1
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Li X, Li S, Fu X, Wang Y. Apoptotic extracellular vesicles restore homeostasis of the articular microenvironment for the treatment of rheumatoid arthritis. Bioact Mater 2024; 35:564-576. [PMID: 38469201 PMCID: PMC10925912 DOI: 10.1016/j.bioactmat.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune disease with symptoms including synovial inflammation, cartilage erosion, and bone loss in RA lesions, which eventually lead to joint deformity and function loss. Most current treatments fail to achieve satisfying therapeutic outcomes with some adverse effects. Extracellular vesicles derived from apoptotic cells (apoEVs) have emerged as important mediators in intercellular communication regulating diverse physiological and pathological processes. In this study, we investigated the therapeutic efficacy of macrophage-derived and osteoclast-derived apoEVs (Mφ-apoEVs and OC-apoEVs) on RA. The in vitro results showed that both Mφ-apoEVs and OC-apoEVs induced macrophage repolarization toward the anti-inflammatory M2 phenotype, promoted chondrocyte functions and chondrogenesis, and inhibited osteoclast formation and maturation. In addition, OC-apoEVs promoted osteogenic differentiation. The in vivo study on the CIA mouse model further demonstrated that apoEVs could couple various functions and exert synergistic effects on the joint with RA, as evidenced by the regression of synovial inflammation, the reversal of cartilage damage and bone erosion, and the preservation of joint structure. These findings demonstrated that Mφ-apoEVs and OC-apoEVs contributed to restoring the homeostasis of the overall microenvironment in the RA joint and highlighted their potential application as a promising alternative to treat RA.
Collapse
Affiliation(s)
- Xian Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Shichun Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Xiaoling Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices, Guangzhou, 510700, China
| |
Collapse
|
3
|
Bonasia CG, Inrueangsri N, Bijma T, Mennega KP, Wilbrink R, Arends S, Abdulahad WH, Bos NA, Rutgers A, Heeringa P. Circulating immune profile in granulomatosis with polyangiitis reveals distinct patterns related to disease activity. J Autoimmun 2024; 146:103236. [PMID: 38692171 DOI: 10.1016/j.jaut.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Granulomatosis with polyangiitis (GPA) is an autoimmune disorder characterized by recurrent relapses that can cause severe tissue damage and life-threatening organ dysfunction. Multiple immune cells and cytokines/chemokines are involved in the different stages of the disease. Immune profiling of patients may be useful for tracking disease activity, however, reliable immune signatures for GPA activity are lacking. In this study, we examined circulating immune profiles in GPA patients during active and remission disease states to identify potential immune patterns associated with disease activity. The distribution and phenotypic characteristics of major circulating immune cells, and the profiles of circulating cytokines/chemokines, were studied on cryopreserved peripheral blood mononuclear cells from GPA patients (active, n = 20; remission, n = 20) and healthy controls (n = 20) leveraging a 40-color optimized multicolor immunofluorescence panel (OMIP-69) and in serum using a 46-plex Luminex multiplex assay, respectively. Deep phenotyping uncovered a distinct composition of major circulating immune cells in active GPA and GPA in remission, with the most significant findings emerging within the monocyte compartment. Our detailed analysis revealed circulating monocyte diversity beyond the conventional monocyte subsets. We identified eight classical monocyte populations, two intermediate monocyte populations, and one non-classical monocyte population. Notably, active GPA had a higher frequency of CD45RA+CCR5+CCR6-CCR7+/lowCD127-HLA-DR+CD2- classical monocytes and a lower frequency of CD45RA-CCR5-/lowCCR6-CCR7-CD127-HLA-DR+CD2+/- classical monocytes, which both strongly correlated with disease activity. Furthermore, serum levels of CXCL1, CXCL2, and CCL20, all linked to monocyte biology, were elevated in active GPA and correlated strongly with disease activity. These findings shed light on the circulating immune profile of GPA and may lead to immune signature profiles for assessing disease activity. Monocytes in particular may be studied further as potential markers for monitoring GPA.
Collapse
Affiliation(s)
- C G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - N Inrueangsri
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - T Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - K P Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - R Wilbrink
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - S Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - W H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - N A Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - A Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands
| | - P Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, the Netherlands.
| |
Collapse
|
4
|
Perera J, Delrosso CA, Nerviani A, Pitzalis C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024; 13:743. [PMID: 38727279 PMCID: PMC11083059 DOI: 10.3390/cells13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.
Collapse
Affiliation(s)
- James Perera
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiara Aurora Delrosso
- Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Biomedical Sciences, Humanitas University & IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
5
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
6
|
Xu W, Weng J, Xu M, Zhou Q, Liu S, Hu Z, Ren N, Zhou C, Shen Y. Chemokine CCL21 determines immunotherapy response in hepatocellular carcinoma by affecting neutrophil polarization. Cancer Immunol Immunother 2024; 73:56. [PMID: 38367070 PMCID: PMC10874310 DOI: 10.1007/s00262-024-03650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC) is poor and great heterogeneity among individuals. Chemokines are highly correlated with tumor immune response. Here, we aimed to identify an effective chemokine for predicting the efficacy of immunotherapy in HCC. METHODS Chemokine C-C motif ligand 21 (CCL21) was screened by transcriptomic analysis in tumor tissues from HCC patients with different responses to ICIs. The least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive nomogram. Neutrophils in vitro and HCC subcutaneous tumor model in vivo were applied to explore the role of CCL21 on the tumor microenvironment (TME) of HCC. RESULTS Transcriptome analysis showed that CCL21 level was much higher in HCC patients with response to immunotherapy. The predictive nomogram was constructed and validated as a classifier. CCL21 could inhibit N2 neutrophil polarization by suppressing the activation of nuclear factor kappa B (NF-κB) pathway. In addition, CCL21 enhanced the therapeutic efficacy of ICIs. CONCLUSION CCL21 may serve as a predictive biomarker for immunotherapy response in HCC patients. High levels of CCL21 in TME inhibit immunosuppressive polarization of neutrophils. CCL21 in combination with ICIs may offer a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China.
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China.
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China.
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
7
|
Liang Z, Zhang G, Gan G, Liu X, Liu H, Nie D, Ma L. Mesenchymal Stromal Cells Regulate M1/M2 Macrophage Polarization in Mice with Immune Thrombocytopenia. Stem Cells Dev 2023; 32:703-714. [PMID: 37606909 DOI: 10.1089/scd.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Mesenchymal stromal cells have shown promising effects in the treatment of immune thrombocytopenia. However, the underlying mechanisms are not fully understood. In this study, we investigated the therapeutic effects of human bone marrow mesenchymal stromal cells (hBMSCs) and analyzed their unique role in regulating the M1/M2 macrophage ratio. We established a passive immune thrombocytopenia (ITP) mouse model and showed that there was a significant M1/M2 imbalance in ITP model mice by assessing the M1/M2 ratios in the liver, spleen, and bone marrow; we observed excessive activation of M1 cells and decreased M2 cell numbers in vivo. We have shown that systemic infusion of hBMSCs effectively elevated platelet levels after disease onset. Further analysis revealed that hBMSCs treatment significantly suppressed the number of proinflammatory M1 macrophages and enhanced the number of anti-inflammatory M2 macrophages; in addition, the levels of proinflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were significantly decreased in vivo, while the levels of the anti-inflammatory factor interleukin-10 (IL-10) were increased. In conclusion, our data suggest that hBMSCs treatment can effectively increase platelet counts, and the mechanism is related to the induction of macrophage polarization toward the anti-inflammatory M2 phenotype and the decrease in proinflammatory cytokine production, which together ameliorate innate immune disorders.
Collapse
Affiliation(s)
- Ziyang Liang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guoyang Zhang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - GuangTing Gan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoyan Liu
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyun Liu
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Ma
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Choi EW, Lim IR, Park JH, Song J, Choi B, Kim S. Exosomes derived from mesenchymal stem cells primed with disease-condition-serum improved therapeutic efficacy in a mouse rheumatoid arthritis model via enhanced TGF-β1 production. Stem Cell Res Ther 2023; 14:283. [PMID: 37794417 PMCID: PMC10552321 DOI: 10.1186/s13287-023-03523-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUNDS Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation-mediated progressive destruction of the cartilage and bone, resulting in reduced quality of life. We primed human telomerase reverse transcriptase-overexpressing immortalized human adipose tissue-derived mesenchymal stem cells (iMSCs) with serum derived from a non-human primate RA model and studied the immunomodulatory ability of exosomes obtained from primed iMSCs. METHODS After immunophenotyping, nanoparticle tracking analysis, and in vitro functional tests, Dulbecco's phosphate-buffered saline (dPBS, Group C), exosomes derived from the supernatant of iMSCs (Exo-FBS, Group E), exosomes derived from the supernatant of iMSCs primed with RA serum (Exo-RA, Group F), and methotrexate (Group M) were administered in collagen-induced arthritis (CIA) model mice. dPBS was administered to the normal (N) group for comparison (n = 10/group). RESULTS Exo-RA had a significantly higher number of exosomes compared to Exo-FBS when measured with nanoparticle tracking analysis or exosome marker CD81, and Transforming growth factor-β1 amounts were significantly higher in Exo-RA than in Exo-FBS. When Exo-FBS or Exo-RA was administered to the collagen-induced arthritis model, serum interleukin (IL)-4 and the proportion of Th2 (CD4+CD25+GATA3+) and M2 (CD11c - CD206+ of CD45+CD64+) cells were significantly increased compared to the control group. Furthermore, Exo-RA could alleviate cartilage damage by significantly lowering the concentrations of proinflammatory cytokines such as tumor necrosis factor-α, keratinocyte chemoattractant, and IL-12p70. CONCLUSION Exosomes derived from disease-condition-serum-primed iMSCs ameliorated cartilage damage in a RA model by enhancing TGF-β1 production, inducing Th2 and M2 polarization and lowering proinflammatory cytokines, TNF-α, KC, and IL-12p70 in the host. Patient-derived serum can be used as an iMSC priming strategy in iMSC-derived exosome treatment of RA.
