prognosis. Several clinical cases were used to verify these findings. S100A6 gene expression was high in glioma tissues, suggesting its diagnostic significance. In particular, S100A6 upregulation in glioma tissues exhibited a significant and positive correlation with the World Health Organization (WHO) grade, histological type, age, sex, primary treatment outcomes, 1p/19q codeletion, isocitrate dehydrogenase (IDH) status, overall survival (OS), progression-free interval and disease-specific survival. Kaplan-Meier and Cox regression analyses revealed that S100A6 gene expression can independently function as a risk factor affecting the prognosis of patients with glioma. Furthermore, Gene Ontology functional enrichment analysis revealed that S100A6 is implicated in immune responses and that the expression profiles of S100A6 are linked to the immune microenvironment. Furthermore, immunohistochemistry revealed that increased S100A6 protein levels are correlated with age, 1p/19q codeletion, IDH status, WHO grade and OS. The present findings suggest that increased S100A6 expression is an indicator of the dismal prognosis of patients with glioma and that it can be used as a potential diagnostic biomarker for this condition.
Collapse
Affiliation(s)
- Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hui Zhang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lingwei Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
17
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
18
|
Du Q, Zhu T, Wen G, Jin H, An J, Xu J, Xie R, Zhu J, Yang X, Zhang T, Liu Q, Yao S, Yang X, Tuo B, Ma X. The S100 calcium-binding protein A6 plays a crucial role in hepatic steatosis by mediating lipophagy. Hepatol Commun 2023; 7:e0232. [PMID: 37655980 PMCID: PMC10476764 DOI: 10.1097/hc9.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND S100 calcium-binding protein A6 (S100A6) is a calcium-binding protein that is involved in a variety of cellular processes, such as proliferation, apoptosis, and the cellular response to various stress stimuli. However, its role in NAFLD and associated metabolic diseases remains uncertain. METHODS AND RESULTS In this study, we revealed a new function and mechanism of S100A6 in NAFLD. S100A6 expression was upregulated in human and mouse livers with hepatic steatosis, and the depletion of hepatic S100A6 remarkably inhibited lipid accumulation, insulin resistance, inflammation, and obesity in a high-fat, high-cholesterol (HFHC) diet-induced murine hepatic steatosis model. In vitro mechanistic investigations showed that the depletion of S100A6 in hepatocytes restored lipophagy, suggesting S100A6 inhibition could alleviate HFHC-induced NAFLD. Moreover, S100A6 liver-specific ablation mediated by AAV9 alleviated NAFLD in obese mice. CONCLUSIONS Our study demonstrates that S100A6 functions as a positive regulator of NAFLD, targeting the S100A6-lipophagy axis may be a promising treatment option for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Qian Du
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Tingting Zhu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
19
|
Zhai Y, Meng F, Li J, Ma J, Shen L, Zhang W. Upregulation of S100A6 and its relation with CD34 + cells apoptosis in high-risk myelodysplastic syndromes patients. Heliyon 2023; 9:e18947. [PMID: 37609402 PMCID: PMC10440510 DOI: 10.1016/j.heliyon.2023.e18947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Objectives Myelodysplastic syndromes (MDS) are a group of myeloid malignancies characterized by peripheral blood cytopenia and hematopoietic dysplasia that often progress to acute myeloid leukemia (AML). Increased apoptosis of normal hematopoietic cells and decreased apoptosis of malignant clonal hematopoietic cells in patients with MDS is some of the mechanisms leading to ineffective hematopoietic cells in the bone marrow. S100 calcium-binding protein A6 (S100A6) is upregulated in many malignancies. The overexpression of S100A6 in these malignancies has been associated with proliferation, migration, and invasion phenotypes in cancer cells, and we aimed to investigate the expression of S100A6 in CD34+ cells and the relationship between S100A6 expression and apoptosis of CD34+ cells in high-risk patients with MDS. Methods We measured S100A6 mRNA expression in bone marrow (BM) CD34+ cells from high-risk patients with MDS using RT-PCR. Next, we examined S100A6 expression in CD34+ cells using flow cytometry. We also analyzed the correlation between CD34+ cell apoptosis and S100A6 expression in high-risk patients with MDS. Results Our data showed increased S100A6 mRNA expression in CD34+ cells in patients with MDS (1.05 ± 0.69 vs. 0.17 ± 0.12; P<0.01). The expression of S100A6 in BM CD34+ cells also increased (58.40 ± 13.18 vs. 45.83 ± 15.01). The expression of S100A6 in CD34+ cells and apoptosis of CD34+ cells were negatively correlated in patients (r = -0.75; P < 0.01). Conclusions Collectively, S100A6 may be a potential marker of CD34+ cells in high-risk patients with MDS and may participate in the pathological behaviors of CD34+ cells, such as evasion of apoptosis. Thus, S100A6 may be a potential target for eliminating minimal residual disease.
