1
|
Coulter AA, Greenway FL, Zhang D, Ghosh S, Coulter CR, James SL, He Y, Cusimano LA, Rebello CJ. Naringenin and β-carotene convert human white adipocytes to a beige phenotype and elevate hormone- stimulated lipolysis. Front Endocrinol (Lausanne) 2023; 14:1148954. [PMID: 37143734 PMCID: PMC10153092 DOI: 10.3389/fendo.2023.1148954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Naringenin, a peroxisome proliferator-activated receptor (PPAR) activator found in citrus fruits, upregulates markers of thermogenesis and insulin sensitivity in human adipose tissue. Our pharmacokinetics clinical trial demonstrated that naringenin is safe and bioavailable, and our case report showed that naringenin causes weight loss and improves insulin sensitivity. PPARs form heterodimers with retinoic-X-receptors (RXRs) at promoter elements of target genes. Retinoic acid is an RXR ligand metabolized from dietary carotenoids. The carotenoid β-carotene reduces adiposity and insulin resistance in clinical trials. Our goal was to examine if carotenoids strengthen the beneficial effects of naringenin on human adipocyte metabolism. Methods Human preadipocytes from donors with obesity were differentiated in culture and treated with 8µM naringenin + 2µM β-carotene (NRBC) for seven days. Candidate genes involved in thermogenesis and glucose metabolism were measured as well as hormone-stimulated lipolysis. Results We found that β-carotene acts synergistically with naringenin to boost UCP1 and glucose metabolism genes including GLUT4 and adiponectin, compared to naringenin alone. Protein levels of PPARα, PPARγ and PPARγ-coactivator-1α, key modulators of thermogenesis and insulin sensitivity, were also upregulated after treatment with NRBC. Transcriptome sequencing was conducted and the bioinformatics analyses of the data revealed that NRBC induced enzymes for several non-UCP1 pathways for energy expenditure including triglyceride cycling, creatine kinases, and Peptidase M20 Domain Containing 1 (PM20D1). A comprehensive analysis of changes in receptor expression showed that NRBC upregulated eight receptors that have been linked to lipolysis or thermogenesis including the β1-adrenergic receptor and the parathyroid hormone receptor. NRBC increased levels of triglyceride lipases and agonist-stimulated lipolysis in adipocytes. We observed that expression of RXRγ, an isoform of unknown function, was induced ten-fold after treatment with NRBC. We show that RXRγ is a coactivator bound to the immunoprecipitated PPARγ protein complex from white and beige human adipocytes. Discussion There is a need for obesity treatments that can be administered long-term without side effects. NRBC increases the abundance and lipolytic response of multiple receptors for hormones released after exercise and cold exposure. Lipolysis provides the fuel for thermogenesis, and these observations suggest that NRBC has therapeutic potential.
Collapse
Affiliation(s)
- Ann A. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Adjunct Faculty, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Cathryn R. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sarah L. James
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yanlin He
- Brain Glycemic and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, Baton Rouge, LA, United States
| | - Candida J. Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
3
|
Kerr AG, Wang Z, Wang N, Kwok KHM, Jalkanen J, Ludzki A, Lecoutre S, Langin D, Bergo MO, Dahlman I, Mim C, Arner P, Gao H. The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nat Commun 2022; 13:2958. [PMID: 35618718 PMCID: PMC9135762 DOI: 10.1038/s41467-022-30620-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase. Adipocyte-expressed long non-coding RNAs (lncRNAs) have been shown to regulate the transcription of genes involved in lipid metabolism. Here the authors describe a human adipocyte-specific lncRNA, ADIPINT, which regulates lipid metabolism in white adipocytes in part through its interaction with the metabolic enzyme pyruvate carboxylase.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Zuoneng Wang
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Na Wang
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Kelvin H M Kwok
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Alison Ludzki
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université de Toulouse, UPS, UMR1297, Toulouse, France.,Department of Biochemistry, Toulouse University Hospitals, CHU Toulouse, Toulouse, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
| |
Collapse
|
4
|
Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y. Induction of in vitro Metabolic Zonation in Primary Hepatocytes Requires Both Near-Physiological Oxygen Concentration and Flux. Front Bioeng Biotechnol 2020; 8:524. [PMID: 32656187 PMCID: PMC7325921 DOI: 10.3389/fbioe.2020.00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-clinical drug screening is an important step in assessing the metabolic effects and hepatic toxicity of new pharmaceutical compounds. However, due to the complexity of the liver microarchitecture, simplified in vitro models do not adequately reflect in vivo situations. Especially spatial heterogeneity, known as metabolic zonation, is often lost due to limitations introduced by typical culture conditions. By culturing primary rat hepatocytes in varied ambient oxygen levels on either gas-permeable or non-permeable culture plates, we highlight the importance of biomimetic oxygen supply for the targeted induction of zonation-like phenotypes. Resulting cellular profiles illustrate the effect of pericellular oxygen concentration and consumption rates on hepatic functionality in terms of zone-specific metabolism and β-catenin signaling. We show that modulation of ambient oxygen tension can partially induce metabolic zonation in vitro when considering high supply rates, leading to in vivo-like drug metabolism. However, when oxygen supply is limited, similar modulation instead triggers an ischemic reprogramming, resembling metabolic profiles of hepatocellular carcinoma and increasing susceptibility toward drug-induced injury. Application of this knowledge will allow for the development of more accurate drug screening models to better identify adverse effects in hepatic drug metabolism.
Collapse
Affiliation(s)
| | - Marie Shinohara
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Mathieu Danoy
- CNRS UMI 2820, LIMMS, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
6
|
Dankel SN, Røst TH, Kulyté A, Fandalyuk Z, Skurk T, Hauner H, Sagen JV, Rydén M, Arner P, Mellgren G. The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism 2019; 101:153999. [PMID: 31672447 DOI: 10.1016/j.metabol.2019.153999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Adipose tissue plays a crucial role in diet- and obesity-related insulin resistance, with implications for several metabolic diseases. Identification of novel target genes and mechanisms that regulate adipocyte function could lead to improved treatment strategies. RND3 (RhoE/Rho8), a Rho-related GTP-binding protein that inhibits Rho kinase (ROCK) signaling, has been linked to diverse diseases such as apoptotic cardiomyopathy, heart failure, cancer and type 2 diabetes, in part by regulating cytoskeleton dynamics and insulin-mediated glucose uptake. RESULTS We here investigated the expression of RND3 in adipose tissue in human obesity, and discovered a role for RND3 in regulating adipocyte metabolism. In cross-sectional and prospective studies, we observed 5-fold increased adipocyte levels of RND3 mRNA in obesity, reduced levels after surgery-induced weight loss, and positive correlations of RND3 mRNA with adipocyte size and surrogate measures of insulin resistance (HOMA2-IR and circulating triglyceride/high-density lipoprotein cholesterol (TAG/HDL-C) ratio). By screening for RND3-dependent gene expression following siRNA-mediated RND3 knockdown in differentiating human adipocytes, we found downregulation of inflammatory genes and upregulation of genes related to adipocyte ipolysis and insulin signaling. Treatment of adipocytes with tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), hypoxia or cAMP analogs increased RND3 mRNA levels 1.5-2-fold. Functional assays in primary human adipocytes confirmed that RND3 knockdown reduces cAMP- and isoproterenol-induced lipolysis, which were mimicked by treating cells with ROCK inhibitor. This effect could partly be explained by reduced protein expression of adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (HSL). CONCLUSION We here uncovered a novel differential expression of adipose RND3 in obesity and insulin resistance, which may at least partly depend on a causal effect of RND3 on adipocyte lipolysis.
Collapse
Affiliation(s)
- Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Therese H Røst
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Agné Kulyté
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Zina Fandalyuk
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany; Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany; German Center of Diabetes Research, Helmholtz Center, Munich, Germany
| | - Jørn V Sagen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
7
|
Ming Y, Stefano GB, Kream RM, Zhuang Q. Anti-Diabetogenic Properties of Mineralocorticoid Receptor Antagonists: Implications for Enhanced Safety and Efficacy of Post-Transplantation Pharmacotherapies. Med Sci Monit 2019; 25:1102-1104. [PMID: 30739121 PMCID: PMC6378856 DOI: 10.12659/msm.914340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Widespread usage of the calcineurin inhibitors tacrolimus and cyclosporine A as post-transplantation immunosuppressive agents is fraught with severe nephrotoxic and diabetogenic side effects. More recently, tapering of calcineurin inhibitor-based immunotherapies with concurrent administration of the mammalian target of rapamycin (mTOR) inhibitors sirolimus and everolimus has been employed within pharmacological regimens designed to achieve better safety and efficacy for preservation of allograft kidney function. Collected preclinical data and recent clinical study, however, indicate that usage of calcineurin inhibitors and/or mTOR blockers as immunosuppressive agents promotes equivalent diabetogenic side effects. Based on a wealth of validating preclinical studies, we contend that the favorable metabolic effects of mineralocorticoid receptor antagonists, such as spironolactone, support their inclusion in novel immunosuppressive strategies to inhibit new onset type II diabetic symptoms in post-transplantation patient populations.