Collapse
Affiliation(s)
- Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - I-Rang Lim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji Hong Park
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jiwoo Song
- Bioanalysis Center, GenNBio Inc., 700, Daewangpangyo-ro, Bundang-guGyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Bongkum Choi
- Bioanalysis Center, GenNBio Inc., 700, Daewangpangyo-ro, Bundang-guGyeonggi-do, Seongnam-si, 13488, Republic of Korea
| | - Sungjoo Kim
- GenNBio Inc., 80, Deurimsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17796, Republic of Korea
| |
Collapse
|
9
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Hu K, Shang Z, Yang X, Zhang Y, Cao L. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. J Inflamm Res 2023; 16:3563-3580. [PMID: 37636272 PMCID: PMC10460180 DOI: 10.2147/jir.s423819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
Bone homeostasis is a dynamic equilibrium state of bone formation and absorption, ensuring skeletal development and repair. Bone immunity encompasses all aspects of the intersection between the skeletal and immune systems, including various signaling pathways, cytokines, and the crosstalk between immune cells and bone cells under both homeostatic and pathological conditions. Therefore, as key cell types in bone immunity, macrophages can polarize into classical pro-inflammatory M1 macrophages and alternative anti-inflammatory M2 macrophages under the influence of the body environment, participating in the regulation of bone metabolism and playing various roles in bone homeostasis. M1 macrophages can not only act as precursors of osteoclasts (OCs), differentiate into mature OCs, but also secrete pro-inflammatory cytokines to promote bone resorption; while M2 macrophages secrete osteogenic factors, stimulating the differentiation and mineralization of osteoblast precursors and mesenchymal stem cells (MSCs), and subsequently increase bone formation. Once the polarization of macrophages is imbalanced, the resulting immune dysregulation will cause inflammatory stimulation, and release a large amount of inflammatory factors affecting bone metabolism, leading to pathological conditions such as osteoporosis (OP), rheumatoid arthritis (RA), and steroid-induced femoral head necrosis (SANFH). In this review, we introduce the signaling pathways and related factors of macrophage polarization, as well as their relationships with immune factors, OB, OC, and MSC. We also discuss the roles of macrophage polarization and bone immunity in various diseases of bone homeostasis imbalance, as well as the factors regulating them, which may help to develop new methods for treating bone metabolic disorders.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhengya Shang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiaorui Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjie Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
11
|
Han L, Zhang L. CCL21/CCR7 axis as a therapeutic target for autoimmune diseases. Int Immunopharmacol 2023; 121:110431. [PMID: 37331295 DOI: 10.1016/j.intimp.2023.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Chemokine receptor 7 (CCR7) is a G protein-coupled receptor containing 7 transmembrane domains that is expressed on various cells, such as naive T/B cells, central memory T cells, regulatory T cells, immature/mature dendritic cells (DCs), natural killer cells, and a minority of tumor cells. Chemokine ligand 21 (CCL21) is the known high-affinity ligand that binds to CCR7 and drives cell migration in tissues. CCL21 is mainly produced by stromal cells and lymphatic endothelial cells, and its expression is significantly increased under inflammatory conditions. Genome-wide association studies (GWAS) have shown a strong association between CCL21/CCR7 axis and disease severity in patients with rheumatoid arthritis, sjogren's syndrome, systemic lupus erythematosus, polymyositis, ankylosing spondylitis, and asthma. Disrupting CCL21/CCR7 interaction with antibodies or inhibitors prevents the migration of CCR7-expressing immune and non-immune cells at the site of inflammation and reduces disease severity. This review emphasizes the importance of the CCL21 /CCR7 axis in autoimmune diseases and evaluates its potential as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Le Han
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
CCR7 Mediates Dendritic-Cell-Derived Exosome Migration and Improves Cardiac Function after Myocardial Infarction. Pharmaceutics 2023; 15:pharmaceutics15020461. [PMID: 36839783 PMCID: PMC9964111 DOI: 10.3390/pharmaceutics15020461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Dendritic cells (DCs) play key roles in promoting wound healing after myocardial infarction (MI). Our previous studies have shown that exosomes derived from DCs (DEXs) could migrate to lymphoid tissue and improve cardiac function post-MI by activating CD4+ T cells; however, the mechanism of DEXs' migration to lymphoid tissue and the improvement of cardiac function are still unknown. In our study, we found that CCR7 expression significantly increased in MI-DEXs compared with control-DEXs; meanwhile, CCL19 and CCL21, the ligands of CCR7, significantly increased in the serum of MI-model mice. Subsequently, we overexpressed and knocked down CCR7 in MI-DEXs and found that overexpressed CCR7 enhanced the migration of MI-DEXs to the spleen; however, CCR7 knockdown attenuated MI-DEXs' migration according to near-IR fluorescence imaging. Furthermore, overexpressed CCR7 in MI-DEXs enhanced the MI-DEXs' improvement of cardiac function after MI; however, CCR7-knockdown MI-DEXs attenuated this improvement. In addition, after DEXs' migration to the spleen, MI-DEXs activated CD4+ T cells and induced the expression of IL-4 and IL-10, which were significantly increased in the MI-DEX group compared with the control group. In conclusion, CCR7 could mediate DEXs' migration to the spleen and improve cardiac function after MI, and we found that the mechanism was partly via activation of CD4+ T cells and secretion of IL-4 and IL-10. Our study presented an innovative method for improving cardiac function by enhancing the migration ability of MI-DEXs after MI, while CCR7 could be a potential candidate for MI-DEX bioengineering to enhance migration.
Collapse
|
13
|
Osthole Inhibits M1 Macrophage Polarization and Attenuates Osteolysis in a Mouse Skull Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2975193. [PMID: 36686380 PMCID: PMC9851800 DOI: 10.1155/2023/2975193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023]
Abstract
Excessive bone resorption due to increased inflammatory factors is a common feature of inflammatory lytic bone diseases. This group of diseases is effectively treated with drugs. In recent years, many studies have reported that traditional Chinese medicine herbs have substantial effects on inflammation, osteoclast differentiation and maturation, and bone destruction. Herein, we investigated the effects of osthole (OST) on lipopolysaccharide- (LPS-) induced macrophage polarization, inflammatory responses, and osteolysis. In vitro, we used immunofluorescence and quantitative real-time polymerase chain reaction assays to confirm whether bone marrow-derived macrophages showed an increased expression of inflammatory factors, such as interleukin-6, iNOS, CCR7, and CD86, in the presence of LPS. However, we found that such expression was suppressed and that the M2 macrophage expression increased in the presence of OST. OST reduced LPS- and RANKL-induced intracellular reactive oxygen species production in the bone marrow-derived macrophages. Further, it potently suppressed osteoclast differentiation and osteoclast-specific gene expression by suppressing the P38/MAPK and NF-κB pathways. Consistent with the in vitro observations, OST greatly ameliorated LPS-induced bone resorption and modulated the ratio of macrophages at the site of osteolysis. Taken together, OST has great potential for use in the management of osteolytic diseases.
Collapse
|
14
|
Heng H, Li D, Su W, Liu X, Yu D, Bian Z, Li J. Exploration of comorbidity mechanisms and potential therapeutic targets of rheumatoid arthritis and pigmented villonodular synovitis using machine learning and bioinformatics analysis. Front Genet 2023; 13:1095058. [PMID: 36685864 PMCID: PMC9853060 DOI: 10.3389/fgene.2022.1095058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Pigmented villonodular synovitis (PVNS) is a tenosynovial giant cell tumor that can involve joints. The mechanisms of co-morbidity between the two diseases have not been thoroughly explored. Therefore, this study focused on investigating the functions, immunological differences, and potential therapeutic targets of common genes between RA and PVNS. Methods: Through the dataset GSE3698 obtained from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) were screened by R software, and weighted gene coexpression network analysis (WGCNA) was performed to discover the modules most relevant to the clinical features. The common genes between the two diseases were identified. The molecular functions and biological processes of the common genes were analyzed. The protein-protein interaction (PPI) network was constructed using the STRING database, and the results were visualized in Cytoscape software. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) logistic regression and random forest (RF) were utilized to identify hub genes and predict the diagnostic efficiency of hub genes as well as the correlation between immune infiltrating cells. Results: We obtained a total of 107 DEGs, a module (containing 250 genes) with the highest correlation with clinical characteristics, and 36 common genes after taking the intersection. Moreover, using two machine learning algorithms, we identified three hub genes (PLIN, PPAP2A, and TYROBP) between RA and PVNS and demonstrated good diagnostic performance using ROC curve and nomogram plots. Single sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the biological functions in which three genes were mostly engaged. Finally, three hub genes showed a substantial association with 28 immune infiltrating cells. Conclusion: PLIN, PPAP2A, and TYROBP may influence RA and PVNS by modulating immunity and contribute to the diagnosis and therapy of the two diseases.
