1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Wang YM, Tang H, Tang YJ, Liu J, Yin YF, Tang YL, Feng YG, Gu HF. ASIC1/RIP1 accelerates atherosclerosis via disrupting lipophagy. J Adv Res 2024; 63:195-206. [PMID: 37931656 PMCID: PMC11379975 DOI: 10.1016/j.jare.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
INTRODUCTION Atherosclerosis, a major contributor to cardiovascular disease, remains a significant health concern worldwide. While previous research has shown that acid-sensing ion channel 1 (ASIC1) impedes macrophage cholesterol efflux, its precise role in atherogenesis and the underlying mechanisms have remained elusive. OBJECTIVES This study aimed to investigate the role of ASIC1 in atherosclerosis and its underlying mechanisms. METHODS First, data from a single-cell RNA sequencing (scRNA-seq) database were used to explore the relationships between ASIC1 differential expression and lipophagy in human atherosclerotic lesions. Finally, we validated the role of ASIC1/RIP1 signaling in lipophagy in vivo (human and mice) and in vitro (RAW264.7 and HTP-1 cells). RESULT Our results demonstrated a significant increase in ASIC1 protein levels within CD68+ macrophages in both human aortic lesions and AopE-/- mouse lesion areas compared to nonlesion regions. Concurrently, there was a notable decrease in lipophagy, a crucial process for lipid metabolism. In vitro assays further elucidated that ASIC1 interaction with RIP1 (receptor-interacting protein 1) promoted the phosphorylation of RIP1 at serine 166 and transcription factor EB (TFEB) at serine 142, leading to disrupted lipophagy and increased lipid accumulation. Intriguingly, all these events were reversed upon ASIC1 deficiency and RIP1 inhibition. Furthermore, in ApoE-/- mouse models of atherosclerosis, silencing ASIC1 expression or inhibiting RIP1 activation not only significantly attenuated atherogenesis but also restored TFEB-mediated lipophagy in aortic tissues. This was evidenced by reduced TFEB Ser-142 phosphorylation, decreased LC3II and LAMP1 protein expression, increased numbers of lipophagosomes, and a decrease in lipid droplets. CONCLUSION Our findings unveil the critical role of macrophage ASIC1 in interacting with RIP1 to inhibit lipophagy, thereby promoting atherogenesis. Targeting ASIC1 represents a promising therapeutic avenue for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huang Tang
- Lhasa Guangsheng Hospital, 850000 Tibet, People's Republic of China
| | - Ya-Jie Tang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Juan Liu
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois University Springfield, Illinois, United States
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Yao-Guang Feng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Zhang H, Zhang G, Fu J. Exploring the L-shaped relationship between Atherogenic Index of Plasma and depression: Results from NHANES 2005-2018. J Affect Disord 2024; 359:133-139. [PMID: 38768824 DOI: 10.1016/j.jad.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The Atherogenic Index of Plasma (AIP) is a novel metric linked to several diseases. However, there is inadequate evidence to investigate the relationship between AIP and depression. Therefore, we aim to elucidate the non-linear association between AIP and depression. METHODS 12,453 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2018 were included. The AIP was calculated as log10 (triglycerides/high-density lipoprotein cholesterol). The Patient Health Questionnaire (PHQ-9) was used to identify depression (PHQ-9 ≥ 10). Weighted multivariate logistic regression, restricted cubic splines (RCS) models, subgroup analysis, and interaction tests were employed to reveal the relationship between AIP and depression. RESULTS AIP was found to be significantly correlated with depression. In the fully adjusted model, elevated AIP levels were associated with higher odds of depression (odds ratio [OR] = 1.50; 95 % CI: 1.06-2.12). The RCS analysis indicated an L-shaped pattern in the relationship between depression and AIP, with inflection points at -0.289. Beyond this inflection point, individuals with elevated AIP levels were associated with higher odds of depression (OR = 2.25; 95 % CI: 1.49-3.39). Notably, the association was particularly pronounced among individuals with diabetes. LIMITATION This cross-sectional study is unable to establish causal relationships. CONCLUSION There was an L-shaped association between AIP and depression among US adults. AIP has the potential value as a biological marker for depression, and maintaining AIP values below a certain threshold may help in managing depression.
Collapse
Affiliation(s)
- Haokun Zhang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, PR China
| | - Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
4
|
Tzirkel-Hancock N, Raz C, Sharabi L, Argov-Argaman N. The Stressogenic Impact of Bacterial Secretomes Is Modulated by the Size of the Milk Fat Globule Used as a Substrate. Foods 2024; 13:2429. [PMID: 39123620 PMCID: PMC11312077 DOI: 10.3390/foods13152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Milk fat globules (MFGs) are produced by mammary epithelial cells (MECs) and originate from intracellular lipid droplets with a wide size distribution. In the mammary gland and milk, bacteria can thrive on MFGs. Herein, we aimed to investigate whether the response of MECs to the bacterial secretome is dependent on the MFG size used as a substrate for the bacteria, and whether the response differs between pathogenic and commensal bacteria. We used secretomes from both Bacillus subtilis and E. coli. Proinflammatory gene expression in MECs was elevated by the bacteria secretomes from both bacteria sources, while higher expression was found in cells exposed to the secretome of bacteria grown on large MFGs. The secretome of B. subtilis reduced lipid droplet size in MECs. When the secretome originated from E. coli, lipid droplet size in MEC cytoplasm was elevated with a stronger response to the secretome from bacteria grown on large compared with small MFGs. These results indicate that MEC response to bacterial output is modulated by bacteria type and the size of MFGs used by the bacteria, which can modulate the stress response of the milk-producing cells, their lipid output, and consequently milk quality.
Collapse
Affiliation(s)
| | | | | | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.-H.)
| |
Collapse
|
5
|
Wang X, Huangfu W, Zhao F. Correlation of ChREBP Gene Methylation with Pathological Characteristics of Type 2 Diabetes Mellitus. Appl Biochem Biotechnol 2024; 196:3076-3087. [PMID: 37615853 DOI: 10.1007/s12010-023-04714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
The objective of this study is to investigate the expression of the carbohydrate response element binding protein (ChREBP) gene in type 2 diabetes mellitus (T2DM) and its correlation with pathological features. For obtaining and exploring the pathological features in patients, sixty T2DM patients (the research group) and thirty healthy controls (the control group) presented to our hospital between January 2019 and June 2019 were selected as the research participants. After DNA extraction from peripheral blood mononuclear cells (PBMCs) and modification of target gene methylation with bisulfite, differences in methylation were verified, and the correlation of ChREBP methylation level with T2DM pathological features and single nucleotide polymorphism (SNP) typing was discussed. According to the prediction results of UCSC Genome Browser Home, there were two CpG islands in the promoter region of the ChREBP gene, and the first exon was selected for research. The ChREBP methylation rate was statistically higher in the research group versus the control group (P < 0.05). Age, FPG, TC, and TG were confirmed by the multiple linear regression analysis to be correlated with the ChREBP methylation rate (P < 0.05). Finally, there was no difference in ChREBP methylation level between CT- and CC-type patients at rs17145750 and rs1051921 loci (P > 0.05). Peripheral blood ChREBP methylation is elevated in T2DM patients and is closely related to age, blood glucose, and blood-lipid level, which is expected to be a new direction for future T2DM diagnosis and treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China.
| | - Weizhong Huangfu
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Feng Zhao
- Department of General Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
6
|
Chang XY, Uchechukwu Edna O, Wang J, Zhang HJ, Zhou JM, Qiu K, Wu SG. Histological and molecular difference in albumen quality between post-adolescent hens and aged hens. Poult Sci 2024; 103:103618. [PMID: 38564835 PMCID: PMC10999699 DOI: 10.1016/j.psj.2024.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
The decline in albumen quality resulting from aging hens poses a threat to the financial benefits of the egg industry. Exploring the underlying mechanisms from the perspective of cell molecules of albumen formation is significant for the efficient regulation of albumen quality. Two individual groups of Hy-Line Brown layers with ages of 40 (W40) and 100 (W100) wk old were used in the present study. Each group contained over 2,000 birds. This study assessed the egg quality, biochemical indicators and physiological status of hens between W40 and W100. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in magnum tissues between W40 and W100. In the W40 group, significant increases (P < 0.05) were notable for albumen quality (thick albumen solid content, albumen height, Haugh unit), serum indices (calcium, estrogen, and progesterone levels), magnum histomorphology (myosin light-chain kinase content, secretory capacity, mucosal fold, goblet cell count and proportion) as well as the total antioxidant capacity of the liver. However, the luminal diameter of the magnum, albumen gel properties and random coil of the albumen were increased (P < 0.05) in the W100 group. The activity of glutathione, superoxidase dismutase, and malondialdehyde in the liver, magnum, and serum did not vary (P > 0.05) among the groups. Proteomic analysis revealed the identification of 118 differentially expressed proteins between the groups, which comprised proteins associated with protein secretion, DNA damage and repair, cell proliferation, growth, antioxidants, and apoptosis. Furthermore, Kyoto Encyclopedia of Genes pathway analysis revealed that BRCA2 and FBN1 were significantly downregulated in Fanconi anemia (FA) and TGF-β signaling pathways in W100, validated through quantitative real-time PCR (qRT-PCR). In conclusion, significant age-related variations in albumen quality, and magnum morphology are regulated by proteins involved in antioxidant capacity.
