1
|
Antonova EV, Shimalina NS, Korotkova AM, Kolosovskaya EV, Gerasimova SV, Khlestkina EK. Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1169. [PMID: 38732384 PMCID: PMC11085773 DOI: 10.3390/plants13091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.
Collapse
Affiliation(s)
- Elena V Antonova
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Nadezhda S Shimalina
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Anna M Korotkova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Ekaterina V Kolosovskaya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Sophia V Gerasimova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Joshi A, Yang SY, Song HG, Min J, Lee JH. Genetic Databases and Gene Editing Tools for Enhancing Crop Resistance against Abiotic Stress. BIOLOGY 2023; 12:1400. [PMID: 37997999 PMCID: PMC10669554 DOI: 10.3390/biology12111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Abiotic stresses extensively reduce agricultural crop production globally. Traditional breeding technology has been the fundamental approach used to cope with abiotic stresses. The development of gene editing technology for modifying genes responsible for the stresses and the related genetic networks has established the foundation for sustainable agriculture against environmental stress. Integrated approaches based on functional genomics and transcriptomics are now expanding the opportunities to elucidate the molecular mechanisms underlying abiotic stress responses. This review summarizes some of the features and weblinks of plant genome databases related to abiotic stress genes utilized for improving crops. The gene-editing tool based on clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized stress tolerance research due to its simplicity, versatility, adaptability, flexibility, and broader applications. However, off-target and low cleavage efficiency hinder the successful application of CRISPR/Cas systems. Computational tools have been developed for designing highly competent gRNA with better cleavage efficiency. This powerful genome editing tool offers tremendous crop improvement opportunities, overcoming conventional breeding techniques' shortcomings. Furthermore, we also discuss the mechanistic insights of the CRISPR/Cas9-based genome editing technology. This review focused on the current advances in understanding plant species' abiotic stress response mechanism and applying the CRISPR/Cas system genome editing technology to develop crop resilience against drought, salinity, temperature, heavy metals, and herbicides.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Hyung-Geun Song
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-Y.Y.); (H.-G.S.)
- Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Xu T, Meng S, Zhu X, Di J, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na +/K + balance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1004477. [PMID: 36777542 PMCID: PMC9910287 DOI: 10.3389/fpls.2022.1004477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Salt stress is one of the main abiotic stresses affecting crop yield and quality. Barley has strong salt tolerance, however, the underlying genetic basis is not fully clear, especially in the seedling stage. This study examined the ionic changes in barley core germplasms under the control and salt conditions. Genome-wide association study (GWAS) analysis revealed 54 significant SNPs from a pool of 25,342 SNPs distributed in 7 chromosomes (Chr) of the Illumina Barley 50K SNP array. These SNPs are associated with ion homeostasis traits, sodium (Na+) and potassium (K+) content, and Na+/K+ ratio representing five genomic regions on Chr 2, 4, 5, 6, and 7 in the leaves of worldwide barley accessions. And there are 3 SNP peaks located on the Chr 4, 6, and 7, which could be the "hot spots" regions for mining and identifying candidate genes for salt tolerance. Furthermore, 616 unique candidate genes were screened surrounding the significant SNPs, which are associated with transport proteins, protein kinases, binding proteins, and other proteins of unknown function. Meanwhile, transcriptomic analysis (RNA-Seq) was carried out to compare the salt-tolerant (CM72) and salt-sensitive (Gairdner) genotypes subjected to salt stress. And there was a greater accumulation of differentially expressed genes(DEGs) in Gairdner compared to CM72, mainly enriched in metabolic pathway, biosynthesis of secondary metabolites, photosynthesis, signal transduction,emphasizing the different transcriptional response in both genotypes following salt exposure. Combined GWAS and RNA-Seq analysis revealed 5 promising salt-responding genes (PGK2, BASS3, SINAT2, AQP, and SYT3) from the hot spot regions, which were verified between the salt-tolerant and salt-sensitive varieties by qRT-PCR. In all, these results provide candidate SNPs and genes responsible for salinity responding in barley, and a new idea for studying such genetic basis in similar crops.
Collapse
|
4
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Zia MAB, Yousaf MF, Asim A, Naeem M. An overview of genome-wide association mapping studies in Poaceae species (model crops: wheat and rice). Mol Biol Rep 2022; 49:12077-12090. [DOI: 10.1007/s11033-022-08036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
6
|
Khan RWA, Khan RSA, Awan FS, Akrem A, Iftikhar A, Anwar FN, Alzahrani HAS, Alsamadany H, Iqbal RK. Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat. Front Genet 2022; 13:946869. [PMID: 36159962 PMCID: PMC9492296 DOI: 10.3389/fgene.2022.946869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Salinity is one of the significant factors in decreasing wheat yield and quality. To counter this, it is necessary to develop salt-tolerant wheat varieties through conventional and advanced molecular techniques. The current study identified quantitative trait loci in response to salt stress among worldwide landraces and improved varieties of wheat at the seedling stage. A total of 125 landraces and wheat varieties were subjected to salt treatment (50, 100, and 150 mM) with control. Morphological seedling traits, i.e., shoot length, root length, and fresh and dry shoot and root weights for salinity tolerance were observed to assess salt tolerance and genetic analysis using SNP data through DArT-seq. The results showed that, at the seedling stage, 150 mM NaCl treatment decreased shoot length, root length, and fresh and dry weights of the shoot and root. The root length and dry root weight were the most affected traits at the seedling stage. Effective 4417 SNPs encompassing all the chromosomes of the wheat genome with marker density, i.e., 37%, fall in genome B, genome D (32%), and genome A (31%). Five loci were found on four chromosomes 6B, 6D, 7A, and 7D, showing strong associations with the root length, fresh shoot weight, fresh root weight, and dry root weight at the p < 0.03 significance level. The positive correlation was found among all morphological traits under study.
Collapse
Affiliation(s)
- Rao Waqar Ahmad Khan
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Faisal Saeed Awan, , ; Rana Khalid Iqbal,
| |
Collapse
|
7
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
8
|
Overview of Identified Genomic Regions Associated with Various Agronomic and Physiological Traits in Barley under Abiotic Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change has caused breeders to focus on varieties that are able to grow under unfavorable conditions, such as drought, high and low temperatures, salinity, and other stressors. In recent decades, progress in biotechnology and its related tools has provided opportunities to dissect and decipher the genetic basis of tolerance to various stress conditions. One such approach is the identification of genomic regions that are linked with specific or multiple characteristics. Cereal crops have a key role in supplying the energy required for human and animal populations. However, crop products are dramatically affected by various environmental stresses. Barley (Hordeum vulgare L.) is one of the oldest domesticated crops that is cultivated globally. Research has shown that, compared with other cereals, barley is well adapted to various harsh environmental conditions. There is ample literature regarding these responses to abiotic stressors, as well as the genomic regions associated with the various morpho-physiological and biochemical traits of stress tolerance. This review focuses on (i) identifying the tolerance mechanisms that are important for stable growth and development, and (ii) the applicability of QTL mapping and association analysis in identifying genomic regions linked with stress-tolerance traits, in order to help breeders in marker-assisted selection (MAS) to quickly screen tolerant germplasms in their breeding cycles. Overall, the information presented here will inform and assist future barley breeding programs.
