1
|
SARZYNSKI MARKA, RICE TREVAK, DESPRÉS JEANPIERRE, PÉRUSSE LOUIS, TREMBLAY ANGELO, STANFORTH PHILIPR, TCHERNOF ANDRÉ, BARBER JACOBL, FALCIANI FRANCESCO, CLISH CLARY, ROBBINS JEREMYM, GHOSH SUJOY, GERSZTEN ROBERTE, LEON ARTHURS, SKINNER JAMESS, RAO DC, BOUCHARD CLAUDE. The HERITAGE Family Study: A Review of the Effects of Exercise Training on Cardiometabolic Health, with Insights into Molecular Transducers. Med Sci Sports Exerc 2022; 54:S1-S43. [PMID: 35611651 PMCID: PMC9012529 DOI: 10.1249/mss.0000000000002859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the HERITAGE Family Study was to investigate individual differences in response to a standardized endurance exercise program, the role of familial aggregation, and the genetics of response levels of cardiorespiratory fitness and cardiovascular disease and diabetes risk factors. Here we summarize the findings and their potential implications for cardiometabolic health and cardiorespiratory fitness. It begins with overviews of background and planning, recruitment, testing and exercise program protocol, quality control measures, and other relevant organizational issues. A summary of findings is then provided on cardiorespiratory fitness, exercise hemodynamics, insulin and glucose metabolism, lipid and lipoprotein profiles, adiposity and abdominal visceral fat, blood levels of steroids and other hormones, markers of oxidative stress, skeletal muscle morphology and metabolic indicators, and resting metabolic rate. These summaries document the extent of the individual differences in response to a standardized and fully monitored endurance exercise program and document the importance of familial aggregation and heritability level for exercise response traits. Findings from genomic markers, muscle gene expression studies, and proteomic and metabolomics explorations are reviewed, along with lessons learned from a bioinformatics-driven analysis pipeline. The new opportunities being pursued in integrative -omics and physiology have extended considerably the expected life of HERITAGE and are being discussed in relation to the original conceptual model of the study.
Collapse
Affiliation(s)
- MARK A. SARZYNSKI
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - TREVA K. RICE
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - JEAN-PIERRE DESPRÉS
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
| | - LOUIS PÉRUSSE
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - ANGELO TREMBLAY
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, CANADA
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, QC, CANADA
| | - PHILIP R. STANFORTH
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX
| | - ANDRÉ TCHERNOF
- Quebec Heart and Lung Institute Research Center, Laval University, Québec, QC, CANADA
- School of Nutrition, Laval University, Quebec, QC, CANADA
| | - JACOB L. BARBER
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - FRANCESCO FALCIANI
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UNITED KINGDOM
| | - CLARY CLISH
- Metabolomics Platform, Broad Institute and Harvard Medical School, Boston, MA
| | - JEREMY M. ROBBINS
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - SUJOY GHOSH
- Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Medical School, SINGAPORE
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - ROBERT E. GERSZTEN
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | - ARTHUR S. LEON
- School of Kinesiology, University of Minnesota, Minneapolis, MN
| | | | - D. C. RAO
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - CLAUDE BOUCHARD
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
2
|
Apostolopoulou M, Mastrototaro L, Hartwig S, Pesta D, Straßburger K, de Filippo E, Jelenik T, Karusheva Y, Gancheva S, Markgraf D, Herder C, Nair KS, Reichert AS, Lehr S, Müssig K, Al-Hasani H, Szendroedi J, Roden M. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. SCIENCE ADVANCES 2021; 7:eabi9551. [PMID: 34623918 PMCID: PMC8500512 DOI: 10.1126/sciadv.abi9551] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-intensity interval training (HIIT) improves cardiorespiratory fitness (VO2max), but its impact on metabolism remains unclear. We hypothesized that 12-week HIIT increases insulin sensitivity in males with or without type 2 diabetes [T2D and NDM (nondiabetic humans)]. However, despite identically higher VO2max, mainly insulin-resistant (IR) persons (T2D and IR NDM) showed distinct alterations of circulating small extracellular vesicles (SEVs) along with lower inhibitory metabolic (protein kinase Cε activity) or inflammatory (nuclear factor κB) signaling in muscle of T2D or IR NDM, respectively. This is related to the specific alterations in SEV proteome reflecting down-regulation of the phospholipase C pathway (T2D) and up-regulated antioxidant capacity (IR NDM). Thus, SEV cargo may contribute to modulating the individual metabolic responsiveness to exercise training in humans.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Elisabetta de Filippo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Daniel Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - K. Sreekumaran Nair
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karsten Müssig
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
3
|
Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet 2019; 180:186-203. [PMID: 30729689 PMCID: PMC6492942 DOI: 10.1002/ajmg.b.32712] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Collapse
Affiliation(s)
- Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, Maryland,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, Colorado,Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, Maryland
| | - Laura del Bosque-Plata
- National Institute of Genomic Medicine, Nutrigenetics and Nutrigenomic Laboratory, Mexico City, Mexico
| | - Serge Jabbour
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Vergare
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Department of Statistics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
4
|
Stephens NA, Brouwers B, Eroshkin AM, Yi F, Cornnell HH, Meyer C, Goodpaster BH, Pratley RE, Smith SR, Sparks LM. Exercise Response Variations in Skeletal Muscle PCr Recovery Rate and Insulin Sensitivity Relate to Muscle Epigenomic Profiles in Individuals With Type 2 Diabetes. Diabetes Care 2018; 41:2245-2254. [PMID: 30072402 DOI: 10.2337/dc18-0296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/15/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Some individuals with type 2 diabetes do not reap metabolic benefits from exercise training, yet the underlying mechanisms of training response variation are largely unexplored. We classified individuals with type 2 diabetes (n = 17) as nonresponders (n = 6) or responders (n = 11) based on changes in phosphocreatine (PCr) recovery rate after 10 weeks of aerobic training. We aimed to determine whether the training response variation in PCr recovery rate was marked by distinct epigenomic profiles in muscle prior to training. RESEARCH DESIGN AND METHODS PCr recovery rate as an indicator of in vivo muscle mitochondrial function in vastus lateralis (31P-magnetic resonance spectroscopy), insulin sensitivity (M-value; hyperinsulinemic-euglycemic clamp), aerobic capacity (Vo2peak), and blood profiles were determined pretraining and post-training. Muscle biopsies were performed pretraining in vastus lateralis for the isolation of primary skeletal muscle cells (HSkMCs) and assessments of global DNA methylation and RNA sequencing in muscle tissue and HSkMCs. RESULTS By design, nonresponders decreased and responders increased PCr recovery rate with training. In nonresponders, insulin sensitivity did not improve and glycemic control (HbA1c) worsened. In responders, insulin sensitivity improved. Vo2peak improved by ∼12% in both groups. Nonresponders and responders were distinguished by distinct pretraining molecular (DNA methylation, RNA expression) patterns in muscle tissue, as well as in HSkMCs. Enrichment analyses identified elevations in glutathione regulation, insulin signaling, and mitochondrial metabolism in nonresponders pretraining, which was reflected in vivo by higher pretraining PCr recovery rate and insulin sensitivity in these same individuals. CONCLUSIONS A training response variation for clinical risk factors in individuals with type 2 diabetes is reflected by distinct basal myocellular epigenomic profiles in muscle tissue, some of which are maintained in HSkMCs, suggesting a cell-autonomous underpinning. Our data provide new evidence to potentially shift the diabetes treatment paradigm for individuals who do not benefit from training, such that supplemental treatment can be designed.