Collapse
Affiliation(s)
- Xin-Yu Chang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Obianwuna Uchechukwu Edna
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Min Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Liu Q, Cheng L, Wang M, Shen L, Zhang C, Mu J, Hu Y, Yang Y, He K, Yan H, Zhao L, Yang S. Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass (Micropterus salmoides). J Anim Sci Biotechnol 2024; 15:50. [PMID: 38566217 PMCID: PMC10988814 DOI: 10.1186/s40104-024-01009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate (HC) diet disrupt the homeostasis of the gut-liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level. METHOD Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate (SA) and sodium butyrate (SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC (9% starch), HC (18% starch), HCSA (18% starch; 2 g/kg SA), HCSB (18% starch; 2 g/kg SB), and HCSASB (18% starch; 1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d. RESULTS We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy (ATG101, LC3B and TFEB), promoting lipolysis (CPT1α, HSL and AMPKα), and inhibiting adipogenesis (FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver (CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors (IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate (Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition. CONCLUSIONS In conclusion, dietary SA and SB can reduce hepatic lipid deposition; and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Maozhu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chengxian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Zhu Y, Ma XY, Cui LG, Xu YR, Li CX, Talukder M, Li XN, Li JL. Di (2-ethylhexyl) phthalate induced lipophagy-related renal ferroptosis in quail (Coturnix japonica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170724. [PMID: 38325449 DOI: 10.1016/j.scitotenv.2024.170724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.
Collapse
Affiliation(s)
- Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling-Ge Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Zhang BY, Yang HL, Nie QJ, Zhang Y, Cai GH, Sun YZ. High dietary wheat starch negatively regulated growth performance, glucose and lipid metabolisms, liver and intestinal health of juvenile largemouth bass, Micropterus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:635-651. [PMID: 38165563 DOI: 10.1007/s10695-023-01295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/04/2024]
Abstract
Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-β1 (tgf-β1), interleukin-10 (il-10), and interleukin-11β (il-11β); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing-Jie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yu Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guo-He Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China.
| |
Collapse
|
10
|
Mohammadpour-Asl S, Roshan-Milani B, Roshan-Milani S, Saboory E, Ghobadian B, Chodari L. Endoplasmic reticulum stress PERK-ATF4-CHOP pathway is involved in non-alcoholic fatty liver disease in type 1 diabetic rats: The rescue effect of treatment exercise and insulin-like growth factor I. Heliyon 2024; 10:e27225. [PMID: 38468961 PMCID: PMC10926145 DOI: 10.1016/j.heliyon.2024.e27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.
Collapse
Affiliation(s)
- Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Roshan-Milani
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Department of Addiction Studies, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bijan Ghobadian
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Zhao L, Cheng L, Hu Y, Li X, Yang Y, Mu J, Shen L, Hu G, He K, Yan H, Liu Q, Yang S. Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass ( Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:443-456. [PMID: 38425445 PMCID: PMC10901750 DOI: 10.1016/j.aninu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
High-carbohydrate (HC) diets decrease the intestinal levels of sodium acetate (SA) and sodium butyrate (SB) and impair the gut health of largemouth bass; however, SA and SB have been shown to enhance immunity and improve intestinal health in farmed animals. Thus, the present study was to investigate the effects of dietary SA and SB on HC diet-induced intestinal injury and the potential mechanisms in juvenile largemouth bass. The experiment set five isonitrogenous and isolipidic diets, including a low-carbohydrate diet (9% starch) (LC), a high carbohydrate diet (18% starch) (HC), and the HC diet supplemented with 2 g/kg SA (HCSA), 2 g/kg SB (HCSB) or a combination of 1 g/kg SA and 1 g/kg SB (HCSASB). The feeding experiment was conducted for 8 weeks. A total of 525 juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were used. The results showed that dietary SA and SB improved the weight gain rate and specific growth rate (P < 0.05) and ameliorated serum parameters (alkaline phosphatase, acid phosphatase, glutamate transaminase, and glutamic oxaloacetic transaminase) (P < 0.05). And, importantly, dietary SA and SB repaired the intestinal barrier by increasing the expression levels of zonula occludens-1, occludin, and claudin-7 (P < 0.05), reduced HC-induced intestinal damage, and alleviated intestinal inflammation and cell apoptosis by attenuating HC-induced intestinal endoplasmic reticulum stress (P < 0.05). Further results revealed that dietary SA and SB reduced HC-induced intestinal fat deposition by inhibiting adipogenesis and promoting lipolysis (P < 0.05). In summary, this study demonstrated that dietary SA and SB attenuated HC-induced intestinal damage and reduced excessive intestinal fat deposition in largemouth bass.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guojun Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
12
|
Li H, Gao W, Wang H, Zhang H, Huang L, Yuan T, Zheng W, Wu Q, Liu J, Xu W, Wang W, Yang L, Zhu Y. Evidence from an Avian Embryo Model that Zinc-Inducible MT4 Expression Protects Mitochondrial Function Against Oxidative Stress. J Nutr 2024; 154:896-907. [PMID: 38301957 DOI: 10.1016/j.tjnut.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood. OBJECTIVES The study aimed to investigate the mechanisms by which Zn-induced MT4 expression protects mitochondrial function and energy metabolism subjected to oxidative stress using the avian embryo and embryonic primary hepatocyte models. METHODS First, we investigated whether MT4 expression alters mitochondrial function. Then, we examined the effects of Zn-induced MT4 overexpression and MT4 silencing on embryonic primary hepatocytes from breeder hens fed a normal Zn diet subjected to a tert-butyl hydroperoxide (BHP) oxidative stress challenge during incubation. In vivo, the avian embryos from hens fed the Zn-deficient and Zn-adequate diets were used to determine the protective roles of Zn-induced MT4 expression on the function of mitochondria exposed to oxidative stress induced by in ovo BHP injection. RESULTS An in vitro study revealed that Zn-induced MT4 expression reduced reactive oxygen species accumulation in primary hepatocytes. MT4 silencing exacerbated BHP-mediated mitochondrial dysfunction whereas Zn-inducible MT4 overexpression mitigated it. Another in vivo study disclosed that maternal Zn-induced MT4 expression protected mitochondrial function in chick embryo hepatocytes against oxidative stress by inhibiting the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/peroxisome proliferators-activated receptor-γ (PPAR-γ) pathway. CONCLUSION This study underscores the potential protective roles of Zn-induced MT4 expression via the downregulation of the PGC-1α/PPAR-γ pathway on mitochondrial function stimulated by the stress challenge in the primary hepatocytes in an avian embryo model. Our findings suggested that Zn-induced MT4 expression could provide a new therapeutic target and preventive strategy for repairing mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wei Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Heng Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Huaqi Zhang
- College of Agriculture, Tongren Polytechnic University, Tongren, People's Republic of China
| | - Liang Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Tong Yuan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ju Liu
- Department of Poultry Breeding, Enping Long Industrial Co. Ltd., Enping, People's Republic of China
| | - Weihan Xu
- Department of Poultry Breeding, Zhengzhi Poultry Industry Co. Ltd., Shantou, People's Republic of China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Zhang DG, Kunz WS, Lei XJ, Zito E, Zhao T, Xu YC, Wei XL, Lv WH, Luo Z. Selenium Ameliorated Oxidized Fish Oil-Induced Lipotoxicity via the Inhibition of Mitochondrial Oxidative Stress, Remodeling of Usp4-Mediated Deubiquitination, and Stabilization of Pparα. Antioxid Redox Signal 2024; 40:433-452. [PMID: 37265154 DOI: 10.1089/ars.2022.0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid β-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Xi-Jun Lei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Tao Zhao
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Yi-Chuang Xu
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wu-Hong Lv
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Shenzhen Institute of Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
14
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Long C, Shen L, Zheng X, Li D, Wang X, Yu C, Wu S, Wei G. X-box binding protein 1 caused an imbalance in pyroptosis and mitophagy in immature rats with di-(2-ethylhexyl) phthalate-induced testis toxicity. Genes Dis 2024; 11:935-951. [PMID: 37692514 PMCID: PMC10491871 DOI: 10.1016/j.gendis.2023.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
As a widely used plasticizer, di-(2-ethylhexyl) phthalate (DEHP) is known to induce significant testicular injury. However, the potential mechanism and effects of pubertal exposure to DEHP on testis development remain unclear. In vivo, postnatal day (PND) 21 male rats were gavaged with 0, 250, and 500 mg/kg DEHP for ten days. Damage to the seminiferous epithelium and disturbed spermatogenesis were observed after DEHP exposure. Meanwhile, oxidative stress-induced injury and pyroptosis were activated. Both endoplasmic reticulum (ER) stress and mitophagy were involved in this process. Monoethylhexyl phthalate (MEHP) was used as the biometabolite of DEHP in vitro. The GC-1 and GC-2 cell lines were exposed to 0, 100 μM, 200 μM, and 400 μM MEHP for 24 h. Reactive oxygen species (ROS) generation, oxidative stress damage, ER stress, mitophagy, and pyroptosis were significantly increased after MEHP exposure. The ultrastructure of the ER and mitochondria was destroyed. X-box binding protein 1 (XBP1) was observed to be activated and translocated into the nucleus. ROS generation was inhibited by acetylcysteine. The levels of antioxidative stress, ER stress, mitophagy, and pyroptosis were decreased as well. After the administration of the ER stress inhibitor 4-phenyl-butyric acid, both mitophagy and pyroptosis were inhibited. Toyocamycin-induced XBP1 down-regulation decreased the levels of mitophagy and pyroptosis. The equilibrium between pyroptosis and mitophagy was disturbed by XBP1 accumulation. In summary, our findings confirmed that DEHP induced a ROS-mediated imbalance in pyroptosis and mitophagy in immature rat testes via XBP1. Moreover, XBP1 might be the key target in DEHP-related testis dysfunction.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chenjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
15
|
Zhao T, Tan XY, Pantopoulos K, Xu JJ, Zheng H, Xu YC, Song YF, Luo Z. miR-20a-5p targeting mfn2-mediated mitochondria-lipid droplet contacts regulated differential changes in hepatic lipid metabolism induced by two Mn sources in yellow catfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132749. [PMID: 37871441 DOI: 10.1016/j.jhazmat.2023.132749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Understanding the hazards of different forms of metal elements provided innovative insights into their toxicity and environmental risk assessment. To date, few studies had been conducted to investigate the differential effects and mechanisms of MnO2 NPs and MnSO4, two widely distributed environmental pollutants, on hepatic toxicity and lipid metabolism since lipid metabolism-relevant parameters were broadly used as biomarkers for risk assessment of hazardous contaminants. Thus, using yellow catfish Pelteobagrus fulvidraco, an ecologically and economically important freshwater fish as the model, the present study investigated the differential effects and mechanisms of MnO2 NPs and MnSO4 influencing hepatic lipid metabolism. Compared to MnSO4, MnO2 NPs increased hepatic Mn content, induced lipotoxicity, up-regulated the mRNA expression of lipogenic genes, increased peridroplet mitochondrial (PDM) contents, intensified the contact between mitochondria and lipid droplets (LDs), and downregulated miR-20a-5p abundance. Importantly, miR-20a-5p targeted mfn2, which mediated the contact between mitochondria and LDs and influenced changes in lipid metabolism induced by MnO2 NPs. Mechanistically, the direct Mfn2-Plin2 binding and Mfn2 GTPase activity promoted the MnO2 NPs-induced interactions between mitochondria and LDs, which in turn influenced MnO2 NPs-induced changes in hepatic lipid metabolism. For the first time, our findings indicated the significant differences between the changes in body metabolism induced by nanoparticles and inorganic elements, which helped to illuminate different mechanisms governing the responses of aquatic vertebrates to hazardous metal pollutants (MnO2 NPs and MnSO4).