Collapse
|
9
|
Sayed MA, Tarawneh R, Youssef HM, Pillen K, Börner A. Detection and Verification of QTL for Salinity Tolerance at Germination and Seedling Stages Using Wild Barley Introgression Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112246. [PMID: 34834608 PMCID: PMC8624391 DOI: 10.3390/plants10112246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Salinity is one of the major environmental factors that negatively affect crop development, particularly at the early growth stage of a plant and consequently the final yield. Therefore, a set of 50 wild barley (Hordeum vulgare ssp. spontaneum, Hsp) introgression lines (ILs) was used to detect QTL alleles improving germination and seedling growth under control, 75 mM, and 150 mM NaCl conditions. Large variation was observed for germination and seedling growth related traits that were highly heritable under salinity stress. In addition, highly significant differences were obtained for five salinity tolerance indices and between treatments as well. A total of 90 and 35 significant QTL were identified for ten investigated traits and for tolerance indices, respectively. The Hsp introgression alleles are involved in improving salinity tolerance at forty (43.9%) out of 90 QTL including introgression lines S42IL-109 (2H), S42IL-116 (4H), S42IL-132 (6H), S42IL-133 (7H), S42IL-148 (6H), and S42IL-176 (5H). Interestingly, seven exotic QTL alleles were successfully validated in the wild barley ILs including S42IL-127 (5H), 139 (7H), 125 (5H), 117 (4H), 118 (4H), 121 (4H), and 137 (7H). We conclude that the barley introgression lines contain numerous germination and seedling growth-improving novel QTL alleles, which are effective under salinity conditions.
Collapse
Affiliation(s)
- Mohammed Abdelaziz Sayed
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| | - Rasha Tarawneh
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| | - Helmy Mohamed Youssef
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany;
| | - Klaus Pillen
- Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany;
| | - Andreas Börner
- Resources Genetics and Reproduction, Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, D-06466 Seeland, Germany;
| |
Collapse
|
10
|
Khatab IA, Bellah Ali El-Mouhamady A, Mariey SA, Mohammed El-Hawary M, Ali Farg Habouh M. Molecular Evaluation and Identification of Some Barley Hybrids Tolerant to Salt Stress. Pak J Biol Sci 2021; 24:997-1014. [PMID: 34585553 DOI: 10.3923/pjbs.2021.997.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Barley is considering one of the most important cereal crops at the local and global levels. It is ranked second in terms of nutritional importance after wheat and its flour contributes significantly to bridging the large nutritional gap in the production of Egyptian bread. The aim of this study concentrated on knowing and testing the genetic behaviour responsible for salinity stress tolerance in barley as trying to improve barley crop and increase its ability for abiotic stress resistance under Egyptian conditions. <b>Materials and Methods:</b> Twenty-one crosses and ten parents of barley with different responses to salinity tolerance were evaluated in this investigation under normal and salinity conditions. Yield and its components and some physiological traits related to salt stress tolerance were the most important studied attributes evaluated in this regard under both conditions. Moreover, SSR markers were used to evaluate and identified associated markers for salinity tolerance in selected hybrids and comparing among the ten barley parents. <b>Results:</b> The final results confirmed that the three testers; Giza 123, Giza 126 and Giza 2000 besides; the crosses; Line 1XTester 1 (Giza 125XGiza 123), Line 2XTester 1 (Giza 133XGiza 123), Line 1XTester 2 (Giza 125XGiza 126), Line 2XTester 2 (Giza 133XGiza 126) and Line 1XTester 3 (Giza 125XGiza 2000) exhibited highly salinity tolerance under saline stress treatment compared with the control experiment. Among 15 analyzed barley entries, the chosen set of 11 markers amplified 20 alleles with an average of 1.81, with a range from 1-4 alleles. <b>Conclusion:</b> The results of SSR analysis and the data on valued agricultural trait loci determined the genetic distance among parents and their hybrids, which is of an unlimited rate for breeders.
Collapse
|
11
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
12
|
Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 2021; 113:3198-3215. [PMID: 34293475 DOI: 10.1016/j.ygeno.2021.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
Collapse
|
13
|
Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. Genome-Wide Association Study Uncover the Genetic Architecture of Salt Tolerance-Related Traits in Common Wheat ( Triticum aestivum L.). Front Genet 2021; 12:663941. [PMID: 34093656 PMCID: PMC8172982 DOI: 10.3389/fgene.2021.663941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
Soil salinity is a serious threat to wheat yield affecting sustainable agriculture. Although salt tolerance is important for plant establishment at seedling stage, its genetic architecture remains unclear. In the present study, we have evaluated eight salt tolerance-related traits at seedling stage and identified the loci for salt tolerance by genome-wide association study (GWAS). This GWAS panel comprised 317 accessions and was genotyped with the wheat 90 K single-nucleotide polymorphism (SNP) chip. In total, 37 SNPs located at 16 unique loci were identified, and each explained 6.3 to 18.6% of the phenotypic variations. Among these, six loci were overlapped with previously reported genes or quantitative trait loci, whereas the other 10 were novel. Besides, nine loci were detected for two or more traits, indicating that the salt-tolerance genetic architecture is complex. Furthermore, five candidate genes were identified for salt tolerance-related traits, including kinase family protein, E3 ubiquitin-protein ligase-like protein, and transmembrane protein. SNPs identified in this study and the accessions with more favorable alleles could further enhance salt tolerance in wheat breeding. Our results are useful for uncovering the genetic mechanism of salt tolerance in wheat at seeding stage.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Zhang
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunjuan Xie
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hongmei Li
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing He
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuxiang Qin
- Department of Biological Science, School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
14
|
Jia Z, Bienert MD, von Wirén N, Bienert GP. Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. PHYSIOLOGIA PLANTARUM 2021; 171:809-822. [PMID: 33481273 DOI: 10.1111/ppl.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.
Collapse
Affiliation(s)
- Zhongtao Jia
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manuela Désirée Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Jabbari M, Fakheri BA, Aghnoum R, Darvishzadeh R, Mahdi Nezhad N, Ataei R, Koochakpour Z, Razi M. Association analysis of physiological traits in spring barley ( Hordeum vulgare L.) under water-deficit conditions. Food Sci Nutr 2021; 9:1761-1779. [PMID: 33747487 PMCID: PMC7958556 DOI: 10.1002/fsn3.2161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the present study, 148 commercial barley cultivars were assessed by 14 AFLP primer combinations and 32 SSRs primer pairs. Population structure, linkage disequilibrium, and genomic regions associated with physiological traits under drought stress were investigated. The phenotypic results showed a high level of diversity between studied cultivars. The studied barley cultivars were divided into two subgroups. Linkage disequilibrium analysis revealed that r 2 values among all possible marker pairs have an average value of 0.0178. The mixed linear model procedure showed that totally, 207 loci had a significant association with investigated traits. 120 QTLs out of 207 were detected for traits under normal conditions, and 90 QTLs were detected for traits under drought stress conditions. Identified QTLs after validation and transferring to SCAR markers in the case of AFLPs can be used to develop MAS strategies for barley breeding programs. Some common markers were identified for a particular trait or some traits across normal and drought stress conditions. These markers show low interaction with environmental conditions (stable markers); therefore, selection by them for a trait under normal conditions will improve the trait value under stress conditions, too.