Collapse
Affiliation(s)
- Yan Zhai
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Jiaojiao Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junlan Ma
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Shen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Qi M, Yi X, Yue B, Huang M, Zhou S, Xiong J. S100A6 inhibits MDM2 to suppress breast cancer growth and enhance sensitivity to chemotherapy. Breast Cancer Res 2023; 25:55. [PMID: 37217945 DOI: 10.1186/s13058-023-01657-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Mengxin Qi
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglan Yi
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baohui Yue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingxiang Huang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Zhou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jing Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Ross SW, Malcolm J, Maitz J, Li Z, Wang Y, Issler-Fisher AC. Fractional ablative laser therapy for the treatment of severe burn scars: A pilot study of the underlying mechanisms. Burns 2023; 49:573-582. [PMID: 36642662 DOI: 10.1016/j.burns.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Ablative fractional resurfacing is clinically an efficient treatment for burn scar management. The aim of this pilot study was to investigate the poorly understood mechanisms underlying ablative fractional CO2 laser (AFL-CO2) therapy in relation to biomarkers S100 and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). S100 stains for Langerhans cells and neuronal cells, potentially representing the pruritus experienced. 11β-HSD1 catalyses the interconversion of cortisol and cortisone in cells, promoting tissue remodelling. Immunohistochemical analysis of S100 and 11β-HSD1 protein expression in the dermis and epidermis of the skin was performed on normal skin, before and after AFL-CO2 therapy. Data assessing outcome parameters was collected concurrently with the skin biopsies. 13 patients were treated with AFL-CO2 therapy. Langerhans cells decreased by 39% after 2nd treatment. Neuronal cells were overexpressed before treatment in the scar tissue by 91% but levels returned to that resembling normal skin. 11β-HSD1 expression in keratinocytes was significantly higher after laser treatment compared to before in scar tissue (p <0.01). No clear correlation was found in dermal fibroblast numbers throughout the treatment course. Whilst the role of the explored mechanisms and their association with clinical outcomes cannot conclusively be stated, this pilot study demonstrates promising trends that encourages investigation into this relationship.
Collapse
Affiliation(s)
- Stewart W Ross
- Faculty of Engineering, University of Sydney, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia.
| | - Josephine Malcolm
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Joanneke Maitz
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Zhe Li
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia; Concord Clinical School, University of Sydney, Sydney, Australia
| | - Yiwei Wang
- Faculty of Engineering, University of Sydney, Sydney, Australia; Burns Unit, Concord Repatriation General Hospital, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia
| | - Andrea C Issler-Fisher
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia; ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, Australia; Concord Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
22
|
Boto de los Bueis A, de la Fuente M, Montejano-Milner R, del Hierro Zarzuelo A, Vecino E, Acera A. A Pilot Study of a Panel of Ocular Inflammation Biomarkers in Patients with Primary Sjögren’s Syndrome. Curr Issues Mol Biol 2023; 45:2881-2894. [PMID: 37185712 PMCID: PMC10136698 DOI: 10.3390/cimb45040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ocular diseases have a strong impact on individuals, the effects of which extend from milder visual impairment to blindness. Due to this and to their prevalence, these conditions constitute important health, social and economic challenges. Thus, improvements in their early detection and diagnosis will help dampen the impact of these conditions, both on patients and on healthcare systems alike. In this sense, identifying tear biomarkers could establish better non-invasive approaches to diagnose these diseases and to monitor responses to therapy. With this in mind, we developed a solid phase capture assay, based on antibody microarrays, to quantify S100A6, MMP-9 and CST4 in human tear samples, and we used these arrays to study tear samples from healthy controls and patients with Sjögren’s Syndrome, at times concomitant with rheumatoid arthritis. Our results point out that the detection of S100A6 in tear samples seems to be positively correlated to rheumatoid arthritis, consistent with the systemic nature of this autoinflammatory pathology. Thus, we provide evidence that antibody microarrays may potentially help diagnose certain pathologies, possibly paving the way for significant improvements in the future care of these patients.