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec H3T1E2, Canada
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
17
|
Wu LX, Tan XY, Xu YC, Zheng H, Wei XL, Lv WH, Luo Z. SIRT1-NRF2-TFEB axis-mediated hepatic lipophagy alleviates the lipid deposition induced by high glucose in yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110894. [PMID: 37597585 DOI: 10.1016/j.cbpb.2023.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Metabolic stress induces lipophagy, a crucial process in lipid catabolism, which is under the regulation of autophagy involving transcription factor EB (TFEB). However, the precise mechanisms underlying TFEB's control remain enigmatic. In this study, we focused on yellow catfish (Pelteobagrus fulvidraco) as the model to investigate lipophagy activation under high glucose-induced lipid deposition. We hypothesized that lipophagy mediates high glucose-induced lipid deposition and proposed the involvement of the SIRT1-NRF2-TFEB pathway in the activation of lipophagy. We found that there was a functional antioxidative responsive element (ARE) on the tfeb gene promoter; high glucose (HG) increased the nuclear translocation of nuclear factor E2-related factor 2 (NRF2) recruitment to the tfeb promoter; TFEB, whose expression is regulated by NRF2, mediated the HG-induced activation of lipophagy and lipolysis. Moreover, we found that HG increased the silencing information regulator 2 related enzymes 1 (SIRT1) expression, and that the SIRT1 mediates NRF2 translocation to the nucleus, increased TFEB expression and activated autophagy. In the glucose tolerance test, blood glucose increased rapidly and plateaued at 4-h glucose after injection and then declined until 48-h post-injection. Generally speaking, the transcript level and protein expression of SIRT1, NRF2, TFEB, microtubule-associated proteins 1A/1B light chain 3B (LC3B), and autophagy-related 6 (Beclin1) showed similar trend after glucose injection, and trends to increase and plateau at 4-h injection, then decline until 16-h post-injection, and finally increased until 48-h post-injection. These results indicated that the SIRT1-NRF2-TFEB axis-mediated lipophagy may be an adaptive response to glucose injection. Collectively, for the first time, we found that NRF2 was associated directly with TFEB-mediated transcriptional control of hepatic lipophagy, and that lipophagy helps to alleviate the HG-induced lipid deposition via SIRT1-NRF2-TFEB activation in yellow catfish.
Collapse
Affiliation(s)
- Li-Xiang Wu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Zhao T, Zheng H, Xu JJ, Pantopoulos K, Xu YC, Liu LL, Lei XJ, Kotzamanis YP, Luo Z. MnO 2 nanoparticles trigger hepatic lipotoxicity and mitophagy via mtROS-dependent Hsf1 Ser326 phosphorylation. Free Radic Biol Med 2024; 210:390-405. [PMID: 38048852 DOI: 10.1016/j.freeradbiomed.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn) is an essential element for maintaining normal metabolism in vertebrates. Mn dioxide nanoparticles (MnO2 NPs), a novel Mn source, have shown great potentials in biological and biomedical applications due to their distinct physical and chemical properties. However, little is known about potential adverse effects on animal or cellular metabolism. Here, we investigated whether and how dietary MnO2 NPs affect hepatic lipid metabolism in vertebrates. We found that, excessive MnO2 NPs intake increased hepatic and mitochondrial Mn content, promoted hepatic lipotoxic disease and lipogenesis, and inhibited hepatic lipolysis and fatty acid β-oxidation. Moreover, excessive MnO2 NPs intake induced hepatic mitochondrial oxidative stress, damaged mitochondrial function, disrupted mitochondrial dynamics and activated mitophagy. Importantly, we uncovered that mtROS-activated phosphorylation of heat shock factor 1 (Hsf1) at Ser326 residue mediated MnO2 NPs-induced hepatic lipotoxic disease and mitophagy. Mechanistically, MnO2 NPs-induced lipotoxicity and mitophagy were via mtROS-induced phosphorylation and nucleus translocation of Hsf1 and its DNA binding capacity to plin2/dgat1 and bnip3 promoters, respectively. Overall, our findings uncover novel mechanisms by which mtROS-mediated mitochondrial dysfunction and phosphorylation of Hsf1S326 contribute to MnO2 NPs-induced hepatic lipotoxicity and mitophagy, which provide new insights into the effects of metal oxides nanoparticles on hepatotoxicity in vertebrates.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi-Jun Lei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannis P Kotzamanis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Agios Kosmas, Hellenikon, 16777, Athens, Greece
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
19
|
Yan L, Jiang MY, Fan XS. Research into the anti-pulmonary fibrosis mechanism of Renshen Pingfei formula based on network pharmacology, metabolomics, and verification of AMPK/PPAR-γ pathway of active ingredients. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116773. [PMID: 37308028 DOI: 10.1016/j.jep.2023.116773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with limited therapy. Renshen Pingfei Formula (RPFF), a classic Chinese medicine derivative formula, has been shown to exert therapeutic effects on IPF. AIM OF THE STUDY The study aimed to explore the anti-pulmonary fibrosis mechanism of RPFF through network pharmacology, clinical plasma metabolomics, and in vitro experiment. METHODS Network pharmacology was used to study the holistic pharmacological mechanism of RPFF in the treatment of IPF. The differential plasma metabolites for RPFF in the treatment of IPF were identified by untargeted metabolomics analysis. By integrated analysis of metabolomics and network pharmacology, the therapeutic target of RPFF for IPF and the corresponding herbal ingredients were identified. In addition, the effects of the main components of the formula, kaempferol and luteolin, which regulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway were observed in vitro according to the orthogonal design. RESULTS A total of 92 potential targets for RPFF in the treatment of IPF were obtained. The Drug-Ingredients-Disease Target network showed that PTGS2, ESR1, SCN5A, PPAR-γ, and PRSS1 were associated with more herbal ingredients. The protein-protein interaction (PPI) network identified the key targets of RPFF in IPF treatment, including IL6, VEGFA, PTGS2, PPAR-γ, and STAT3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis acquired the main enriched pathways, and PPAR-γ involved in multiple signaling pathways, including the AMPK signaling pathway. Untargeted clinical metabolomics analysis revealed plasma metabolite variations in patients with IPF versus controls and before versus after RPFF treatment for patients with IPF. Six differential metabolites were explored as differential plasma metabolites for RPFF in IPF treatment. Combined with network pharmacology, a therapeutic target PPAR-γ of RPFF in IPF treatment and the corresponding herbal components were identified. Based on the orthogonal experimental design, the experiments showed that kaempferol and luteolin can decrease the mRNA and protein expression of α-smooth muscle actin (α-SMA), and the combination of lower dose can inhibit α-SMA mRNA and protein expression by promoting the AMPK/PPAR-γ pathway in transforming growth factor beta 1 (TGF-β1)-treated MRC-5 cells. CONCLUSIONS This study revealed that the therapeutic effects of RPFF are due to multiple ingredients and have multiple targets and pathways, and PPAR-γ is one of therapeutic targets for RPPF in IPF and involved in the AMPK signaling pathway. Two ingredients of RPFF, kaempferol and luteolin, can inhibit fibroblast proliferation and the myofibroblast differentiation of TGF-β1, and exert a synergistic effect through AMPK/PPAR-γ pathway activation.