Collapse
Affiliation(s)
- Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Bram Brouwers
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | | | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Christian Meyer
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL .,Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| |
Collapse
|
5
|
Hunter GR, Fisher G, Bryan DR, Borges JH, Carter SJ. Divergent Blood Pressure Response After High-Intensity Interval Exercise: A Signal of Delayed Recovery? J Strength Cond Res 2018; 32:3004-3010. [PMID: 30239453 DOI: 10.1519/jsc.0000000000002806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hunter, GR, Fisher, G, Bryan, DR, Borges, JH, and Carter, SJ. Divergent blood pressure response after high-intensity interval exercise: a signal of delayed recovery? J Strength Cond Res 32(11): 3004-3010, 2018-The objective of this commentary is to highlight potential factors influential to the adaptation of high-intensity exercise. Herein, we present a rationale supporting the contention that elevated systolic blood pressure, after a bout of high-intensity exercise, may be indicative of delayed/incomplete recovery. Relative to type I skeletal muscle fibers, the unique cellular/vascular characteristics of type II muscle fibers may necessitate longer recovery periods, especially when exposed to repeated high-intensity efforts (i.e., intervals). In addition to the noted race disparities in cardiometabolic disease risk, including higher mean blood pressures, African Americans may have a larger percentage of type II muscle fibers, thus possibly contributing to noted differences in recovery after high-intensity exercise. Given that optimal recovery is needed to maximize physiological adaptation, high-intensity training programs should be individually-tailored and consistent with recovery profile(s). In most instances, even among those susceptible, the risk to nonfunctional overreaching can be largely mitigated if sufficient recovery is integrated into training paradigms.
Collapse
Affiliation(s)
| | - Gordon Fisher
- Human Studies, University of Alabama at Birmingham, Birmingham, AL
| | | | - Juliano H Borges
- Departments of Nutrition Sciences, and.,Growth and Development Laboratory, Center for Investigation in Pediatrics, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Stephen J Carter
- Departments of Nutrition Sciences, and.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN
| |
Collapse
|
6
|
Sparks LM. Exercise training response heterogeneity: physiological and molecular insights. Diabetologia 2017; 60:2329-2336. [PMID: 29032385 DOI: 10.1007/s00125-017-4461-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Abstract
The overall beneficial effects of exercise are well studied, but why some people do not respond favourably to exercise is less understood. The National Institutes of Health Common Fund has recently launched the large-scale discovery project 'Molecular Transducers of Physical Activity in Humans' to examine the physiological and molecular (i.e. genetic, epigenetic, lipidomic, metabolomic, proteomic, etc.) responses to exercise training. A nationwide, multicentre clinical trial such as this one also provides a unique opportunity to robustly investigate the non-response to exercise in thousands of individuals that have undergone supervised aerobic- and resistance-based exercise training interventions. The term 'non-responder' is used here to address the lack of a response (to an exercise intervention) in an outcome specified a priori. Cardiorespiratory fitness ([Formula: see text]) as an exercise response variable was recently reviewed; thus, this review focuses on metabolic aspects of the non-response to exercise training. Integrated -omics platforms are discussed as an approach to disentangle the complicated relationships between endogenous and exogenous factors that drive the lack of a response to exercise in some individuals. Harnessing the power of combined -omics platforms with deep clinical phenotyping of human study participants will advance the field of exercise metabolism and shift the paradigm, allowing exercise interventions to be targeted at those most likely to benefit and identifying novel approaches to treat those who do not.
Collapse
Affiliation(s)
- Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E Princeton Street, Orlando, FL, 32804, USA.
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA.
| |
Collapse
|
7
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.
Collapse
Affiliation(s)
- Peter Kovacs
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, Medical Faculty, University of Leipzig, Liebigstr. 21, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
8
|
Tanisawa K, Tanaka M, Higuchi M. Gene-exercise interactions in the development of cardiometabolic diseases. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2016. [DOI: 10.7600/jpfsm.5.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology
- Japan Society for the Promotion of Science
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University
- Institute of Advanced Active Aging Research, Waseda University
| |
Collapse
|
9
|
Breitbach S, Tug S, Simon P. Conventional and Genetic Talent Identification in Sports: Will Recent Developments Trace Talent? Sports Med 2014; 44:1489-503. [DOI: 10.1007/s40279-014-0221-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Hagberg JM, Jenkins NT, Spangenburg E. Exercise training, genetics and type 2 diabetes-related phenotypes. Acta Physiol (Oxf) 2012; 205:456-71. [PMID: 22672138 DOI: 10.1111/j.1748-1716.2012.02455.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is at virtually pandemic levels world-wide. Diabetes has been referred to as 'a geneticist's nightmare'. However, dramatic advances in our understanding of the genetics of T2DM have occurred in the past 5 years. While endurance exercise training and increased habitual physical activity levels have consistently been shown to improve or be associated with improved T2DM-related phenotypes, there is substantial interindividual variation in these responses. There is some evidence that T2DM-related phenotype responses to exercise training are heritable, indicating that they might have a genetic basis. Genome-wide linkage studies have not identified specific chromosomal loci that could account for these differences, and no genome-wide association studies have been performed relative to T2DM-related phenotype responses to exercise training. From candidate gene studies, there are relatively strong and replicated data supporting a role for the PPARγ Pro12Ala variant in the interindividual differences in T2DM-related phenotype responses to training. This is a potentially important candidate locus because it affects T2DM susceptibility, has high biological plausibility and is the target for the primary pharmaceutical method for treating T2DM. Is it time to conduct a hypothesis-driven large-scale exercise training intervention trial based on PPARγ Pro12Ala genotype with T2DM-related phenotypes as the primary outcome measures, while also assessing potential mechanistic changes in skeletal muscle and adipose tissue? Or would it be more appropriate to propose a smaller trial to address the specific skeletal muscle and adipose tissue mechanisms affected by the interaction between the PPARγ Pro12Ala genotype and exercise training?
Collapse
Affiliation(s)
- J. M. Hagberg
- Department of Kinesiology; School of Public Health; University of Maryland; College Park; MD; USA
| | - N. T. Jenkins
- Department of Kinesiology; School of Public Health; University of Maryland; College Park; MD; USA
| | - E. Spangenburg
- Department of Kinesiology; School of Public Health; University of Maryland; College Park; MD; USA
| |
Collapse
|
11
|
Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Häkkinen K, Jenkins NT, Karavirta L, Kraus WE, Leon AS, Rao DC, Sarzynski MA, Skinner JS, Slentz CA, Rankinen T. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 2012; 7:e37887. [PMID: 22666405 PMCID: PMC3364277 DOI: 10.1371/journal.pone.0037887] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/25/2012] [Indexed: 02/01/2023] Open
Abstract
Background Individuals differ in the response to regular exercise. Whether there are people who experience adverse changes in cardiovascular and diabetes risk factors has never been addressed. Methodology/Principal Findings An adverse response is defined as an exercise-induced change that worsens a risk factor beyond measurement error and expected day-to-day variation. Sixty subjects were measured three times over a period of three weeks, and variation in resting systolic blood pressure (SBP) and in fasting plasma HDL-cholesterol (HDL-C), triglycerides (TG), and insulin (FI) was quantified. The technical error (TE) defined as the within-subject standard deviation derived from these measurements was computed. An adverse response for a given risk factor was defined as a change that was at least two TEs away from no change but in an adverse direction. Thus an adverse response was recorded if an increase reached 10 mm Hg or more for SBP, 0.42 mmol/L or more for TG, or 24 pmol/L or more for FI or if a decrease reached 0.12 mmol/L or more for HDL-C. Completers from six exercise studies were used in the present analysis: Whites (N = 473) and Blacks (N = 250) from the HERITAGE Family Study; Whites and Blacks from DREW (N = 326), from INFLAME (N = 70), and from STRRIDE (N = 303); and Whites from a University of Maryland cohort (N = 160) and from a University of Jyvaskyla study (N = 105), for a total of 1,687 men and women. Using the above definitions, 126 subjects (8.4%) had an adverse change in FI. Numbers of adverse responders reached 12.2% for SBP, 10.4% for TG, and 13.3% for HDL-C. About 7% of participants experienced adverse responses in two or more risk factors. Conclusions/Significance Adverse responses to regular exercise in cardiovascular and diabetes risk factors occur. Identifying the predictors of such unwarranted responses and how to prevent them will provide the foundation for personalized exercise prescription.