Collapse
Affiliation(s)
- Yingzi Ming
- Transplantation Center, Third Xiangya Hospital of Central South University, Engineering and Technology Research Center for Transplantation Medicine of National Ministry of Health, Changsha, Hunan, China (mainland)
| | - George B Stefano
- Transplantation Center, Third Xiangya Hospital of Central South University, Engineering and Technology Research Center for Transplantation Medicine of National Ministry of Health, Changsha, Hunan, China (mainland)
| | - Richard M Kream
- Transplantation Center, Third Xiangya Hospital of Central South University, Engineering and Technology Research Center for Transplantation Medicine of National Ministry of Health, Changsha, Hunan, China (mainland)
| | - Quan Zhuang
- Transplantation Center, Third Xiangya Hospital of Central South University, Engineering and Technology Research Center for Transplantation Medicine of National Ministry of Health, Changsha, Hunan, China (mainland)
| |
Collapse
|
8
|
Bódis K, Roden M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Invest 2018; 48:e13017. [PMID: 30107041 DOI: 10.1111/eci.13017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/22/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin resistance not only occurs in obesity, but also in lipodystrophy. Although adipose tissue mass affects metabolic fluxes and participates in interorgan crosstalk, the role of energy metabolism within white adipose tissue for insulin resistance is less clear. MATERIALS AND METHODS A Medline search identified in vivo studies in humans on energy and lipid metabolism in subcutaneous (SAT) and visceral adipose tissue (VAT). Studies in adipocyte cultures and transgenic animal models were included for the better understanding of the link between abnormal energy metabolism in adipose tissue and insulin resistance. RESULTS The current literature indicates that higher lipolysis and lower lipogenesis in VAT compared to SAT enhance portal delivery of lipid metabolites (glycerol and fatty acids) to the liver. Thus, the lower lipolysis and higher lipogenesis in SAT favour storage of excess lipids and allow for protection of insulin-sensitive tissues from lipotoxic effects. In insulin-resistant humans, enhanced lipolysis and impaired lipogenesis in adipose tissue lead to release of cytokines and lipid metabolites, ultimately promoting insulin resistance. Adipose tissue of insulin-resistant humans also displays lower expression of proteins involved in mitochondrial function. In turn, this leads to lower availability of mitochondria-derived energy sources for lipogenesis in adipose tissue. CONCLUSIONS Abnormal mitochondrial function in human white adipose tissue likely contributes to the secretion of lipid metabolites and lactate, which are linked to insulin resistance in peripheral tissues. However, the relevance of adipose tissue energy metabolism for the regulation of human insulin sensitivity remains to be further elucidated.
Collapse
Affiliation(s)
- Kálmán Bódis
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
9
|
Furuya S, Manabe O, Ohira H, Hirata K, Aikawa T, Naya M, Tsujino I, Koyanagawa K, Anzai T, Oyama-Manabe N, Shiga T. Which is the proper reference tissue for measuring the change in FDG PET metabolic volume of cardiac sarcoidosis before and after steroid therapy? EJNMMI Res 2018; 8:94. [PMID: 30291527 PMCID: PMC6173675 DOI: 10.1186/s13550-018-0447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/26/2018] [Indexed: 12/26/2022] Open
Abstract
Background Cardiac sarcoidosis (CS) is a rare but potentially life-threatening disease that causes conduction disturbance, systolic dysfunction, and, most notably, sudden cardiac death. 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) plays important roles not only in diagnosing CS but also in evaluating the effects of anti-inflammatory therapy. A volume-based analysis of parameters measured by FDG PET, so-called cardiac metabolic volume (CMV), has emerged as a new assessment tool. CMV is measured as the volume within the boundary determined by a reference tissue such as the liver and the blood pool uptake. However, there is a possibility that oral steroid therapy could lead to variations of the liver and the blood pool uptake. Here, we attempted to evaluate the steroid effects on the liver and the blood pool uptake. A total of 38 CS patients who underwent FDG PET/CT before and during steroid therapy were retrospectively enrolled. Volumes of interest (VOIs) were placed in the right lobe of the liver and descending aorta (DA). The maximum standardized uptake value (SUVmax), SUVmean, and SUVpeak of the liver and DA were compared between time points before and during steroid therapy. Results The SUVmax, SUVmean, and SUVpeak of the liver during steroid therapy significantly increased from the time point before the therapy (SUVmax 3.5 ± 0.4 vs. 3.8 ± 0.6, p = 0.014; SUVmean 2.7 ± 0.3 vs. 3.0 ± 0.5, p = 0.0065; SUVpeak 3.0 ± 0.4 vs. 3.4 ± 0.6, p = 0.006). However, the SUVmax, SUVmean, and SUVpeak in the DA did not significantly change (SUVmax 2.2 ± 0.3 vs. 2.2 ± 0.4, p = 0.46; SUVmean 1.9 ± 0.3 vs. 2.0 ± 0.4, p = 0.56; SUVpeak 2.0 ± 0.3 vs. 2.0 ± 0.3, p = 0.70). Conclusions We measured FDG uptake in the liver and blood pool before and during steroid therapy. Steroid therapy increased the liver uptake but not the blood pool uptake. Our findings suggested that the DA uptake is a more suitable threshold than liver uptake to evaluate therapeutic effects using volume-based analysis of cardiac FDG PET.
Collapse
Affiliation(s)
- Sho Furuya
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Osamu Manabe
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Hiroshi Ohira
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tadao Aikawa
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Masanao Naya
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Ichizo Tsujino
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kazuhiro Koyanagawa
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
10
|
He Y, Lou X, Jin Z, Yu L, Deng L, Wan H. Mahuang decoction mitigates airway inflammation and regulates IL-21/STAT3 signaling pathway in rat asthma model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:373-380. [PMID: 29906536 DOI: 10.1016/j.jep.2018.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, bronchial asthma is still a severe disease threatening human health, and it is incumbent upon us to seek effective therapeutic drugs. Mahuang decoction (MHD), a classic famous Chinese prescription, has been used for thousands of years to prevent phlegm from forming, stop coughing and relieve asthma, but the relevant mechanism has not been thoroughly clarified. This study aims to investigate the anti-airway inflammation effect of MHD and the possible molecular mechanism underlying IL21/STAT3 signaling pathway, so as to provide guidance for the treatment of MHD on bronchial asthma. MATERIALS AND METHODS Specific pathogen free SD rats were randomly divided into 6 groups: normal control group, model group, positive group (Compound methoxyphenamine), MHD-treated groups at doses of 10 ml/kg, 5 ml/kg and 2.5 ml/kg, 10 rats in each group. Except for the normal control group, rats in other groups were sensitized with ovalbumin via introperitoneal injection and challenged with ovalbumin inhalation to trigger asthma model. At 24 h after the last excitation, bronchoalveolar lavage fluid (BALF) of every rat was drawn and the number of inflammatory cells was analyzed using cell counting method. ELISA method was performed to determine the concentrations of TXB2, 6-keto-PGF1α, MMP-9, TIMP-1, IL-2, IL-4, IL-5 and TNF-α in rat serum. The protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in murine pulmonary tissues were assessed with western blotting analysis. RESULTS Compared with the control group, the airway wall and airway smooth muscle of murine pulmonary tissues significantly thickened and massive inflammatory cells infiltration occurred around the bronchus in the model group, and the cell counts of WBC and EOS in BALF were also apparently increased, which indicated the rat asthma model was successfully established. MHD or Compound methoxyphenamine not only alleviated the pulmonary inflammatory pathological damages, but also down- regulated the numbers of WBC and EOS in BALF. What's more, the levels of TXB2, MMP-9, TIMP-1, ILs-(2, 4, 5) and TNF-α in rat serum were lessened by the treatment of MHD. In western blotting analysis, treatment with 10 ml/kg or 5 ml/kg MHD markedly declined the increased protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in lung tissues of asthmatic rats to normal level. CONCLUSION MHD intervention demonstrated a strong inhibitory action on the secretion of inflammatory mediators as well as the inflammatory cell infiltration in pulmonary tissues of asthmatic rats, and also depressed the protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in pulmonary tissues. MHD effectively mitigates airway inflammation and regulates the IL-21/STAT3 signaling pathway in rat asthma model.
Collapse
Affiliation(s)
- Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaohui Lou
- Dongyang Traditional Chinese Medicine Hospital, Jinhua 322100, China.
| | - Zhan Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ling Deng
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
11
|
Impact of skeletal muscle IL-6 on regulation of liver and adipose tissue metabolism during fasting. Pflugers Arch 2018; 470:1597-1613. [PMID: 30069669 DOI: 10.1007/s00424-018-2185-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
The liver and adipose tissue are important tissues in whole-body metabolic regulation during fasting. Interleukin 6 (IL-6) is a cytokine shown to be secreted from contracting muscle in humans and suggested to signal to the liver and adipose tissue. Furthermore, skeletal muscle IL-6 has been proposed to play a role during fasting. Therefore the aim of the present study was to investigate the role of skeletal muscle IL-6 in the regulation of substrate production in the liver and adipose tissue during fasting. Male skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and littermate floxed (control) mice fasted for 6 or 18 h (6 h fasting or 18 h fasting) with corresponding fed control groups (6 h fed or 18 h fed) and liver and adipose tissue were quickly obtained. Plasma β-hydroxybutyrate increased and hepatic glucose, lactate and glycogen decreased with fasting. In addition, fasting increased phosphoenolpyruvate carboxykinase protein and phosphorylation of pyruvate dehydrogenase (PDH) in the liver as well as hormone-sensitive lipase (HSL)Ser660 and HSLSer563 phosphorylation, PDH phosphorylation, adipose triglyceride lipase phosphorylation and perilipin phosphorylation and protein content in adipose tissue without any effect of lack of skeletal muscle IL-6. In conclusion, fasting induced regulation of enzymes in adipose tissue lipolysis and glyceroneogenesis as well as regulation of hepatic gluconeogenic capacity and hepatic substrate utilization in mice. However, skeletal muscle IL-6 was not required for these fasting-induced effects, but had minor effects on markers of lipolysis and glyceroneogenesis in adipose tissue as well as markers of hepatic gluconeogenesis in the fed state.