Collapse
Affiliation(s)
- Mitra Jabbari
- Faculty of AgricultureHigher Education Complex of SaravanSaravanSistan and BaluchestanIran
| | - Barat Ali Fakheri
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Aghnoum
- Seed and Plant Improvement Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadKhorasan RazaviIran
| | - Reza Darvishzadeh
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Reza Ataei
- Seed and Plant Improvement InstituteAgricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Zahra Koochakpour
- Department of Plant Breeding and BiotechnologyFaculty of AgricultureUniversity of ZabolZabolSistan and BaluchestanIran
| | - Mitra Razi
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| |
Collapse
|
16
|
Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 2021; 296:391-408. [DOI: 10.1007/s00438-020-01749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
|
17
|
Sertse D, You FM, Ravichandran S, Soto-Cerda BJ, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:191-212. [PMID: 33047220 DOI: 10.1007/s00122-020-03691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 05/19/2023]
Abstract
QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Centre (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Scott Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada.
| |
Collapse
|
18
|
The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley ( Hordeum vulgare L.) Seedlings. ScientificWorldJournal 2020; 2020:6649746. [PMID: 33343237 PMCID: PMC7725555 DOI: 10.1155/2020/6649746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.
Collapse
|
19
|
Chaurasia S, Singh AK, Songachan LS, Sharma AD, Bhardwaj R, Singh K. Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 2020; 112:4608-4621. [PMID: 32771624 DOI: 10.1016/j.ygeno.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Soil salinity is one of the typical abiotic stresses affecting sustainability of wheat production worldwide. In the present study, we performed a 35 K SNP genotyping assay on association panel of 135 diverse wheat genotypes evaluated for vegetative stage tolerance in hydroponics. Association analyses using five multi-locus GWAS models revealed 42 reliable QTNs for 10 salt tolerance associated traits. Among these 42 reliable QTNs, 9, 17 and 16 QTNs were associated with physiological, biomass and shoot ionic traits respectively. Novel major QTNs were identified for chlorophyll content, shoot fresh weight, seedling total biomass, Na+ and K+ concentration and Na+/K+ ratio in shoots. Further, 10 major QTNs showed significant effect on the corresponding salt tolerance traits. Gene ontology analysis of the associated genomic regions identified 58 candidate genes. The information generated in this study will be of potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection.
Collapse
Affiliation(s)
- Shiksha Chaurasia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India; Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India.
| | - L S Songachan
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Axma Dutt Sharma
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
20
|
Saade S, Brien C, Pailles Y, Berger B, Shahid M, Russell J, Waugh R, Negrão S, Tester M. Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS One 2020; 15:e0236037. [PMID: 32701981 PMCID: PMC7377408 DOI: 10.1371/journal.pone.0236037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/27/2020] [Indexed: 11/18/2022] Open
Abstract
Soil salinity imposes an agricultural and economic burden that may be alleviated by identifying the components of salinity tolerance in barley, a major crop and the most salt tolerant cereal. To improve our understanding of these components, we evaluated a diversity panel of 377 two-row spring barley cultivars during both the vegetative, in a controlled environment, and the reproductive stages, in the field. In the controlled environment, a high-throughput phenotyping platform was used to assess the growth-related traits under both control and saline conditions. In the field, the agronomic traits were measured from plots irrigated with either fresh or saline water. Association mapping for the different components of salinity tolerance enabled us to detect previously known associations, such as HvHKT1;5. Using an "interaction model", which took into account the interaction between treatment (control and salt) and genetic markers, we identified several loci associated with yield components related to salinity tolerance. We also observed that the two developmental stages did not share genetic regions associated with the components of salinity tolerance, suggesting that different mechanisms play distinct roles throughout the barley life cycle. Our association analysis revealed that genetically defined regions containing known flowering genes (Vrn-H3, Vrn-H1, and HvNAM-1) were responsive to salt stress. We identified a salt-responsive locus (7H, 128.35 cM) that was associated with grain number per ear, and suggest a gene encoding a vacuolar H+-translocating pyrophosphatase, HVP1, as a candidate. We also found a new QTL on chromosome 3H (139.22 cM), which was significant for ear number per plant, and a locus on chromosome 2H (141.87 cM), previously identified using a nested association mapping population, which associated with a yield component and interacted with salinity stress. Our study is the first to evaluate a barley diversity panel for salinity stress under both controlled and field conditions, allowing us to identify contributions from new components of salinity tolerance which could be used for marker-assisted selection when breeding for marginal and saline regions.
Collapse
Affiliation(s)
- Stephanie Saade
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chris Brien
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Urrbrae, South Australia, Australia
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, Waite Research Precinct, University of Adelaide, Urrbrae, South Australia, Australia
| | - Yveline Pailles
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bettina Berger
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Urrbrae, South Australia, Australia
- The Plant Accelerator, Australian Plant Phenomics Facility, Waite Research Precinct, University of Adelaide, Urrbrae, South Australia, Australia
| | - Mohammad Shahid
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Robbie Waugh
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Urrbrae, South Australia, Australia
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, Scotland
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, Scotland
| | - Sónia Negrão
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Mark Tester
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Houston K, Qiu J, Wege S, Hrmova M, Oakey H, Qu Y, Smith P, Situmorang A, Macaulay M, Flis P, Bayer M, Roy S, Halpin C, Russell J, Schreiber M, Byrt C, Gilliham M, Salt DE, Waugh R. Barley sodium content is regulated by natural variants of the Na + transporter HvHKT1;5. Commun Biol 2020; 3:258. [PMID: 32444849 PMCID: PMC7244711 DOI: 10.1038/s42003-020-0990-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/04/2022] Open
Abstract
During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Life Science, Huaiyin Normal University, 223300, Huaian, China
| | - Helena Oakey
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Yue Qu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Pauline Smith
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Micha Bayer
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Stuart Roy
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot Dry Climate, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Claire Halpin
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Caitlin Byrt
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- Research School of Biology, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, 2601, Australia
| | - Matt Gilliham
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
22
|
Dong Y, Hu G, Yu J, Thu SW, Grover CE, Zhu S, Wendel JF. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1135-1151. [PMID: 31642116 DOI: 10.1111/tpj.14580] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
The development of salt-tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD-genome) and diploid (A- and D-genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt-tolerant species were the allopolyploid Gossypium mustelinum from north-east Brazil, the D-genome diploid Gossypium klotzschianum from the Galapagos Islands, followed by the A-genome diploids of Africa and Asia. Generally, A-genome accessions outperformed D-genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondary Gossypium gene pool to breed for improved salt tolerance.
Collapse
Affiliation(s)
- Yating Dong
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingwen Yu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sandi Win Thu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
23
|
Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. Non-Invasive Phenotyping Reveals Genomic Regions Involved in Pre-Anthesis Drought Tolerance and Recovery in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1307. [PMID: 31708943 PMCID: PMC6823269 DOI: 10.3389/fpls.2019.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/19/2019] [Indexed: 05/07/2023]
Abstract
With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.