Collapse
Affiliation(s)
- Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Villegas R, Williams S, Gao Y, Cai Q, Li H, Elasy T, Cai H, Edwards T, Xiang YB, Zheng W, Long J, Ou Shu X. Peroxisome proliferator-activated receptor delta (PPARD) genetic variation and type 2 diabetes in middle-aged Chinese women. Ann Hum Genet 2011; 75:621-9. [PMID: 21834910 DOI: 10.1111/j.1469-1809.2011.00669.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Animal studies have shown that the peroxime proliferator-activated receptor delta (PPARD) gene regulates glucose metabolism and insulin sensitivity. Genetic variation in the PPARD gene might affect physical endurance and has been associated with obesity. We investigated the independent and modifying effect of variants in the PPARD gene with exercise participation and body mass index (BMI) on type 2 diabetes (T2D), using data from a genome-wide association study (GWAS) of middle-aged women living in Shanghai, China, with 1019 T2D cases and 1709 controls. The genotyping was performed using the Affymetrix Genome-Wide Human SNP Array 6.0 platform. Imputation was used to determine missing genotypes. Participation in exercise was assessed by a questionnaire. Anthropometric variables were measured by trained interviewers. The association between polymorphisms and T2D was assessed by logistic regression analyses. The combined effects of polymorphisms in the PPARD gene with exercise participation and BMI on T2D risk was assessed by conducting stratified analysis with exercise participation and BMI categories. No significant associations between PPARD and T2D were found in either genotyped or imputed SNPs and no effect modification between exercise participation and PPARD genetic variation was found, suggesting that PPARD is not a risk factor for T2D in this population.
Collapse
Affiliation(s)
- Raquel Villegas
- Vanderbilt Epidemiology Center, Department of Medicine, Nashville, TN 37203-1738, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hagberg JM. Do genetic variations alter the effects of exercise training on cardiovascular disease and can we identify the candidate variants now or in the future? J Appl Physiol (1985) 2011; 111:916-28. [DOI: 10.1152/japplphysiol.00153.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) and CVD risk factors are highly heritable, and numerous lines of evidence indicate they have a strong genetic basis. While there is nothing known about the interactive effects of genetics and exercise training on CVD itself, there is at least some literature addressing their interactive effect on CVD risk factors. There is some evidence indicating that CVD risk factor responses to exercise training are also heritable and, thus, may have a genetic basis. While roughly 100 studies have reported significant effects of genetic variants on CVD risk factor responses to exercise training, no definitive conclusions can be generated at the present time, because of the lack of consistent and replicated results and the small sample sizes evident in most studies. There is some evidence supporting “possible” candidate genes that may affect these responses to exercise training: APO E and CETP for plasma lipoprotein-lipid profiles; eNOS, ACE, EDN1, and GNB3 for blood pressure; PPARG for type 2 diabetes phenotypes; and FTO and BAR genes for obesity-related phenotypes. However, while genotyping technologies and statistical methods are advancing rapidly, the primary limitation in this field is the need to generate what in terms of exercise intervention studies would be almost incomprehensible sample sizes. Most recent diabetes, obesity, and blood pressure genetic studies have utilized populations of 10,000–250,000 subjects, which result in the necessary statistical power to detect the magnitude of effects that would probably be expected for the impact of an individual gene on CVD risk factor responses to exercise training. Thus at this time it is difficult to see how this field will advance in the future to the point where robust, consistent, and replicated data are available to address these issues. However, the results of recent large-scale genomewide association studies for baseline CVD risk factors may drive future hypothesis-driven exercise training intervention studies in smaller populations addressing the impact of specific genetic variants on well-defined physiological phenotypes.
Collapse
Affiliation(s)
- James M. Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
14
|
Klimentidis YC, Divers J, Casazza K, Beasley TM, Allison DB, Fernandez JR. Ancestry-informative markers on chromosomes 2, 8 and 15 are associated with insulin-related traits in a racially diverse sample of children. Hum Genomics 2011; 5:79-89. [PMID: 21296741 PMCID: PMC3146800 DOI: 10.1186/1479-7364-5-2-79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes represents an increasing health burden. Its prevalence is rising among younger age groups and differs among racial/ethnic groups. Little is known about its genetic basis, including whether there is a genetic basis for racial/ethnic disparities. We examined a multi-ethnic sample of 253 healthy children to evaluate associations between insulin-related phenotypes and 142 ancestry-informative markers (AIMs), while adjusting for sex, age, Tanner stage, genetic admixture, total body fat, height and socio-economic status. We also evaluated the effect of measurement errors in the estimation of the individual ancestry proportions on the regression results. We found that European genetic admixture is positively associated with insulin sensitivity (S I ), and negatively associated with the acute insulin response to glucose, fasting insulin levels and the homeostasis model assessment of insulin resistance. Our analysis revealed associations between individual AIMs on chromosomes 2, 8 and 15 and these phenotypes. Most notably, marker rs3287 at chromosome 2p21 was found to be associated with S I ( p = 5.8 × 10(-5)). This marker may be in admixture linkage disequilibrium with nearby loci ( THADA and BCL11A ) that previously have been reported to be associated with diabetes and diabetes-related phenotypes in several genome-wide association and linkage studies. Our results provide further evidence that variation in the 2p21 region containing THADA and BCL11A is associated with type 2 diabetes. Importantly, we have implicated this region in the early development of diabetes-related phenotypes, and in the genetic aetiology of population differences in these phenotypes.
Collapse
Affiliation(s)
- Yann C Klimentidis
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Schröder W, Klostermann A, Distl O. Candidate genes for physical performance in the horse. Vet J 2010; 190:39-48. [PMID: 21115378 DOI: 10.1016/j.tvjl.2010.09.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/12/2010] [Accepted: 09/30/2010] [Indexed: 12/22/2022]
Abstract
Intense selection for speed, endurance or pulling power in the domestic horse (Equus caballus) has resulted in a number of adaptive changes in the phenotype required for elite athletic performance. To date, studies in humans have revealed a large number of genes involved in elite athletic performance, but studies in horses are rare. The horse genome assembly and bioinformation tools for genome analyses have been used to compare human performance genes with their equine orthologues, both to retrieve pathways for these genes and to investigate their chromosomal distribution. In this review, 28 candidate genes for equine performance are presented that have polymorphisms associated with human elite athletic performance and may have impact on athletic performance in horses. A significant accumulation of candidate genes was found on horse chromosomes 4 and 12. Genes involved in pathways for focal adhesion, regulation of actin cytoskeleton, neuroactive ligand-receptor interaction, and calcium signalling were over-represented. Genome-wide association studies for athletic performance in horses may benefit from the strong conserved synteny of the chromosomal arrangement of genes in humans and horses.