Collapse
Affiliation(s)
- Hongquan Heng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xinyue Liu
- Department of Radiology, Wangjiang Hospital of Sichuan University, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Zhengjun Bian
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| |
Collapse
|
15
|
Nyirenda MH, Nijjar JS, Frleta-Gilchrist M, Gilchrist DS, Porter D, Siebert S, Goodyear CS, McInnes IB. JAK inhibitors disrupt T cell-induced proinflammatory macrophage activation. RMD Open 2023; 9:rmdopen-2022-002671. [PMID: 36599629 PMCID: PMC9815080 DOI: 10.1136/rmdopen-2022-002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Macrophage subsets, activated by T cells, are increasingly recognised to play a central role in rheumatoid arthritis (RA) pathogenesis. Janus kinase (JAK) inhibitors have proven beneficial clinical effects in RA. In this study, we investigated the effect of JAK inhibitors on the generation of cytokine-activated T (Tck) cells and the production of cytokines and chemokines induced by Tck cell/macrophage interactions. METHODS CD14+ monocytes and CD4+ T cells were purified from peripheral blood mononuclear cells from buffy coats of healthy donors. As representative JAK inhibitors, tofacitinib or ruxolitinib were added during Tck cell differentiation. Previously validated protocols were used to generate macrophages and Tck cells from monocytes and CD4+ T cells, respectively. Cytokine and chemokine including TNF, IL-6, IL-15, IL-RA, IL-10, MIP1α, MIP1β and IP10 were measured by ELISA. RESULTS JAK inhibitors prevented cytokine-induced maturation of Tck cells and decreased the production of proinflammatory cytokines TNF, IL-6, IL-15, IL-1RA and the chemokines IL-10, MIP1α, MIP1β, IP10 by Tck cell-activated macrophages in vitro (p<0.05). CONCLUSIONS Our findings show that JAK inhibition disrupts T cell-induced macrophage activation and reduces downstream proinflammatory cytokine and chemokine responses, suggesting that suppressing the T cell-macrophage interaction contributes to the therapeutic effect of JAK inhibitors.
Collapse
Affiliation(s)
- Mukanthu H Nyirenda
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK .,The Research into inflammatory Arthritis Centre of Excellence - Versus Arthritis (RACE-VA) Universities of Glasgow, Birmingham, Newcastle, Oxford, and Newcastle, UK
| | - Jagtar Singh Nijjar
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK
| | - Marina Frleta-Gilchrist
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK
| | - Derek S Gilchrist
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK
| | - Duncan Porter
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK,Gartnavel General Hospital, Glasgow, UK
| | - Stefan Siebert
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK
| | - Carl S Goodyear
- School of Infection and Immunity, University of Glasgow College of Medical Veterinary and Life Sciences, Glasgow, UK,The Research into inflammatory Arthritis Centre of Excellence - Versus Arthritis (RACE-VA) Universities of Glasgow, Birmingham, Newcastle, Oxford, and Newcastle, UK
| | - Iain B McInnes
- The Research into inflammatory Arthritis Centre of Excellence - Versus Arthritis (RACE-VA) Universities of Glasgow, Birmingham, Newcastle, Oxford, and Newcastle, UK,College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Qin M, Chen Q, Li N, Xu X, Wang C, Wang G, Xu Z. Shared gene characteristics and molecular mechanisms of macrophages M1 polarization in calcified aortic valve disease. Front Cardiovasc Med 2023; 9:1058274. [PMID: 36684607 PMCID: PMC9846331 DOI: 10.3389/fcvm.2022.1058274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background CAVD is a common cardiovascular disease, but currently there is no drug treatment. Therefore, it is urgent to find new and effective drug therapeutic targets. Recent evidence has shown that the infiltration of M1 macrophages increased in the calcified aortic valve tissues, but the mechanism has not been fully elucidated. The purpose of this study was to explore the shared gene characteristics and molecular mechanisms of macrophages M1 polarization in CAVD, in order to provide a theoretical basis for new drugs of CAVD. Methods The mRNA datasets of CAVD and M1 polarization were downloaded from Gene Expression Omnibus (GEO) database. R language, String, and Cytoscape were used to analyze the functions and pathways of DEGs and feature genes. Immunohistochemical staining and Western Blot were performed to verify the selected hub genes. Results CCR7 and GZMB were two genes appeared together in hub genes of M1-polarized and CAVD datasets that might be involved in the process of CAVD and macrophages M1 polarization. CCR7 and CD86 were significantly increased, while CD163 was significantly decreased in the calcified aortic valve tissues. The infiltration of M1 macrophages was increased, on the contrary, the infiltration of M2 macrophages was decreased in the calcified aortic valve tissues. Conclusion This study reveals the shared gene characteristics and molecular mechanisms of CAVD and macrophages M1 polarization. The hub genes and pathways we found may provide new ideas for the mechanisms underlying the occurrence of M1 polarization during CAVD process.
Collapse
Affiliation(s)
- Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ning Li
- Department of Cardiothoracic Surgery, People’s Liberation Army Navy Medical Center, Naval Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuyi Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,Guokun Wang,
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Zhiyun Xu,
| |
Collapse
|
17
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
18
|
Liao XM, Guan Z, Yang ZJ, Ma LY, Dai YJ, Liang C, Hu JT. Comprehensive analysis of M2 macrophage-derived exosomes facilitating osteogenic differentiation of human periodontal ligament stem cells. BMC Oral Health 2022; 22:647. [PMID: 36575449 PMCID: PMC9795719 DOI: 10.1186/s12903-022-02682-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The role of periodontal ligament stem cells (PDLSCs) and macrophage polarization in periodontal tissue regeneration and bone remodeling during orthodontic tooth movement (OTM) has been well documented. Nevertheless, the interactions between macrophages and PDLSCs in OTM remain to be investigated. Consequently, the present study was proposed to explore the effect of different polarization states of macrophages on the osteogenic differentiation of PDLSCs. METHODS After M0, M1 and M2 macrophage-derived exosomes (M0-exo, M1-exo and M2-exo) treatment of primary cultured human PDLSCs, respectively, mineralized nodules were observed by Alizarin red S staining, and the expression of ALP and OCN mRNA and protein were detected by RT-qPCR and Western blotting, correspondingly. Identification of differentially expressed microRNAs (DE-miRNA) in M0-exo and M2-exo by miRNA microarray, and GO and KEGG enrichment analysis of DE-miRNA targets, and construction of protein-protein interaction networks. RESULTS M2-exo augmented mineralized nodule formation and upregulated ALP and OCN expression in PDLSCs, while M0-exo had no significant effect. Compared to M0-exo, a total of 52 DE-miRNAs were identified in M2-exo. The expression of hsa-miR-6507-3p, hsa-miR-4731-3p, hsa-miR-4728-3p, hsa-miR-3614-5p and hsa-miR-6785-3p was significantly down-regulated, and the expression of hsa-miR-6085, hsa-miR-4800-5p, hsa-miR-4778-5p, hsa-miR-6780b-5p and hsa-miR-1227-5p was significantly up-regulated in M2-exo compared to M0-exo. GO and KEGG enrichment analysis revealed that the downstream targets of DE-miRNAs were mainly involved in the differentiation and migration of multiple cells. CONCLUSIONS In summary, we have indicated for the first time that M2-exo can promote osteogenic differentiation of human PDLSCs, and have revealed the functions and pathways involved in the DE-miRNAs of M0-exo and M2-exo and their downstream targets.