Collapse
Affiliation(s)
- Sidram Dhanagond
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guozheng Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- BBCC – Innovation Center Gent, Gent Zwijnaarde, Belgium
| | - Yusheng Zhao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dijun Chen
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele Grieco
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benjamin Kilian
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
24
|
Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread Wheat With High Salinity and Sodicity Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1280. [PMID: 31695711 PMCID: PMC6817574 DOI: 10.3389/fpls.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Soil salinity and sodicity are major constraints to global cereal production, but breeding for tolerance has been slow. Narrow gene pools, over-emphasis on the sodium (Na+) exclusion mechanism, little attention to osmotic stress/tissue tolerance mechanism(s) in which accumulation of inorganic ions such as Na+ is implicated, and lack of a suitable screening method have impaired progress. The aims of this study were to discover novel genes for Na+ accumulation using genome-wide association studies, compare growth responses to salinity and sodicity in low-Na+ bread Westonia with Nax1 and Nax2 genes and high-Na+ bread wheat Baart-46, and evaluate growth responses to salinity and sodicity in bread wheats with varying leaf Na+ concentrations. The novel high-Na+ bread wheat germplasm, MW#293, had higher grain yield under salinity and sodicity, in absolute and relative terms, than the other bread wheat entries tested. Genes associated with high Na+ accumulation in bread wheat were identified, which may be involved in tissue tolerance/osmotic adjustment. As most modern bread wheats are efficient at excluding Na+, further reduction in plant Na+ is unlikely to provide agronomic benefit. The salinity and sodicity tolerant germplasm MW#293 provides an opportunity for the development of future salinity/sodicity tolerant bread wheat.
Collapse
Affiliation(s)
- Yusuf Genc
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Julian Taylor
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Graham Lyons
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Judy Cheong
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | | | - Klaus Oldach
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
van Bezouw RFHM, Janssen EM, Ashrafuzzaman M, Ghahramanzadeh R, Kilian B, Graner A, Visser RGF, van der Linden CG. Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153029. [PMID: 31499444 DOI: 10.1016/j.jplph.2019.153029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
High affinity potassium transporters (HKT) are recognized as important genes for crop salt tolerance improvement. In this study, we investigated HvHKT1;5 as a candidate gene for a previously discovered quantitative trait locus that controls shoot Na+ and Na+/K+ ratio in salt-stressed barley lines on a hydroponic system. Two major haplotype groups could be distinguished for this gene in a barley collection of 95 genotypes based on the presence of three intronic insertions; a designated haplotype group A (HGA, same as reference sequence) and haplotype group B (HGB, with insertions). HGB was associated with a much stronger root expression of HKT1;5 compared to HGA, and consequently higher K+ and lower Na+ and Cl- concentrations and a lower Na+/K+ ratio in the shoots three weeks after exposure to 200 mM NaCl. Our experimental results suggest that allelic variation in the promoter region of the HGB gene is linked to the three insertions may be responsible for the observed increase in expression of HvHKT1;5 alleles after one week of salt stress induction. This study shows that in barley - similar to wheat and rice - HKT1;5 is an important contributor to natural variation in shoot Na+ exclusion.
Collapse
Affiliation(s)
- Roel F H M van Bezouw
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands.
| | - Elly M Janssen
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Md Ashrafuzzaman
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Robab Ghahramanzadeh
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany; Global Crop Diversity Trust, 53113, Bonn, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
| | - Richard G F Visser
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| | - C Gerard van der Linden
- Wageningen University and Research, Plant Breeding, PO Box 386, 6700 AJ, Wageningen, the Netherlands
| |
Collapse
|
26
|
Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi MA, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. The genetic basis of drought tolerance in the high oil crop Sesamum indicum. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1788-1803. [PMID: 30801874 PMCID: PMC6686131 DOI: 10.1111/pbi.13100] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 05/18/2023]
Abstract
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome-wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long-term genetic adaptation to drought-prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Marie A. Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Daniel Fonceka
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Ndiaga Cissé
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| |
Collapse
|
27
|
Abdel-Ghani AH, Sharma R, Wabila C, Dhanagond S, Owais SJ, Duwayri MA, Al-Dalain SA, Klukas C, Chen D, Lübberstedt T, von Wirén N, Graner A, Kilian B, Neumann K. Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC PLANT BIOLOGY 2019; 19:216. [PMID: 31122195 PMCID: PMC6533710 DOI: 10.1186/s12870-019-1828-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
Collapse
Affiliation(s)
- Adel H. Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Rajiv Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Division of Plant Science, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA UK
| | - Celestine Wabila
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Sidram Dhanagond
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Saed J. Owais
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Mahmud A. Duwayri
- Department of Horticulture and Agronomy, Faculty of Agriculture, University of Jordan, Amman, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa’ Applied University, Al-, Salt, 19117 Jordan
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Digitalization in Research & Development (ROM), BASF SE, 67056 Ludwigshafen, Germany
| | - Dijun Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011 USA
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| |
Collapse
|
28
|
Jia Z, Liu Y, Gruber BD, Neumann K, Kilian B, Graner A, von Wirén N. Genetic Dissection of Root System Architectural Traits in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:400. [PMID: 31001309 PMCID: PMC6454135 DOI: 10.3389/fpls.2019.00400] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/18/2019] [Indexed: 05/19/2023]
Abstract
Breeding new crop cultivars with efficient root systems carries great potential to enhance resource use efficiency and plant adaptation to unstable climates. Here, we evaluated the natural variation of root system architectural traits in a diverse spring barley association panel and conducted genome-wide association mapping to identify genomic regions associated with root traits. For six studied traits, root system depth, root spreading angle, seminal root number, total seminal root length, and average seminal root length 1.9- to 4.2-fold variations were recorded. Using a mixed linear model, 55 QTLs were identified cumulatively explaining between 12.1% of the phenotypic variance for seminal root number to 48.1% of the variance for root system depth. Three major QTLs controlling root system depth, root spreading angle and total seminal root length were found on Chr 2H (56.52 cM), Chr 3H (67.92 cM), and Chr 2H (76.20 cM) and explained 12.4%, 18.4%, and 22.2% of the phenotypic variation, respectively. Meta-analysis and allele combination analysis indicated that root system depth and root spreading angle are valuable candidate traits for improving grain yield by pyramiding of favorable alleles.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Benjamin D. Gruber
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Kerstin Neumann
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Benjamin Kilian
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Graner
- Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
29
|
Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A. Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:323-346. [PMID: 30392081 PMCID: PMC6349800 DOI: 10.1007/s00122-018-3220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
SNP alleles on chromosomes 4BL and 6AL are associated with sensitivity to salt tolerance in wheat and upon validation can be exploited in the development of salt-tolerant wheat varieties. The dissection of the genetic and molecular components of salt stress response offers strong opportunities toward understanding and improving salt tolerance in crops. In this study, GWAS was employed to identify a total of 106 SNP loci (R2 = 0.12-63.44%) linked to salt stress response in wheat using leaf chlorophyll fluorescence, grain quality and shoot ionic (Na+ and K+ ions) attributes. Among them, 14 SNP loci individually conferred pleiotropic effects on multiple independent salinity tolerance traits including loci at 99.04 cM (R2 ≥ 14.7%) and 68.45 cM (R2 ≥ 4.10%) on chromosomes 6AL and 4BL, respectively, that influenced shoot Na+-uptake, shoot K+/Na+ ratio, and specific energy fluxes for absorption (ABS/RC) and dissipation (DIo/RC). Analysis of the open reading frame (ORF) containing the SNP markers revealed that they are orthologous to genes involved in photosynthesis and plant stress (salt) response. Further transcript abundance and qRT-PCR analyses indicated that the genes are mostly up-regulated in salt-tolerant and down-regulated in salt-sensitive wheat genotypes including NRAMP-2 and OPAQUE1 genes on 4BL and 6AL, respectively. Both genes showed highest differential expression between contrasting genotypes when expressions of all the genes within their genetic intervals were analyzed. Possible cis-acting regulatory elements and coding sequence variation that may be involved in salt stress response were also identified in both genes. This study identified genetic and molecular components of salt stress response that are associated with Na+-uptake, shoot Na+/K+ ratio, ABS/RC, DIo/RC, and grain quality traits and upon functional validation would facilitate the development of gene-specific markers that could be deployed to improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Benedict C Oyiga
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
- Center for Development Research (ZEF), Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | | | - Ram C Sharma
- International Center for Agricultural Research in the Dry Areas (ICARDA), Tashkent, Uzbekistan
| | - Michael Baum
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Al Irfane, 10112, Rabat, Morocco
| | - Jens Léon
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | - Agim Ballvora
- INRES-Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany.