Collapse
Affiliation(s)
- Lu Yan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China; Department of Respiratory and Critical Care Medicine, Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nangjing, 210017, China.
| | - Min-Yue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin-Sheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Naning University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
20
|
Zhang X, Yu H, Yan X, Li P, Wang C, Zhang C, Ji H. Selenium reduces hepatopancreas lipid accumulation of grass carp ( Ctenopharyngodon idella) fed high-fat diet via lipophagy activation. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:126-136. [PMID: 38023382 PMCID: PMC10661554 DOI: 10.1016/j.aninu.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023]
Abstract
It has been reported that selenium (Se) can reduce hepatopancreas lipid accumulation induced by high-fat diet. However, its mechanism is still unknown. This study aims to investigate the specific mechanisms by which Se alleviates high-fat diet-induced lipid accumulation. Grass carp were fed control diet (4.8% lipid, Con), high-fat diet (8.8% lipid, HFD) or HFD supplemented with 0.3 mg/kg nano-Se (HSe0.3) for 10 weeks. Growth performance, Se deposition, lipid accumulation, hepatic ultrastructure, and gene and protein expression levels associated with autophagy were examined. Furthermore, oleic acid (OA) was used to incubate the grass carp hepatocytes (L8824) for 24 h, and then the L8824 were incubated with sodium selenite in presence or absence of an autophagy inhibitor for 24 h. L8824 was analyzed for triglyceride concentration, immunofluorescence, and gene and protein expression levels associated with autophagy. We found that dietary nano-Se improved the growth of fish fed HFD and also decreased hepatosomatic index and intraperitoneal fat ratio of fish fed HFD (P < 0.05). HFD significantly increased hepatopancreas lipid accumulation and decreased autophagic activity (P < 0.05). Treatment of grass carp fed HFD with nano-Se decreased lipid accumulation and restored hepatic autophagy (P < 0.05). In vitro, Se (100 μM sodium selenite) obviously activated autophagy in L8824 incubated with OA, and consequently reduced the lipid accumulation induced by OA (P < 0.05). Furthermore, using pharmacological inhibition (chloroquine) of the autophagy greatly diminished the beneficial effects of Se on alleviating OA-induced lipid accumulation and increased the co-localization of lipid droplets with autophagosome (P < 0.05), which indicated that Se increased autophagic flux. In conclusion, these results suggest that Se alleviates HFD-induced hepatopancreas lipid accumulation by activating lipophagy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
21
|
Gong Y, Lu Q, Xi L, Liu Y, Yang B, Su J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. F6P/G6P-mediated ChREBP activation promotes the insulin resistance-driven hepatic lipid deposition in zebrafish. J Nutr Biochem 2023; 122:109452. [PMID: 37748621 DOI: 10.1016/j.jnutbio.2023.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
22
|
Na M, Yang X, Deng Y, Yin Z, Li M. Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease. PeerJ 2023; 11:e16398. [PMID: 38025713 PMCID: PMC10655704 DOI: 10.7717/peerj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein synthesis, folding, and modification. Under stress conditions such as oxidative stress and inflammation, the ER can become overwhelmed, leading to an accumulation of misfolded proteins and ensuing ER stress. This triggers the unfolded protein response (UPR) designed to restore ER homeostasis. Alcoholic liver disease (ALD), a spectrum disorder resulting from chronic alcohol consumption, encompasses conditions from fatty liver and alcoholic hepatitis to cirrhosis. Metabolites of alcohol can incite oxidative stress and inflammation in hepatic cells, instigating ER stress. Prolonged alcohol exposure further disrupts protein homeostasis, exacerbating ER stress which can lead to irreversible hepatocellular damage and ALD progression. Elucidating the contribution of ER stress to ALD pathogenesis may pave the way for innovative therapeutic interventions. This review delves into ER stress, its basic signaling pathways, and its role in the alcoholic liver injury.
Collapse
Affiliation(s)
- Man Na
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Xingbiao Yang
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Yongkun Deng
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Zhaoheng Yin
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Mingwei Li
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| |
Collapse
|
23
|
Zhao T, Zheng H, Xu JJ, Xu YC, Liu LL, Luo Z. MnO 2 nanoparticles and MnSO 4 differentially affected hepatic lipid metabolism through miR-92a/acsl3-dependent de novo lipogenesis in yellow catfish Pelteobagrusfulvidraco. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122416. [PMID: 37598932 DOI: 10.1016/j.envpol.2023.122416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
With the increasing production and use of MnO2 NPs and MnSO4 in various fields, their discharge into the aquatic environment is inevitable, which poses potential threats to aquatic organisms and humans. However, to date, few studies have been conducted to investigate the potential mechanism of the toxicity of MnO2 NPs, and a comprehensive understanding of the differences between this mechanism and the toxicity mechanism of inorganic Mn (MnSO4) is still lacking. Since lipid metabolism-relevant parameters have been widely recognized as novel biomarkers for risk assessment of environmental contaminants, the present study investigated the differential mechanisms of how MnO2 NPs and MnSO4 affect hepatic lipid metabolism in a freshwater fish yellow catfish. Compared to MnSO4, dietary MnO2 NPs caused liver injury, increased hepatic lipid accumulation and induced lipotoxicity, and up-regulated mRNA expression of de novo lipogenic genes. Moreover, MnO2 NPs downregulated the expression of miR-92a and miR-92b-3p, microRNAs involved in regulation of lipid metabolism, in the liver. Mechanistically, we found that acls3, an acetyl-coenzyme A synthetase, is target gene of miR-92a, and miR-92a-acsl3-dependent de novo lipogenesis contributes to lipid accumulation and lipotoxicity induced by MnO2 NPs. Collectively, these findings provided novel insights into mechanism whereby miRNAs mediate nanoparticles- and inorganic Mn-induced hepatic lipotoxicity and changes of lipid metabolism in vertebrates. Our findings also shed new perspective for ecotoxicity and ecological risk of MnO2 NPs and MnSO4 in aquatic environment.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
24
|
Xu YC, Zheng H, Hogstrand C, Tan XY, Zhao T, Song YF, Wei XL, Wu LX, Luo Z. Novel mechanism for zinc inducing hepatic lipolysis via the HDAC3-mediated deacetylation of β-catenin at lysine 311. J Nutr Biochem 2023; 121:109429. [PMID: 37591442 DOI: 10.1016/j.jnutbio.2023.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Zinc (Zn) is a multipurpose trace element indispensable for vertebrates and possesses essential regulatory roles in lipid metabolism, but the fundamental mechanism remains largely unknown. In the current study, we found that a high-Zn diet significantly increased hepatic Zn content and influenced the expression of Zn transport-relevant genes. Dietary Zn addition facilitated lipolysis, inhibited lipogenesis, and controlled β-catenin signal; Zn also promoted T-cell factor 7-like 2 (TCF7L2) to interact with β-catenin and regulating its transcriptional activity, thereby inducing lipolysis and inhibiting lipogenesis; Zn-induced lipid degradation was mediated by histone deacetylase 3 (HDAC3) which was responsible for β-catenin deacetylation and the regulation of β-catenin signal under the Zn treatment. Mechanistically, Zn promoted lipid degradation via stimulating HDAC3-mediated deacetylation of β-catenin at lysine 311 (K311), which enhanced the interaction between β-catenin and TCF7L2 and then transcriptionally inhibited fatty acid synthase (FAS), 2-acylglycerol O-acyltransferase 2 (MOGAT2), and sterol regulatory element-binding protein 1 (SREBP1) expression, but elevated the mRNA abundance of adipose triglyceride lipase (ATGL), hormone-sensitive lipase a (HSLA) and carnitine palmitoyltransferase 1a1b (CPT1A1B). Overall, our research reveals a novel mechanism into the important roles of HDAC3/β-catenin pathway in Zn promoting lipolysis and inhibiting lipogenesis, and highlights the essential roles of K311 deacetylation in β-catenin actions and lipolytic metabolism, and accordingly provides novel insight into the prevention and treatment of steatosis in the vertebrates.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE5 9RJ, UK
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Xiang Wu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
25
|
Liu H, Chen B, Cao Y, Geng Y, Ouyang P, Chen D, Li L, Huang X. High starch diets attenuate the immune function of Micropterus salmoides immune organs by modulating Keap1/Nrf2 and MAPK signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109079. [PMID: 37774900 DOI: 10.1016/j.fsi.2023.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Based on their good physiological functions and physical properties, carbohydrates are widely used in fish feed. However, excessive use of carbohydrates such as starch in fish feed may reduce the immunity of the fish and cause a series of health problems. In order to more clearly clarify the effects of different starch levels in feed on the immune organs of Micropterus salmoides, this study took the immune organs as the entry point and explored it from several perspectives, including differences in enzyme activity in plasma, changes in gene expression in immune organs, and resistance to pathogenic bacteria. The results showed that (1) high starch feed activates inflammatory responses in the spleen and head kidney through the MAPK signaling pathway. This leads to a decrease in the number of lymphocytes and weakens the resistance to pathogens; (2) high starch diet affects the antioxidant capacity of the trunk kidney by regulating the Keap1/Nrf2 pathway; (3) There was a strong correlation between gene expression patterns in the head kidney and lysozyme content in plasma. This implies that the high starch diet may regulate lysozyme production by affecting gene expression in the head kidney and further affect immune function. This study helps to reveal the interaction between starch and the immune system and provide scientific basis for the development of reasonable dietary recommendations and disease prevention.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanhao Cao
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
26
|
Li H, Zeng Y, Zheng X, Wang G, Tian J, Gong W, Xia Y, Zhang K, Li Z, Xie W, Xie J, Yu E. Dietary Betaine Attenuates High-Carbohydrate-Diet-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis in Mandarin Fish ( Siniperca chuatsi). Antioxidants (Basel) 2023; 12:1860. [PMID: 37891939 PMCID: PMC10604392 DOI: 10.3390/antiox12101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the impact of betaine on high-carbohydrate-diet-induced oxidative stress and endoplasmic reticulum (ER) stress, mandarin fish (Siniperca chuatsi) (23.73 ± 0.05 g) were fed with control (NC), betaine (BET), high carbohydrate (HC), and high carbohydrate + betaine (HC + BET) diets for 8 weeks. The results showed that betaine significantly promoted the growth of mandarin fish irrespective of the dietary carbohydrate levels. The HC diet induced oxidative stress, as evidenced by significantly elevated MDA levels. The HC diet significantly stimulated the mRNA levels of genes involved in ER stress (ire1, perk, atf6, xbp1, eif2α, atf4, chop), autophagy (ulk1, becn1, lc3b), and apoptosis (bax). However, betaine mitigated HC-diet-induced oxidative stress by modulating antioxidant enzymes and alleviated ER stress by regulating the mRNA of genes in the PERK-eIF2a-ATF4 pathway. Additionally, betaine significantly reduced the mRNA levels of becn1 and bax, along with the apoptosis rate, indicating a mitigating effect on autophagy and apoptosis. Overall, dietary betaine improved growth, attenuated HC-diet-induced oxidative stress and ER stress, and ultimately alleviated apoptosis in mandarin fish. These findings provide evidence for the use of betaine in aquafeeds to counter disruptive effects due to diets containing high carbohydrate levels.