Collapse
Affiliation(s)
| | - Miguel de la Fuente
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Rafael Montejano-Milner
- Ophthalmology Service, Hospital Universitario Príncipe de Asturias, 28805 Alcala de Henares, Spain
| | | | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48001 Bilbao, Spain
| |
Collapse
|
23
|
Jungbluth H, Kaiser MLB, Lalaouni D, Winter J, Jepsen S. Immunohistochemical analysis of S100-proteins in normal and irreversibly inflamed human dental pulps. J Endod 2023; 49:504-513. [PMID: 36871746 DOI: 10.1016/j.joen.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/07/2023]
Abstract
AIM S100 proteins convey important roles in innate immune responses to infection and regenerative processes. Their role in inflammatory or regenerative processes of the human dental pulp, however, is poorly elucidated. Aim of the present study was to detect, localize and compare the occurrence of eight S100 proteins in normal, symptomatic, and asymptomatic irreversibly inflamed dental pulp specimens. METHODOLOGY Human dental pulp specimens from forty-five individuals were clinically assigned to three groups of pulpal diagnosis, "normal pulp" (NP; n=17), "asymptomatic irreversible pulpitis" (AIP; n=13), and "symptomatic irreversible pulpitis" (SIP; n=15). The specimens were prepared and immunohistochemically stained for proteins S100A1, -A2, -A3, -A4, -A6, -A7, -A8, and -A9. Staining was classified using semi quantitative analysis and a four-degree staining score ("no", "decent", "medium" and "intense" staining) at four different anatomical or functional regions [odontoblast layer (OL), pulpal stroma (PS), border area of calcifications (BAC), and vessel walls (VW)]. Distribution of staining degrees between the three diagnostic groups was calculated using fisher´s exact text (p≤0.5) at the four regions. RESULTS Significant differences in staining were observed mainly in the OL, PS, and at BAC. The most significant differences were detected in PS and when comparing NP with one of the two irreversibly inflamed pulpal tissues (AIP or SIP). The inflamed tissues were then invariably stained more intensely than their normal counterparts at this location (S100A1, -A2, -A3, -A4, -A8, and -A9). In the OL, NP tissue was significantly stronger stained for S100A1, -A6, -A8, and -A9 compared with SIP, and for S100A9 when compared with AIP. Differences between AIP and SIP in direct comparison were rare and found only for one protein (S100A2) at the BAC. Also at the VW, only one statistical difference in staining was observed (SIP was stronger stained than NP for protein S100A3). CONCLUSIONS Occurrence of proteins S100A1, -A2, -A3, -A4, -A6, -A8, and -A9 is significantly altered in irreversibly inflamed compared with normal dental pulp tissue at different anatomical localizations. Some members of S100 proteins obviously participate in focal calcification processes and pulp stone formation of the dental pulp.
Collapse
Affiliation(s)
- Holger Jungbluth
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany.
| | - Meta Lena Britta Kaiser
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Diana Lalaouni
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Lin CH, Li SC, Lin MH, Ho CJ, Lu YT, Lin Y, Lin PH, Tsai KW, Tsai MH. S100A6 participates in initiation of autoimmune encephalitis and is under epigenetic control. Brain Behav 2023; 13:e2897. [PMID: 36748983 PMCID: PMC10013942 DOI: 10.1002/brb3.2897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood-brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. METHODS We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5-azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. RESULT The promoter methylation and 5-azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration-dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. CONCLUSION We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Pavkova I, Kopeckova M, Link M, Vlcak E, Filimonenko V, Lecova L, Zakova J, Laskova P, Sheshko V, Machacek M, Stulik J. Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling. Cells 2023; 12:cells12040607. [PMID: 36831274 PMCID: PMC9954481 DOI: 10.3390/cells12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-973-255-201
| | - Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Erik Vlcak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Department of Biology of the Cell Nucleus, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lenka Lecova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jitka Zakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Pavlina Laskova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Chen B, Zheng D, Liu C, Bhandari A, Hirachan S, Shen C, Mainali S, Li H, Jiang W, Xu J, Zhang X, Tang K, Zhang W. S100A6 promotes the development of thyroid cancer and inhibits apoptosis of thyroid cancer cells through the PI3K/AKT/mTOR pathway. Pathol Res Pract 2023; 242:154325. [PMID: 36680929 DOI: 10.1016/j.prp.2023.154325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
High levels of S100A6 have been associated with progression in some types of human cancers. Cancers related to S100A6 have been reported to include lung cancer, cervical cancer, pancreatic cancer, gastric cancer, colon cancer, etc., but its role in the molecular pathogenesis of these cancers is largely unknown. This study investigated the expression and functional roles of S100A6 in human thyroid cancer. The expression level of S100A6 in thyroid cancer cells was determined by bioinformatics and transcriptomic analysis. Furthermore, the potential functions of S100A6 in tumorigenesis were analyzed by cell proliferation, migration, invasion, and Western blot assays in human thyroid cancer cells. Public database queries revealed high S100A6 expression in thyroid cancer. In addition, we also found that high expression of S100A6 was positively correlated with malignant clinicopathological characteristics of thyroid cancer in The Cancer Genome Atlas database. qPCR results confirmed the high expression of S100A6 in thyroid cancer cells. S100A6 silencing inhibited cell proliferation, migration, and invasion. Western blot assays and response experiments showed that S100A6 promotes cell proliferation and tumorigenicity partly through the PI3K/AKT/mTOR signaling pathway. These results suggest that S100A6 affects the progression of thyroid cancer and can be used as a target in the future treatment of thyroid cancer.
Collapse
Affiliation(s)
- Buran Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Danni Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Conghui Liu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Cuihua Shen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Sumnima Mainali
- Department of Obstetrics and Gynecology, Kulhudhuffushi Regional Hospital, Kulhudhuffushi, Maldives
| | - Huihui Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jie Xu
- Department of ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kaifu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepatopancreatic Diseases Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
27
|
Carbinatti T, Régnier M, Parlati L, Benhamed F, Postic C. New insights into the inter-organ crosstalk mediated by ChREBP. Front Endocrinol (Lausanne) 2023; 14:1095440. [PMID: 36923222 PMCID: PMC10008936 DOI: 10.3389/fendo.2023.1095440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose responsive transcription factor recognized by its critical role in the transcriptional control of glycolysis and de novo lipogenesis. Substantial advances in the field have revealed novel ChREBP functions. Indeed, due to its actions in different tissues, ChREBP modulates the inter-organ communication through secretion of peptides and lipid factors, ensuring metabolic homeostasis. Dysregulation of these orchestrated interactions is associated with development of metabolic diseases such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Here, we recapitulate the current knowledge about ChREBP-mediated inter-organ crosstalk through secreted factors and its physiological implications. As the liver is considered a crucial endocrine organ, we will focus in this review on the role of ChREBP-regulated hepatokines. Lastly, we will discuss the involvement of ChREBP in the progression of metabolic pathologies, as well as how the impairment of ChREBP-dependent signaling factors contributes to the onset of such diseases.