Collapse
|
12
|
Bertholdt L, Gudiksen A, Stankiewicz T, Villesen I, Tybirk J, van Hall G, Bangsbo J, Plomgaard P, Pilegaard H. Impact of training state on fasting-induced regulation of adipose tissue metabolism in humans. J Appl Physiol (1985) 2017; 124:729-740. [PMID: 29191981 DOI: 10.1152/japplphysiol.00664.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recruitment of fatty acids from adipose tissue is increased during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore the aim of the present study was to investigate 1) fasting-induced regulation of lipolysis and glyceroneogenesis in human adipose tissue as well as 2) the impact of training state on basal oxidative capacity and fasting-induced metabolic regulation in human adipose tissue. Untrained [maximal oxygen uptake (V̇o2max) < 45 ml·min-1·kg-1] and trained subjects (V̇o2max > 55 ml·min-1·kg-1) fasted for 36 h, and abdominal subcutaneous adipose tissue biopsies were obtained 2, 12, 24, and 36 h after a standardized meal. Adipose tissue oxidative phosphorylation complexes, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase (PDH)-E1α protein as well as PDH kinase (PDK) 2, PDK4, and PDH phosphatase 2 mRNA content were higher in trained subjects than in untrained subjects. In addition, trained subjects had higher adipose tissue hormone-sensitive lipase Ser660 phosphorylation and adipose triglyceride lipase protein content as well as higher plasma free fatty acid concentration than untrained subjects during fasting. Moreover, adipose tissue PDH phosphorylation increased with fasting only in trained subjects. Taken together, trained subjects seem to possess higher basal adipose tissue oxidative capacity as well as higher capacity for regulation of lipolysis and for providing substrate for glyceroneogenesis in adipose tissue during fasting than untrained subjects. NEW & NOTEWORTHY This study shows for the first time higher protein content of lipolytic enzymes and higher oxidative phosphorylation protein in adipose tissue from trained subjects than from untrained subjects during fasting. Furthermore, trained subjects had higher capacity for adipose tissue glyceroneogenesis than untrained subjects.
Collapse
Affiliation(s)
- Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Tomasz Stankiewicz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Ida Villesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Jonas Tybirk
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen , Copenhagen , Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
13
|
Beaudoin MS, Gaudio N, Reed JK, Foute-Nelong J, Mutch DM, Wright DC. Rosiglitazone is superior to resveratrol in inducing the expression of glyceroneogenic genes in adipose tissue from obese participants. Appl Physiol Nutr Metab 2017; 43:307-311. [PMID: 29144887 DOI: 10.1139/apnm-2017-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the effects of resveratrol and rosiglitazone, alone and in combination, on indices of fatty acid re-esterification in cultured adipose tissue from obese participants (n = 17) undergoing gastric bypass. Rosiglitazone induced PDK4 and PEPCK gene expression to a greater extent than resveratrol. Co-treatment with both compounds induced PDK4 and PEPCK expression in parallel with reductions in the fatty acid to glycerol ratio. Our findings suggest beneficial effects of resveratrol and rosiglitazone co-treatment.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas Gaudio
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - John K Reed
- b Guelph General Hospital, 115 Delhi Street, Guelph, ON N1E 4J4, Canada
| | | | - David M Mutch
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - David C Wright
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Distel E, Cadoudal T, Collinet M, Park EA, Benelli C, Bortoli S. Early induction of pyruvate dehydrogenase kinase 4 by retinoic acids in adipocytes. Mol Nutr Food Res 2016; 61. [PMID: 27981737 DOI: 10.1002/mnfr.201600920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
SCOPE Vitamin A and its metabolites, such as retinoic acids (RA), are related to metabolic diseases, in particular insulin resistance and obesity. Here, we studied the roles of 9-cis RA and all-trans RA on the regulation of pyruvate dehydrogenase kinase 4 (PDK4), an enzyme involved in fatty acid reesterification, which is a crucial metabolic pathway in adipose tissue (AT) lipid homeostasis. METHODS AND RESULTS 9-cis RA and all-trans RA treatment of human and murine AT explants, as well as adipocytes (3T3-F442A cell line) induces PDK4 expression both at the mRNA and the protein level, via a transcriptional mechanism. Using site-directed mutagenesis and chomatin immuno-precipitation, we showed that this activation involves two new RA responsive elements in the Pdk4 promoter, RAREa (DR1: -125/-112) and RAREb (DR1: -86/-73), specific to AT. Furthermore, even though endogeneous Pdk4 gene was upregulated by RA in Fao cells, a rat hepatoma cell line, the induction did not occur through the newly found RAREs. CONCLUSION In this study, we showed that adipocyte PDK4 gene is a new target of the vitamin A derived RA and might participate to the reduced fatty acid efflux from the adipocyte, a step that plays an important role in the developement of metabolic diseases.
Collapse
Affiliation(s)
- Emilie Distel
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,INSERM, UMR 1124, Paris, France
| | - Thomas Cadoudal
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,INSERM, UMR 1124, Paris, France
| | - Martine Collinet
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,INSERM, UMR 1124, Paris, France
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis TN, USA
| | - Chantal Benelli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,INSERM, UMR 1124, Paris, France
| | - Sylvie Bortoli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,INSERM, UMR 1124, Paris, France
| |
Collapse
|
15
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
16
|
Joffin N, Jaubert AM, Bamba J, Barouki R, Noirez P, Forest C. Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats. Adipocyte 2015; 4:129-34. [PMID: 26167416 PMCID: PMC4497294 DOI: 10.4161/21623945.2014.989748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/14/2023] Open
Abstract
A diet enriched with citrulline (CIT) reduces white adipose tissue (WAT) mass. We recently showed that CIT stimulated β-oxidation in rat WAT explants from young (2-4 months) but not old (25 months) rats. Here we show that both in old rats and high-fat-diet-fed young rats, uncoupling protein one (UCP1) mRNA and protein expressions were weaker than those in young control rats. Selectively in WAT from young rats, a 24h CIT treatment up-regulated expressions of UCP1, peroxisome proliferator-activated receptor-α (PPARα), PPARγ-coactivator-1-α and mitochondrial-transcription-factor-A whereas it down-regulated PPARγ2 gene expression, whatever the diet. These results suggest that CIT induces a new metabolic status in WAT, with increased β-oxidation and uncoupling of respiratory chain, resulting in energy expenditure that favors fat mass reduction.
Collapse
Key Words
- ARG, arginine
- ASL, argininosuccinate lyase
- ASS, argininosuccinate synthase
- BSA, bovine serum albumin
- CD, control diet
- CIT, citrulline
- CPT1-b, carnitine palmitoyl transferase 1-b
- EPI, epididymal
- HFD, high-fat-diet
- KREBS, Krebs Ringer Buffer Saline
- NEFA, non-esterified fatty acids
- NO, nitric oxide
- NOS, nitric oxide synthase
- PEPCK-C, cytosolic phosphoenolpyruvate carboxykinase
- PGC-1α, peroxisome proliferator-activated receptor gamma co-activator 1α
- PKA, protein kinase A
- PPAR, peroxisome proliferator-activated receptor
- RET, retroperitoneal
- TFAM, mitochondrial transcription factor A
- UCP1
- VLCAD, very long chain acyl-CoA dehydrogenase
- WAT, white adipose tissue
- adipose tissue
- browning
- citrulline
- fatty acids
- obesity
Collapse
|
17
|
Cowens KR, Simpson S, Thomas WK, Carey GB. Polybrominated Diphenyl Ether (PBDE)-Induced Suppression of Phosphoenolpyruvate Carboxykinase (PEPCK) Decreases Hepatic Glyceroneogenesis and Disrupts Hepatic Lipid Homeostasis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1437-49. [PMID: 26692069 DOI: 10.1080/15287394.2015.1098580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are a class of flame-retardant chemicals that leach into the environment and enter the human body. PBDE have been shown to suppress activity of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in fatty acid esterification via hepatic glyceroneogenesis. The objective of this investigation was to assess hepatic glyceroneogenesis and lipid metabolism in PBDE-treated rats. Male, weanling Wistar rats were gavaged daily for 28 d with 14 mg/kg body weight of either DE-71, a commercial PBDE mixture (treated), or corn oil (control). After a 48-h fast, rats were euthanized, blood was obtained, and livers were excised. Suppression of hepatic PEPCK activity by 40% was noted. Serum ketone bodies were elevated by 27% in treated rats compared to controls, while hepatic glyceroneogenesis as measured by (14)C-pyruvate incorporation into triglycerides was 41% lower in explants from treated rats compared to controls. Liver lipid content was 29% lower in treated animals compared to controls. Taken together, these findings suggest that DE-71-induced inhibition of hepatic PEPCK activity alters lipid metabolism by redirecting fatty acids away from esterification and storage toward ketone synthesis.