Collapse
Affiliation(s)
- Wiebke Schröder
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
16
|
Keller P, Vollaard NBJ, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, Britton SL, Bouchard C, Koch LG, Timmons JA. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol (1985) 2010; 110:46-59. [PMID: 20930125 DOI: 10.1152/japplphysiol.00634.2010] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular pathways that are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ∼800 gene transcripts are regulated following 6 wk of supervised endurance training in young sedentary males, referred to as the training-responsive transcriptome (TRT) (Timmons JA et al. J Appl Physiol 108: 1487-1496, 2010). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as overrepresented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9, and PAX3 were downregulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, proangiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA-level validation there were several DNA variants that associated with maximal aerobic capacity (Vo(₂max)) trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption.
Collapse
Affiliation(s)
- Pernille Keller
- Translational Biomedicine, Heriot-Watt University, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
INTRODUCTION The limit of each individual to perform a given type of exercise depends on the nature of the task, and is influenced by a variety of factors, including psychology, environment and genetic make up. Genetics provide useful insights, as sport performances can be ultimately defined as a polygenic trait. SOURCES OF DATA We searched PubMed using the terms 'sports' and 'genetics' over the period 1990 to present. AREAS OF AGREEMENT The physical performance phenotypes for which a genetic basis can be suspected include endurance capacity, muscle performance, physiological attitude to train and ability of tendons and ligaments to withstand injury. Genetic testing in sport would permit to identify individuals with optimal physiology and morphology, and also those with a greater capacity to respond/adapt to training and a lesser chance of suffering from injuries. AREAS OF CONTROVERSY Ethical and practical caveats should be clearly emphasized. The translation of an advantageous genotype into a champion's phenotype is still influenced by environmental, psychological and sociological factors. EMERGING AREAS FOR DEVELOPING RESEARCH The current scientific evidence on the relationship between genetics and sports look promising. There is a need for additional studies to determine whether genome-wide genotyping arrays would be really useful and cost-effective. Since exercise training regulates the expression of genes encoding various enzymes in muscle and other tissues, genetic research in sports will help clarify several aspects of human biology and physiology, such as RNA and protein level regulation under specific circumstances.
Collapse
|
18
|
Lillioja S, Wilton A. Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies. Diabetologia 2009; 52:1061-74. [PMID: 19296077 DOI: 10.1007/s00125-009-1324-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/13/2009] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Little of the genetic basis for type 2 diabetes has been explained, despite numerous genetic linkage studies and the discovery of multiple genes in genome-wide association (GWA) studies. To begin to resolve the genetic component of this disease, we searched for sites at which genetic results had been corroborated in different studies, in the expectation that replication among studies should direct us to the genomic locations of causative genes with more confidence than the results of individual studies. METHODS We have mapped the physical location of results from 83 linkage reports (for type 2 diabetes and diabetes precursor quantitative traits [QTs, e.g. plasma insulin levels]) and recent large GWA reports (for type 2 diabetes) onto the same human genome sequence to identify replicated results in diabetes genetic 'hot spots'. RESULTS Genetic linkage has been found at least ten times at 18 different locations, and at least five times in 56 locations. All replication clusters contained study populations from more than one ethnic background and most contained results for both diabetes and QTs. There is no close relationship between the GWA results and linkage clusters, and the nine best replication clusters have no nearby GWA result. CONCLUSIONS/INTERPRETATION Many of the genes for type 2 diabetes remain unidentified. This analysis identifies the broad location of yet to be identified genes on 6q, 1q, 18p, 2q, 20q, 17pq, 8p, 19q and 9q. The discrepancy between the linkage and GWA studies may be explained by the presence of multiple, uncommon, mildly deleterious polymorphisms scattered throughout the regulatory and coding regions of genes for type 2 diabetes.
Collapse
Affiliation(s)
- S Lillioja
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.
| | | |
Collapse
|
19
|
McPhee JS, Williams AG, Stewart C, Baar K, Schindler JP, Aldred S, Maffulli N, Sargeant AJ, Jones DA. The training stimulus experienced by the leg muscles during cycling in humans. Exp Physiol 2009; 94:684-94. [DOI: 10.1113/expphysiol.2008.045658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Roumen C, Blaak EE, Corpeleijn E. Lifestyle intervention for prevention of diabetes: determinants of success for future implementation. Nutr Rev 2009; 67:132-46. [DOI: 10.1111/j.1753-4887.2009.00181.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Barwell ND, Malkova D, Moran CN, Cleland SJ, Packard CJ, Zammit VA, Gill JMR. Exercise training has greater effects on insulin sensitivity in daughters of patients with type 2 diabetes than in women with no family history of diabetes. Diabetologia 2008; 51:1912-9. [PMID: 18663427 PMCID: PMC2584356 DOI: 10.1007/s00125-008-1097-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/20/2008] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Sedentary offspring of patients with type 2 diabetes are often more insulin-resistant than persons with no family history of diabetes, but when active or fit offspring of type 2 diabetic patients are compared with non-diabetic persons, differences in insulin resistance are less evident. This study aimed to determine the effects of an exercise training intervention on insulin sensitivity in both groups. METHODS Women offspring (n = 34) of type 2 diabetic patients (offspring age 35.6 +/- 7.0 years, BMI 28.1 +/- 5.1 kg/m(2)) and 36 matched female controls (age 33.6 +/- 6.1 years, BMI 27.3 +/- 4.7 kg/m(2)) participated. Body composition, fitness and metabolic measurements were made at baseline and after a controlled 7 week exercise intervention. RESULTS At baseline, insulin sensitivity index (ISI) was 22% lower in offspring than controls (p < 0.05), despite similar body fat and maximal oxygen uptake (.VO(2max)) values in the two groups. ISI increased by 23% (p < 0.05) in offspring following the exercise intervention, compared with 7% (NS) in the controls. Increases in .VO(2max) were similar in both groups (controls 12%, offspring 15%, p < 0.05 for both). Plasma leptin concentrations decreased significantly in the offspring (-24%, p < 0.01) but not in controls (0%, NS). Change in ISI correlated significantly with baseline ISI (r = -0.47, p < 0.0005) and change in leptin (r = -0.43, p < 0.0005). The latter relationship was not attenuated by adjustment for changes in body fat. CONCLUSIONS/INTERPRETATION Offspring, but not controls, significantly increased ISI in response to an exercise intervention, indicating that insulin sensitivity is more highly modulated by physical activity in daughters of patients with type 2 diabetes than in women with no family history of the disease.