Collapse
Affiliation(s)
- Xian-min Liao
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China ,grid.414918.1Stomatology Center, the First People’s Hospital of Yunnan, Kunming, China
| | - Zheng Guan
- grid.506988.aBiomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University/the First Hospital of Kunming, Kunming, China
| | - Zhen-jin Yang
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China
| | - Li-ya Ma
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China
| | - Ying-juan Dai
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China
| | - Cun Liang
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China
| | - Jiang-tian Hu
- grid.285847.40000 0000 9588 0960Department of Orthodontics, Hospital of Stomatology, Kunming Medical University/Yunnan Stomatology Hospital, Building C, Hecheng International, No. 1088 Middle Haiyuan Road, Kunming, 650106 Yunnan Province China
| |
Collapse
|
19
|
Trajerova M, Kriegova E, Mikulkova Z, Savara J, Kudelka M, Gallo J. Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories. Osteoarthritis Cartilage 2022; 30:1583-1592. [PMID: 36126821 DOI: 10.1016/j.joca.2022.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a highly heterogeneous disease encompassing a wide range of clinical phenotypes. Phenotypes based on immune cells and protein pattern in synovial fluid (SF) and their relationship to clinical trajectories have not been described. OBJECTIVE To assess phenotypes based on immune cells and protein pattern of SF in KOA. DESIGN SF-derived immune cells were investigated in 119 patients with KOA using flow cytometry. Immune-phenotypes (iPhen) were determined by multivariate patient similarity network analysis and related to clinical trajectory (3-6 months post-sampling) along with protein pattern and macrophage chemokine receptors. RESULTS Four iPhen were detected based on the distribution of T-lymphocytes, monocyte-macrophage lineage cells and activated CD8+ T-lymphocytes. The 'activated' phenotype (n = 17) had high T-lymphocytes but low monocyte-macrophage lineage cells and neutrophils, all highly activated, and showed improved symptoms in 70% patients. The 'lymphoid progressive' phenotype (n = 31) had high neutrophils, low lymphocytes and monocyte-macrophage lineage cells, low activation and was associated with lower pain levels. The 'myeloid progressive' phenotype (n = 35) had high NK and monocyte-macrophage lineage cells but low T-lymphocytes and activation. The 'aggressive' phenotype (n = 36) had high lymphocytes, macrophages, NK cells and neutrophils and high activation, and only 39% of patients improved during follow-up. Low CXCR4 and CCR7 expression on macrophages and high CXCL10 in SF were linked to improved clinical trajectory. CONCLUSION We identified four immune-phenotypes that were associated with different clinical trajectories in KOA patients. How these phenotypes can be targeted therapeutically deserves further investigation.
Collapse
Affiliation(s)
- M Trajerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - E Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Z Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - J Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic; Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - M Kudelka
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - J Gallo
- Department of Orthopaedics, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
20
|
Gold nanoclusters-loaded hydrogel formed by dimeric hydrogen bonds crosslinking: A novel strategy for multidrug-resistant bacteria-infected wound healing. Mater Today Bio 2022; 16:100426. [PMID: 36133795 PMCID: PMC9483737 DOI: 10.1016/j.mtbio.2022.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Restoring skin integrity after wound infection remains a tougher health challenge due to the uncontrolled antibiotic-resistant pathogens caused by antibiotic abuse. Herein, an injectable hydrogel with dual antibacterial and anti-inflammatory activities composed of gold nanoclusters (GNCs) and carbomer (CBM) is developed for wound dressing to overcome multidrug-resistant infection. Firstly, both experimental investigations and molecular dynamics simulation validate the protonation state of 6-mercaptohexanoic acid (MHA) ligands play an important role in its antibacterial action of GNCs. The self-organizing GNCs-CBM composite hydrogel is then spontaneously cross-linked by the dimeric hydrogen bonds (H-bonds) between the MHA ligands and the acrylic acid groups of CBM. Benefitting from the dimeric H-bonds, the hydrogel becomes thickening enough as an ideal wound dressing and the GNCs exist in the hydrogel with a high protonation level that contributes to the enhanced bactericidal function. In all, by combining bactericidal and immunomodulatory actions, the GNCs-CBM hydrogel demonstrated excellent synergy in accelerating wound healing in animal infection models. Hence, the dimeric H-bonds strengthening strategy makes the GNCs-CBM hydrogel hold great potential as a safe and effective dressing for treating infected wounds.
Collapse
|
21
|
Lee H, Joo JY, Sohn DH, Kang J, Yu Y, Park HR, Kim YH. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy. J Transl Med 2022; 20:504. [PMID: 36329504 PMCID: PMC9635198 DOI: 10.1186/s12967-022-03702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Periodontitis is a major inflammatory disease of the oral mucosa that is not limited to the oral cavity but also has systemic consequences. Although the importance of chronic periodontitis has been emphasized, the systemic immune response induced by periodontitis and its therapeutic effects remain elusive. Here, we report the transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with periodontitis. Methods Using single-cell RNA sequencing, we profiled PBMCs from healthy controls and paired pre- and post-treatment patients with periodontitis. We extracted differentially expressed genes and biological pathways for each cell type and calculated activity scores reflecting cellular characteristics. Intercellular crosstalk was classified into therapy-responsive and -nonresponsive pathways. Results We analyzed pan-cellular differentially expressed genes caused by periodontitis and found that most cell types showed a significant increase in CRIP1, which was further supported by the increased levels of plasma CRIP1 observed in patients with periodontitis. In addition, activated cell type-specific ligand-receptor interactions, including the BTLA, IFN-γ, and RESISTIN pathways, were prominent in patients with periodontitis. Both the BTLA and IFN-γ pathways returned to similar levels in healthy controls after periodontal therapy, whereas the RESISTIN pathway was still activated even after therapy. Conclusion These data collectively provide insights into the transcriptome changes and molecular interactions that are responsive to periodontal treatment. We identified periodontitis-specific systemic inflammatory indicators and suggest unresolved signals of non-surgical therapy as future therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03702-2.
Collapse
Affiliation(s)
- Hansong Lee
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Ji-Young Joo
- grid.262229.f0000 0001 0719 8572Department of Periodontology, School of Dentistry, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Dong Hyun Sohn
- grid.262229.f0000 0001 0719 8572Department of Microbiology and Immunology, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Junho Kang
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yeuni Yu
- grid.262229.f0000 0001 0719 8572Medical Research Institute, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Hae Ryoun Park
- grid.262229.f0000 0001 0719 8572Department of Oral Pathology, School of Dentistry, Pusan National University, 49 Busandaehak- ro, 50612 Yangsan, Republic of Korea
| | - Yun Hak Kim
- grid.262229.f0000 0001 0719 8572Convergence Medical Sciences, Pusan National University, 50612 Yangsan, Republic of Korea ,grid.262229.f0000 0001 0719 8572Department of Anatomy, School of Medicine, Pusan National University, 49 Busandaehak-ro, 50612 Yangsan, Republic of Korea
| |
Collapse
|
22
|
Wang Z, Xia Q, Su W, Zhang M, Gu Y, Xu J, Chen W, Jiang T. The commonness in immune infiltration of rheumatoid arthritis and atherosclerosis: Screening for central targets via microarray data analysis. Front Immunol 2022; 13:1013531. [PMID: 36311761 PMCID: PMC9606677 DOI: 10.3389/fimmu.2022.1013531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although increasing evidence has reported an increased risk of atherosclerosis (AS) in rheumatoid arthritis (RA), the communal molecular mechanism of this phenomenon is still far from being fully elucidated. Hence, this article aimed to explore the pathogenesis of RA complicated with AS. Methods Based on the strict inclusion/exclusion criteria, four gene datasets were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the communal differentially expressed genes (DEGs) and hub genes, comprehensive bioinformatics analysis, including functional annotation, co-expression analysis, expression validation, drug-gene prediction, and TF-mRNA-miRNA regulatory network construction, was conducted. Moreover, the immune infiltration of RA and AS was analyzed and compared based on the CIBERSORT algorithm, and the correlation between hub genes and infiltrating immune cells was evaluated in RA and AS respectively. Results A total of 54 upregulated and 12 downregulated communal DEGs were screened between GSE100927 and GSE55457, and functional analysis of these genes indicated that the potential pathogenesis lies in immune terms. After the protein-protein interaction (PPI) network construction, a total of six hub genes (CCR5, CCR7, IL7R, PTPRC, CD2, and CD3D) were determined as hub genes, and the subsequent comprehensive bioinformatics analysis of the hub genes re-emphasized the importance of the immune system in RA and AS. Additionally, three overlapping infiltrating immune cells were found between RA and AS based on the CIBERSORT algorithm, including upregulated memory B cells, follicular helper T cells and γδT cells. Conclusions Our study uncover the communal central genes and commonness in immune infiltration between RA and AS, and the analysis of six hub genes and three immune cells profile might provide new insights into potential pathogenesis therapeutic direction of RA complicated with AS.