Collapse
Affiliation(s)
- Kylie R Cowens
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - Stephen Simpson
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - W Kelley Thomas
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| | - Gale B Carey
- a Department of Molecular, Cellular, and Biomedical Sciences , University of New Hampshire , Durham , New Hampshire , USA
| |
Collapse
|
18
|
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, Moinard C, Coumoul X, Forest C, Noirez P. Citrulline reduces glyceroneogenesis and induces fatty acid release in visceral adipose tissue from overweight rats. Mol Nutr Food Res 2014; 58:2320-30. [PMID: 25271764 DOI: 10.1002/mnfr.201400507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022]
Abstract
SCOPE High-fat diet (HFD) increases visceral adipose tissue (AT). Our aim was to evaluate whether citrulline (CIT) affected nonesterified fatty acid (NEFA) metabolism in AT from HFD-fed rats. METHODS AND RESULTS Rats were fed for 8 weeks with either a control diet (CD) or HFD. Retroperitoneal AT explants were exposed to 2.5 mmol/L CIT for 24 h. We analyzed lipolysis, beta-oxidation, glyceroneogenesis, and the expression of the key associated enzymes. CIT doubled NEFA release selectively in HFD AT. Phosphorylation of hormone-sensitive lipase was upregulated 50 and 100% by CIT in CD and HFD AT, respectively. Under CIT, beta-oxidation increased similarly whatever the diet, whereas glyceroneogenesis, which permits NEFA re-esterification, was downregulated 50 and 80% in CD and HFD AT, respectively. In the latter, the important decrease in re-esterification probably explains the rise of NEFA release. A pretreatment with the nitric oxide synthase inhibitor N ω-nitro-l-arginine methyl ester abolished CIT effects. CONCLUSION These results demonstrate direct lipolytic and antiglyceroneogenic effects of CIT on CD and HFD AT. The selective CIT-mediated NEFA release from HFD AT was probably the consequence of the drastic decrease in glyceroneogenesis and nitric oxide was a mediator of CIT effects. These results provide evidence for a direct action of CIT on AT to reduce overweight.
Collapse
Affiliation(s)
- Nolwenn Joffin
- Université Paris Descartes, Sorbonne Paris Cité, France; Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, Moinard C, Forest C, Noirez P. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol Nutr Food Res 2014; 58:1765-75. [DOI: 10.1002/mnfr.201400053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Nolwenn Joffin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
- Département de Biochimie et de Biologie Moléculaire; Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines; Versailles France
| | - Sylvie Durant
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean Bastin
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Jean-Pascal De Bandt
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Luc Cynober
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
- Service de Biochimie, Hôpital Cochin; Assistance Publique Hôpitaux de Paris; Paris France
| | - Christophe Moinard
- Université Paris Descartes; Sorbonne Paris Cité France
- Laboratoire de Biologie de la Nutrition; Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
| | - Claude Forest
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124; Faculté des Sciences Fondamentales et Biomédicales; Pharmacologie Toxicologie et Signalisation Cellulaire; Paris France
| | - Philippe Noirez
- Université Paris Descartes; Sorbonne Paris Cité France
- Institut de Recherche Biomédicale et d’Epidémiologie du Sport; Paris France
- UFR des Sciences et Techniques des Activités Physiques et Sportives; Paris France
| |
Collapse
|
20
|
Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Berulava T, Lee H, Oskolkov N, Fadista J, Ehlers K, Wahl S, Hoffmann C, Qian K, Rönn T, Riess H, Müller-Nurasyid M, Bretschneider N, Schroeder T, Skurk T, Horsthemke B, Spieler D, Klingenspor M, Seifert M, Kern MJ, Mejhert N, Dahlman I, Hansson O, Hauck SM, Blüher M, Arner P, Groop L, Illig T, Suhre K, Hsu YH, Mellgren G, Hauner H, Laumen H. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 2014; 156:343-58. [PMID: 24439387 DOI: 10.1016/j.cell.2013.10.058] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 09/05/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
Abstract
Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
Collapse
Affiliation(s)
- Melina Claussnitzer
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA.
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Harald Grallert
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Viktoria Glunk
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Tea Berulava
- Institut für Humangenetik, Universitätsklinikum Essen, Universität-Duisburg-Essen, 45147 Essen, Germany
| | - Heekyoung Lee
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Nikolay Oskolkov
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Joao Fadista
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Kerstin Ehlers
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Simone Wahl
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Hoffmann
- Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany
| | - Kun Qian
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Tina Rönn
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Helene Riess
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, 89081 Ulm, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | | | - Timm Schroeder
- Research Unit Stem Cell Dynamics, Helmholtz Center Munich-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Thomas Skurk
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Else Kröner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität-Duisburg-Essen, 45147 Essen, Germany
| | | | - Derek Spieler
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, German Research Center for Environmental Health, Germany; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Martin Klingenspor
- Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany
| | | | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ola Hansson
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Leif Groop
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Hanover Unified Biobank, Hanover Medical School, 30625 Hanover, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA; Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans Hauner
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Else Kröner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Laumen
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| |
Collapse
|
21
|
Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev 2014; 30:96-102. [PMID: 24123849 PMCID: PMC4112077 DOI: 10.1002/dmrr.2486] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/07/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022]
Abstract
Since the advent of glucocorticoid therapy for autoimmune disease in the 1940s, their widespread application has led to the concurrent therapy-limiting discovery of many adverse metabolic side effects. Unanticipated hyperglycemia associated with the initiation of glucocorticoids often leads to preventable hospital admissions, prolonged hospital stays, increased risks for infection and reduced graft function in solid organ transplant recipients. Challenges in managing steroid-induced diabetes stem from wide fluctuations in post-prandial hyperglycemia and the lack of clearly defined treatment protocols. The mainstay of treatment is insulin therapy coincident with meals. This article aims to review the pathogenesis, risk factors, diagnosis and treatment principles unique to steroid-induced diabetes.
Collapse
Affiliation(s)
- Jessica L. Hwang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Roy E. Weiss
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
- Correspondence to: Roy E. Weiss, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, MC 3090, 5841 S. Maryland Ave. Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Mennes E, Dungan CM, Frendo-Cumbo S, Williamson DL, Wright DC. Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. J Gerontol A Biol Sci Med Sci 2013; 69:1060-8. [PMID: 24127429 DOI: 10.1093/gerona/glt156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial enzyme expression is reduced in adipose tissue from old mice, yet little is known regarding mechanisms that could be mediating, or interventions that could be used, to reverse these changes. The purpose of this study was to examine the relationship between lipolytic and fatty acid reesterification enzymes, 5' adenosine monophosphate-activated protein kinase and mitochondrial proteins in adipose tissue from young versus old mice. A second aim was to determine whether metformin treatment could rescue the age-associated decline in adipose tissue mitochondrial proteins. Approximately 22-month-old male C57BL/6 mice were fed a diet with or without 0.5% metformin for 8 weeks. Compared with young mice (~11 wk of age), the protein content/phosphorylation of hormone-sensitive lipase, adipose tissue triglyceride lipase, and phosphoenolpyruvate carboxykinase were reduced in old mice. This was paralleled by increases in the plasma nonesterified fatty acid:glycerol ratio and reductions in adipose tissue 5' adenosine monophosphate-activated protein kinase activity and select mitochondrial proteins in old mice. There were no differences in these variables when comparing adipose tissue from young and 6-month-old mice. While metformin improved glucose homeostasis, it did not increase 5' adenosine monophosphate-activated protein kinase phosphorylation or mitochondrial enzymes. Our findings demonstrate a co-ordinated down regulation of lipolytic, reesterification, and mitochondrial enzymes in adipose tissue with aging that is unresponsive to metformin treatment.
Collapse
Affiliation(s)
- Elise Mennes
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo, The State University of New York
| | - Scott Frendo-Cumbo
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, The State University of New York
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
23
|
Wright DC. Exercise- and resveratrol-mediated alterations in adipose tissue metabolism. Appl Physiol Nutr Metab 2013; 39:109-16. [PMID: 24476464 DOI: 10.1139/apnm-2013-0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its obligatory role in locomotion and the fact that it accounts for the vast majority of whole-body glucose and lipid oxidation, much work has focused on studying the biochemical adaptations that occur in skeletal muscle in response to exercise. However, over the past several years there has been a growing appreciation that adipose tissue is an important player in regulating systemic carbohydrate and lipid homeostasis. Despite this, the examination of how exercise alters adipose tissue function and metabolism is, when compared with skeletal muscle, in its infancy. The purpose of the current review is to highlight some of the recent findings from our laboratory and others that focus on the emerging area of adipose tissue exercise biochemistry. Specifically, the role of exercise on the induction of mitochondrial and glyceroneogenic enzymes will be examined and will be compared with the well-characterized effects of thiazolidinediones, which are insulin-sensitizing drugs. A particular emphasis will be placed on the role of interleukin-6 in mediating the effects of exercise. Finally, we will discuss recent data from our laboratory demonstrating beneficial effects of resveratrol supplementation on adipose tissue metabolism.