Collapse
Affiliation(s)
- N. D. Barwell
- Institute of Diet, Exercise and Lifestyle (IDEAL), Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - D. Malkova
- Institute of Diet, Exercise and Lifestyle (IDEAL), Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
- Division of Developmental Medicine, University of Glasgow, Glasgow, UK
| | - C. N. Moran
- Institute of Diet, Exercise and Lifestyle (IDEAL), Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - S. J. Cleland
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - C. J. Packard
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - V. A. Zammit
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Warwick, UK
| | - J. M. R. Gill
- Institute of Diet, Exercise and Lifestyle (IDEAL), Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| |
Collapse
|
23
|
Vettor R, Granzotto M, De Stefani D, Trevellin E, Rossato M, Farina MG, Milan G, Pilon C, Nigro A, Federspil G, Vigneri R, Vitiello L, Rizzuto R, Baratta R, Frittitta L. Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J Clin Endocrinol Metab 2008; 93:3541-50. [PMID: 18583466 DOI: 10.1210/jc.2007-2680] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Free fatty acids (FFAs) acutely stimulate but chronically impair glucose-stimulated insulin secretion from beta-cells. The G protein-coupled transmembrane receptor 40 (GPR40) mediates both acute and chronic effects of FFAs on insulin secretion and plays a role in glucose homeostasis. Limited information is available on the effect of GPR40 genetic abnormalities on insulin secretion and metabolic regulation in human subjects. STUDY DESIGN AND RESULTS For in vivo studies, we screened 734 subjects for the coding region of GPR40 and identified a new single-nucleotide mutation (Gly180Ser). The mean allele frequency was 0.75%, which progressively increased (P < 0.05) from nonobese subjects (0.42%) to moderately obese (body mass index = 30-39.9 kg/m2, 1.07%) and severely obese patients (body mass index > or = 40 kg/m2, 2.60%). The relationship between the GPR40 mutation, insulin secretion, and metabolic alterations was studied in 11 Gly/Ser mutation carriers. In these subjects, insulin secretion (insulinogenic index derived from oral glucose tolerance test) was significantly lower than in 692 Gly/Gly carriers (86.0 +/- 48.2 vs. 183.7 +/- 134.4, P < 0.005). Moreover, a case-control study indicated that plasma insulin and C-peptide responses to a lipid load were significantly (P < 0.05) lower in six Gly/Ser than in 12 Gly/Gly carriers. In vitro experiments in HeLa cells cotransfected with aequorin and the mutated Gly/Ser GPR40 indicated that intracellular Ca2+ concentration increase after oleic acid was significantly lower than in Gly/Gly GPR40-transfected cells. This fact was confirmed using fura-2 acetoxymethyl ester. CONCLUSIONS This newly identified GPR40 variant results in a loss of function that prevents the beta-cell ability to adequately sense lipids as an insulin secretory stimulus because of impaired intracellular Ca2+ concentration increase.
Collapse
Affiliation(s)
- Roberto Vettor
- Endocrine-Metabolic Laboratory, Internal Medicine, Department of Medical and Surgical Sciences, University of Padova, via Ospedale, 105, I-35128 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Filippis E, Alvarez G, Berria R, Cusi K, Everman S, Meyer C, Mandarino LJ. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab 2008; 294:E607-14. [PMID: 18182465 DOI: 10.1152/ajpendo.00729.2007] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction, associated with insulin resistance, is characterized by low expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and nuclear-encoded mitochondrial genes. This deficit could be due to decreased physical activity or a decreased response of gene expression to exercise. The objective of this study was to investigate whether a bout of exercise induces the same increase in nuclear-encoded mitochondrial gene expression in insulin-sensitive and insulin-resistant subjects matched for exercise capacity. Seven lean and nine obese subjects took part. Insulin sensitivity was assessed by an 80 mU.m(-2).min(-1) euglycemic clamp. Subjects were matched for aerobic capacity and underwent a single bout of exercise at 70 and 90% of maximum heart rate with muscle biopsies at 30 and 300 min postexercise. Quantitative RT-PCR and immunoblot analyses were used to determine the effect of exercise on gene expression and protein abundance and phosphorylation. In the postexercise period, lean subjects immediately increased PGC-1alpha mRNA level (reaching an eightfold increase by 300 min postexercise) and protein abundance and AMP-dependent protein kinase phosphorylation. Activation of PGC-1alpha was followed by increase of nuclear respiratory factor-1 and cytochrome c oxidase (subunit VIc). However, in insulin-resistant subjects, there was a delayed and reduced response in PGC-1alpha mRNA and protein, and phosphorylation of AMP-dependent protein kinase was transient. None of the genes downstream of PGC-1alpha was increased after exercise in insulin resistance. Insulin-resistant subjects have a reduced response of nuclear-encoded mitochondrial genes to exercise, and this could contribute to the origin and maintenance of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elena De Filippis
- Center for Metabolic Biology, Arizona State University, P. O. Box 873704 Tempe, AZ 85287-3704, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Genetics of variation in adiponectin in pedigreed baboons: evidence for pleiotropic effects on adipocyte volume and serum adiponectin. Heredity (Edinb) 2008; 100:382-9. [PMID: 18285814 DOI: 10.1038/sj.hdy.6801089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To detect and localize the effects of genes influencing variation in adiponectin mRNA and protein levels, we conducted statistical genetic analyses of circulating concentrations of adiponectin and adiponectin (ADIPOQ) mRNA expression in omental adipose tissue in adult, pedigreed baboons (Papio anubis). An omental adipose tissue biopsy and blood sample were collected from 427 baboons from the colony at the Southwest Foundation for Biomedical Research, San Antonio, TX. Total RNA was isolated from adipose tissue and adiponectin mRNA levels were assayed by real-time, quantitative reverse transcriptase-PCR. Adiponectin, insulin, glucose, cholesterol, high-density lipoproteins and triglycerides were measured in fasting serum. Quantitative genetic analyses were conducted for adiponectin mRNA and serum protein using a maximum likelihood-based variance decomposition approach. A genome-wide linkage analysis was conducted using adiponectin mRNA and protein levels as phenotypes. Significant heritability was estimated for ADIPOQ mRNA levels (h2=0.19+/-0.07, P=0.01) and protein levels (h2=0.28+/-0.14, P=0.003). Genetic correlations were found between adiponectin protein and body weight (rho(G)=-0.51, P=0.03), cell volume (rho(G)=-0.73, P=0.04), serum triglycerides (rho(G)=-0.67, P=0.03), and between adiponectin mRNA and glucose (rho(G)=0.93, P<0.01). A logarithm of odds score of 2.9 was found for ADIPOQ mRNA levels on baboon chromosome 4p, which is orthologous to human 6p21. There is a significant genetic component affecting variation in the analyzed traits, and common genes may be influencing adiponectin expression, adipocyte volume, body weight and circulating triglycerides. The region on 6p21 has been linked to diabetes-related phenotypes in human studies.