Collapse
Affiliation(s)
- Zuoxiang Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyue Xia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Mingyang Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiyu Gu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialiang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| |
Collapse
|
23
|
Didriksen H, Molberg Ø, Mehta A, Jordan S, Palchevskiy V, Fretheim H, Gude E, Ueland T, Brunborg C, Garen T, Midtvedt Ø, Andreassen AK, Lund-Johansen F, Distler O, Belperio J, Hoffmann-Vold AM. Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension. Front Immunol 2022; 13:991743. [PMID: 36211384 PMCID: PMC9541617 DOI: 10.3389/fimmu.2022.991743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Systemic sclerosis (SSc) is a heterogenous disorder that appears to result from interplay between vascular pathologies, tissue fibrosis and immune processes, with evidence for deregulation of chemokines, which normally control immune trafficking. We recently identified altered levels of chemokine CCL21 in SSc associated pulmonary arterial hypertension (PAH). Here, we aimed to define target organ expression and biomarker characteristics of CCL21. Materials and methods To investigate target organ expression of CCL21, we performed immunohistochemistry (IHC) on explanted lung tissues from SSc-PAH patients. We assessed serum levels of CCL21 by ELISA and Luminex in two well-characterized SSc cohorts from Oslo (OUH, n=552) and Zurich (n=93) University hospitals and in 168 healthy controls. For detection of anti-CCl21 antibodies, we performed protein array analysis applying serum samples from SSc patients (n=300) and healthy controls. To characterize circulating CCL21 in SSc, we applied immunoprecipitation (IP) with antibodies detecting both full length and tailless and a custom-made antibody detecting only the C-terminal of CCL21. IP products were analyzed by SDS-PAGE/western blot and Mass spectrometry (MS). Results By IHC, we found that CCL21 was mainly expressed in the airway epithelial cells of SSc patients with PAH. In the analysis of serum levels of CCL21 we found weak correlation between Luminex and ELISA (r=0.515, p<0.001). Serum levels of anti-CCL21 antibodies were higher in SSc patients than in healthy controls (p<0.001), but only 5% of the SSc population were positive for anti-CCL21 antibodies in SSc, and we found no correlation between anti-CCl21 and serum levels of CCL21. By MS, we only identified peptides located within amino acid (aa) 23-102 of CCL21, indicating that CCL21 in SSc circulate as a truncated protein without the C-terminal tail. Conclusion This study demonstrates expression of CCL21 in epithelial lung tissue from SSc patients with PAH, and indicate that CCL21 in SSc circulates as a truncated protein. We extend previous observations indicating biomarker potential of CCL21, but find that Luminex is not suitable as platform for biomarker analyses. Finally, in vivo generated anti-CCL21 antibodies exist in SSc, but do not appear to modify serum CCL21 levels in patients with SSc-PAH.
Collapse
Affiliation(s)
- Henriette Didriksen
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Adi Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vyacheslav Palchevskiy
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Håvard Fretheim
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Einar Gude
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Torhild Garen
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øyvind Midtvedt
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arne K. Andreassen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- *Correspondence: Anna-Maria Hoffmann-Vold,
| |
Collapse
|
24
|
Meng XW, Zhang M, Hu JK, Chen XY, Long YQ, Liu H, Feng XM, Ji FH, Peng K. Activation of CCL21-GPR174/CCR7 on cardiac fibroblasts underlies myocardial ischemia/reperfusion injury. Front Genet 2022; 13:946524. [PMID: 36159993 PMCID: PMC9505909 DOI: 10.3389/fgene.2022.946524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The mechanisms underlying myocardial ischemia/reperfusion (I/R) injury are not fully understood. This study aims to explore key candidate genes and potential therapeutic targets for treatment of myocardial I/R injury. Methods: The transcriptional profiles of ventricular myocardium during cardiac arrest, ischemia, and reperfusion were obtained from the Gene Expression Omnibus database. Based on the transcriptional data of GSE6381, functional pathway and process enrichment analyses, protein–protein interaction network, and gene set enrichment analyses were conducted. In the animal experiments, we established the myocardial I/R injury model in mice. We validated the mRNA and protein expression of the key genes using the qPCR and western blots. We further assessed the expression and localization of CCL21 and its receptors using immunofluorescence staining experiments. Results: The microarray analyses identified five key genes (CCL21, XCR1, CXCL13, EDN1, and CASR). Myocardial I/R process in mice resulted in significant myocardial infraction, histological damage, and myocardial apoptosis. The results of qPCR and western blots showed that the expression of CCL21 and CXCL13 were increased following myocardial I/R injury in mice. Furthermore, the immunofluorescence staining results revealed that the expression of GPR174/CCR7 (CCL21 receptors), but not CXCR5 (CXCL13 receptor), was elevated following myocardial I/R injury. Moreover, the activated CCL21-GPR174/CCR7 signaling was located on the cardiac fibroblasts of the myocardium with I/R injury. Conclusion: This study revealed several key factors underlying myocardial I/R injury. Of these, the activation of CCL21-GPR174/CCR7 signaling on cardiac fibroblasts was highlighted, which provides potential therapeutic targets for cardioprotection.
Collapse
Affiliation(s)
- Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Mian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jun-Kai Hu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Xin-Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Yu-Qin Long
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, Davis Health System, University of California, Davis, Sacramento, CA, United States
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
- *Correspondence: Fu-Hai Ji, ; Ke Peng,
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Anesthesiology, Soochow University, Suzhou, China
- *Correspondence: Fu-Hai Ji, ; Ke Peng,
| |
Collapse
|
25
|
Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis: From immune mechanisms to clinical translation. EBioMedicine 2022; 83:104233. [PMID: 36027873 PMCID: PMC9404277 DOI: 10.1016/j.ebiom.2022.104233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
The presence of anti-citrullinated protein autoantibodies (ACPA) is a hallmark feature of rheumatoid arthritis (RA), which causes chronic joint destruction and systemic inflammation. Based on ACPA status, RA patients can be sub-grouped into two major subsets: ACPA-positive RA (ACPA+ RA) and ACPA-negative RA (ACPA– RA). Accumulating evidence have suggested that ACPA+ RA and ACPA– RA are two distinct disease entities with different underlying pathophysiology. In contrast to the well-characterized pathogenic mechanisms of ACPA+ RA, the etiology of ACPA– RA remains largely unknown. In this review, we summarized current knowledge about the primary drivers of ACPA– RA, particularly focusing on the serological, cellular, and molecular aspects of immune mechanisms. A better understanding of the immunopathogenesis in ACPA– RA will help in designing more precisely targeting strategies, and paving the road to personalized treatment. In addition, identification of novel biomarkers in ACPA– RA will substantially promote early treatment and improve the outcomes.
Collapse
Affiliation(s)
- Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
26
|
Marashi H, Beihaghi M, Chaboksavar M, Khaksar S, Tehrani H, Abiri A. In silico analysis and in planta production of recombinant ccl21/IL1β protein and characterization of its in vitro anti-tumor and immunogenic activity. PLoS One 2022; 17:e0261101. [PMID: 36037155 PMCID: PMC9423642 DOI: 10.1371/journal.pone.0261101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
CCL21 has an essential role in anti-tumor immune activity. Epitopes of IL1β have adjuvant activity without causing inflammatory responses. CCR7 and its ligands play a vital role in the immune balance; specifically, in transport of T lymphocytes and antigen-presenting cells such as dendritic cells to the lymph nodes. This study aimed to produce epitopes of CCL21 and IL1β as a recombinant protein and characterize its in vitro anti-tumor and immunogenic activity. A codon-optimized ccl21/IL1β gene was designed and synthesized from human genes. Stability and binding affinity of CCL21/IL1β protein and CCR7 receptor were examined through in silico analyses. The construct was introduced into N. tabacum to produce this recombinant protein and the structure and function of CCL21/IL1β were examined. Purified protein from transgenic leaves generated a strong signal in SDS PAGE and western blotting assays. FTIR measurement and MALDI-TOF/TOF mass spectrography showed that ccl21/IL-1β was correctly expressed in tobacco plants. Potential activity of purified CCL21/IL1β in stimulating the proliferation and migration of MCF7 cancer cell line was investigated using the wound healing method. The results demonstrated a decrease in survival rate and metastasization of cancer cells in the presence of CCL21/IL1β, and IC50 of CCL21 on MCF7 cells was less than that of non-recombinant protein. Agarose assay on PBMCsCCR7+ showed that CCL21/IL1β has biological activity and there is a distinguishable difference between chemokinetic (CCL21) and chemotactic (FBS) movements. Overall, the results suggest that CCL21/IL1β could be considered an effective adjuvant in future in vivo and clinical tests.
Collapse
Affiliation(s)
- Hasan Marashi
- College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maria Beihaghi
- College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Masoud Chaboksavar
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Homan Tehrani
- Department of Paediatric, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
28
|
Correlation of Serum Chemokine (C-C Motif) Ligand 21 and Heat Shock Protein 90 with Preeclampsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2156424. [PMID: 35966726 PMCID: PMC9365573 DOI: 10.1155/2022/2156424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Objective The study aimed to explore the correlation of serum chemokine (C-C motif) ligand 21 (CCL21) and heat shock protein 90 (Hsp90) with preeclampsia (PE). Methods Between June 2021 and June 2022, 50 pregnant women with PE were included in the PE group, and 50 healthy pregnant women were included in the control group. The serum levels of CCL21 and Hsp90 were compared between the two groups. Results PE patients showed significantly higher levels of CCL21 and Hsp90 than healthy pregnant women (P < 0.05). Correlation analysis showed a positive correlation between CCL21 and Hsp90 levels (r > 0, (P < 0.05)). Binary logistic regression analysis suggested that high expression of CCL21 and Hsp90 were influencing factors for PE (OR >1, (P < 0.05)). The area under the receiver operating characteristic (AUC) curves of Hsp90 and CCL21 levels for predicting PE were 0.895 and 0.864, respectively, suggesting a good predictive value. Conclusion Serum CCL21 and Hsp90 show great potential as disease markers for PE prediction. Further trials are, however, required prior to clinical promotion.