| |
Collapse
|
30
|
Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. PLANT, CELL & ENVIRONMENT 2018; 41:919-935. [PMID: 28044314 DOI: 10.1111/pce.12898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 05/08/2023]
Abstract
The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K+ and Na+ contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R2 = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat.
Collapse
Affiliation(s)
- Benedict C Oyiga
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
- Center for Development Research (ZEF), Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| | - Ram C Sharma
- International Center for Agricultural Research in the Dry Areas (ICARDA), 6 Osiyo Street, Tashkent, 100000, Uzbekistan
| | - Michael Baum
- International Centre for Agricultural Research in the Dry Areas (ICARDA), PO Box 6299, Al Irfane, 10112, Rabat, Morocco
| | - Francis C Ogbonnaya
- International Centre for Agricultural Research in the Dry Areas (ICARDA), PO Box 6299, Al Irfane, 10112, Rabat, Morocco
- Grains Research and Development Corporation, PO Box 5367, Kingston, Australian Capital Territory, 2604, Australia
| | - Jens Léon
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| | - Agim Ballvora
- INRES Pflanzenzuchtung, Rheinische Friedrich-Wilhelms-Universitat, D-53115 Bonn, Germany
| |
Collapse
|
31
|
GWAS Uncovers Differential Genetic Bases for Drought and Salt Tolerances in Sesame at the Germination Stage. Genes (Basel) 2018; 9:genes9020087. [PMID: 29443881 PMCID: PMC5852583 DOI: 10.3390/genes9020087] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame has great potential as an industrial crop but its production is challenged by drought and salt stresses. To unravel the genetic variants leading to salinity and drought tolerances at the germination stage, genome-wide association studies of stress tolerance indexes related to NaCl-salt and polyethylene glycol-drought induced stresses were performed with a diversity panel of 490 sesame accessions. An extensive variation was observed for drought and salt responses in the population and most of the accessions were moderately tolerant to both stresses. A total of 132 and 120 significant Single Nucleotide Polymorphisms (SNPs) resolved to nine and 15 Quantitative trait loci (QTLs) were detected for drought and salt stresses, respectively. Only two common QTLs for drought and salt responses were found located on linkage groups 5 and 7, respectively. This indicates that the genetic bases for drought and salt responses in sesame are different. A total of 13 and 27 potential candidate genes were uncovered for drought and salt tolerance indexes, respectively, encoding transcription factors, antioxidative enzymes, osmoprotectants and involved in hormonal biosynthesis, signal transduction or ion sequestration. The identified SNPs and potential candidate genes represent valuable resources for future functional characterization towards the enhancement of sesame cultivars for drought and salt tolerances.
Collapse
|
32
|
Hazzouri KM, Khraiwesh B, Amiri KMA, Pauli D, Blake T, Shahid M, Mullath SK, Nelson D, Mansour AL, Salehi-Ashtiani K, Purugganan M, Masmoudi K. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. FRONTIERS IN PLANT SCIENCE 2018; 9:156. [PMID: 29515598 PMCID: PMC5826053 DOI: 10.3389/fpls.2018.00156] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/29/2018] [Indexed: 05/20/2023]
Abstract
Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na+ from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na+ unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley.
Collapse
Affiliation(s)
- Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Center for Genomics and Systems Biology, New York University of Abu Dhabi, Abu Dhabi, United Arab Emirates
- Khaled M. Hazzouri ;
| | - Basel Khraiwesh
- Laboratory of Algal and Systems Biology, New York University of Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Duke Pauli
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Tom Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Mohammad Shahid
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Sangeeta K. Mullath
- Department of Arid Land Agriculture, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - David Nelson
- Center for Genomics and Systems Biology, New York University of Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alain L. Mansour
- Date Palm Tissue Culture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal and Systems Biology, New York University of Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University of Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Khaled Masmoudi
- Department of Arid Land Agriculture, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled Masmoudi
| |
Collapse
|
33
|
Ravelombola W, Shi A, Weng Y, Mou B, Motes D, Clark J, Chen P, Srivastava V, Qin J, Dong L, Yang W, Bhattarai G, Sugihara Y. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:79-91. [PMID: 28948303 DOI: 10.1007/s00122-017-2987-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 05/08/2023]
Abstract
This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.
Collapse
Affiliation(s)
- Waltram Ravelombola
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Yuejin Weng
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, US Department of Agriculture, Agricultural Research Service (USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| | - Dennis Motes
- Vegetable Research Center, University of Arkansas, Alma, AR, 72921, USA
| | - John Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Pengyin Chen
- Fisher Delta Research Center, College of Agriculture, Food and Natural Resources, University of Missouri, P.O. Box 160, 147 State Highway T, Portageville, MO, 63873, USA
| | - Vibha Srivastava
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jun Qin
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lingdi Dong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wei Yang
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yuichi Sugihara
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
34
|
Nguyen THN, Schulz D, Winkelmann T, Debener T. Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. PLANT CELL REPORTS 2017. [PMID: 28647832 DOI: 10.1007/s00299-017-2170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We analysed the capacity to regenerate adventitious shoots in 96 rose genotypes and found 88 SNP markers associated with QTLs, some of which are derived from candidate genes for shoot regeneration. In an association panel of 96 rose genotypes previously analysed for petal colour, we conducted a genome-wide association study on the capacity of leaf petioles for direct shoot regeneration. Shoot regeneration rate and shoot ratio (number of shoots/total number of explants) were used as phenotypic descriptors for regeneration capacity. Two independent experiments were carried out with six replicates of ten explants each. We found significant variation between the genotypes ranging from 0.88 to 88.33% for the regeneration rate and from 0.008 to 1.2 for the shoot ratio, which exceeded the rates reported so far. Furthermore, we found 88 SNP markers associated with either the shoot regeneration rate or the shoot ratio. In this association analysis, we found 12 SNP markers from ESTs (expressed sequence tags) matching known candidate genes that are involved in shoot morphogenesis. The best markers explained more than 51% of the variance in the shoot regeneration rate and more than 0.65 of the variance in the shoot regeneration ratio between the homozygote marker classes. The genes underlying some of the best markers such as a GT-transcription factor or an LRR receptor-like protein kinase are novel candidate genes putatively involved in the observed phenotypic differences. The associated markers were mapped to the closely related genome of Fragaria vesca and revealed many distinct clusters, which also comprised the known candidate genes that functioned in the organogenesis of plant shoots. However, the validation of candidate genes and their functional relationship to shoot regeneration require further analysis in independent rose populations and functional analyses.