Collapse
Affiliation(s)
- David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON N1G 2W1, Canada
| |
Collapse
|
24
|
Grès S, Canteiro S, Mercader J, Carpéné C. Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol Nutr Food Res 2013; 57:1089-99. [DOI: 10.1002/mnfr.201200681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 01/25/2023]
Affiliation(s)
| | - Sarah Canteiro
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC); Université de Toulouse; UPS; Toulouse; France
| | - Josep Mercader
- Institut National de la Santé et de la Recherche Médicale; INSERM U1048; Toulouse; France
| | | |
Collapse
|
25
|
Londero LG, Rieger DK, Hansen F, Silveira SL, Martins TL, Lulhier F, da Silva RS, Souza DO, Perry MLS, de Assis AM. Dietary n-3 long-chain polyunsaturated fatty acids modify phosphoenolpyruvate carboxykinase activity and lipid synthesis from glucose in adipose tissue of rats fed a high-sucrose diet. Cell Biochem Funct 2013; 31:636-42. [DOI: 10.1002/cbf.2947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/06/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Lisiane G. Londero
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Débora K. Rieger
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Fernanda Hansen
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Simone L. Silveira
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Tiago L. Martins
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Physiology Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Francisco Lulhier
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Roselis S. da Silva
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Physiology Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Diogo O. Souza
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Department of Biochemistry; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Marcos L. S. Perry
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Department of Biochemistry; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Adriano M. de Assis
- Biochemistry Postgraduate Program, Institute of Biologic Sciences of Health; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
26
|
Wan Z, Matravadia S, Holloway GP, Wright DC. FAT/CD36 regulates PEPCK expression in adipose tissue. Am J Physiol Cell Physiol 2013; 304:C478-84. [PMID: 23302781 DOI: 10.1152/ajpcell.00372.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid translocase (FAT)/CD36 has been extensively studied for its role in facilitating fatty acid uptake. Recent findings have also demonstrated that this protein regulates adipocyte lipolysis and may modulate fatty acid reesterification. As FAT/CD36 has been shown to control the expression of genes involved in fatty acid oxidation in adipocytes, we reasoned that this protein might also control the expression of enzymes involved in fatty acid reesterification. In adipose tissue from FAT/CD36 knockout (KO) mice, we found that glycerol and fatty acid release were reduced and this was associated with reductions in adipose triglyceride lipase. Decreases in lipolysis were paralleled by increases in the free fatty acid-to-glycerol ratio and reductions in primary and fractional rates of fatty acid reesterfication in cultured adipose tissue from FAT/CD36 KO mice. Reductions in reesterfication were associated with decreases in the mRNA expression and protein content of phosphoenolpyruvate carboxykinase (PEPCK). To determine if reductions in lipolysis could lead to decreases in PEPCK mRNA expression, we treated cultured mouse adipose tissue with the lipase inhibitor CAY10499 (2 μM) and found that this resulted in an ∼50% reduction in PEPCK mRNA expression. Treatment with hexarelin (10 μM, 12 h), a CD36 agonist, increased PEPCK mRNA expression independent of lipolysis. Collectively, our results provide novel evidence that FAT/CD36 regulates PEPCK in adipose tissue and that this could be secondary to reductions in lipolysis.
Collapse
Affiliation(s)
- Zhongxiao Wan
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
27
|
Grès S, Gomez-Zorita S, Gomez-Ruiz A, Carpéné C. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation. J Neural Transm (Vienna) 2012; 120:919-26. [PMID: 23271029 DOI: 10.1007/s00702-012-0959-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 11/26/2022]
Abstract
Serotonin (5-HT) is a brain neurotransmitter instrumental for the antidepressant action of selective inhibitors of serotonin reuptake (SSRIs) while it also plays important roles in peripheral organs. Recently, the 5-HT oxidation products, 5-hydroxyindoleacetate and 5-methoxy-indoleacetate, have been shown to bind to peroxisome proliferator-activated receptor γ (PPARγ) and to enhance lipid accumulation in preadipocytes. Since we already reported that adipocytes exhibit elevated monoamine oxidase (MAO) and primary amine oxidase activities, we verified how adipocytes readily oxidize 5-HT, with the objective to determine whether such oxidation promotes PPARγ activation and lipid storage. To this aim, serotonin was tested on cultured 3T3 F442A preadipocytes and on human adipocytes. Results showed that 5-HT was oxidized by MAO in both models. Daily treatment of 3T3 F442A preadipocytes for 8 days with 100-500 μM 5-HT promoted triglyceride accumulation and emergence of adipogenesis markers. At 250 μM, 5-HT alone reproduced half of 50 nM insulin-induced adipogenesis, and exhibited an additive differentiating effect when combined with insulin. Moreover, the 5-HT-induced expression of PPARγ-responsive genes (PEPCK, aP2/FABP4) was blocked by GW 9662, a PPARγ-inhibitor, or by pargyline, a MAO-inhibitor. In human fat cells, 6-h exposure to 100 μM 5-HT increased PEPCK expression as did the PPARγ-agonist rosiglitazone. Since hydrogen peroxide, another amine oxidation product, did not reproduce such enhancement, we propose that serotonin can promote PPARγ activation in fat cells, via the indoleacetate produced during MAO-dependent oxidation. Such pathway could be involved in the adverse effects of several antidepressant SSRIs on body weight gain.
Collapse
Affiliation(s)
- Sandra Grès
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil (I2MC), Toulouse, France
| | | | | | | |
Collapse
|
28
|
Winkel E, Sabin A, Mejía-Alvarez R. Cushingoid lipodystrophy can be prevented by thiazolidinediones. Endocrine 2012; 42:746-8. [PMID: 22801989 DOI: 10.1007/s12020-012-9742-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023]
|
29
|
Jung UJ, Park YB, Kim SR, Choi MS. Supplementation of persimmon leaf ameliorates hyperglycemia, dyslipidemia and hepatic fat accumulation in type 2 diabetic mice. PLoS One 2012; 7:e49030. [PMID: 23145054 PMCID: PMC3493507 DOI: 10.1371/journal.pone.0049030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/03/2012] [Indexed: 01/31/2023] Open
Abstract
Persimmon Leaf (PL), commonly consumed as herbal tea and traditional medicines, contains a variety of compounds that exert antioxidant, α-amylase and α-glucosidase inhibitory activity. However, little is known about the in vivo effects and underlying mechanisms of PL on hyperglycemia, hyperlipidemia and hepatic steatosis in type 2 diabetes. Powered PL (5%, w/w) was supplemented with a normal diet to C57BL/KsJ-db/db mice for 5 weeks. PL decreased blood glucose, HOMA-IR, plasma triglyceride and total cholesterol levels, as well as liver weight, hepatic lipid droplets, triglycerides and cholesterol contents, while increasing plasma HDL-cholesterol and adiponectin levels. The anti-hyperglycemic effect was linked to decreased activity of gluconeogenic enzymes as well as increased glycogen content, glucokinase activity and its mRNA level in the liver. PL also led to a decrease in lipogenic transcriptional factor PPARγ as well as gene expression and activity of enzymes involved in lipogenesis, with a simultaneous increase in fecal lipids, which are seemingly attributable to the improved hyperlipidemia and hepatic steatosis and decreased hepatic fatty acid oxidation. Furthermore, PL ameliorated plasma and hepatic oxidative stress. Supplementation with PL may be an effective dietary strategy to improve type 2 diabetes accompanied by dyslipidemia and hepatic steatosis by partly modulating the activity or gene expression of enzymes related to antioxidant, glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Bok Park
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
30
|
IL-6 indirectly modulates the induction of glyceroneogenic enzymes in adipose tissue during exercise. PLoS One 2012; 7:e41719. [PMID: 22844518 PMCID: PMC3402468 DOI: 10.1371/journal.pone.0041719] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/27/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glyceroneogenesis is an important step in the control of fatty acid re-esterification with PEPCK and PDK4 being identified as key enzymes in this process. We have previously shown that glyceroneogenic enzymes such as PDK4 are rapidly induced in white adipose tissue during exercise. Recent studies have suggested that IL-6 regulates adipose tissue metabolism and gene expression during exercise. Interestingly, IL-6 has been reported to directly decrease PEPCK expression. The purpose of this investigation was to determine the role of IL-6 in modulating the effects of exercise on the expression of glyceroneogenic enzymes in mouse adipose tissue. We hypothesized that the exercise-mediated induction of PDK4 and PEPCK would be greater in adipose tissue from IL-6 deficient mice compared to wild type controls. METHODOLOGY AND PRINCIPLE FINDINGS Treatment of cultured epididymal adipose tissue (eWAT) with IL-6 (150 ng/ml) increased the phosphorylation of AMPK, ACC and STAT3 and induced SOCS3 mRNA levels while decreasing PEPCK and PDK4 mRNA. AICAR decreased the expression of PDK4 and PEPCK. The activation of AMPK by IL-6 was independent of increases in lipolysis. An acute bout of treadmill running (15 meters/minute, 5% incline, 90 minutes) did not induce SOCS3 or increase phosphorylation of STAT3 in eWAT, indicating that IL-6 signalling was not activated. Exercise-induced increases in PEPCK and PDK4 mRNA expression were attenuated in eWAT from IL-6(-/-) mice in parallel with a greater relative increase in AMPK phosphorylation compared to exercised WT mice. These changes occurred independent of alterations in beta-adrenergic signalling in adipose tissue from IL-6(-/-) mice. CONCLUSIONS AND SIGNIFICANCE Our findings question the role of IL-6 signalling in adipose tissue during exercise and suggest an indirect effect of this cytokine in the regulation of adipose tissue gene expression during exercise.