Collapse
|
26
|
Boston RC, Moate PJ. A novel minimal model to describe NEFA kinetics following an intravenous glucose challenge. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1140-7. [PMID: 18234748 DOI: 10.1152/ajpregu.00749.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamics of nonesterified fatty acid (NEFA) metabolism in humans requires quantification if we are to understand the etiology of such diseases as type 1 and 2 diabetes, as well as metabolic syndrome and obesity, or if we are to elucidate the mechanism of action of various interventions. We present a new compartmental model that employs the pattern of plasma glucose concentrations in healthy young adults to predict dynamic changes that occur in plasma NEFA concentrations during either a glucose-only intravenous glucose tolerance test, or an insulin-modified intravenous tolerance test, or a modified protocol during which variable-rate glucose infusions were administered to prevent plasma glucose from declining below 100 mg/dl. The model described all of the major features of NEFA response to an intravenous glucose tolerance test, including an initial latency phase, a phase during which plasma NEFA concentrations plummet to a nadir, and a rebound phase during which plasma NEFA concentrations may rise to a plateau concentration, which may be substantially higher than the initial basal NEFA concentration. This model is consistent with physiological processes and provides seven adjustable parameters that can be used to quantify NEFA production (lipolysis) and utilization (oxidation). When tested on data from the scientific literature, the range in estimated rate of lipolysis was 24-36 micromol.l(-1).min(-1) and for NEFA oxidation rate was 25-54 micromol.l(-1).min(-1). All model parameters were well identified and had coefficients of variation < 15% of their estimated values. It is concluded that this model is suitable to describe NEFA kinetics in human subjects.
Collapse
Affiliation(s)
- Ray C Boston
- School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA.
| | | |
Collapse
|
27
|
Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 2008; 105:1044-9. [PMID: 18172212 PMCID: PMC2242689 DOI: 10.1073/pnas.0706446105] [Citation(s) in RCA: 630] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Indexed: 01/22/2023] Open
Abstract
There is convincing evidence that, in humans, discrete sleep stages are important for daytime brain function, but whether any particular sleep stage has functional significance for the rest of the body is not known. Deep non-rapid eye movement (NREM) sleep, also known as slow-wave sleep (SWS), is thought to be the most "restorative" sleep stage, but beneficial effects of SWS for physical well being have not been demonstrated. The initiation of SWS coincides with hormonal changes that affect glucose regulation, suggesting that SWS may be important for normal glucose tolerance. If this were so, selective suppression of SWS should adversely affect glucose homeostasis and increase the risk of type 2 diabetes. Here we show that, in young healthy adults, all-night selective suppression of SWS, without any change in total sleep time, results in marked decreases in insulin sensitivity without adequate compensatory increase in insulin release, leading to reduced glucose tolerance and increased diabetes risk. SWS suppression reduced delta spectral power, the dominant EEG frequency range in SWS, and left other EEG frequency bands unchanged. Importantly, the magnitude of the decrease in insulin sensitivity was strongly correlated with the magnitude of the reduction in SWS. These findings demonstrate a clear role for SWS in the maintenance of normal glucose homeostasis. Furthermore, our data suggest that reduced sleep quality with low levels of SWS, as occurs in aging and in many obese individuals, may contribute to increase the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Esra Tasali
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Rachel Leproult
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - David A. Ehrmann
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Eve Van Cauter
- Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
28
|
Hsueh WC, Silver KD, Pollin TI, Bell CJ, O'Connell JR, Mitchell BD, Shuldiner AR. A genome-wide linkage scan of insulin level derived traits: the Amish Family Diabetes Study. Diabetes 2007; 56:2643-8. [PMID: 17646211 DOI: 10.2337/db06-1023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Serum insulin levels are altered in insulin resistance and insulin deficiency, states that are associated with the development of type 2 diabetes. The goal of our study was to identify chromosomal regions that are likely to harbor genetic determinants of these traits. RESEARCH DESIGN AND METHODS We conducted a series of genetic analyses, including genome-wide and fine-mapping linkage studies, based on insulin levels measured during an oral glucose tolerance test (OGTT) in 552 nondiabetic participants in the Amish Family Diabetes Study. Indices of insulin secretion included the insulinogenic index and insulin at 30 min postglucose load (insulin 30), while indices of insulin resistance included homeostasis model assessment of insulin resistance (HOMA-IR) and fasting insulin. Insulin area under the curve, a measure of both insulin secretion and insulin resistance, was also examined. RESULTS All traits were modestly heritable, with heritability estimates ranging from 0.1 to 0.4 (all P < 0.05). There was significant genetic correlation between fasting insulin and HOMA-IR (rho(G) > 0.86, P < 0.05), as well as insulin 30 and insulinogenic index (rho(G) = 0.81, P < 0.0001), suggesting that common genes influence variation in these pairs of traits. Suggestive linkage signals in the genome scan were to insulin 30 on chromosome 15q23 (logarithm of odds [LOD] 2.53, P = 0.00032) and to insulinogenic index on chromosome 2p13 (LOD 2.51, P = 0.00034). Fine-mapping study further refined our signal for insulin 30 on chromosome 15 (LOD 2.38 at 68 cM). CONCLUSIONS These results suggest that there may be different genes influencing variation in OGTT measures of insulin secretion and insulin resistance.
Collapse
Affiliation(s)
- Wen-Chi Hsueh
- Department of Medicine, School of Medicine, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu G, Lakka TA, Kilpeläinen TO, Tuomilehto J. Epidemiological studies of exercise in diabetes prevention. Appl Physiol Nutr Metab 2007; 32:583-95. [PMID: 17510700 DOI: 10.1139/h07-030] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes is one of the fastest growing public health problems in both developed and developing countries. It is estimated that the number of people with diabetes in the world will double in coming years, from 171 million in 2000 to 366 million in 2030. Cardiovascular disease accounts for more than 70% of total mortality among patients with type 2 diabetes. The associations of physical activity, physical fitness, and changes in the lifestyle with the risk of type 2 diabetes have been assessed by a number of prospective studies and clinical trials in the past decade. Several studies have also evaluated the joint associations of physical activity, body mass index, and glucose levels with the risk of type 2 diabetes. Prospective studies and clinical trials have shown that moderate or high levels of physical activity or physical fitness and changes in the lifestyle (dietary modification and increase in physical activity) can prevent type 2 diabetes. Our review of the scientific evidence confirms that 30 min/d of moderate- or high-level physical activity is an effective and safe way to prevent type 2 diabetes in all populations.