Collapse
Affiliation(s)
- Thi Hong Nhung Nguyen
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Institute of Agricultural Genetics, Hanoi, Vietnam
| | - Dietmar Schulz
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology, Leibniz Universität Hannover, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
35
|
Neumann K, Zhao Y, Chu J, Keilwagen J, Reif JC, Kilian B, Graner A. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. BMC PLANT BIOLOGY 2017; 17:137. [PMID: 28797222 PMCID: PMC5554006 DOI: 10.1186/s12870-017-1085-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. RESULTS With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. CONCLUSIONS Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.
Collapse
Affiliation(s)
- Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany.
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Jianting Chu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Jens Keilwagen
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
36
|
Chen CL, van der Schoot H, Dehghan S, Alvim Kamei CL, Schwarz KU, Meyer H, Visser RGF, van der Linden CG. Genetic Diversity of Salt Tolerance in Miscanthus. FRONTIERS IN PLANT SCIENCE 2017; 8:187. [PMID: 28261243 PMCID: PMC5306379 DOI: 10.3389/fpls.2017.00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 05/08/2023]
Abstract
Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus.
Collapse
Affiliation(s)
- Chang-Lin Chen
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
- Graduate School Experimental Plant Science, Wageningen University and ResearchWageningen, Netherlands
| | | | - Shiva Dehghan
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
| | - Claire L. Alvim Kamei
- Plant Breeding, Wageningen University and ResearchWageningen, Netherlands
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kai-Uwe Schwarz
- Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | - Heike Meyer
- Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | | | | |
Collapse
|
37
|
Wan H, Chen L, Guo J, Li Q, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:593. [PMID: 28491067 PMCID: PMC5405135 DOI: 10.3389/fpls.2017.00593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/31/2017] [Indexed: 05/02/2023]
Abstract
Soil salinity is a serious threat to agriculture sustainability worldwide. Salt tolerance at the seedling stage is crucial for plant establishment and high yield in saline soils; however, little information is available on rapeseed (Brassica napus L.) salt tolerance. We evaluated salt tolerance in different rapeseed accessions and conducted a genome-wide association study (GWAS) to identify salt tolerance-related quantitative trait loci (QTL). A natural population comprising 368 B. napus cultivars and inbred lines was genotyped with a Brassica 60K Illumina Infinium SNP array. The results revealed that 75 single-nucleotide polymorphisms (SNPs) distributed across 14 chromosomes were associated with four salt tolerance-related traits. These SNPs integrated into 25 QTLs that explained 4.21-9.23% of the phenotypic variation in the cultivars. Additionally, 38 possible candidate genes were identified in genomic regions associated with salt tolerance indices. These genes fell into several functional groups that are associated with plant salt tolerance, including transcription factors, aquaporins, transporters, and enzymes. Thus, salt tolerance in rapeseed involves complex molecular mechanisms. Our results provide valuable information for studying the genetic control of salt tolerance in B. napus seedlings and may facilitate marker-based breeding for rapeseed salt tolerance.
Collapse
|
38
|
Guo W, Chen T, Hussain N, Zhang G, Jiang L. Characterization of Salinity Tolerance of Transgenic Rice Lines Harboring HsCBL8 of Wild Barley ( Hordeum spontanum) Line from Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2016; 7:1678. [PMID: 27891136 PMCID: PMC5102885 DOI: 10.3389/fpls.2016.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Rice is more sensitive to salinity, particularly at its early vegetative and later productive stages. Wild plants growing in harsh environments such as wild barley from Qinghai-Tibet Plateau adapt to the adverse environment with allelic variations at the loci responsible for stressful environment, which could be used for rice genetic improvement. In this study, we overexpressed HsCBL8 encoding a calcium-sensor calcineurin B-like (CBL) protein in rice. The gene was isolated from XZ166, a wild-barley (Hordeum spontanum) line originated from Qinghai-Tibet Plateau. We found that XZ166 responded to high NaCl concentration (200 mM) with more HsCBL8 transcripts than CM72, a cultivated barley line known for salinity tolerance. XZ166 is significantly different from CM72 with nucleotide sequences at HsCBL8. The overexpression of HsCBL8 in rice resulted in significant improvement of water protection in vivo and plasma membrane, more proline accumulation, and a reduction of overall Na+ uptake but little change in K+ concentration in the plant tissues. Notably, HsCBL8 did not act on some genes downstream of the rice CBL family genes, suggesting an interesting interaction between HsCBL8 and unknown factors to be further investigated.
Collapse
Affiliation(s)
- Wanli Guo
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Biotechnology, College of Life Science, Zhejiang Sci-Tech UniversityHangzhou, China
| | - Tianlong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Nazim Hussain
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
39
|
Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.). C R Biol 2016; 339:454-461. [PMID: 27660095 DOI: 10.1016/j.crvi.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/18/2016] [Accepted: 06/19/2016] [Indexed: 12/26/2022]
Abstract
Association mapping is becoming an important tool for identifying alleles and loci responsible for dissecting highly complex traits in barley. This study describes the population structure and marker-trait association using general linear model (GLM) analysis on a site of 60 barley genotypes, evaluated in six salinity environments. Ninety-eight SSR and SNP alleles were employed for the construction of a framework genetic map. The genetic structure analysis of the collection turned out to consist of two major sub-populations, mainly comprising hulled and naked types. LD significantly varied among the barley chromosomes, suggesting that this factor may affect the resolution of association mapping for QTL located on different chromosomes. Numerous significant marker traits were associated in different regions of the barley genome controlling salt tolerance and related traits; among them, 46 QTLs were detected on 14 associated traits over the two years, with a major QTL controlling salt tolerance on 1H, 2H, 4H and 7H, which are important factors in improving barley's salt tolerance.