Collapse
Affiliation(s)
- Hongyan Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yanzhi Zeng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyu Zheng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wenping Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| |
Collapse
|
27
|
Yi J, Zhou Q, Huang J, Niu S, Ji G, Zheng T. Lipid metabolism disorder promotes the development of intervertebral disc degeneration. Biomed Pharmacother 2023; 166:115401. [PMID: 37651799 DOI: 10.1016/j.biopha.2023.115401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Lipid metabolism is a complex process that maintains the normal physiological function of the human body. The disorder of lipid metabolism has been implicated in various human diseases, such as cardiovascular diseases and bone diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease in the musculoskeletal system, is characterized by high morbidity, high treatment cost, and chronic recurrence. Lipid metabolism disorder may promote the pathogenesis of IDD, and the potential mechanisms are complex. Leptin, resistin, nicotinamide phosphoribosyltransferase (NAMPT), fatty acids, and cholesterol may promote the pathogenesis of IDD, while lipocalin, adiponectin, and progranulin (PGRN) exhibit protective activity against IDD development. Lipid metabolism disorder contributes to extracellular matrix (ECM) degradation, cell apoptosis, and cartilage calcification in the intervertebral discs (IVDs) by activating inflammatory responses, endoplasmic reticulum (ER) stress, and oxidative stress and inhibiting autophagy. Several lines of agents have been developed to target lipid metabolism disorder. Inhibition of lipid metabolism disorder may be an effective strategy for the therapeutic management of IDD. However, an in-depth understanding of the molecular mechanism of lipid metabolism disorder in promoting IDD development is still needed.
Collapse
Affiliation(s)
- Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
28
|
Crewe C. Energetic Stress-Induced Metabolic Regulation by Extracellular Vesicles. Compr Physiol 2023; 13:5051-5068. [PMID: 37358503 PMCID: PMC10414774 DOI: 10.1002/cphy.c230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed "energetic stress," which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.
Collapse
Affiliation(s)
- Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Ding R, Ma Y, Li T, Sun M, Sun Z, Duan J. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163144. [PMID: 37003332 DOI: 10.1016/j.scitotenv.2023.163144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
With the massive manufacture and use of plastics, plastic pollution-related environmental impacts have raised great concern in recent years. As byproducts of plastic fragmentation and degradation, microplastics (MPs) and nanoplastics (NPs) have been identified as novel pollutants that posed a threat to the ecosystem and humans. Since MPs/NPs could be transported via the food chain and retained in the water, the digestive system should be one of the major targets of MPs/NPs-related toxicity. Although considerable evidence has supported the digestive toxicity of MPs/NPs, the proposed mechanisms remained ambiguous due to the variety of study types, models, and endpoints. This review provided a mechanism-based perspective on MPs/NPs-induced digestive effects by adopting the adverse outcome pathway framework as a promising tool. The overproduction of reactive oxygen species was identified as the molecular initiating event in MPs/NPs-mediated injury to the digestive system. A series of detrimental effects including oxidative stress, apoptosis, inflammation, dysbiosis, and metabolic disorders were summarized as key events. Finally, the occurrence of these effects eventually led to an adverse outcome, suggesting a possible increase in the incidence of digestive morbidity and mortality.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
30
|
Han YH, He XM, Jin MH, Sun HN, Kwon T. Lipophagy: A potential therapeutic target for nonalcoholic and alcoholic fatty liver disease. Biochem Biophys Res Commun 2023; 672:36-44. [PMID: 37336123 DOI: 10.1016/j.bbrc.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xin-Mei He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
31
|
Zhong CC, Zhao T, Hogstrand C, Song CC, Zito E, Tan XY, Xu YC, Song YF, Wei XL, Luo Z. Copper induces liver lipotoxicity disease by up-regulating Nrf2 expression via the activation of MTF-1 and inhibition of SP1/Fyn pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166752. [PMID: 37182554 DOI: 10.1016/j.bbadis.2023.166752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Excessive copper (Cu) intake leads to hepatic lipotoxicity disease, which has adverse effects on health, but the underlying mechanism is unclear. We found that Cu increased lipotoxicity by promoting Nrf2 recruitment to the ARE site in the promoters of five lipogenic genes (g6pd, 6pgd, me, icdh and pparγ). We also found that Cu affected the Nrf2 expression via different pathways: metal regulatory transcription factor 1 (MTF-1) mediated the Cu-induced Nrf2 transcriptional activation; Cu also enhanced the expression of Nrf2 by inhibiting the SP1 expression, which was achieved by inhibiting the negative regulator Fyn of Nrf2. These promoted the enrichment of Nrf2 in the nucleus and ultimately affected lipotoxicity. Thus, for the first time, we elucidated that Cu induced liver lipotoxicity disease by up-regulating Nrf2 expression via the MTF-1 activation and the inhibition of SP1/Fyn pathway. Our study elucidates the Cu-associated obesity and NAFLD for fish and possibly humans.
Collapse
Affiliation(s)
- Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province, China.
| |
Collapse
|
32
|
Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2023; 14:1133991. [PMID: 37223022 PMCID: PMC10200915 DOI: 10.3389/fendo.2023.1133991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Aim To investigate the association between blood lactate levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). Methods 4628 Chinese T2DM patients were divided into quartiles according to blood lactate levels in this real-world study. Abdominal ultrasonography was used to diagnosis MAFLD. The associations of blood lactate levels and quartiles with MAFLD were analyzed by logistic regression. Results There were a significantly increased trend in both MAFLD prevalence (28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in T2DM patients after adjustment for age, sex, diabetic duration, and metformin use (all p<0.001 for trend). After correcting for other confounding factors, not only increased blood lactate levels were obviously associated with MAFLD presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also blood lactate quartiles were independently correlated to the increased risk of MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-fold, respectively, in those from the second to the highest lactate quartiles. Conclusions The blood lactate levels in T2DM subjects were independently associated with an increased risk of MAFLD, which was not affected by metformin-taking and might closely related to insulin resistance. Blood lactate levels might be used as a practical indicator for assessing the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jiang-Feng Ke
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
33
|
Ke J, Zhang DG, Liu SZ, Luo Z. Functional analysis of selenok, selenot and selenop promoters and their regulation by selenium in yellow catfish Pelteobagrus fulvidraco. Gene 2023; 873:147461. [PMID: 37149273 DOI: 10.1016/j.gene.2023.147461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The selenok, selenot and selenop are three key selenoproteins involved in stress response. Our study, using the yellow catfish Pelteobagrus fulvidraco as the experimental animal, obtained the 1993-bp, 2000-bp and 1959-bp sequences of selenok, selenot and selenop promoters, respectively, and predicted the binding sites of several transcriptional factors on their promoters, such as Forkhead box O 4 (FoxO4), activating transcription factor 4 (ATF4), Kruppel-like factor 4 (KLF4) and nuclear factor erythroid 2-related factor 2 (NRF2). Selenium (Se) increased the activities of the selenok, selenot and selenop promoters. FoxO4 and Nrf2 can directly bind with selenok promoter and controlled selenok promoter activities positively; KLF4 and Nrf2 can directly bind with selenot promoter and controlled selenot promoter activities positively; FoxO4 and ATF4 can directly bind to selenop promoter and regulated selenop promoter activities positively. Se promoted FoxO4 and Nrf2 binding to selenok promoter, KLF4 and Nrf2 binding to selenot promoter, and FoxO4 and ATF4 binding to selenop promoter. Thus, we provide the first evidence for FoxO4 and Nrf2 bindnig elements in selenok promoter, KLF4 and Nrf2 binding elements in selenot promoter, and FoxO4 and ATF4 binding elements in selenop promoter, and offer novel insight into regulatory mechanism of these selenoproteins induced by Se.
Collapse
Affiliation(s)
- Jiang Ke
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Sheng-Zan Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
34
|
NLRP3-dependent lipid droplet formation contributes to posthemorrhagic hydrocephalus by increasing the permeability of the blood-cerebrospinal fluid barrier in the choroid plexus. Exp Mol Med 2023; 55:574-586. [PMID: 36869068 PMCID: PMC10073156 DOI: 10.1038/s12276-023-00955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
Hydrocephalus is a severe complication that can result from intracerebral hemorrhage, especially if this hemorrhage extends into the ventricles. Our previous study indicated that the NLRP3 inflammasome mediates cerebrospinal fluid hypersecretion in the choroid plexus epithelium. However, the pathogenesis of posthemorrhagic hydrocephalus remains unclear, and therapeutic strategies for prevention and treatment are lacking. In this study, an Nlrp3-/- rat model of intracerebral hemorrhage with ventricular extension and primary choroid plexus epithelial cell culture were used to investigate the potential effects of NLRP3-dependent lipid droplet formation and its role in the pathogenesis of posthemorrhagic hydrocephalus. The data indicated that NLRP3-mediated dysfunction of the blood-cerebrospinal fluid barrier (B-CSFB) accelerated neurological deficits and hydrocephalus, at least in part, through the formation of lipid droplets in the choroid plexus; these lipid droplets interacted with mitochondria and increased the release of mitochondrial reactive oxygen species that destroyed tight junctions in the choroid plexus after intracerebral hemorrhage with ventricular extension. This study broadens the current understanding of the relationship among NLRP3, lipid droplets and the B-CSFB and provides a new therapeutic target for the treatment of posthemorrhagic hydrocephalus. Strategies to protect the B-CSFB may be effective therapeutic approaches for posthemorrhagic hydrocephalus.