Collapse
Affiliation(s)
- Gang Hu
- Diabetes Unit, Department of Health Promotion and Chronic Disease Prevention, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | | | | | | |
Collapse
|
30
|
Goodarzi MO, Lehman DM, Taylor KD, Guo X, Cui J, Quiñones MJ, Clee SM, Yandell BS, Blangero J, Hsueh WA, Attie AD, Stern MP, Rotter JI. SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 2007; 56:1922-9. [PMID: 17426289 DOI: 10.2337/db06-1677] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A small number of susceptibility genes for human type 2 diabetes have been identified by candidate gene analysis or positional cloning. Genes found to influence diabetes or related traits in mice are likely to be susceptibility genes in humans. SorCS1 is the gene identified as responsible for the mouse chromosome 19 T2dm2 quantitative trait locus for fasting insulin levels, acting via impaired insulin secretion and increased islet disruption in obese females. Genes that impair compensatory insulin secretion in response to obesity-induced insulin resistance may be particularly relevant to human diabetes. Thus, we sought to determine whether variation in the human SORCS1 gene was associated with diabetes-related traits. RESEARCH DESIGN AND METHODS We assessed the contribution of variation in SORCS1 to human insulin-related traits in two distinct Mexican-American cohorts. One cohort (the Mexican-American Coronary Artery Disease [MACAD] cohort) consisted of nondiabetic individuals, allowing assessment of genetic association with subclinical intermediate insulin-related traits; the second cohort (the San Antonio Family Diabetes Study [SAFADS]) contained individuals with diabetes, allowing association analyses with overt disease. RESULTS We first found association of SORCS1 single nucleotide polymorphisms and haplotypes with fasting insulin levels and insulin secretion in the MACAD cohort. Similar to our results in the mice, the genetic association was strongest in overweight women. We then observed association with diabetes risk and age at diagnosis in women of the SAFADS cohort. CONCLUSIONS Identification of SORCS1 as a novel gene affecting insulin secretion and diabetes risk is likely to provide important insight into the biology of obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Cedars-Sinai Medical Center, Division of Endocrinology, Diabetes, and Metabolism, 8700 Beverly Blvd., Becker B-131, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stefan N, Thamer C, Staiger H, Machicao F, Machann J, Schick F, Venter C, Niess A, Laakso M, Fritsche A, Häring HU. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J Clin Endocrinol Metab 2007; 92:1827-33. [PMID: 17327385 DOI: 10.1210/jc.2006-1785] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Mitochondrial function is associated with aerobic physical fitness and insulin sensitivity and may play an important role in the pathophysiology of type 2 diabetes. Peroxisome proliferator-activated receptor (PPAR)-delta (gene PPARD) and PPARgamma coactivator 1alpha (gene PPARGC1A) are determinants of mitochondrial function in animals and in vitro. OBJECTIVE The objective of this study was to establish whether single-nucleotide polymorphisms (SNPs) in PPARD and PPARGC1A modulate the effect of exercise training on change in aerobic physical fitness and insulin sensitivity and whether they affect mitochondrial function in human myotubes in vitro. SETTING The study setting was the Tuebingen Lifestyle Intervention Program in a university teaching hospital. RESULTS After 9 months of intervention, the minor G allele of SNP rs2267668 in PPARD and the minor serine-encoding allele of the common Gly482Ser SNP in PPARGC1A were independently associated with less increase in individual anaerobic threshold (n = 136, P = 0.002 and P = 0.005), a precise measurement of aerobic physical fitness. Moreover, individual anaerobic threshold (+11%) and insulin sensitivity (+4%) increased less in subjects carrying the minor alleles at both SNPs (X/G-X/Ser), compared with homozygous carriers of the major alleles (A/A-Gly/Gly, +120% and +40%; P < 0.0001 and P = 0.015), suggesting an additive effect of the SNPs. In addition, low skeletal muscle mitochondrial function in vitro was detected in young carriers of the G allele of the SNP rs2267668 in PPARD (n = 19, P = 0.02). CONCLUSIONS These data provide evidence that the rs2267668 A/G SNP in PPARD and the Gly482Ser SNP in PPARGC1A have both independent and additive effects on the effectiveness of aerobic exercise training to increase aerobic physical fitness and insulin sensitivity.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine, Otfried-Müller-Strasse 10, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fredriksson J, Anevski D, Almgren P, Sjögren M, Lyssenko V, Carlson J, Isomaa B, Taskinen MR, Groop L, Orho-Melander M. Variation in GYS1 interacts with exercise and gender to predict cardiovascular mortality. PLoS One 2007; 2:e285. [PMID: 17356695 PMCID: PMC1805686 DOI: 10.1371/journal.pone.0000285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 02/14/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The muscle glycogen synthase gene (GYS1) has been associated with type 2 diabetes (T2D), the metabolic syndrome (MetS), male myocardial infarction and a defective increase in muscle glycogen synthase protein in response to exercise. We addressed the questions whether polymorphism in GYS1 can predict cardiovascular (CV) mortality in a high-risk population, if this risk is influenced by gender or physical activity, and if the association is independent of genetic variation in nearby apolipoprotein E gene (APOE). METHODOLOGY/PRINCIPAL FINDINGS Polymorphisms in GYS1 (XbaIC>T) and APOE (-219G>T, epsilon2/epsilon3/epsilon4) were genotyped in 4,654 subjects participating in the Botnia T2D-family study and followed for a median of eight years. Mortality analyses were performed using Cox proportional-hazards regression. During the follow-up period, 749 individuals died, 409 due to CV causes. In males the GYS1 XbaI T-allele (hazard ratio (HR) 1.9 [1.2-2.9]), T2D (2.5 [1.7-3.8]), earlier CV events (1.7 [1.2-2.5]), physical inactivity (1.9 [1.2-2.9]) and smoking (1.5 [1.0-2.3]) predicted CV mortality. The GYS1 XbaI T-allele predicted CV mortality particularly in physically active males (HR 1.7 [1.3-2.0]). Association of GYS1 with CV mortality was independent of APOE (219TT/epsilon4), which by its own exerted an effect on CV mortality risk in females (2.9 [1.9-4.4]). Other independent predictors of CV mortality in females were fasting plasma glucose (1.2 [1.1-1.2]), high body mass index (BMI) (1.0 [1.0-1.1]), hypertension (1.9 [1.2-3.1]), earlier CV events (1.9 [1.3-2.8]) and physical inactivity (1.9 [1.2-2.8]). CONCLUSIONS/SIGNIFICANCE Polymorphisms in GYS1 and APOE predict CV mortality in T2D families in a gender-specific fashion and independently of each other. Physical exercise seems to unmask the effect associated with the GYS1 polymorphism, rendering carriers of the variant allele less susceptible to the protective effect of exercise on the risk of CV death, which finding could be compatible with a previous demonstration of defective increase in the glycogen synthase protein in carriers of this polymorphism.
Collapse
Affiliation(s)
- Jenny Fredriksson
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Dragi Anevski
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Peter Almgren
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Marketa Sjögren
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Joyce Carlson
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Bo Isomaa
- Folkhälsan Genetic Institute, Folkhälsan Research Center, Biomedicum, Helsinki and Malmska Municipal Health Care Center and Hospital, Jakobstad, Finland
| | - Marja-Riitta Taskinen
- Department of Medicine, Helsinki University Central Hospital, University of Helsinki, Finland
| | - Leif Groop
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Department of Medicine, Helsinki University Central Hospital, University of Helsinki, Finland
- Research Program of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
| | - for the Botnia Study Group
- Department of Clinical Sciences in Malmö, Clinical Research Centre, Lund University, Malmö, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Folkhälsan Genetic Institute, Folkhälsan Research Center, Biomedicum, Helsinki and Malmska Municipal Health Care Center and Hospital, Jakobstad, Finland
- Department of Medicine, Helsinki University Central Hospital, University of Helsinki, Finland
- Research Program of Molecular Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW High levels of cardiorespiratory fitness and/or habitual physical activity are associated with reduced risk of cardiovascular disease. The responsible mechanisms are multifarious, but effects on insulin sensitivity are likely to play an important role. The purpose of this review is to highlight some recent evidence on the interrelationships between physical activity, fitness, obesity, genotype and insulin resistance. RECENT FINDINGS Effects on cardiorespiratory fitness and abdominal obesity are both likely to contribute to the insulin-sensitizing effects of regular physical activity. Recent data suggest that at least in older adults, the intensity of an exercise intervention may influence the magnitude of changes in insulin sensitivity, and emerging data suggest that individual changes in insulin sensitivity following an exercise programme may, in part, be influenced by genotype. SUMMARY Increasing physical activity reduces insulin resistance. As both intensity of exercise and genetic factors may modulate the magnitude of this effect, current physical activity for health guidelines that emphasize engagement in moderate-intensity physical activity in a 'one-size-fits-all' approach may need revision in the future to optimize the potential benefits accrued from individuals becoming more active.