Collapse
|
29
|
Adipose-Derived Stem Cell Exosomes as a Novel Anti-Inflammatory Agent and the Current Therapeutic Targets for Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10071725. [PMID: 35885030 PMCID: PMC9312519 DOI: 10.3390/biomedicines10071725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with rheumatoid arthritis (RA), a chronic inflammatory joint disorder, may not respond adequately to current RA treatments. Mesenchymal stem cells (MSCs) elicit several immunomodulatory and anti-inflammatory effects and, thus, have therapeutic potential. Specifically, adipose-derived stem cell (ADSC)-based RA therapy may have considerable potency in modulating the immune response, and human adipose tissue is abundant and easy to obtain. Paracrine factors, such as exosomes (Exos), contribute to ADSCs’ immunomodulatory function. ADSC-Exo-based treatment can reproduce ADSCs’ immunomodulatory function and overcome the limitations of traditional cell therapy. ADSC-Exos combined with current drug therapies may provide improved therapeutic effects. Using ADSC-Exos, instead of ADSCs, to treat RA may be a promising cell-free treatment strategy. This review summarizes the current knowledge of medical therapies, ADSC-based therapy, and ADSC-Exos for RA and discusses the anti-inflammatory properties of ADSCs and ADSC-Exos. Finally, this review highlights the expanding role and potential immunomodulatory activity of ADSC-Exos in patients with RA.
Collapse
|
30
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
31
|
Li Z, Chen Z, Wang X, Li Z, Sun H, Wei J, Zeng X, Cao X, Wan C. Integrated Analysis of miRNAs and Gene Expression Profiles Reveals Potential Biomarkers for Osteoarthritis. Front Genet 2022; 13:814645. [PMID: 35783271 PMCID: PMC9247214 DOI: 10.3389/fgene.2022.814645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Currently, the early diagnosis and treatment of osteoarthritis (OA) remain a challenge. In the present study, we attempted to explore potential biomarkers for the diagnosis and treatment of OA. Methods: The differentially expressed genes (DEGs) were identified based on three mRNA datasets of synovial tissues for OA patients and normal controls downloaded from the Gene Expression Omnibus (GEO) database. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used for evaluating gene function related categories. Then, miRNA sequencing was performed for differentially expressed miRNAs’ identification. Finally, weighted gene co-expression network analysis (WGCNA) was performed for genes detected by the three mRNA datasets and a competing endogenous RNA (ceRNA) network with DEGs and differentially expressed microRNAs (miRNAs) was constructed for central genes identification. In addition, the relationship between central gene expression and immune infiltration was analyzed, and the candidate agents for OA were predicted based on the Connectivity Map database. Quantitative RT-PCR (qRT-PCR), Western blotting analysis, and immunofluorescent staining were performed to validate the expression levels of differentially expressed miRNAs and differentially expressed target genes in normal and OA tissues and chondrocytes. MiRNA–mRNA network was also validated in chondrocytes in vitro. Results: A total of 259 DEGs and 26 differentially expressed miRNAs were identified, among which 94 miRNA–mRNA interactions were predicted. The brown module in WGCNA was most closely correlated with the clinical traits of OA. After overlapping the brown module genes with miRNA–mRNA pairs, 27 miRNA–mRNA pairs were obtained. A ceRNA network was constructed with 5505 lncRNA–miRNA–mRNA interactions. B-cell translocation gene 2(BTG2), Abelson-related gene (ABL2), and vascular endothelial growth factor A (VEGFA) were identified to be the central genes with good predictive performance, which were significantly correlated with immune cell infiltration in OA, reflected by declined activated dendritic cells (aDCs), and elevated contents of B cells, macrophages, neutrophils, and T helper cells. Anisomycin, MG-132, thapsigargin, and lycorine were predicted to be the potential candidate agents for OA intervention. In vitro, the expression levels of differentially expressed miRNAs and biomarkers identified in the present study were consistent with the results obtained in normal or OA knee cartilage tissues and chondrocytes. Furthermore, BTG2 was identified to be negatively regulated by miR-125a-5p. Conclusion: BTG2, ABL2, and VEGFA can be regarded as potential predictive and treatment biomarkers for OA, which might guide the clinical therapy of OA.
Collapse
Affiliation(s)
- Zhen Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenyue Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotan Wang
- The First Clinical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zehui Li
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - He Sun
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jinqiang Wei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhong Zeng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuewei Cao
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- *Correspondence: Xuewei Cao, ; Chao Wan,
| | - Chao Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Xuewei Cao, ; Chao Wan,
| |
Collapse
|
32
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
33
|
Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol 2022; 13:867260. [PMID: 35663975 PMCID: PMC9161083 DOI: 10.3389/fimmu.2022.867260] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Innate and adaptive immunity represent a harmonic counterbalanced system involved in the induction, progression, and possibly resolution of the inflammatory reaction that characterize autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis (RA). Although the immunopathophysiological mechanisms of the ARDs are not fully clarified, they are often associated with an inappropriate macrophage/T-cell interaction, where classical (M1) or alternative (M2) macrophage activation may influence the occurrence of T-helper (Th)1 or Th2 responses. In RA patients, M1/Th1 activation occurs in an inflammatory environment dominated by Toll-like receptor (TLR) and interferon (IFN) signaling, and it promotes a massive production of pro-inflammatory cytokines [i.e., tumor necrosis factor-α (TNFα), interleukin (IL)-1, IL-12, IL-18, and IFNγ], chemotactic factors, and matrix metalloproteinases resulting in osteoclastogenesis, erosion, and progressive joint destruction. On the other hand, the activation of M2/Th2 response determines the release of growth factors and cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF)-β] involved in the anti-inflammatory process leading to the clinical remission of RA. Several subtypes of macrophages have been described. Five polarization states from M1 to M2 have been confirmed in in vitro studies analyzing morphological characteristics, gene expression of phenotype markers (CD80, CD86, TLR2, TLR4, or CD206, CD204, CD163, MerTK), and functional aspect, including the production of reactive oxygen species (ROS). An M1 and M2 macrophage imbalance may induce pathological consequences and contribute to several diseases, such as asthma or osteoclastogenesis in RA patients. In addition, the macrophage dynamic polarization from M1 to M2 includes the presence of intermediate polarity stages distinguished by the expression of specific surface markers and the production/release of distinct molecules (i.e., nitric oxide, cytokines), which characterize their morphological and functional state. This suggests a “continuum” of macrophage activation states playing an important role during inflammation and its resolution. This review discusses the importance of the delicate M1/M2 imbalance in the different phases of the inflammatory process together with the identification of specific pathways, cytokines, and chemokines involved, and its clinical outcomes in RA. The analysis of these aspects could shed a light on the abnormal inflammatory activation, leading to novel therapeutical approaches which may contribute to restore the M1/M2 balance.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
34
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
35
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
36
|
Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022; 79:301. [PMID: 35588018 PMCID: PMC9118817 DOI: 10.1007/s00018-022-04329-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated Mϴs nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of Mϴs by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated Mϴs, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated Mϴs was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human Mϴs as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated Mϴ hyperactivation. IRAK4i therapy counteracts Mϴ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human Mϴs. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
37
|
Immunopathogenesis and distinct role of Th17 in Periodontitis: A review. J Oral Biosci 2022; 64:193-201. [PMID: 35489583 DOI: 10.1016/j.job.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Periodontitis is a multifactorial inflammatory disease mediated by the host immune response to dental plaque. Periodontitis is characterized by periodontal bone loss and loss of tooth support. Several studies have corroborated the infiltration of T lymphocytes in periodontitis and correlated the infiltration with chronic inflammation in a dysregulated T cell-mediated immune response. The complexity of the disease has prompted multiple studies aiming to understand T cell-mediated pathogenesis. HIGHLIGHT Recent findings have demonstrated the pivotal role of helper T cells in many autoimmune diseases, such as rheumatoid arthritis, which has been conventionally correlated with periodontal bone loss. In contrast, the roles of helper T subsets, Th1, Th2, and particularly Th17, have not been explored. Th17-mediated pathogenesis is a significant aspect of the progression and therapy of periodontitis. CONCLUSION In this review, we highlight the complex role of Th17 in the underlying pro-inflammatory cascades mediated by a repertoire of Th17-released molecules and their role in aggravated inflammation in periodontitis. We also summarize recent therapeutics targeting Th17 and related molecules, primarily to ameliorate inflammation and maintain periodontal care.
Collapse
|
38
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
39
|
Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C. Polycyclic Aromatic Hydrocarbons Affect Rheumatoid Arthritis Pathogenesis via Aryl Hydrocarbon Receptor. Front Immunol 2022; 13:797815. [PMID: 35392076 PMCID: PMC8981517 DOI: 10.3389/fimmu.2022.797815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies have indicated that several factors could affect RA, such as mutations in susceptibility genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally critical. In this review, we summarize the recent progress in understanding the mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the challenges and perspectives on AHR application in the future.