Collapse
|
31
|
Jaubert AM, Penot G, Niang F, Durant S, Forest C. Rapid nitration of adipocyte phosphoenolpyruvate carboxykinase by leptin reduces glyceroneogenesis and induces fatty acid release. PLoS One 2012; 7:e40650. [PMID: 22808220 PMCID: PMC3394747 DOI: 10.1371/journal.pone.0040650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023] Open
Abstract
Fatty acid (FA) release from white adipose tissue (WAT) is the result of the balance between triglyceride breakdown and FA re-esterification. The latter relies on the induction of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), the key enzyme for glyceroneogenesis. We previously demonstrated that long-term (18 h) leptin treatment of rat epididymal WAT explants reduced glyceroneogenesis through nitric oxide (NO)-induced decrease in PEPCK-C expression. We investigated the effect of a short-term leptin treatment (2 h) on PEPCK-C expression and glyceroneogenesis in relation to NO production. We demonstrate that in WAT explants, leptin-induced NO synthase III (NOS III) phosphorylation was associated with reduced PEPCK-C level and glyceroneogenesis, leading to FA release, while PEPCK-C gene expression remained unaffected. These effects were absent in WAT explants from leptin receptor-deficient Zucker rat. Immunoprecipitation and western blot experiments showed that the leptin-induced decrease in PEPCK-C level was correlated with an increase in PEPCK-C nitration. All these effects were abolished by the NOS inhibitor Nω-nitro-L-arginine methyl ester and mimicked by the NO donor S-nitroso-N-acetyl-DL penicillamine. We propose a mechanism in which leptin activates NOS III and induces NO that nitrates PEPCK-C to reduce its level and glyceroneogenesis, therefore limiting FA re-esterification in WAT.
Collapse
Affiliation(s)
- Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
- Département de Biochimie et de Biologie Moléculaire, Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Graziella Penot
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Sylvie Durant
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| |
Collapse
|
32
|
Distel E, Penot G, Cadoudal T, Balguy I, Durant S, Benelli C. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 2012; 94:1660-7. [PMID: 22575275 DOI: 10.1016/j.biochi.2012.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 01/18/2023]
Abstract
The epicardial adipose tissue (EAT) is "hypertrophied" in the obese. Thiazolidinediones are anti-diabetic, hypolipidemic drugs and are selective agonists for the gamma isoform of peroxisome proliferator-activated receptor (PPARγ). We evaluated the short-term effects of the prototype rosiglitazone (RSG, 5 mg kg(-1) day(-1) for 4 days) on the expression of the genes and proteins (by real-time PCR and Western blot) involved in fatty acid (FA) metabolism in EAT of the obese fatty Zucker rat and compared the levels of expression with those in retroperitoneal adipose tissue (RAT). The glyceroneogenic flux leading to fatty acid re-esterification was assessed by the incorporation of 14C from [1-14C]-pyruvate into neutral lipids. RSG upregulated the mRNA for phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase kinase 4, glycerol kinase, adipocyte lipid binding protein, adipose tissue triglyceride lipase and lipoprotein lipase in both RAT and EAT with a resulting increase in glyceroneogenesis that, however, was more pronounced in EAT than in RAT. Under RSG, fatty acid output was decreased in both tissues but unexpectedly less so in EAT than in RAT. RSG also induced the expression of the key genes for fatty acid oxidation [carnitinepalmitoyl transferase-1, medium chain acyl dehydrogenase and very long chain acyl dehydrogenase (VLCAD)]in EAT and RAT with a resulting significant rise of the expression of VLCAD protein. In addition, the expression of the genes encoding proteins involved in mitochondrial processing and density PPARγ coactivator 1 alpha (PGC-1α), NADH dehydrogenase 1 and cytochrome oxidase (COX4) were increased by RSG treatment only in EAT, with a resulting significant up-regulation of PGC1-α and COX4 protein. This was accompanied by a rise in the expression of PR domain containing 16 and uncoupling protein 1, two brown adipose tissue-specific proteins. In conclusion, this study reveals that PPAR-γ agonist could induce a rapid browning of the EAT that probably contributes to the increase in lipid turnover.
Collapse
Affiliation(s)
- Emilie Distel
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Université Paris Descartes Centre universitaire des Saints-Pères, Pharmacologie Toxicologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Frayn KN, Humphreys SM. Metabolic characteristics of human subcutaneous abdominal adipose tissue after overnight fast. Am J Physiol Endocrinol Metab 2012; 302:E468-75. [PMID: 22167523 PMCID: PMC3287351 DOI: 10.1152/ajpendo.00527.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subcutaneous abdominal adipose tissue is one of the largest fat depots and contributes the major proportion of circulating nonesterified fatty acids (NEFA). Little is known about aspects of human adipose tissue metabolism in vivo other than lipolysis. Here we collated data from 331 experiments in 255 healthy volunteers over a 23-year period, in which subcutaneous abdominal adipose tissue metabolism was studied by measurements of arterio-venous differences after an overnight fast. NEFA and glycerol were released in a ratio of 2.7:1, different (P < 0.001) from the value of 3.0 that would indicate no fatty acid re-esterification. Fatty acid re-esterification was 10.2 ± 1.4%. Extraction of triacylglycerol (TG) (fractional extraction 5.7 ± 0.4%) indicated intravascular lipolysis by lipoprotein lipase, and this contributed 21 ± 3% of the glycerol released. Glucose uptake (fractional extraction 2.6 ± 0.3%) was partitioned around 20-25% for provision of glycerol 3-phosphate and 30% into lactate production. There was release of lactate and pyruvate, with extraction of the ketone bodies 3-hydroxybutyrate and acetoacetate, although these were small numerically compared with TG and glucose uptake. NEFA release (expressed per 100 g tissue) correlated inversely with measures of fat mass (e.g., with BMI, r(s) = -0.24, P < 0.001). We examined within-person variability. Systemic NEFA concentrations, NEFA release, fatty acid re-esterification, and adipose tissue blood flow were all more consistent within than between individuals. This picture of human adipose tissue metabolism in the fasted state should contribute to a greater understanding of adipose tissue physiology and pathophysiology.
Collapse
Affiliation(s)
- Keith N Frayn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK.
| | | |
Collapse
|
34
|
Ellero-Simatos S, Claus SP, Benelli C, Forest C, Letourneur F, Cagnard N, Beaune PH, de Waziers I. Combined transcriptomic-(1)H NMR metabonomic study reveals that monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes. J Proteome Res 2011; 10:5493-502. [PMID: 22017230 PMCID: PMC3229183 DOI: 10.1021/pr200765v] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-1H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP. Using an untargeted combined transcriptomic-1H NMR-based metabonomic approach, we describe the overall effect of monoethyl-hexyl phthalate (MEHP) on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP rapidly and selectively stimulated glyceroneogenesis, a metabolic pathway involved in the control of fatty acid release from adipose tissue. A longer treatment with MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to an obesogenic effect of MEHP.
Collapse
Affiliation(s)
- Sandrine Ellero-Simatos
- INSERM, UMR 775, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Little JP, Safdar A, Benton CR, Wright DC. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:598-607. [DOI: 10.1139/h11-076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.
Collapse
Affiliation(s)
- Jonathan P. Little
- Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Adeel Safdar
- Departments of Kinesiology, Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Carley R. Benton
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
36
|
Hamza H, Cao J, Li X, Zhao S. In vivo study of hepatitis B vaccine effects on inflammation and metabolism gene expression. Mol Biol Rep 2011; 39:3225-33. [PMID: 21691704 DOI: 10.1007/s11033-011-1090-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/11/2011] [Indexed: 01/29/2023]
Abstract
Pharmaceutical companies usually perform safety testing of vaccines, but all requirements of the World Health Organization and drug pharmacopoeias depend on general toxicity testing, and the gene expression study of hepatitis B vaccine is not done routinely to test vaccine quality. In this study, we applied a new technique of gene expression analysis to detect the inflammation and metabolism genes that might be affected by hepatitis B vaccine in mouse liver. Mice were used and divided into three groups: the first and second groups were treated with one or two human doses of vaccine, respectively, and the third group was used as a control. A microarray test showed that expression of 144 genes in the liver was significantly changed after 1 day of vaccination. Seven of these genes, which were related to inflammation and metabolism, were chosen and confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) at 1, 4 and 7 days. The expression level of these genes can be considered as a biomarker for the effects of the vaccine.