Collapse
|
40
|
Kan G, Ning L, Li Y, Hu Z, Zhang W, He X, Yu D. Identification of novel loci for salt stress at the seed germination stage in soybean. BREEDING SCIENCE 2016; 66:530-541. [PMID: 27795678 PMCID: PMC5010299 DOI: 10.1270/jsbbs.15147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/02/2016] [Indexed: 05/09/2023]
Abstract
Salt tolerance in soybean [Glycine max (L.) Merr.] at the seed germination stage is a critical determinant of stable stand establishment in saline soil. This study examined one population of 184 recombinant inbred lines (RILs, F7:11) derived from a cross between Kefeng1 and Nannong1138-2 and one natural population consisting of 196 soybean landraces. A total of 11 quantitative trait loci (QTLs) and 22 simple sequence repeat (SSR) loci associated with three salt tolerance indices were detected by linkage and association mapping. The SSR marker Sat_162 was found to be closely linked to the co-localized QTLs at a site 792,811 bp from the gene Glyma08g12400.1, which was verified in response to salt stress at the germination stage. Five SSR markers, Satt201, BE475343, CSSR306, Satt664 and Satt567, were co-associated with two of the salt tolerance indices, and two SSR markers, Satt156 and Satt636, were co-associated with all three salt tolerance indices. Furthermore, elite alleles and their carrier materials were identified by analyzing alleles at the loci associated with these salt tolerance indices. These results may be beneficial for the future breeding of soybean salt tolerance at the germination stage using marker-assisted selection and molecular pyramiding breeding.
Collapse
Affiliation(s)
- Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences,
Nanjing 210014,
China
| | - Yakai Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
| | - Zhenbin Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
| | - Xiaohong He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University,
Nanjing 210095,
China
- Corresponding author (e-mail: )
| |
Collapse
|
41
|
Kerbiriou PJ, Maliepaard CA, Stomph TJ, Koper M, Froissart D, Roobeek I, Lammerts Van Bueren ET, Struik PC. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:343. [PMID: 27064203 PMCID: PMC4812043 DOI: 10.3389/fpls.2016.00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.
Collapse
Affiliation(s)
- Pauline J. Kerbiriou
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | - Chris A. Maliepaard
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Tjeerd Jan Stomph
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | | | | | | | | | - Paul C. Struik
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
42
|
Du L, Cai C, Wu S, Zhang F, Hou S, Guo W. Evaluation and Exploration of Favorable QTL Alleles for Salt Stress Related Traits in Cotton Cultivars (G. hirsutum L.). PLoS One 2016; 11:e0151076. [PMID: 26943816 PMCID: PMC4778925 DOI: 10.1371/journal.pone.0151076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
Abstract
Soil salinization is one of the major problems in global agricultural production. Cotton is a pioneer crop with regard to salt stress tolerance, and can be used for saline-alkali land improvement. The large-scale detection of salt tolerance traits in cotton accessions, and the identification of elite quantitative trait loci (QTLs)/genes for salt-tolerance have been very important in salt tolerance breeding. Here, 43 advanced salt-tolerant and 31 highly salt-sensitive cultivars were detected by analyzing ten salt tolerance related traits in 304 upland cotton cultivars. Among them, 11 advanced salt-tolerance and eight highly salt-sensitive cultivars were consistent with previously reported results. Association analysis of ten salt-tolerance related traits and 145 SSRs was performed, and a total of 95 significant associations were detected; 17, 41, and 37 of which were associated with germinative index, seedling stage physiological index, and four seedling stage biochemical indexes, respectively. Of these associations, 20 SSR loci were simultaneously associated with two or more traits. Furthermore, we detected 117 elite alleles associated with salt-tolerance traits, 4 of which were reported previously. Among these loci, 44 (37.60%) were rare alleles with a frequency of less than 5%, 6 only existed in advanced salt-tolerant cultivars, and 2 only in highly salt-sensitive cultivars. As a result, 13 advanced salt-tolerant cultivars were selected to assemble the optimal cross combinations by computer simulation for the development of salt-tolerant accessions. This study lays solid foundations for further improvements in cotton salt-tolerance by referencing elite germplasms, alleles associated with salt-tolerance traits, and optimal crosses.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Sen Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
43
|
Fan Y, Zhou G, Shabala S, Chen ZH, Cai S, Li C, Zhou M. Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:946. [PMID: 27446173 PMCID: PMC4923249 DOI: 10.3389/fpls.2016.00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/14/2016] [Indexed: 05/02/2023]
Abstract
Salinity stress is one of the most severe abiotic stresses that affect agricultural production. Genome wide association study (GWAS) has been widely used to detect genetic variations in extensive natural accessions with more recombination and higher resolution. In this study, 206 barley accessions collected worldwide were genotyped with 408 Diversity Arrays Technology (DArT) markers and evaluated for salinity stress tolerance using salinity tolerance score - a reliable trait developed in our previous work. GWAS for salinity tolerance had been conducted through a general linkage model and a mixed linkage model based on population structure and kinship. A total of 24 significant marker-trait associations were identified. A QTL on 4H with the nearest marker of bPb-9668 was consistently detected in all different methods. This QTL has not been reported before and is worth to be further confirmed with bi-parental populations.
Collapse
Affiliation(s)
- Yun Fan
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Gaofeng Zhou
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University,Penrith, NSW Australia
| | - Chengdao Li
- Western Australian State Agricultural Biotechnology Centre, Murdoch University,Murdoch, WA Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania,Kings Meadows, TAS Australia
- *Correspondence: Meixue Zhou, ; Chengdao Li,
| |
Collapse
|
44
|
Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo GM, Tester M, Gilliham M, Roy SJ. AtNPF2.5 Modulates Chloride (Cl -) Efflux from Roots of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:2013. [PMID: 28111585 PMCID: PMC5216686 DOI: 10.3389/fpls.2016.02013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 05/18/2023]
Abstract
The accumulation of high concentrations of chloride (Cl-) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl- sensitive plant species those that exclude relatively more Cl- from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl- remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl- into the root xylem, which affects the accumulation of Cl- in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl- permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl- efflux from roots, and a greater Cl- accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, [Formula: see text] content in the shoot remained unaffected. Accumulation of Cl- in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl- transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl- efflux from the root, contributing to exclusion of Cl- from the shoot of Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Maheswari Jayakannan
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Bo Xu
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Yuan Li
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Gwenda M. Mayo
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Mark Tester
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
- *Correspondence: Matthew Gilliham
| | - Stuart J. Roy
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Stuart J. Roy
| |
Collapse
|
45
|
Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D. Association mapping of soybean seed germination under salt stress. Mol Genet Genomics 2015; 290:2147-62. [PMID: 26001372 DOI: 10.1007/s00438-015-1066-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 01/31/2023]
Abstract
Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.
Collapse
Affiliation(s)
- Guizhen Kan
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei Zhang
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenming Yang
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Deyuan Ma
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226541, China
| | - Zhenbin Hu
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Deyue Yu
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
46
|
Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. FRONTIERS IN PLANT SCIENCE 2015; 6:978. [PMID: 26617620 PMCID: PMC4641906 DOI: 10.3389/fpls.2015.00978] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 05/17/2023]
Abstract
World population is expected to reach 9.2 × 10(9) people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a 'saline agriculture' which will not compete in terms of resources with conventional agriculture.