Collapse
Affiliation(s)
- Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine (TCM) Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
40
|
Kong Y, Jing Y, Allard D, Scavuzzo MA, Sprouse ML, Borowiak M, Bettini ML, Bettini M. A dormant T cell population with autoimmune potential exhibits low self-reactivity and infiltrates islets in type 1 diabetes. Eur J Immunol 2022; 52:1158-1170. [PMID: 35389516 DOI: 10.1002/eji.202149690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The contribution of low affinity T cells to autoimmunity in the context of polyclonal T cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low affinity T cells are often disregarded as non-antigen specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T cell lineage and effector responses in the context of spontaneous tissue specific autoimmunity observed in NOD mice. Using multi-color flow cytometry in combination with Nur77GFP reporter of TCR signaling we identified a dormant population of T cells that infiltrated the pancreatic islets of pre-diabetic NOD mice, which exhibited reduced level of self-tissue reactivity based on expression of CD5 and Nur77GFP . We showed that these CD5low T cells had a unique TCR repertoire, exhibited low activation and minimal effector function; however, induced rapid diabetes upon transfer. The CD4+ CD5low T cell population displayed transcriptional signature of central memory T cells, consistent with the ability to acquire effector function post-transfer. Transcriptional profile of CD5low T cells was similar to T cells expressing a low affinity TCR, indicating TCR affinity to be the important factor in shaping CD5low T cell phenotype and function at the tissue site. Overall, our study suggests that autoimmune tissue can maintain a reservoir of undifferentiated central memory-like autoreactive T cells with pathogenic effector potential that might be an important source for effector T cells during long-term chronic autoimmunity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Yi Jing
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,McNair Medical Institute, Houston, TX, 77030
| | - Matthew L Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, 77030.,Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, 84112.,McNair Medical Institute, Houston, TX, 77030
| |
Collapse
|
41
|
Zhang QY, Ye XP, Zhou Z, Zhu CF, Li R, Fang Y, Zhang RJ, Li L, Liu W, Wang Z, Song SY, Lu SY, Zhao SX, Lin JN, Song HD. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto's thyroiditis. Nat Commun 2022; 13:775. [PMID: 35140214 PMCID: PMC8828859 DOI: 10.1038/s41467-022-28120-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1β in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.
Collapse
Affiliation(s)
- Qian-Yue Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiao-Ping Ye
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zheng Zhou
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of geriatric endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen-Fang Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Discipline Construction Research Center of China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Rui Li
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ya Fang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Li
- Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Wang
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shi-Yang Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Sang-Yu Lu
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jian-Nan Lin
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Huai-Dong Song
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Department of Endocrinology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
42
|
Van Raemdonck K, Umar S, Palasiewicz K, Meyer A, Volin MV, Chang HJ, Al-Awqati M, Zomorrodi RK, Shahrara S. Metabolic reprogramming of macrophages instigates CCL21-induced arthritis. Immunol Cell Biol 2022; 100:127-135. [PMID: 34779007 PMCID: PMC8810694 DOI: 10.1111/imcb.12512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α. Interestingly, 2-deoxy-D-glucose (2-DG) therapy mitigated CCL21-induced arthritis by restraining the number of joint F4/80+ iNOS+ MΦs without impacting F4/80+ Arginase+ MΦs. Similar to the preclinical findings, blockade of glycolysis negated CCL21-polarized CD14+ CD86+ GLUT+ MΦ frequency; however, CD14+ CD206+ GLUT+ MΦs were not implicated in this process. In CCL21-induced arthritis and differentiated RA MΦs, the inflammatory imprint was uniquely intercepted by 2-DG via interleukin-6 (IL-6) downregulation. Despite the more expansive inflammatory response of CCL21 in the arthritic joints relative to the differentiated RA MΦs, 2-DG was ineffective in joint tumor necrosis factor-α, IL-1β, CCL2 and CCL5 enrichment. By contrast, disruption of glycolysis markedly impaired CCL21-induced HIF1α and cMYC signaling in arthritic mice. Notably, in RA MΦs, glycolysis interception was directed toward dysregulating CCL21-enhanced HIF1α transcription. Nonetheless, in concurrence with the diminished IL-6 levels, CCL21 differentiation of CD14+ CD86+ GLUT1+ MΦs was reversed by glycolysis and HIIF1α inhibition. Moreover, in the CCL21 experimental arthritis or differentiated RA MΦs, the malfunctioning metabolic machinery was accompanied by impaired oxidative phosphorylation because of reduced PGC1α or peroxisome proliferator-activated receptor-γ expression. CCL21 reconfigures naïve myeloid cells into glycolytic RA CD14+ CD86+ GLUT+ IL-6high HIF1αhigh MΦs. Therefore, inhibiting the CCL21/CCR7 pathway may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
43
|
Wang G, Su Z, Li H, Xiao L, Li C, Lian G. The role of metabolism in Th17 cell differentiation and autoimmune diseases. Int Immunopharmacol 2021; 103:108450. [PMID: 34954561 DOI: 10.1016/j.intimp.2021.108450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022]
Abstract
T helper 17 cells (Th17) have been associated with the pathogenesis of autoimmune and inflammatory diseases, which makes them become a sharp focus when the researchers are seeking therapeutic target for these diseases. A growing body of evidence has suggested that cellular metabolism dictates Th17 cell differentiation and effector function. Moreover, various studies have disclosed that metabolism is linked to the occurrence of autoimmune diseases. In this article, we reviewed the most recent findings regarding the importance of metabolism in Th17 cell differentiation and autoimmune diseases and also discussed the modulation mechanisms of glycolysis, fatty acid and cholesterol synthesis, and amino acids metabolism for Th17 cell differentiation. This review summarized the potential therapeutic or preventing strategies for Th17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Guang Wang
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education.
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Li Xiao
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chengyue Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
44
|
Li S, Zhou C, Xu Y, Wang Y, Li L, Pelekos G, Ziebolz D, Schmalz G, Qin Z. Similarity and Potential Relation Between Periimplantitis and Rheumatoid Arthritis on Transcriptomic Level: Results of a Bioinformatics Study. Front Immunol 2021; 12:702661. [PMID: 34858391 PMCID: PMC8630748 DOI: 10.3389/fimmu.2021.702661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Background This bioinformatics study aimed to reveal potential cross-talk genes, related pathways, and transcription factors between periimplantitis and rheumatoid arthritis (RA). Methods The datasets GSE33774 (seven periimplantitis and eight control samples) and GSE106090 (six periimplantitis and six control samples) were included from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). A differential expression analysis (p < 0.05 and |logFC (fold change)| ≥ 1) and a functional enrichment analysis (p < 0.05) were performed. Based on this, a protein-protein interaction (PPI) network was constructed by Cytoscape. RA-related genes were extracted from DisGeNET database, and an overlap between periimplantitis-related genes and these RA-related genes was examined to identify potential cross-talk genes. Gene expression was merged between two datasets, and feature selection was performed by Recursive Feature Elimination (RFE) algorithm. For the feature selection cross-talk genes, support vector machine (SVM) models were constructed. The expression of these feature genes was determined from GSE93272 for RA. Finally, a network including cross-talk genes, related pathways, and transcription factors was constructed. Results Periimplantitis datasets included 138 common differentially expressed genes (DEGs) including 101 up- and 37 downregulated DEGs. The PPI interwork of periimplantitis comprised 1,818 nodes and 2,517 edges. The RFE method selected six features, i.e., MERTK, CD14, MAPT, CCR1, C3AR1, and FCGR2B, which had the highest prediction. Out of these feature genes, CD14 and FCGR2B were most highly expressed in periimplantitis and RA. The final activated pathway-gene network contained 181 nodes and 360 edges. Nuclear factor (NF) kappa B signaling pathway and osteoclast differentiation were identified as potentially relevant pathways. Conclusions This current study revealed FCGR2B and CD14 as the most relevant potential cross-talk genes between RA and periimplantitis, which suggests a similarity between RA and periimplantitis and can serve as a theoretical basis for future research.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Changqing Zhou
- Department of Emergency, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongqian Xu
- South Campus Outpatient Clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Department of Implantology, Department of General Dentistry, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijiao Li
- Central Sterile Supply Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - George Pelekos
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, SAR China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Zeman Qin
- Department of Implantology, Department of General Dentistry, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Van Raemdonck K, Umar S, Palasiewicz K, Volin MV, Elshabrawy HA, Romay B, Tetali C, Ahmed A, Amin MA, Zomorrodi RK, Sweiss N, Shahrara S. Interleukin-34 Reprograms Glycolytic and Osteoclastic Rheumatoid Arthritis Macrophages via Syndecan 1 and Macrophage Colony-Stimulating Factor Receptor. Arthritis Rheumatol 2021; 73:2003-2014. [PMID: 33982895 PMCID: PMC8568622 DOI: 10.1002/art.41792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA. METHODS To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models. RESULTS Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1β, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction. CONCLUSION IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Michael V. Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Azam Ahmed
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - M. Asif Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan K. Zomorrodi
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
46
|
Mulder MLM, He X, van den Reek JMPA, Urbano PCM, Kaffa C, Wang X, van Cranenbroek B, van Rijssen E, van den Hoogen FHJ, Joosten I, Alkema W, de Jong EMGJ, Smeets RL, Wenink MH, Koenen HJPM. Blood-Based Immune Profiling Combined with Machine Learning Discriminates Psoriatic Arthritis from Psoriasis Patients. Int J Mol Sci 2021; 22:ijms222010990. [PMID: 34681660 PMCID: PMC8538368 DOI: 10.3390/ijms222010990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Psoriasis (Pso) is a chronic inflammatory skin disease, and up to 30% of Pso patients develop psoriatic arthritis (PsA), which can lead to irreversible joint damage. Early detection of PsA in Pso patients is crucial for timely treatment but difficult for dermatologists to implement. We, therefore, aimed to find disease-specific immune profiles, discriminating Pso from PsA patients, possibly facilitating the correct identification of Pso patients in need of referral to a rheumatology clinic. The phenotypes of peripheral blood immune cells of consecutive Pso and PsA patients were analyzed, and disease-specific immune profiles were identified via a machine learning approach. This approach resulted in a random forest classification model capable of distinguishing PsA from Pso (mean AUC = 0.95). Key PsA-classifying cell subsets selected included increased proportions of differentiated CD4+CD196+CD183-CD194+ and CD4+CD196-CD183-CD194+ T-cells and reduced proportions of CD196+ and CD197+ monocytes, memory CD4+ and CD8+ T-cell subsets and CD4+ regulatory T-cells. Within PsA, joint scores showed an association with memory CD8+CD45RA-CD197- effector T-cells and CD197+ monocytes. To conclude, through the integration of in-depth flow cytometry and machine learning, we identified an immune cell profile discriminating PsA from Pso. This immune profile may aid in timely diagnosing PsA in Pso.