Collapse
|
28
|
Nicolas-Espinosa J, Yepes-Molina L, Carvajal M. Bioactive peptides from broccoli stems strongly enhance regenerative keratinocytes by stimulating controlled proliferation. PHARMACEUTICAL BIOLOGY 2022; 60:235-246. [PMID: 35086428 PMCID: PMC8797740 DOI: 10.1080/13880209.2021.2009522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT As the interest on the research of plant derived bioactive peptides (BPs) for nutraceutical, cosmeceutical and medical applications is increasing, in this work, the application of peptide derived from broccoli to keratinocytes was studied. OBJECTIVE We focussed on the characterization of different peptides hydrolysates from broccoli stems [extracted from total protein (E) and from membrane protein (MF)], and their activity when applied to human keratinocytes. MATERIALS AND METHODS Peptide mixtures from broccoli stems (E and MF) were characterized by proteomics. They were applied to HaCaT cells in order to study cytotoxicity in a concentration range between 20 and 0.15625 µg of protein/mL and wound healing was studied after 24 and 48 h of treatment application. Also, proteomic and gene expression of keratinocytes were analysed. RESULTS Depending on the source, proteins varied in peptide and amino acid composition. An increased proliferation of keratinocytes was shown after the application of the E peptides mixtures, reaching 190% with the lowest concentrations, but enhanced wound healing repair with E and MF appeared, reaching 59% of wound closure after 48 h. At the gene expression and protein levels of keratinocytes, the upregulation of anti-oncogene p53 and keratinization factors were observed. DISCUSSION These results suggest that peptide mixtures obtained from broccoli augmented cell proliferation and prevented the carcinogenic, uncontrolled growth of the cells, with different mechanisms depending on the protein source. CONCLUSIONS The results encourage the opening of new lines of research involving the use of Brassica peptides for pharmaceutic or cosmetic use.
Collapse
Affiliation(s)
- Juan Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
29
|
Pang Q, Chen H, Wu H, Wang Y, An C, Lai S, Xu J, Wang R, Zhou J, Xiao H. N6-methyladenosine regulators-related immune genes enable predict graft loss and discriminate T-cell mediate rejection in kidney transplantation biopsies for cause. Front Immunol 2022; 13:1039013. [PMID: 36483557 PMCID: PMC9722771 DOI: 10.3389/fimmu.2022.1039013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The role of m6A modification in kidney transplant-associated immunity, especially in alloimmunity, still remains unknown. This study aims to explore the potential value of m6A-related immune genes in predicting graft loss and diagnosing T cell mediated rejection (TCMR), as well as the possible role they play in renal graft dysfunction. Methods Renal transplant-related cohorts and transcript expression data were obtained from the GEO database. First, we conducted correlation analysis in the discovery cohort to identify the m6A-related immune genes. Then, lasso regression and random forest were used respectively to build prediction models in the prognosis and diagnosis cohort, to predict graft loss and discriminate TCMR in dysfunctional renal grafts. Connectivity map (CMap) analysis was applied to identify potential therapeutic compounds for TCMR. Results The prognostic prediction model effectively predicts the prognosis and survival of renal grafts with clinical indications (P< 0.001) and applies to both rejection and non-rejection situations. The diagnostic prediction model discriminates TCMR in dysfunctional renal grafts with high accuracy (area under curve = 0.891). Meanwhile, the classifier score of the diagnostic model, as a continuity index, is positively correlated with the severity of main pathological injuries of TCMR. Furthermore, it is found that METTL3, FTO, WATP, and RBM15 are likely to play a pivotal part in the regulation of immune response in TCMR. By CMap analysis, several small molecular compounds are found to be able to reverse TCMR including fenoldopam, dextromethorphan, and so on. Conclusions Together, our findings explore the value of m6A-related immune genes in predicting the prognosis of renal grafts and diagnosis of TCMR.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Wu
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Wang
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Suhe Lai
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Xu
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqiong Wang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Hanyu Xiao, ; Juan Zhou,
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Hanyu Xiao, ; Juan Zhou,
| |
Collapse
|
30
|
陈 迪, 肖 要, 钟 铠. [Risk Factors and Pathogenic Mechanism for Secondary Primary Lung Cancer
in Breast Cancer Patients: A Review]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:750-755. [PMID: 36167461 PMCID: PMC9619345 DOI: 10.3779/j.issn.1009-3419.2022.101.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer and lung cancer are the two most common malignancies in China. With the continuous improvement of breast cancer diagnosis and treatment technology, the survival time of breast cancer patients has been prolonged, and the number of breast cancer patients with second primary lung cancer (SPLC) has increased. In addition, breast cancer is the most common primary cancer in female patients with SPLC, and SPLC is the main cause of death in this population. More and more physicians pay attention to this clinical phenomenon. This paper summarized the risk and risk factors of SPLC in breast cancer patients, and elaborated its pathogenesis, in order to provide a theoretical basis for the clinical management of breast cancer patients and achieve accurate early intervention as soon as possible.