Collapse
Affiliation(s)
- Heyam Hamza
- Key Lab of Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Niang F, Benelli C, Ribière C, Collinet M, Mehebik-Mojaat N, Penot G, Forest C, Jaubert AM. Leptin induces nitric oxide-mediated inhibition of lipolysis and glyceroneogenesis in rat white adipose tissue. J Nutr 2011; 141:4-9. [PMID: 21068181 DOI: 10.3945/jn.110.125765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leptin is secreted by white adipose tissue (WAT) and induces lipolysis and nonesterified fatty acid (NEFA) oxidation. During lipolysis, NEFA efflux is the result of triglyceride breakdown, NEFA oxidation, and re-esterification via glyceroneogenesis. Leptin's effects on glyceroneogenesis remain unexplored. We investigated the effect of a long-term treatment with leptin at a physiological concentration (10 μg/L) on lipolysis and glyceroneogenesis in WAT explants and analyzed the underlying mechanisms. Exposure of rat WAT explants to leptin for 2 h resulted in increased NEFA and glycerol efflux. However, a longer treatment with leptin (18 h) did not affect NEFA release and reduced glycerol output. RT-qPCR showed that leptin significantly downregulated the hormone-sensitive lipase (HSL), cytosolic phosphoenolpyruvate carboxykinase (Pck1), and PPARγ genes. In agreement with its effect on mRNA, leptin also decreased the levels of PEPCK-C and HSL proteins. Glyceroneogenesis, monitored by [1-(14) C] pyruvate incorporation into lipids, was reduced. Because leptin increases nitric oxide (NO) production in adipocytes, we explored the role of NO in the leptin signaling pathway. Pretreatment of explants with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester eliminated the effect of leptin on lipolysis, glyceroneogenesis, and expression of the HSL, Pck1, and PPARγ genes. The NO donor S-nitroso-N-acetyl-DL penicillamine mimicked leptin effects, thus demonstrating the role of NO in these pathways. The inverse time-dependent action of leptin on WAT is consistent with a process that limits NEFA re-esterification and energy storage while reducing glycerol release, thus preventing hypertriglyceridemia.
Collapse
Affiliation(s)
- Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Down-regulation of the phosphoenolpyruvate carboxykinase gene in human colon tumors and induction by omega-3 fatty acids. Biochimie 2010; 92:1772-7. [DOI: 10.1016/j.biochi.2010.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 01/18/2023]
|
39
|
Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, Chen X. Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J 2010; 25:754-64. [PMID: 20974668 DOI: 10.1096/fj.10-165175] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified lipocalin 2 (Lcn2) as a cytokine playing a critical role in the regulation of body fat mass, lipid metabolism, and insulin resistance. Lcn2 deficiency reduces PPARγ gene expression in adipocytes. In this study, we investigated the role of Lcn2 in PPARγ activation and function via assessing the insulin sensitization and fatty acid (FA) homeostasis of PPARγ agonist in high-fat diet (HFD)-induced obesity in Lcn2(-/-) mice. We found that rosiglitazone (Rosi) significantly improved insulin sensitivity in Lcn2(-/-) mice as effectively as in wild-type (WT) mice; unfed-state levels of blood glucose, free FAs, and triglycerides (TGs) were significantly reduced after a 25-d treatment of Rosi in Lcn2(-/-) mice. However, Rosi action on fat deposition and FA homeostasis was altered; Rosi-induced body weight and subcutaneous fat gain and liver lipid accumulation were markedly lessened in Lcn2(-/-) mice. The results of in vivo metabolic labeling showed that Rosi markedly reduced de novo lipogenesis in adipose tissue of Lcn2(-/-) mice. In brown adipose tissue (BAT), the expression of the genes functioning in TG hydrolysis and mitochondrial oxidation was up-regulated more in Lcn2(-/-) than in WT mice. Most strikingly, Rosi stimulated significantly higher levels of uncoupling protein-1 expression in BAT, and completely rescued cold intolerance in Lcn2(-/-) mice. We demonstrate that Lcn2 is a critical selective modulator of PPARγ activation and function in lipid homeostasis and energy expenditure.
Collapse
Affiliation(s)
- Daozhong Jin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN 55108-1038, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gastaldelli A, Casolaro A, Ciociaro D, Frascerra S, Nannipieri M, Buzzigoli E, Ferrannini E. Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients. Am J Physiol Endocrinol Metab 2009; 297:E225-30. [PMID: 19417125 DOI: 10.1152/ajpendo.90960.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pioglitazone has been shown to reduce fasting triglyceride levels. The mechanisms of this effect have not been fully elucidated, but decreased lipolysis may contribute to blunt the hypertriglyceridemic response to a meal. To test this hypothesis, we studied 27 type 2 diabetes mellitus (T2DM) patients and 7 sex-, age-, and body mass index-matched nondiabetic controls. Patients were randomized to pioglitazone (45 mg/day) or placebo for 16 wk. Whole body lipolysis was measured [as the [(2)H(5)]glycerol rate of appearance (R(a))] in the fasting state and for 6 h following a mixed meal. Compared with controls, T2DM had higher postprandial profiles of plasma triglycerides, free fatty acid (FFA), and beta-hydroxybutyrate, and a decreased suppression of glycerol R(a) (P < 0.04) despite higher insulin levels [268 (156) vs. 190 (123) pmol/l, median (interquartile range)]. Following pioglitazone, triglycerides and FFA were reduced (P = 0.05 and P < 0.04, respectively), and glycerol R(a) was more suppressed [-40 (137) vs. +7 (202) mumol/min of placebo, P < 0.05] despite a greater fall in insulin [-85 (176) vs. -20 (58) pmol/l, P = 0.05]. We conclude that, in well-controlled T2DM patients, whole body lipolysis is insulin resistant, and pioglitazone improves the insulin sensitivity of lipolysis.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Department of Internal Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Dong Y, Zhang H, Wang X, Feng Q, Chen X, Su Q. A Leu184Val polymorphism in PCK1 gene is associated with type 2 diabetes in Eastern Chinese population with BMI<23 kg/m2. Diabetes Res Clin Pract 2009; 83:227-32. [PMID: 19070910 DOI: 10.1016/j.diabres.2008.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/07/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
Our previous finding has shown that a suggestive linkage existed in D20S196 in diabetic families with lowered BMI in eastern Chinese population. The aim of this study is to investigate whether variants in PCK1 gene, located in this region, was associated with type 2 diabetes in eastern China. Eleven SNPs were identified by sequencing in PCK1. The G (Val184) allele of rs707555 (Leu184Val) in diabetic group was associated with type 2 diabetes (P=0.015; odds ratio 1.42 [95% CI 1.08-1.88]), and was much stronger in subgroup with the BMI<23kg/m(2) (P=0.008). rs2070755, located in intron 4, was also associated with type 2 diabetes (P=0.037; odds ratio 1.29 [95% CI 1.03-1.64]), especially in subgroup with the BMI<23 kg/m(2) (P=0.018). The enzymatic activity of PEPCK-C containing Leu184 was higher than that of PEPCK-C containing Val184 (P<0.01). These results showed that Val184 of PCK1 gene might increase the risk of type 2 diabetes in eastern Chinese population with BMI<23 kg/m(2) via reducing the PEPCK-C activity.
Collapse
Affiliation(s)
- Yan Dong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | | | | | | | | | | |
Collapse
|
42
|
Derlacz RA, Hyc K, Usarek M, Jagielski AK, Drozak J, Jarzyna R. PPAR-gamma-independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules. Biochem Cell Biol 2008; 86:396-404. [PMID: 18923541 DOI: 10.1139/o08-105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Therapeutic effect of rosiglitazone has been reported to result from an improvement of insulin sensitivity and inhibition of glucose synthesis. As the latter process occurs in both liver and kidney cortex the aim of this study was to elucidate the rosiglitazone action on glucose formation in both tissues. Primary cultured cells of both liver and kidney cortex grown in defined medium were use throughout. To identify the mechanism responsible for drug-induced changes, intracellular gluconeogenic intermediates and enzyme activities were determined. In contrast to hepatocytes, the administration of a 10 micromol/L concentration of rosiglitazone to renal tubules resulted in about a 70% decrease in the rate of gluconeogenesis, accompanied by an approximately 75% decrease in alanine utilization and a 35% increase in lactate synthesis. The effect of rosiglitazone was not abolished by GW9662, the PPAR-gamma irreversible antagonist, indicating that this action is not dependent on PPAR-gamma activation. In view of rosiglitazone-induced changes in gluconeogenic intermediates and a diminished incorporation of 14CO2 into pyruvate, it is likely that the drug causes a decline in flux through pyruvate carboxylase and (or) phosphoenolpyruvate carboxykinase. It is likely that the hypoglycemic action of rosiglitazone is PPAR-gamma independent and results mainly from its inhibitory effects on renal gluconeogenesis.
Collapse
Affiliation(s)
- Rafal A Derlacz
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| | | | | | | | | | | |
Collapse
|
43
|
Nye C, Kim J, Kalhan SC, Hanson RW. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol Metab 2008; 19:356-61. [PMID: 18929494 DOI: 10.1016/j.tem.2008.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
The synthesis and breakdown of triglycerides in adipose tissue and muscle is a crucial element of energy metabolism because it ensures that adequate fuel is available during starvation. Triglyceride turnover determines the availability of fatty acids for utilization by mammalian tissues, and any dysfunction in this process can lead to alterations in glucose metabolism, insulin resistance and type 2 diabetes. Our understanding of the reactions involved in triglyceride synthesis is currently being reassessed, primarily because of the recently identified role that re-esterification of fatty acids plays in triglyceride deposition and, thus, in controlling fatty-acid availability. Here, we review recent information on triglyceride synthesis and introduce the pathway of glyceroneogenesis as an important and highly regulated source of glyceride-glycerol in adipose tissue.