Collapse
|
35
|
Wu LX, Xu YC, Pantopoulos K, Tan XY, Wei XL, Zheng H, Luo Z. Glycophagy mediated glucose-induced changes of hepatic glycogen metabolism via OGT1-AKT1-FOXO1Ser238 pathway. J Nutr Biochem 2023; 117:109337. [PMID: 36990368 DOI: 10.1016/j.jnutbio.2023.109337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Glycophagy is the autophagy degradation of glycogen. However, the regulatory mechanisms for glycophagy and glucose metabolism remain unexplored. Herein, we demonstrated that high-carbohydrate diet (HCD) and high glucose (HG) incubation induced glycogen accumulation, AKT1 expression and AKT1-dependent phosphorylation of forkhead transcription factor O1 (FOXO1) at Ser238 in the liver tissues and hepatocytes. The glucose-induced FOXO1 phosphorylation at Ser238 prevents FOXO1 entry into the nucleus and the recruitment to the gabarapl1 promoter, reduces the gabarapl1 promoter activity, and inhibits glycophagy and glucose production. The glucose-dependent O-GlcNAcylation of AKT1 by OGT1 enhances the stability of AKT1 protein and promotes its binding with FOXO1. Moreover, the glycosylation of AKT1 is crucial for promoting FOXO1 nuclear translocation and inhibiting glycophagy. Our studies elucidate a novel mechanism for glycophagy inhibition by high carbohydrate and glucose via OGT1-AKT1-FOXO1Ser238 pathway in the liver tissues and hepatocytes, which provides critical insights into potential intervention strategies for glycogen storage disorders in vertebrates, as well as human beings.
Collapse
|
36
|
Xu YC, Pantopoulos K, Zheng H, Zito E, Zhao T, Tan XY, Wei XL, Song YF, Luo Z. Phosphorus Overload Promotes Hepatic Lipolysis by Suppressing GSK3β-Dependent Phosphorylation of PPARα at Ser84 and Thr265 in a Freshwater Teleost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2351-2361. [PMID: 36728683 DOI: 10.1021/acs.est.2c06330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive phosphorus (Pi) contributes to eutrophication in an aquatic environment, which threatens human and fish health. However, the mechanisms by which Pi overload influences aquatic animals remain largely unexplored. In the present study, Pi supplementation increased the Pi content, inhibited lipid accumulation and lipogenesis, and stimulated lipolysis in the liver. Pi supplementation increased the phosphorylation of glycogen synthase kinase-3 β (GSK3β) at serine 9 (S9) but inhibited the phosphorylation of GSK3α at tyrosine 279 (Y279), GSK3β at tyrosine 216 (Y216), and peroxisome proliferator-activated receptor α (PPARα) at serine 84 (S84) and threonine 265 (T265). Pi supplementation also upregulated PPARα protein expression and stimulated its transcriptional activity, thereby inducing lipolysis. Pi suppressed GSK3β activity and prevented GSK3β, but not GSK3α, from interacting with PPARα, which in turn alleviated PPARα phosphorylation. GSK3β-induced phosphorylation of PPARα was dependent on GSK3β S9 dephosphorylation rather than Y216 phosphorylation. Mechanistically, underphosphorylation of PPARα mediated Pi-induced lipid degradation through transcriptionally activating adipose triglyceride lipase (atgl) and very long-chain-specific acyl-CoA dehydrogenase (acadvl). Collectively, our findings uncovered a new mechanism by which Pi facilitates lipolysis via the GSK3β-PPARα pathway and highlighted the importance of S84 and T265 phosphorylation in PPARα action.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
37
|
Ji C, Zhang Z, Xu X, Song D, Zhang D. Hyperlipidemia impacts osteogenesis via lipophagy. Bone 2023; 167:116643. [PMID: 36513279 DOI: 10.1016/j.bone.2022.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects. In vitro, mouse osteoblast cell lines were grown in two different concentrations of the high-fat medium. We found that at hyperphysiological of lipid conditions, activation of lipophagy restored osteoblast function in a way, and similar results were observed in mice with diet-induced hyperlipidemia. Still, at suprahyperphysiological concentrations of lipid culture, the activation of lipophagy further inhibited osteogenesis, and inhibition of autophagy instead promoted osteogenesis to a small extent. These results demonstrate that lipophagy functions differently in diverse high-fat environments, suggesting that cellular and organismal changes in response to high-fat stimuli are dynamic. This may provide new ideas for improving bone dysfunction caused by lipid metabolism disorders.
Collapse
Affiliation(s)
- Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
38
|
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, Chen S, Liu X, Pan W, Zhang F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front Pharmacol 2022; 13:1016745. [PMID: 36506575 PMCID: PMC9727266 DOI: 10.3389/fphar.2022.1016745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Our previous studies have found that Shuangyu Tiaozhi Decoction (SYTZD) could produce an improvement in NAFLD-related indicators, but the underlying mechanism associated with this improvement remains unclear. The study aimed to investigate the potential mechanism of SYTZD against NAFLD through network pharmacology and experimental verification. The components of SYTZD and SYTZD drug containing serum were analyzed using ultra-performance liquid chromatography to quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Active components and targets of SYTZD were screened by the traditional Chinese medical systems pharmacology (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM) databases. NAFLD-related targets were collected from the GeneCards and DisGeNET databases. The component-disease targets were mapped to identify the common targets of SYTZD against NAFLD. Protein-protein interaction (PPI) network of the common targets was constructed for selecting the core targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets was performed using the database for annotation, visualization, and integrated discovery (DAVID) database. Furthermore, animal and cell models were constructed for validating the predictions of network pharmacology. Lipid accumulation, liver histopathology, insulin resistance, and core gene expression were measured by oil red O staining, hematoxylin and eosin staining, insulin tolerance test, real-time quantitative polymerase chain reaction, and Western blotting, respectively. Two components and 22 targets of SYTZD against NAFLD were identified by UPLC-Q/TOF-MS and relevant databases. PPI analysis found that ESR1, FASN, mTOR, HIF-1α, VEGFA, and GSK-3β might be the core targets of SYTZD against NAFLD, which were mainly enriched in the thyroid hormone pathway, insulin resistance pathway, HIF-1 pathway, mTOR pathway, and AMPK pathway. Experimental results revealed that SYTZD might exert multiple anti-NAFLD mechanisms, including improvements in lipid deposition, inflammation, and insulin resistance. SYTZD treatment led to decreases in the lipid profiles, hepatic enzyme levels, inflammatory cytokines, and homeostatic model assessment for insulin resistance (HOMA-IR). SYTZD treatment affected relative mRNA and protein levels associated with various pathways. Our findings reveal that SYTZD could alleviate NAFLD through a multi-component, multi-target, and multi-pathway mechanism of action.
Collapse
Affiliation(s)
- Guoliang Yin
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyi Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Shizhao Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Feng
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengpeng Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Suwen Chen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchao Pan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Fengxia Zhang,
| |
Collapse
|
39
|
Han YK, Xu YC, Luo Z, Zhao T, Zheng H, Tan XY. Fish Meal Replacement by Mixed Plant Protein in the Diets for Juvenile Yellow Catfish Pelteobagrus fulvidraco: Effects on Growth Performance and Health Status. AQUACULTURE NUTRITION 2022; 2022:2677885. [PMID: 36860441 PMCID: PMC9973144 DOI: 10.1155/2022/2677885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/18/2023]
Abstract
Increasing dietary replacement levels of fish meal by alternative plant proteins are of value for aquaculture. Here, a 10-week feeding experiment was undertaken to explore the effects of fish meal replacement by mixed plant protein (at a 2 : 3 ratio of cottonseed meal to rapeseed meal) on growth performance, oxidative and inflammatory responses, and mTOR pathway of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (2.38 ± 0.1 g, mean ± SEM) were randomly divided into 15 indoors fiberglass tanks, 30 fish each tank, and fed five isonitrogenous (44% crude protein) and isolipidic (9% crude fat) diets with fish meal replaced by mixed plant protein at 0% (the control), 10% (RM10), 20% (RM20), 30% (RM30), and 40% (RM40), respectively. Among five groups, fish fed the control, and RM10 diets tended to have higher growth performance, higher protein content, and lower lipid content in livers. Dietary mixed plant protein substitute increased hepatic free gossypol content and damaged liver histology and reduced the serum total essential amino acids, total nonessential amino acids, and total amino acid contents. Yellow catfish fed the control, and RM10 diets tended to have higher antioxidant capacity. Dietary mixed plant protein replacement tended to promote proinflammatory responses and inhibited mTOR pathway. Based on the second regression analysis of SGR against mixed plant protein substitutes, the optimal replacement level of fish meal by mixed plant protein was 8.7%.