.
Collapse
Affiliation(s)
- 迪 陈
- 272000 济宁,济宁医学院临床医学院Clinical College of Jining Medical University, Jining 272000, China
| | - 要来 肖
- 272000 济宁,济宁市第一人民医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Jining No.1 People's Hospital, Jining 272000, China
| | - 铠泽 钟
- 272000 济宁,济宁市第一人民医院胸外科Department of Thoracic Surgery, Jining No.1 People's Hospital, Jining 272000, China
| |
Collapse
|
31
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
32
|
Wang H, Mao X, Ye L, Cheng H, Dai X. The Role of the S100 Protein Family in Glioma. J Cancer 2022; 13:3022-3030. [PMID: 36046652 PMCID: PMC9414020 DOI: 10.7150/jca.73365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
The S100 protein family consists of 25 members and share a common structure defined in part by the Ca2+ binding EF-hand motif. Multiple members' dysregulated expression is associated with progression, diagnosis and prognosis in a broad range of diseases, especially in tumors. They could exert wide range of functions both in intracellular and extracellular, including cell proliferation, cell differentiation, cell motility, enzyme activities, immune responses, cytoskeleton dynamics, Ca2+ homeostasis and angiogenesis. Gliomas are the most prevalent primary tumors of the brain and spinal cord with multiple subtypes that are diagnosed and classified based on histopathology. Up to now the role of several S100 proteins in gliomas have been explored. S100A8, S100A9 and S100B were highly expression in serum and may present as a marker correlated with survival and prognosis of glioma patients. Individual member was confirmed as a new regulator of glioma stem cells (GSCs) and a mediator of mesenchymal transition in glioblastoma (GBM). Additionally, several members up- or downregulation have been reported to involve in the development of glioma by interacting with signaling pathways and target proteins. Here we detail S100 proteins that are associated with glioma, and discuss their potential effects on progression, diagnosis and prognosis.
Collapse
Affiliation(s)
- Haopeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
33
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
34
|
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Karsmarski OP, Hawthorne BC, Cusano A, LeVasseur MR, Wellington IJ, McCarthy MB, Cote MP, Mazzocca AD. Activated Serum Increases In Vitro Cellular Proliferation and Growth Factor Expression of Musculoskeletal Cells. J Clin Med 2022; 11:jcm11123442. [PMID: 35743510 PMCID: PMC9225433 DOI: 10.3390/jcm11123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate proteomic alteration that occurs to whole blood when converted to activated serum (AS) using an autologous thrombin system. This study further sought to evaluate the functional in vitro effect of AS on tenocytes, chondrocytes, subacromial bursal cells, and osteoblasts. The peptide/protein composition of AS was analyzed by liquid chromatography−mass spectrophotometry (LC-MS). The cell lines were treated with AS, and cellular proliferation was quantified 48 h after treatment. Platelet-derived growth factor (PDGF), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), interleukin-1 beta (IL-1β), and interleukin-1 receptor antagonist (IL-1Ra) were quantified utilizing enzyme-linked immunosorbent assays (ELISAs). LC-MS identified 357 proteins across the AS and whole blood. Fifty-four of the proteins identified had significant differences between the relative protein abundance of the AS samples compared to whole blood. Treatment with AS in all cell lines significantly increased proliferation compared to control cells at 48 h. Increased PDGF, VEGF, and IGF-1 in all cell lines exposed to AS compared to the control (p < 0.05) were observed. These findings suggest that treatment with AS increases in vitro cellular proliferation and the release of growth factors that may play a role in tissue repair.