Collapse
Affiliation(s)
- Jason M R Gill
- Institute of Diet, Exercise and Lifestyle (IDEAL), Institute of Biomedical and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
35
|
Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 2007; 38:1863-88. [PMID: 17095919 DOI: 10.1249/01.mss.0000233789.01164.4f] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed, but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, in the early version of the gene map, 29 loci were depicted. In contrast, the 2005 human gene map for physical performance and health-related phenotypes includes 165 autosomal gene entries and QTL, plus five others on the X chromosome. Moreover, there are 17 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes. Thus, the map is growing in complexity. Unfortunately, progress is slow in the field of genetics of fitness and performance, primarily because the number of laboratories and scientists focused on the role of genes and sequence variations in exercise-related traits continues to be quite limited.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu G, Rico-Sanz J, Lakka TA, Tuomilehto J. Exercise, genetics and prevention of type 2 diabetes. Essays Biochem 2006; 42:177-92. [PMID: 17144888 DOI: 10.1042/bse0420177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Type 2 diabetes is one of the fastest growing public health problems in both developed and developing countries. Cardiovascular disease is the most prevalent complication of type 2 diabetes. In the past decade, the associations of physical activity, physical fitness and changes in the lifestyle with the risk of type 2 diabetes have been assessed by a number of prospective studies and clinical trials. A few studies have also evaluated the joint associations of physical activity, body mass index and glucose levels with the risk of type~2 diabetes. The results based on prospective studies and clinical trials have shown that moderate or high levels of physical activity or physical fitness and changes in the lifestyle (dietary modification and increase in physical activity) can prevent type 2 diabetes.
Collapse
Affiliation(s)
- Gang Hu
- Department of Epidemiology and Health Promotion, National Public Health Institute, Helsinki, Finland.
| | | | | | | |
Collapse
|
37
|
Marcil M, Vu H, Cui W, Dastani Z, Engert JC, Gaudet D, Castro-Cabezas M, Sniderman AD, Genest J, Cianflone K. Identification of a Novel C5L2 Variant (S323I) in a French Canadian Family With Familial Combined Hyperlipemia. Arterioscler Thromb Vasc Biol 2006; 26:1619-25. [PMID: 16627811 DOI: 10.1161/01.atv.0000222907.72985.0b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
A functional acylation stimulating protein (ASP) receptor, C5L2, has been recently identified in ASP-responsive cells. Impaired ASP-mediated triglyceride synthesis has previously been described in a subset of hyperapolipoprotein B/familial combined hyperlipidemia subjects.
Methods and Results—
DNA sequencing of C5L2 coding region in 61 unrelated probands identified a heterozygous variant (G968→T) in 1 subject, resulting in Ser323→Ile substitution in the carboxyl terminal region. This variant was not detected in 2176 additional chromosomes by restriction fragment length polymorphism or fluorescence polarization genotyping. Eight family members of the proband were identified with one altered (+/−)C5L2 allele. Nine other family members had the wild-type (+/+)C5L2 sequence. The abnormal allele was associated with increased plasma triglyceride, plasma cholesterol, low-density lipoprotein (LDL) cholesterol, apolipoprotein B and ASP. Of 23 subjects tested in cell-based ASP bioactivity assays, those with C5L2(+/−) variant (n=2) had a 50% reduction in ASP-stimulated triglyceride synthesis, glucose transport and marked reduction in maximal binding (B
max
). By contrast, a C5L2(+/+) family member responded normally, as did hyperapolipoprotein B normal ASP subjects compared with C5L2(+/+) controls (n=6).
Conclusion—
The S323I variant may alter C5L2 function and might be one molecular basis contributing to familial combined hyperlipidemia.
Collapse
Affiliation(s)
- Michel Marcil
- Centre de Recherche Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste Foy, Ste Foy, Québec, G1V 4G5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gill JMR, Malkova D. Physical activity, fitness and cardiovascular disease risk in adults: interactions with insulin resistance and obesity. Clin Sci (Lond) 2006; 110:409-25. [PMID: 16526946 DOI: 10.1042/cs20050207] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is a considerable body of evidence gathered from studies over the past half a century indicating that a high level of physical activity and a moderately high or high degree of cardiorespiratory fitness reduces the risk of CVD (cardiovascular disease). Recent data suggest that high levels of physical activity or fitness may be particularly beneficial to individuals with insulin-resistant conditions, such as the metabolic syndrome, Type II diabetes or obesity. These individuals, if unfit and sedentary, exhibit increased CVD risk, but their dose-response relationship for physical activity/fitness appears to be particularly steep such that, when they undertake high levels of activity (or have high fitness), their level of risk becomes closer to that of their normal weight or nondiabetic peers. This may be due to effects of physical activity in normalizing the metabolic dysfunction particularly associated with insulin-resistant conditions.
Collapse
Affiliation(s)
- Jason M R Gill
- Institute of Diet, Exercise and Lifestyle (IDEAL), Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, UK.
| | | |
Collapse
|
39
|
An P, Freedman BI, Rich SS, Mandel SA, Arnett DK, Myers RH, Chen YDI, Hunt SC, Rao DC. Quantitative trait loci on chromosome 8q24 for pancreatic beta-cell function and 7q11 for insulin sensitivity in obese nondiabetic white and black families: evidence from genome-wide linkage scans in the NHLBI Hypertension Genetic Epidemiology Network (HyperGEN) study. Diabetes 2006; 55:551-8. [PMID: 16443794 DOI: 10.2337/diabetes.55.02.06.db05-0714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genome-wide linkage scans were carried out using a multipoint variance components method in white and black families of the NHLBI Hypertension Genetic Epidemiology Network (HyperGEN) study to identify quantitative trait loci (QTLs) for pancreatic beta-cell function and insulin sensitivity estimated through the newly released nonlinear computer version of homeostasis model assessment 2. Participants fasting <8 h, with diagnosed type 2 diabetes, or taking blood glucose or blood lipid-lowering medications were excluded. Both phenotypes were adjusted separately by race and sex for the effects of age, BMI, and field center before linkage scans using 370 microsatellite markers were performed. A total of 685 white families (1,180 sibpairs) and 773 black families (775 sibpairs) were evaluated as well as subsets including 267 obese white families (757 sibpairs) and 427 obese black families (599 sibpairs) identified through tree-linkage analyses using interacting covariates of age, sex, and BMI. For beta-cell function in the obese white families, significant (logarithm of odds [LOD] score >3.6) evidence supporting linkages was detected on chromosome 8q24 at D8S1179 (135 cM, LOD score 4.2, empirical P = 0.002) and at D8S1128 (140 cM, LOD score 3.7, empirical P = 0.003). In addition, two regions supported linkage for insulin sensitivity index in the obese black families on chromosome 7q11 at D7S3046 (79 cM, LOD score 3.0, empirical P = 0.018) and on chromosome 6q26 at D6S1277 (173 cM, LOD score 3.0, empirical P = 0.018). Reducing clinical heterogeneity using obesity data and improved estimates of beta-cell function and insulin sensitivity may have permitted identification of a QTL on chromosome 8q24 for beta-cell function in the presence of estimated insulin resistance and a QTL on chromosome 7q11 for insulin sensitivity. These regions replicate previous reports for type 2 diabetes-associated traits.
Collapse
Affiliation(s)
- Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|