Collapse
Affiliation(s)
- Ya-Kang Han
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Liu J, Liu S, Hao L, Liu F, Mu S, Wang T. Uncovering the mechanism of Radix Paeoniae Alba in the treatment of restless legs syndrome based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31791. [PMID: 36401463 PMCID: PMC9678500 DOI: 10.1097/md.0000000000031791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Restless legs syndrome (RLS) is a neurological motor disorder with a high prevalence. The treatment efficacy of RLS is unsatisfactory. Radix Paeoniae Alba (RPA) can effectively treat RLS symptoms such as the discomfort of the legs. RPA has great potential for the development of new medications for RLS. Hence, we explored the mechanism of RPA in the treatment of RLS using network pharmacology and molecular docking. The active components and targets of RPA were obtained from the Traditional Chinese Medicine System Pharmacology database and analysis platform and PharmMapper platform. The RLS-related targets were found in GeneCards, OMIM, DrugBank, and DisGeNET databases. The overlapping targets of RPA and RLS were then collected. The "active components-overlapping targets" network was built, and network topology analysis was performed. Furthermore, Cytoscape 3.9.1 software was used to screen the key components of RPA in the treatment of RLS. Protein-protein interaction was performed using the Search Tool for the Retrieval of Interacting Genes. The gene ontology functions and Kyoto Encyclopedia of Genes and Genomes signaling pathways were analyzed using ClusterProfiler, PathView, and other R packages to reveal the main mechanism of RPA in treating RLS. Component and protein structures were downloaded from the Traditional Chinese Medicine System Pharmacology and Protein Data Bank databases, respectively. The AutoDock 4.2.6 software was used for molecular docking. A total of 12 active components and 109 targets of RPA, as well as 2387 RLS-related targets, were collected. Following that, 47 overlapping targets were obtained. Furthermore, 5 key components and 12 core targets were screened. The results of gene ontology functions were as follows: 2368 biological processes, 264 molecular functions, and 164 cellular components. A total of 207 Kyoto Encyclopedia of Genes and Genomes signaling pathways were obtained, including the lipid and atherosclerosis pathway, the endocrine resistance pathway, the prolactin signaling pathway, and the IL-17 signaling pathway. The components and the core targets completed molecular docking stably. RPA has multi-component, multi-target, and multi-pathway characteristics in treating RLS, which could provide a basis for future research and improve clinical efficacy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liansheng Hao
- Department 2 of Bone Trauma, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Fangfang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengkai Mu
- Department 2 of Bone Trauma, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Tengteng Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * Correspondence: Tengteng Wang, Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China (e-mail: )
| |
Collapse
|
41
|
Liu M, Zheng X, Sun C, Zhou Q, Liu B, Xu P. Tea Tree Oil Mediates Antioxidant Factors Relish and Nrf2-Autophagy Axis Regulating the Lipid Metabolism of Macrobrachium rosenbergii. Antioxidants (Basel) 2022; 11:2260. [PMID: 36421446 PMCID: PMC9686997 DOI: 10.3390/antiox11112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 10/29/2023] Open
Abstract
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant-autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory mechanism of lipid metabolism in crustaceans. This study investigated whether TTO could alter hepatopancreatic lipid metabolism by affecting the antioxidant-autophagy axis. Feed Macrobrachium rosenbergii with three different levels of TTO diets for 8 weeks: CT (0 mg/kg TTO), 100TTO (100 mg/kg TTO), and 1000TTO (1000 mg/kg TTO). The results showed that 100TTO treatment reduced the hemolymph lipids level and hepatopancreatic lipid deposition compared to CT. In contrast, 1000TTO treatment increased hepatopancreatic lipid deposition, damaging both morphology and function in the hepatopancreas. The 100TTO treatment promoted lipolysis and reduced liposynthesis at the transcriptional level compared to the CT group. Meanwhile, it improved the hepatopancreas antioxidant capacity and maintained mitochondrial structural and ROS homeostasis. In addition, it simultaneously activated the expression of transcription factors Keap1-Nrf2 and Imd-Relish. By contrast, the 1000TTO group significantly enhanced the ROS level, which considerably activated the Keap1-Nrf2 signaling expression but had no significant effects on the expression of Imd-Relish. The 100TTO group supplementation significantly enhanced lipid droplet breakdown and autophagy-related genes and protein expression. On the contrary, the 1000TTO group significantly inhibited the expression of genes and proteins related to autophagy. Pearson analysis revealed that Nrf2 has a positive correlation to lipid anabolism-related genes (Fasn, Srebp1, Pparγ) and autophagy regulators (mtor, akt, p62), and were negatively correlated with lipolysis-related genes (Cpt1, Hsl, Ampkα) and autophagy markers (Ulk1, Lc3). Relish was positively correlated with Atgl, Cpt1, Ampkα, Ulk1, and Lc3, and negatively correlated with Pparγ and p62. Moreover, Keap1 and Imd were negatively correlated with p62 and mtor, respectively. In sum, 100 mg/kg TTO enhanced antioxidant activity and increased autophagy intensity through the Relish-Imd pathway to enhance lipid droplet breakdown, while 1000 mg/kg TTO overexpressed Nrf2, thus inhibiting autophagy and ultimately causing excessive lipid deposition and peroxidation. Our study gives a fresh perspective for deciphering the bidirectional regulation mechanism of lipid metabolism by different doses of TTO based on the antioxidant-autophagy axis.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Bo Liu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| |
Collapse
|
42
|
Zheng Y, Shi Y, Yang X, Gao J, Nie Z, Xu G. Effects of resveratrol on lipid metabolism in liver of red tilapia Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109408. [PMID: 35820615 DOI: 10.1016/j.cbpc.2022.109408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Resveratrol (RES), as a polyphenol natural plant extract, mainly accumulates in the root of Polygonum cuspidatum, which can alleviate liver injury in mammals. Our study aims to explore the effects and potential mechanism of RES on lipid metabolism of red tilapia, and the effects of RES on liver structure, fat synthesis and metabolism of red tilapia were determined. The present study designed four groups named as 8 % fat (8%CK), 10 % fat (10 % HF), 10 % HF + RES and 10 % HF + RES + EX527 (selisistat). The liver tissues of red tilapia were collected at 3 (3 W), 6 (6 W) and 9 (9 W) weeks for parameter determination. Compared to the normal diet group, the hepatocyte of tilapia showed nuclear shift and vacuoles of different sizes when fed a high-fat diet. Meanwhile, the high-fat diet increased the contents of LDL, TC and TG significantly at 6 W, and significantly decreased the content of NAD+ at 9 W. Compared to the high-fat group, the nuclei of tilapia fed with RES were increased and visible, the degree of steatosis and the number of vacuoles were both reduced. At 3/6/9 W, RES significantly decreased the contents of LDL, TG and TMAO, and significantly increased the content of NAD+. A total of 1416 genes were up-regulated and 1928 genes were down-regulated in the group with added RES when compared to the 10 % HF group. The pathways related to lipid metabolism including PPAR signaling pathway have been enriched. Interestingly, the expressions of sirt1, pparα, fabp7 and cpt1b genes were up-regulated in RES diet group, while the expressions of pparγ, me1, scd and lpl genes were down-regulated. After the addition of an inhibitor (EX527), the above indexes showed an opposite trend when compared to the group with added RES. The overall results showed that the high-fat diet could cause fatty liver lesions in the liver of red tilapia, and RES could activate the sirt1 gene, regulate the PPARα/γ pathway and related genes, and thus regulate liver fat synthesis and metabolism leading to the alleviation of damage to liver tissue.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Yulu Shi
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Xiaoxi Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
43
|
Zhou C, Huang Z, Lin H, Ma Z, Wang J, Wang Y, Yu W. Rhizoma curcumae Longae ameliorates high dietary carbohydrate-induced hepatic oxidative stress, inflammation in golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2022; 130:31-42. [PMID: 36038103 DOI: 10.1016/j.fsi.2022.08.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In general, starch, as a complex carbohydrate, is the most economical energy source in aquaculture for its relatively low cost. However, excessive dietary levels of carbohydrate result in pathological conditions. An 8-week feeding trial with CT (control diet, containing 21% carbohydrate), HC (a high-carbohydrate diet, containing 50% carbohydrate) and HCR (a HC diet supplemented with 0.015% Rhizoma curcumae Longae) was performed to investigate the protective effect of curcumin on high-carbohydrate-induced hepatic oxidative stress and intestine lesion in juvenile Trachinotus ovatus. In the current study, HC group significantly decreased WGR, SGR, plasma CAT activity, intestinal C4 levels, hepatic Nrf2, Keap1, Bach1, HO1, CAT, and GPX mRNA expression as well as ZO-1, Occludin, and Claudin-3, TGF-β mRNA transcription levels, while the opposite was true for plasma AST activity, hepatic MDA contents, intestinal Claudin-15, NF-κB, IL-1β, IL-6, and TNF-α mRNA expression. In contrast with the HC group, the HCR group significantly increased the activities of hepatic CAT, SOD, intestinal C3, C4, IgG and LZM levels, hepatic Nrf2, Bach1, CAT, and GPX mRNA expression as well as intestinal ZO-1, Occludin, Claudin-3, TGF-β and IL-10 mRNA expression levels, but the opposite trend was found in plasma triglyceride content, hepatic lipid deposition, hepatic Keap1 mRNA level as well as intestinal NF-κB, IL-6. In conclusion, high-carbohydrate diet can cause detrimental effect on physiological health status in Trachinotus ovatus, while adding Rhizoma curcumae Longae can improve hepatic and intestinal health status via attenuating the oxidative stress, inflammation, and reducing lipid deposition.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Zhong Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China.
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| |
Collapse
|
44
|
Zheng H, Zhao T, Xu YC, Zhang DG, Song YF, Tan XY. Dietary choline prevents high fat-induced disorder of hepatic cholesterol metabolism through SREBP-2/HNF-4α/CYP7A1 pathway in a freshwater teleost yellow catfish Pelteobagrus fulvidraco. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194874. [PMID: 36122892 DOI: 10.1016/j.bbagrm.2022.194874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Lipid overload-induced hepatic cholesterol accumulation is a major public health problem worldwide, and choline has been reported to ameliorate cholesterol accumulation, but its mechanism remains unclear. Our study found that choline prevented high-fat diet (HFD)-induced cholesterol metabolism disorder and enhanced choline uptake and phosphatidylcholine synthesis in the liver tissues; choline incubation prevented fatty acid (FA)-induced cholesterol accumulation and FA-induced inhibition of bile acid synthesis. Moreover, compared to single FA incubation, choline incubation or FA + choline co-incubation increased the mRNA abundances and protein levels of HNF4α and up-regulated the degradation of cholesterol into bile acids. Mechanistically, choline prevented the FA-induced accumulation of SREBP2 protein and the interaction between SREBP2 and HNF4α, thereby enhancing the DNA binding capacity of the HNF4α to the CYP7A1 promoter, and promoting the degradation of cholesterol into bile acids. Our study elucidated the novel regulatory mechanisms of choline preventing HFD-induced cholesterol accumulation and increasing bile acid synthesis by SREBP-2/HNF-4α/CYP7A1 pathway.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
45
|
Yang X, Chen J, Lu Z, Huang S, Zhang S, Cai J, Zhou Y, Cao G, Yu J, Qin Z, Zhao W, Zhang B, Zhu L. Enterovirus A71 utilizes host cell lipid β-oxidation to promote its replication. Front Microbiol 2022; 13:961942. [PMID: 36246276 PMCID: PMC9554258 DOI: 10.3389/fmicb.2022.961942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD), which is an infectious disease that endangers children’s health. However, the pathogenic mechanisms underlying these severe clinical and pathological features remain incompletely understood. Metabolism and stress are known to play critical roles in multiple stages of the replication of viruses. Lipid metabolism and ER stress is an important characterization post viral infection. EV-A71 infection alters the perturbations of intracellular lipid homeostasis and induces ER stress. The characterizations induced by viral infections are essential for optimal virus replication and may be potential antiviral targets. In this study, we found that the addition of the chemical drug of ER stress, PKR IN, an inhibitor, or Tunicamycin, an activator, could significantly reduce viral replication with the decrease of lipid. The replication of viruses was reduced by Chemical reagent TOFA, an inhibitor of acetyl-CoA carboxylase (ACC) or C75, an inhibitor of fatty acid synthase (FASN), while enhanced by oleic acid (OA), which is a kind of exogenous supplement of triacylglycerol. The pharmacochemical reagent of carnitine palmitoyltransferase 1 (CPT1) called Etomoxir could knock down CPT1 to induce EV-A71 replication to decrease. This suggests that lipid, rather than ER stress, is the main factor affecting EV-A71 replication. In conclusion, this study revealed that it is the β-oxidation of lipid that plays a core role, not ER stress, which is only a concomitant change without restrictive effect, on virus replication.