Collapse
|
36
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via P. Mattioli, 4, 53100 Siena, Italy;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Alessandro Armini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy;
| | - Francesco Bellucci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| | - Giovanni Furii
- Centro Recupero Tartarughe Marine Legambiente, Molo di Ponente, 71043 Manfredonia, Italy;
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| |
Collapse
|
37
|
Hu Y, Zeng N, Ge Y, Wang D, Qin X, Zhang W, Jiang F, Liu Y. Identification of the Shared Gene Signatures and Biological Mechanism in Type 2 Diabetes and Pancreatic Cancer. Front Endocrinol (Lausanne) 2022; 13:847760. [PMID: 35432196 PMCID: PMC9010232 DOI: 10.3389/fendo.2022.847760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background The relationship between pancreatic cancer (PC) and type 2 diabetes mellitus (T2DM) has long been widely recognized, but the interaction mechanisms are still unknown. This study was aimed to investigate the shared gene signatures and molecular processes between PC and T2DM. Methods The Gene Expression Omnibus (GEO) database was used to retrieve the RNA sequence and patient information of PC and T2DM. Weighted gene co-expression network analysis (WGCNA) was performed to discover a co-expression network associated with PC and T2DM. Enrichment analysis of shared genes present in PC and T2DM was performed by ClueGO software. These results were validated in the other four cohorts based on differential gene analysis. The predictive significance of S100A6 in PC was evaluated using univariate and multivariate Cox analyses, as well as Kaplan-Meier plots. The biological process of S100A6 enrichment in PC was detected using Gene Set Enrichment Analysis (GSEA). The involvement of S100A6 in the tumor immune microenvironment (TIME) was assessed by CIBERSORT. In vitro assays were used to further confirm the function of S100A6 in PC. Results WGCNA recognized three major modules for T2DM and two major modules for PC. There were 44 shared genes identified for PC and T2DM, and Gene Ontology (GO) analysis showed that regulation of endodermal cell fate specification was primarily enriched. In addition, a key shared gene S100A6 was derived in the validation tests. S100A6 was shown to be highly expressed in PC compared to non-tumor tissues. PC patients with high S100A6 expression had worse overall survival (OS) than those with low expression. GSEA revealed that S100A6 is involved in cancer-related pathways and glycometabolism-related pathways. There is a strong relationship between S100A6 and TIME. In vitro functional assays showed that S100A6 helped to induce the PC cells' proliferation and migration. We also proposed a diagram of common mechanisms of PC and T2DM. Conclusions This study firstly revealed that the regulation of endodermal cell fate specification may be common pathogenesis of PC and T2DM and identified S100A6 as a possible biomarker and therapeutic target for PC and T2DM patients.
Collapse
Affiliation(s)
- Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaoqi Ge
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wensong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yun Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Bileck A, Bortel P, Kriz M, Janker L, Kiss E, Gerner C, Del Favero G. Inward Outward Signaling in Ovarian Cancer: Morpho-Phospho-Proteomic Profiling Upon Application of Hypoxia and Shear Stress Characterizes the Adaptive Plasticity of OVCAR-3 and SKOV-3 Cells. Front Oncol 2022; 11:746411. [PMID: 35251951 PMCID: PMC8896345 DOI: 10.3389/fonc.2021.746411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
With the onset of resistance, ovarian cancer cells display almost unpredictable adaptive potential. This may derive from the tumor genetic ancestry and can be additionally tailored by post translational protein modifications (PTMs). In this study, we took advantage of high-end (phospho)-proteome analysis combined with multiparametric morphometric profiling in high-grade serous (OVCAR-3) and non-serous (SKOV-3) ovarian carcinoma cells. For functional experiments, we applied two different protocols, representing typical conditions of the abdominal cavity and of the growing tumor tissue: on the one side hypoxia (oxygen 1%) which develops within the tumor mass or is experienced during migration/extravasation in non-vascularized areas. On the other hand, fluid shear stress (250 rpm, 2.8 dyn/cm2) which affects tumor surface in the peritoneum or metastases in the bloodstream. After 3 hours incubation, treatment groups were clearly distinguishable by PCA analysis. Whereas basal proteome profiles of OVCAR-3 and SKOV-3 cells appeared almost unchanged, phosphoproteome analysis revealed multiple regulatory events. These affected primarily cellular structure and proliferative potential and consolidated in the proteome signature after 24h treatment. Upon oxygen reduction, metabolism switched toward glycolysis (e.g. upregulation hexokinase-2; HK2) and cell size increased, in concerted regulation of pathways related to Rho-GTPases and/or cytoskeletal elements, resembling a vasculogenic mimicry response. Shear stress regulated proteins governing cell cycle and structure, as well as the lipid metabolism machinery including the delta(14)-sterol reductase, kinesin-like proteins (KIF-22/20A) and the actin-related protein 2/3 complex. Independent microscopy-based validation experiments confirmed cell-type specific morphometric responses. In conclusion, we established a robust workflow enabling the description of the adaptive potential of ovarian cancer cells to physical and chemical stressors typical for the abdominal cavity and supporting the identification of novel molecular mechanisms sustaining tumor plasticity and pharmacologic resistance.