Collapse
Affiliation(s)
- Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestal Institute, Universitat Politècnica de ValènciaValencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Oscar Vicente
- Institute of Plant Molecular and Cellular Biology, Universitat Politècnica de València – Consejo Superior de Investigaciones CientíficasValencia, Spain
| |
Collapse
|
47
|
Neumann K, Klukas C, Friedel S, Rischbeck P, Chen D, Entzian A, Stein N, Graner A, Kilian B. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1980-96. [PMID: 25689277 DOI: 10.1111/pce.12516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 05/18/2023]
Abstract
Phenotyping large numbers of genotypes still represents the rate-limiting step in many plant genetic experiments and in breeding. To address this issue, novel automated phenotyping technologies have been developed. We investigated for a core set of barley cultivars if high-throughput image analysis can help to dissect vegetative biomass accumulation in response to two different watering regimes under semi-controlled greenhouse conditions. We found that experiments, treatments, genotypes and genotype by environment interaction (G × E) can be characterized at any time point by certain digital traits. Biomass accumulation under control and stress conditions was highly heritable. Growth model-derived maximum vegetative biomass (K max), inflection point (I) and regrowth rate (k) were identified as promising candidate traits for genome-wide association studies. Drought stress symptoms can be visualized, dissected and modelled. Especially the highly heritable regrowth rate, which had the biggest influence on biomass accumulation in stress treatment, seems promising for future studies to improve drought tolerance in different crop species. A proof of concept study revealed potential correlations between digital traits obtained from pot experiments under greenhouse conditions and agronomic traits from field experiments. Overall, non-invasive, imaging-based phenotyping platforms under greenhouse conditions offer excellent possibilities for trait discovery, trait development and industrial applications.
Collapse
Affiliation(s)
- Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Swetlana Friedel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- BASF SE, Limburgerhof, Germany
| | - Pablo Rischbeck
- Technische Universität München (TUM), Freising-Weihenstephan, Germany
| | - Dijun Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Alexander Entzian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Innovation Center, BCS R&D, Bayer CropScience NV, Gent, Belgium
| |
Collapse
|
48
|
Rao ES, Kadirvel P, Symonds RC, Geethanjali S, Thontadarya RN, Ebert AW. Variations in DREB1A and VP1.1 Genes Show Association with Salt Tolerance Traits in Wild Tomato (Solanum pimpinellifolium). PLoS One 2015; 10:e0132535. [PMID: 26161546 PMCID: PMC4498769 DOI: 10.1371/journal.pone.0132535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022] Open
Abstract
Association analysis was conducted in a core collection of 94 genotypes of Solanum pimpinellifolium to identify variations linked to salt tolerance traits (physiological and yield traits under salt stress) in four candidate genes viz., DREB1A, VP1.1, NHX1, and TIP. The candidate gene analysis covered a concatenated length of 4594 bp per individual and identified five SNP/Indels in DREB1A and VP1.1 genes explaining 17.0% to 25.8% phenotypic variation for various salt tolerance traits. Out of these five alleles, one at 297 bp in DREB1A had in-frame deletion of 6 bp (CTGCAT) or 12 bp (CTGCATCTGCAT), resulting in two alleles, viz., SpDREB1A_297_6 and SpDREB1A_297_12. These alleles individually or as haplotypes accounted for maximum phenotypic variance of about 25% for various salt tolerance traits. Design of markers for selection of the favorable alleles/haplotypes will hasten marker-assisted introgression of salt tolerance from S. pimpinellifolium into cultivated tomato.
Collapse
Affiliation(s)
- Eguru Sreenivasa Rao
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
- Genetic Resources and Seed Unit, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan
| | - Palchamy Kadirvel
- Crop Improvement Section, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, India
- Genetic Resources and Seed Unit, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan
| | - Rachael C. Symonds
- School of Biosciences, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor, Darul Ehsan, Malaysia
- Genetic Resources and Seed Unit, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan
| | - Subramaniam Geethanjali
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
- Genetic Resources and Seed Unit, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan
| | | | - Andreas W. Ebert
- Genetic Resources and Seed Unit, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan
- * E-mail: (AWE)
| |
Collapse
|
49
|
Yong HY, Wang C, Bancroft I, Li F, Wu X, Kitashiba H, Nishio T. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). PLANTA 2015; 242:313-26. [PMID: 25921693 DOI: 10.1007/s00425-015-2310-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/17/2015] [Indexed: 05/18/2023]
Abstract
By genome-wide association study, QTLs for salt tolerance in rapeseed were detected, and a TSN1 ortholog was identified as a candidate gene responsible for genetic variation in cultivars. Dissecting the genomic regions governing abiotic stress tolerance is necessary for marker-assisted breeding to produce elite breeding lines. In this study, a world-wide collection of rapeseed was evaluated for salt tolerance. These rapeseed accessions showed a large variation for salt tolerance index ranging from 0.311 to 0.999. Although no significant correlation between salt tolerance and Na(+) content was observed, there was a significant negative correlation between shoot biomass production under a control condition and salt tolerance. These rapeseed accessions were genotyped by DArTseq for a total of 51,109 genetic markers, which were aligned with 'pseudomolecules' representative of the genome of rapeseed to locate their hypothetical order for association mapping. A total of 62 QTLs for salt tolerance, shoot biomass, and ion-homeostasis-related traits were identified by association mapping using both the P and Q+K models. Candidate genes located within the QTL regions were also shortlisted. Sequence analysis showed many polymorphisms for BnaaTSN1. Three of them in the coding region resulting in a premature stop codon or frameshift were found in most of the sensitive lines. Loss-of-function mutations showed a significant association with salt tolerance in B. napus.
Collapse
Affiliation(s)
- Hui-Yee Yong
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan,
| | | | | | | | | | | | | |
Collapse
|
50
|
Sallam A, Martsch R. Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 2015; 143:501-14. [PMID: 26041397 DOI: 10.1007/s10709-015-9848-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/30/2015] [Indexed: 01/29/2023]
Abstract
A multi-parent advanced generation inter-cross (MAGIC) derived from 11 founder lines in faba bean was used in this study to identify quantitative trait loci (QTL) for frost tolerance traits using the association mapping method with 156 SNP markers. This MAGIC population consists of a set of 189 genotypes from the Göttingen Winter Bean Population. The association panel was tested in two different experiments, i.e. a frost and a hardening experiment. Six morphological traits, leaf fatty acid composition, relative water content in shoots were scored in this study. The genotypes presented a large genetic variation for all traits that were highly heritable after frost and after hardening. High phenotypic significant correlations were established between traits. The principal coordinates analysis resulted in no clear structure in the current population. Association mapping was performed using a general linear model and mixed linear model with kinship. A False discovery rate of 0.20 (and 0.05) was used to test the significance of marker-trait association. As a result, many putative QTLs for 13 morphological and physiological traits were detected using both models. The results reveal that QTL mapping by association analysis is a powerful method of detecting the alleles associated with frost tolerance in the winter faba bean which can be used in accelerating breeding programs.
Collapse
Affiliation(s)
- Ahmed Sallam
- Department of Crop Sciences, Georg-August-Univeristät Göttingen, Von-Siebold-Str. 8, 37075, Göttingen, Germany,
| | | |
Collapse
|