Collapse
Affiliation(s)
- Xiuwen Yang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayi Chen
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shihao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jintai Cai
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yezhen Zhou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guanhua Cao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiran Qin
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhao,
| | - Bao Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Bao Zhang,
| | - Li Zhu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Li Zhu,
| |
Collapse
|
46
|
Effects of Dietary Selenium and Oxidized Fish Oils on Intestinal Lipid Metabolism and Antioxidant Responses of Yellow Catfish Pelteobagrus fulvidraco. Antioxidants (Basel) 2022; 11:antiox11101904. [PMID: 36290629 PMCID: PMC9598306 DOI: 10.3390/antiox11101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, the effect of selenium and oxidized fish oil interactions on the intestinal lipid metabolism and antioxidant responses of fish remains unknown. Herein, yellow catfish Pelteobagrus fulvidraco (weight: 3.99 ± 0.01 g) were used as experimental animals and were fed four diets: an adequate amount of selenium (0.25 mg kg−1) with fresh fish oil (A-Se+FFO), an adequate amount of selenium with oxidized fish oil (A-Se+OFO), a high amount of selenium (0.50 mg kg−1) with fresh fish oil (H-Se+FFO), and a high amount of selenium with oxidized fish oil (H-Se+OFO). The feeding experiment was conducted for 10 weeks. The results showed that selenium supplementation alleviated the intestinal tissue damage and reduced the lipid accumulation that was induced by oxidized fish oils. Meanwhile, we also found that 0.50 mg kg−1 selenium reduced the oxidative stress that is caused by oxidized fish oils through increasing the GSH and the activity and mRNA expression of antioxidant enzymes. Dietary selenium and oxidized fish oils also affected the mRNA expression of intestinal selenoproteins including selenow2a, selenop2, and selenot2. Mechanistically, Se and oxidized eicosapentaenoic acid (oxEPA) influenced the GSH content by affecting the DNA binding ability of activating transcription factor (ATF) 3 to the slc7a11 promoter. For the first time, our results suggested that selenium alleviated the oxidized fish oil-induced intestinal lipid deposition and the oxidative stress of the fish. We also elucidated the novel mechanism of selenium increasing the GSH content by affecting the interaction of ATF3 and the slc7a11 promoter.
Collapse
|
47
|
Gong Y, Lu Q, Liu Y, Xi L, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides). Front Nutr 2022; 9:1010859. [PMID: 36211485 PMCID: PMC9539808 DOI: 10.3389/fnut.2022.1010859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1β, il8, tgfβ, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- *Correspondence: Dong Han,
| |
Collapse
|
48
|
Ginsenosides Restore Lipid and Redox Homeostasis in Mice with Intrahepatic Cholestasis through SIRT1/AMPK Pathways. Nutrients 2022; 14:nu14193938. [PMID: 36235592 PMCID: PMC9571347 DOI: 10.3390/nu14193938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intrahepatic cholestasis (IC) occurs when the liver and systemic circulation accumulate bile components, which can then lead to lipid metabolism disorders and oxidative damage. Ginsenosides (GS) are pharmacologically active plant products derived from ginseng that possesses lipid-regulation and antioxidation activities. The purpose of this study was to evaluate the possible protective effects of ginsenosides (GS) on lipid homeostasis disorder and oxidative stress in mice with alpha-naphthylisothiocyanate (ANIT)-induced IC and to investigate the underlying mechanisms. A comprehensive strategy via incorporating pharmacodynamics and molecular biology technology was adopted to investigate the therapeutic mechanisms of GS in ANIT-induced mice liver injury. The effects of GS on cholestasis were studied in mice that had been exposed to ANIT-induced cholestasis. The human HepG2 cell line was then used in vitro to investigate the molecular mechanisms by which GS might improve IC. The gene silencing experiment and liver-specific sirtuin-1 (SIRT1) knockout (SIRT1LKO) mice were used to further elucidate the mechanisms. The general physical indicators were assessed, and biological samples were collected for serum biochemical indexes, lipid metabolism, and oxidative stress-related indicators. Quantitative PCR and H&E staining were used for molecular and pathological analysis. The altered expression levels of key pathway proteins (Sirt1, p-AMPK, Nrf2) were validated by Western blotting. By modulating the AMPK protein expression, GS decreased hepatic lipogenesis, and increased fatty acid β-oxidation and lipoprotein lipolysis, thereby improving lipid homeostasis in IC mice. Furthermore, GS reduced ANIT-triggered oxidative damage by enhancing Nrf2 and its downstream target levels. Notably, the protective results of GS were eliminated by SIRT1 shRNA in vitro and SIRT1LKO mice in vivo. GS can restore the balance of the lipid metabolism and redox in the livers of ANIT-induced IC models via the SIRT1/AMPK signaling pathway, thus exerting a protective effect against ANIT-induced cholestatic liver injury.
Collapse
|
49
|
Yin H, Shan Y, Xia T, Ji Y, Yuan L, You Y, You B. Emerging Roles of Lipophagy in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14184526. [PMID: 36139685 PMCID: PMC9496701 DOI: 10.3390/cancers14184526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Metastasis is the main cause of death in patients with malignant tumors worldwide. Mounting evidence suggests lipid droplet metabolism is involved in the process of metastasis. As a mechanism to selectively degrade lipid droplets, the current research on lipophagy and tumor metastasis is quite limited. This review summarizes the crosstalk among lipophagy, tumor lipid metabolism and cancer metastasis, which will provide a new reference for the development of effective targeted drugs. Abstract Obesity is a prominent risk factor for certain types of tumor progression. Adipocytes within tumor stroma contribute to reshaping tumor microenvironment (TME) and the metabolism and metastasis of tumors through the production of cytokines and adipokines. However, the crosstalk between adipocytes and tumor cells remains a major gap in this field. Known as a subtype of selective autophagy, lipophagy is thought to contribute to lipid metabolism by breaking down intracellular lipid droplets (LDs) and generating free fatty acids (FAs). The metastatic potential of cancer cells closely correlates with the lipid degradation mechanisms, which are required for energy generation, signal transduction, and biosynthesis of membranes. Here, we discuss the recent advance in the understanding of lipophagy with tumor lipid metabolism and review current studies on the roles of lipoghagy in the metastasis of certain human malignancies. Additionally, the novel candidate drugs targeting lipophagy are integrated for effective treatment strategies.
Collapse
Affiliation(s)
- Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ying Shan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Tian Xia
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Yan Ji
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ling Yuan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| |
Collapse
|
50
|
Lv WH, Zhao T, Pantopoulos K, Chen GH, Wei XL, Zhang DG, Luo Z. Manganese-Induced Oxidative Stress Contributes to Intestinal Lipid Deposition via the Deacetylation of PPARγ at K339 by SIRT1. Antioxid Redox Signal 2022; 37:417-436. [PMID: 35293223 DOI: 10.1089/ars.2021.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Excessive manganese (Mn) exposure is toxic, and induces lipid deposition, but the underlying mechanisms remain elusive. Herein, we explored how dietary Mn supplementation affects lipid deposition and metabolism in the intestine of vertebrates using the yellow catfish Pelteobagrus fulvidraco as the model. Results: High-Mn (H-Mn) diet increased intestinal Mn content, promoted lipid accumulation and lipogenesis, and inhibited lipolysis. In addition, it induced oxidative stress, upregulated metal-response element-binding transcription factor-1 (MTF-1), and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in the nucleus, induced PPARγ acetylation, and the interaction between PPARγ and retinoid X receptor alpha (RXRα), while it downregulated sirtuin 1 (SIRT1) expression and activity. Mechanistically, Mn activated the MTF-1/divalent metal transporter 1 (DMT1) pathway, increased Mn accumulation in the mitochondria, and induced oxidative stress. This in turn promoted lipid deposition via deacetylation of PPARγ at K339 by SIRT1. Subsequently, PPARγ mediated Mn-induced lipid accumulation through transcriptionally activating fatty acid translocase, stearoyl-CoA desaturase 1, and perilipin 2 promoters. Innovation: These studies uncover a previously unknown mechanism by which Mn induces lipid deposition in the intestine via the oxidative stress-SIRT1-PPARγ pathway. Conclusion: High dietary Mn intake activates MTF-1/DMT1 and oxidative stress pathways. Oxidative stress-mediated PPARγ deacetylation at K339 site contributes to increased lipid accumulation. Our results provided a direct link between Mn and lipid metabolism via the oxidative stress-SIRT1-PPARγ axis. Antioxid. Redox Signal. 37, 417-436.
Collapse
Affiliation(s)
- Wu-Hong Lv
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Canada
| | - Guang-Hui Chen
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|