Collapse
Affiliation(s)
- Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Michelle Kriz
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero, ; Christopher Gerner,
| |
Collapse
|
39
|
Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger LS, Artyomov MN, Khader SA, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun 2022; 13:679. [PMID: 35115549 PMCID: PMC8814034 DOI: 10.1038/s41467-022-28315-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Aladyeva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Esaulova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Amanda Swain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Maxim N Artyomov
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
40
|
Liu Z, Chen L, Gao X, Zou R, Meng Q, Fu Q, Xie Y, Miao Q, Chen L, Tang X, Zhang S, Zhang H, Schroyen M. Quantitative proteomics reveals tissue-specific toxic mechanisms for acute hydrogen sulfide-induced injury of diverse organs in pig. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150365. [PMID: 34555611 DOI: 10.1016/j.scitotenv.2021.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a highly toxic gas in many environmental and occupational places. It can induce multiple organ injuries particularly in lung, trachea and liver, but the relevant mechanisms remain poorly understood. In this study, we used a TMT-based discovery proteomics to identify key proteins and correlated molecular pathways involved in the pathogenesis of acute H2S-induced toxicity in porcine lung, trachea and liver tissues. Pigs were subjected to acute inhalation exposure of up to 250 ppm of H2S for 5 h for the first time. Changes in hematology and biochemical indexes, serum inflammatory cytokines and histopathology demonstrated that acute H2S exposure induced organs inflammatory injury and dysfunction in the porcine lung, trachea and liver. The proteomic data showed 51, 99 and 84 proteins that were significantly altered in lung, trachea and liver, respectively. Gene ontology (GO) annotation, KEGG pathway and protein-protein interaction (PPI) network analysis revealed that acute H2S exposure affected the three organs via different mechanisms that were relatively similar between lung and trachea. Further analysis showed that acute H2S exposure caused inflammatory damages in the porcine lung and trachea through activating complement and coagulation cascades, and regulating the hyaluronan metabolic process. Whereas antigen presentation was found in the lung but oxidative stress and cell apoptosis was observed exclusively in the trachea. In the liver, an induced dysfunction was associated with protein processing in the endoplasmic reticulum and lipid metabolism. Further validation of some H2S responsive proteins using western blotting indicated that our proteomics data were highly reliable. Collectively, these findings provide insight into toxic molecular mechanisms that could potentially be targeted for therapeutic intervention for acute H2S intoxication.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ruixia Zou
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Yanjiao Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qixiang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| |
Collapse
|
41
|
Fuh KF, Withell J, Shepherd RD, Rinker KD. Fluid Flow Stimulation Modulates Expression of S100 Genes in Normal Breast Epithelium and Breast Cancer. Cell Mol Bioeng 2022; 15:115-127. [PMID: 35087607 PMCID: PMC8761192 DOI: 10.1007/s12195-021-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/07/2021] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied. The goal of this study was to analyze expression profiles of S100 genes upon exposing HMECs to fluid flow. METHODS HMECs and breast cancer cell lines were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in three independent clinical datasets. RESULTS S100 genes were among the most upregulated genes upon flow stimulation. Network analysis revealed interactions between upregulated transcripts, including interactions between S100P, S100PBP, S100A4, S100A7, S100A8 and S100A9. Overexpression of S100s was also observed in patients with early stage breast cancer compared to normal breast tissue, and in most breast cancer patients. Finally, survival analysis revealed reduced survival times for patients with elevated expression of S100A7 and S100P. CONCLUSION This study shows that exposing HMECs to fluid flow upregulates genes identified clinically to be overexpressed during breast cancer development, including S100A7 and S100P. These findings are the first to show that S100 genes are flow-responsive and might be participating in a fundamental adaptation pathway in normal tissue that is also active in breast cancer.
Collapse
Affiliation(s)
- Kenneth F. Fuh
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4 Canada
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jessica Withell
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Robert D. Shepherd
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Kristina D. Rinker
- Cellular and Molecular Bioengineering Research Lab, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4 Canada
- Libin Cardiovascular Institute of Canada, University of Calgary, Calgary, AB T2N 1N4 Canada
- Centre for Bioengineering Research & Education, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
42
|
SNHG1 functions as an oncogenic lncRNA and promotes osteosarcoma progression by up-regulating S100A6 via miR-493-5p. Acta Biochim Biophys Sin (Shanghai) 2021; 54:137-147. [PMID: 35130629 PMCID: PMC9909214 DOI: 10.3724/abbs.2021014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanism behind the aberrant expression of S100A6 in osteosarcoma is seldom reported so far. This study sought to explore the regulatory axis targeting S100A6 involved in osteosarcoma progression. Clinical samples collected from osteosarcoma patients were used to detect the expressions of SNHG1, miR-493-5p, and S100A6 by western bolt analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of S100A6 on proliferation and osteogenic differentiation were investigated by the CCK-8 assay, colony formation assay, Ethynyl deoxyuridine staining, matrix mineralization assay, and alkaline phosphatase assay. The potential of lncRNAs/miRNAs targeting S100A6 was identified by the bioinformatics approach, and the results were verified by the dual luciferase assay and RNA immunoprecipitation assay. Both and rescue experiments were performed to investigate the regulatory relationship between the identified lncRNAs and S100A6. The results showed that S100A6 is highly expressed in osteosarcoma. S100A6 overexpression not only increases the proliferation but also reduces the osteogenic differentiation of osteosarcoma cells, while S1006A silence exerts the opposite effects. Then, SNHG1 is identified to directly interact with miR-493-5p to attenuate miR-493-5p binding to the 3'-untranslated region of S100A6. Notably, S100A6 silence partially rescues the effect of SNHG1 overexpression on proliferation and osteogenic differentiation of osteosarcoma cells. Furthermore, the suppressive role of SNHG1 silence in the growth of osteosarcoma xenograft tumors is countered by S100A6 overexpression. Collectively, this study reveals that S100A6 plays an important role in osteosarcoma progression, and SNHG1 promotes S100A6 expression by competitively sponging miR-493-5p.