Collapse
Affiliation(s)
- Michelle L. M. Mulder
- Department of Rheumatology, Sint Maartenskliniek, 6524 Nijmegen, The Netherlands; (M.L.M.M.); (F.H.J.v.d.H.); (M.H.W.)
- Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (J.M.P.A.v.d.R.); (E.M.G.J.d.J.)
| | - Xuehui He
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
| | - Juul M. P. A. van den Reek
- Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (J.M.P.A.v.d.R.); (E.M.G.J.d.J.)
| | - Paulo C. M. Urbano
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
| | - Charlotte Kaffa
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6524 Nijmegen, The Netherlands;
| | - Xinhui Wang
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4475 Belvaux, Luxembourg;
- College of Computer Science, Qinghai Normal University, Xining 810000, China
| | - Bram van Cranenbroek
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
| | - Esther van Rijssen
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
| | - Frank H. J. van den Hoogen
- Department of Rheumatology, Sint Maartenskliniek, 6524 Nijmegen, The Netherlands; (M.L.M.M.); (F.H.J.v.d.H.); (M.H.W.)
| | - Irma Joosten
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
| | - Wynand Alkema
- Institute for Life Science and Technology, Hanze University of Applied Sciences, 9727 Groningen, The Netherlands;
- TenWise BV, 5344 KX Oss, The Netherlands
| | - Elke M. G. J. de Jong
- Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (J.M.P.A.v.d.R.); (E.M.G.J.d.J.)
| | - Ruben L. Smeets
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
- Department of Laboratory Medicine, Laboratory for Diagnostics, Radboud University Medical Center, 6524 Nijmegen, The Netherlands
| | - Mark H. Wenink
- Department of Rheumatology, Sint Maartenskliniek, 6524 Nijmegen, The Netherlands; (M.L.M.M.); (F.H.J.v.d.H.); (M.H.W.)
| | - Hans J. P. M. Koenen
- Department of Laboratory Medicine—Medical Immunology, Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands; (X.H.); (P.C.M.U.); (B.v.C.); (E.v.R.); (I.J.); (R.L.S.)
- Correspondence: ; Tel.: +31-243-693-478
| |
Collapse
|
47
|
Zhu M, Yang H, Lu Y, Yang H, Tang Y, Li L, Zhu Y, Yuan J. Cardiac ectopic lymphoid follicle formation in viral myocarditis involving the regulation of podoplanin in Th17 cell differentiation. FASEB J 2021; 35:e21975. [PMID: 34618980 DOI: 10.1096/fj.202101050rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Autoimmunity contributes to the pathogenesis of viral myocarditis (VMC), which is characterized by the production of anti-heart autoantibodies (AHA) from lymphoid follicles. Recently, the formation of ectopic lymphoid follicles (ELFs) was reported in heart grafts. However, the existence and role of ELFs in myocardial tissues of VMC remain unclear. This study aimed to explore whether and how cardiac ELFs with germinal centers (GCs) could be generated during the development of VMC. We identified the existence of ELFs and explored the underlying mechanism. In a BALB/c mouse model of VMC, the dynamic myocardial infiltrations of lymphocytic aggregates and expressions of associated lymphorganogenic factors were investigated, accompanied by the detection of the production and location of myocardial AHA. The data indicated ELFs formation in myocardial tissues of VMC, and the number of ELFs was in accordance with the severity of VMC. Moreover, the functional ELFs with GCs were capable of facilitating the production of local AHA. Blocking IL-17 or podoplanin (PDPN) could inhibit cardiac ELFs generation, perhaps due to the negative regulation of PDPN neutralization in Th17 cell proliferation and differentiation. The presence of cardiac ELFs and AHA might offer new opportunities for stratification and early identification of VMC patients.
Collapse
Affiliation(s)
- Mingxin Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoxi Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
He Y, Li Z, Ding X, Xu B, Wang J, Li Y, Chen F, Meng F, Song W, Zhang Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact Mater 2021; 8:109-123. [PMID: 34541390 PMCID: PMC8424426 DOI: 10.1016/j.bioactmat.2021.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages and osteoclasts are both derived from monocyte/macrophage lineage, which plays as the osteoclastic part of bone metabolism. Although they are regulated by bone implant surface nanoarchitecture and involved in osseointegration, the beneath mechanism has not been simultaneously analyzed in a given surface model and their communication with osteoblasts is also blurring. Here, the effect of implant surface topography on monocyte/macrophage lineage osteoclastogenesis and the subsequent effect on osteogenesis are systematically investigated. The nanoporous surface is fabricated on titanium implant by etching and anodizing to get the nanotubes structure. The early bone formation around implant is significantly accelerated by the nanoporous surface in vivo. Meanwhile, the macrophage recruitment and osteoclast formation are increased and decreased respectively. Mechanistically, the integrin mediated FAK phosphorylation and its downstream MAPK pathway (p-p38) are significantly downregulated by the nanoporous surface, which account for the inhibition of osteoclastogenesis. In addition, the nanoporous surface can alleviate the inhibition of osteoclasts on osteogenesis by changing the secretion of clastokines, and accelerate bone regeneration by macrophage cytokine profiles. In conclusion, these data indicate that physical topography of implant surface is a critical factor modulating monocyte/macrophage lineage commitment, which provides theoretical guidance and mechanism basis for promoting osseointegration by coupling the osteogenesis and osteoclastogenesis. Nanoporous implant inhibits osteoclastogenesis via integrin β1/FAKpY397/MAPK. Nanoporous implant with larger diameter inhibits osteoclastogenesis more strongly. Nanoporous implant increases osteogenic cytokines of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xin Ding
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Huaian Stomatological Hospital, Nanjing, China
| | - Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jinjin Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fanhui Meng
- State Key Laboratory of Military Stomatology, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA, Zomorrodi RK, Arami S, Gonzalez M, Rao V, Zanotti B, Fox DA, Sweiss N, Shahrara S. IRAK4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cell Mol Immunol 2021; 18:2199-2210. [PMID: 32415262 PMCID: PMC8429735 DOI: 10.1038/s41423-020-0433-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Flares of joint inflammation and resistance to currently available biologic therapeutics in rheumatoid arthritis (RA) patients could reflect activation of innate immune mechanisms. Herein, we show that a TLR7 GU-rich endogenous ligand, miR-Let7b, potentiates synovitis by amplifying RA monocyte and fibroblast (FLS) trafficking. miR-Let7b ligation to TLR7 in macrophages (MΦs) and FLSs expanded the synovial inflammatory response. Moreover, secretion of M1 monokines triggered by miR-Let7b enhanced Th1/Th17 cell differentiation. We showed that IRAK4 inhibitor (i) therapy attenuated RA disease activity by blocking TLR7-induced M1 MΦ or FLS activation, as well as monokine-modulated Th1/Th17 cell polarization. IRAK4i therapy also disrupted RA osteoclastogenesis, which was amplified by miR-Let7b ligation to joint myeloid TLR7. Hence, the effectiveness of IRAK4i was compared with that of a TNF inhibitor (i) or anti-IL-6R treatment in collagen-induced arthritis (CIA) and miR-Let7b-mediated arthritis. We found that TNF or IL-6R blocking therapies mitigated CIA by reducing the infiltration of joint F480+iNOS+ MΦs, the expression of certain monokines, and Th1 cell differentiation. Unexpectedly, these biologic therapies were unable to alleviate miR-Let7b-induced arthritis. The superior efficacy of IRAK4i over anti-TNF or anti-IL-6R therapy in miR-Let7b-induced arthritis or CIA was due to the ability of IRAK4i therapy to restrain the migration of joint F480+iNOS+ MΦs, vimentin+ fibroblasts, and CD3+ T cells, in addition to negating the expression of a wide range of monokines, including IL-12, MIP2, and IRF5 and Th1/Th17 lymphokines. In conclusion, IRAK4i therapy may provide a promising strategy for RA therapy by disconnecting critical links between inflammatory joint cells.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Arami
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Gonzalez
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vikram Rao
- Pfizer Research, Cambridge, MA, 02139, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|