Collapse
|
43
|
Toxoplasma gondii SAG1 targeting host cell S100A6 for parasite invasion and host immunity. iScience 2021; 24:103514. [PMID: 34950858 PMCID: PMC8671940 DOI: 10.1016/j.isci.2021.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii surface antigen 1 (TgSAG1) is a surface protein of tachyzoites, which plays a crucial role in toxoplasma gondii infection and host cell immune regulation. However, how TgSAG1 regulates these processes remains elucidated. We utilized the biotin ligase -TurboID fusion with TgSAG1 to identify the host proteins interacting with TgSAG1, and identified that S100A6 was co-localized with TgSAG1 when T. gondii attached to the host cell. S100A6, either knocking down or blocking its functional epitopes resulted in inhibited parasites invasion. Meanwhile, S100A6 overexpression in host cells promoted T. gondii infection. We further verified that TgSAG1 could inhibit the interaction of host cell vimentin with S100A6 for cytoskeleton organization during T. gondii invasion. As an immunogen, TgSAG1 could promote the secretion of tumor necrosis factor alpha (TNF-α) through S100A6-Vimentin/PKCθ-NF-κB signaling pathway. In summary, our findings revealed a mechanism for how TgSAG1 functioned in parasitic invasion and host immune regulation. TgSAG1 interacts with host protein S100A6 then regulates T. gondii infection TgSAG1 could regulate binding vimentin with S100A6 during T. gondii infection TgSAG1 regulate TNFα secretion through S100A6-vimentin/PKCθ-NF-κB signaling pathway
Collapse
|
44
|
Schulz M, Sevenich L. TAMs in Brain Metastasis: Molecular Signatures in Mouse and Man. Front Immunol 2021; 12:716504. [PMID: 34539650 PMCID: PMC8447936 DOI: 10.3389/fimmu.2021.716504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages not only represent an integral part of innate immunity but also critically contribute to tissue and organ homeostasis. Moreover, disease progression is accompanied by macrophage accumulation in many cancer types and is often associated with poor prognosis and therapy resistance. Given their critical role in modulating tumor immunity in primary and metastatic brain cancers, macrophages are emerging as promising therapeutic targets. Different types of macrophages infiltrate brain cancers, including (i) CNS resident macrophages that comprise microglia (TAM-MG) as well as border-associated macrophages and (ii) monocyte-derived macrophages (TAM-MDM) that are recruited from the periphery. Controversy remained about their disease-associated functions since classical approaches did not reliably distinguish between macrophage subpopulations. Recent conceptual and technological advances, such as large-scale omic approaches, provided new insight into molecular profiles of TAMs based on their cellular origin. In this review, we summarize insight from recent studies highlighting similarities and differences of TAM-MG and TAM-MDM at the molecular level. We will focus on data obtained from RNA sequencing and mass cytometry approaches. Together, this knowledge significantly contributes to our understanding of transcriptional and translational programs that define disease-associated TAM functions. Cross-species meta-analyses will further help to evaluate the translational significance of preclinical findings as part of the effort to identify candidates for macrophage-targeted therapy against brain metastasis.
Collapse
Affiliation(s)
- Michael Schulz
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
46
|
Singh D, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger L, Artyomov M, Khader S, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. RESEARCH SQUARE 2021:rs.3.rs-664507. [PMID: 34282414 PMCID: PMC8288154 DOI: 10.21203/rs.3.rs-664507/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. While studies have reported immune profiling using single cell RNA sequencing in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. We performed longitudinal single-cell RNA sequencing of bronchoalveolar lavage (BAL) cell suspensions from adult rhesus macaques infected with SARS-CoV-2 (n=6) to delineate the early dynamics of immune cells changes. The bronchoalveolar compartment exhibited dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi) (peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline). We observed the accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I IFN response was highly induced in the plasmacytoid dendritic cells. The presence of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin converting enzyme 2 (ACE2) expression was also observed. These macrophages were significantly recruited to the lungs of macaques at 3dpi and harbored SARS-CoV-2, while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery. The recruitment of a myeloid cell-mediated Type I IFN response is associated with the rapid clearance of SARS-CoV-2 infection in macaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Larry Schlesinger
- Southwest National Primate Research Center Texas Biomedical Research Institute
| | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
47
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
48
|
Rumpret M, von Richthofen HJ, van der Linden M, Westerlaken GHA, Talavera Ormeño C, Low TY, Ovaa H, Meyaard L. Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytes-1 negatively regulates human neutrophils. Eur J Immunol 2021; 51:2210-2217. [PMID: 34145909 PMCID: PMC8457157 DOI: 10.1002/eji.202149278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Signal inhibitory receptor on leukocytes‐1 (SIRL‐1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL‐1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL‐1 ligands. S100 proteins are composed of two calcium‐binding domains. Various S100 proteins are damage‐associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL‐1 recognizes individual calcium‐binding domains of all tested S100 proteins. Blocking SIRL‐1 on human neutrophils enhanced S100 protein S100A6‐induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL‐1. Taken together, SIRL‐1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geertje H A Westerlaken
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Cami Talavera Ormeño
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teck Y Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
49
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
50
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|