Collapse
Affiliation(s)
- Colleen Nye
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-3549, USA
| | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVES The insulin-sensitizing effects of thiazolidinediones are believed to depend at least in part on reductions in circulating levels of nonesterified fatty acids (NEFA). The mechanisms that mediate the reductions in NEFA are not fully understood and could involve reductions in adipose tissue lipolysis, increases in glyceroneogenesis and NEFA reesterification in triglycerides in adipose tissue and increases in NEFA metabolism by oxidative tissues. METHODS In a congenic strain of spontaneously hypertensive rats that fed a high-sucrose diet to promote features of the metabolic syndrome, we studied the effects of chronic pioglitazone treatment over 4 months on adipose tissue lipolysis and NEFA metabolism. RESULTS We observed significant increases in basal and adrenaline-stimulated NEFA and glycerol release, and near-total suppression of NEFA reesterification in epididymal adipose tissue isolated from rats chronically treated with pioglitazone. However, pioglitazone-treated rats also exhibited significant increases in mitochondrial DNA levels in adipose tissue (3.2-fold increase, P=0.001) and potentially greater sensitivity to the antilipolytic effects of insulin than untreated controls. In addition, chronic pioglitazone treatment was associated with increased palmitate oxidation in soleus muscle, reduced fasting levels of serum NEFA and triglycerides, as well as reduced serum levels of insulin and increased serum levels of adiponectin. CONCLUSIONS Despite suppressing NEFA reesterification and increasing basal and adrenaline-stimulated lipolysis, chronic pioglitazone treatment may decrease circulating NEFA levels in part by increasing adipose tissue sensitivity to the antilipolytic effects of insulin and by enhancing NEFA oxidation in skeletal muscle.
Collapse
|
45
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
46
|
Cadoudal T, Distel E, Durant S, Fouque F, Blouin JM, Collinet M, Bortoli S, Forest C, Benelli C. Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes 2008; 57:2272-9. [PMID: 18519799 PMCID: PMC2518477 DOI: 10.2337/db08-0477] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Pyruvate dehydrogenase complex (PDC) serves as the metabolic switch between glucose and fatty acid utilization. PDC activity is inhibited by PDC kinase (PDK). PDC shares the same substrate, i.e., pyruvate, as glyceroneogenesis, a pathway controlling fatty acid release from white adipose tissue (WAT). Thiazolidinediones activate glyceroneogenesis. We studied the regulation by rosiglitazone of PDK2 and PDK4 isoforms and tested the hypothesis that glyceroneogenesis could be controlled by PDK. RESEARCH DESIGN AND METHODS Rosiglitazone was administered to Zucker fa/fa rats, and then PDK4 and PDK2 mRNAs were examined in subcutaneous, periepididymal, and retroperitoneal WAT, liver, and muscle by real-time RT-PCR. Cultured WAT explants from humans and rats and 3T3-F442A adipocytes were rosiglitazone-treated before analyses of PDK2 and PDK4 mRNA and protein. Small interfering RNA (siRNA) was transfected by electroporation. Glyceroneogenesis was determined using [1-(14)C]pyruvate incorporation into lipids. RESULTS Rosiglitazone increased PDK4 mRNA in all WAT depots but not in liver and muscle. PDK2 transcript was not affected. This isoform selectivity was also found in ex vivo-treated explants. In 3T3-F442A adipocytes, Pdk4 expression was strongly and selectively induced by rosiglitazone in a direct and transcriptional manner, with a concentration required for half-maximal effect at 1 nmol/l. The use of dichloroacetic acid or leelamine, two PDK inhibitors, or a specific PDK4 siRNA demonstrated that PDK4 participated in glyceroneogenesis, therefore altering nonesterified fatty acid release in both basal and rosiglitazone-activated conditions. CONCLUSIONS These data show that PDK4 upregulation in adipocytes participates in the hypolipidemic effect of thiazolidinediones through modulation of glyceroneogenesis.
Collapse
Affiliation(s)
- Thomas Cadoudal
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 747, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cadoudal T, Fouque F, Benelli C, Forest C. [Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes]. Med Sci (Paris) 2008; 24:407-13. [PMID: 18405640 DOI: 10.1051/medsci/2008244407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity is a major risk factor for insulin resistance and type 2 diabetes. The link between hypertrophied adipose tissue and this pathology is thought to be non-esterified fatty acids (NEFA) arising from adipocyte lipolysis. Sustained increase in plasma NEFA induces insulin resistance. In adipocytes, a significant part of lipolytic NEFA is re-esterified to triacylglycerol. Re-esterification requires glycerol-3-phosphate which, during fasting, is synthesized from lactate, pyruvate or certain amino acids in a metabolic pathway named glyceroneogenesis. The key enzyme in this pathway is the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C). In this review, we postulate that thiazolidinediones exert their hypolipidemic and antidiabetic effects in adipose tissue at least in part through a rapid and selective induction of PEPCK-C gene transcription leading to increased PEPCK-C and glyceroneogenesis. Subsequent fatty acid re-esterification participates in the reduction in blood NEFA and insulin resistance.
Collapse
Affiliation(s)
- Thomas Cadoudal
- Inserm UMR-S 747 ; Université Paris Descartes, Centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | | | | | | |
Collapse
|
48
|
Cadoudal T, Glorian M, Massias A, Fouque F, Forest C, Benelli C. Retinoids upregulate phosphoenolpyruvate carboxykinase and glyceroneogenesis in human and rodent adipocytes. J Nutr 2008; 138:1004-9. [PMID: 18492826 DOI: 10.1093/jn/138.6.1004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glyceroneogenesis is an important metabolic pathway for fatty acid reesterification in adipose tissue, thereby reducing fatty acid release. Glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), which is the key enzyme in this pathway, are both regulated by a series of hormones and nutrients, among which all-trans retinoic acid (all-trans RA) is a transcriptional inducer of the PEPCK-C gene (Pck1). All-trans RA binds to the retinoic acid receptor (RAR) and activates it, whereas its stereoisomer 9-cis retinoic acid (9-cis RA) is a ligand for the 9-cis RA receptor (RXR). Three RXR-binding elements [retinoic acid response element (RARE)1/PCK1, RARE2, and RARE3/PCK2] were previously located in the promoter of Pck1. Using 3T3-F442A adipocytes, we demonstrated that Pck1 expression was 10-fold more sensitive to 9-cis RA (EC(50): 10 nmol/L) than to all-trans RA. We then analyzed the respective involvement of RARE1/PCK1, RARE2, and RARE3/PCK2 in the response of Pck1 to 9-cis RA and all-trans RA in adipocytes. The response to 9-cis RA mainly involved the RARE1/PCK1 element, whereas RARE2 was mainly responsive to all-trans RA. In contrast, the full response to both RA isomers involved these 2 elements and included RARE3/PCK2 as well. Furthermore, 9-cis RA, but not all-trans RA, selectively induced PCK1 in ex-vivo-treated human adipose tissue explants, with a concomitant induction of glyceroneogenesis monitored by [1-(14)C]-pyruvate incorporation into neutral lipids. The concomitant 9-cis RA-induced reduction in fatty acid output indicates an important role for this RA stereoisomer in lipid homeostasis through stimulation of PEPCK-C and glyceroneogenesis in adipose tissue.
Collapse
Affiliation(s)
- Thomas Cadoudal
- Institut National de la Recherche Médicale UMR-S 747, Université Paris Descartes, F-75006 Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Maassen JA, Romijn JA, Heine RJ. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus. Diabetologia 2007; 50:2036-41. [PMID: 17712547 PMCID: PMC2039833 DOI: 10.1007/s00125-007-0776-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/06/2007] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial beta-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the beta-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in beta-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- J A Maassen
- Department of Molecular Cell Biology, Leiden University Medical Centre, Postal Zone S01-P, PO Box 9600, 2300RC, Leiden, The Netherlands.
| | | | | |
Collapse
|
50
|
Mazzucotelli A, Viguerie N, Tiraby C, Annicotte JS, Mairal A, Klimcakova E, Lepin E, Delmar P, Dejean S, Tavernier G, Lefort C, Hidalgo J, Pineau T, Fajas L, Clément K, Langin D. The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)gamma coactivator-1 alpha and the nuclear receptor PPAR alpha control the expression of glycerol kinase and metabolism genes independently of PPAR gamma activation in human white adipocytes. Diabetes 2007; 56:2467-75. [PMID: 17646210 DOI: 10.2337/db06-1465] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this work was to determine the pattern of genes regulated by peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 alpha (PGC-1 alpha) in human adipocytes and the involvement of PPARalpha and PPARgamma in PGC-1 alpha transcriptional action. RESEARCH DESIGN AND METHODS Primary cultures of human adipocytes were transduced with a PGC-1 alpha adenovirus and treated with PPARgamma and PPARalpha agonists. Variation in gene expression was assessed using pangenomic microarrays and quantitative RT-PCR. To investigate glycerol kinase (GyK), a target of PGC-1 alpha, we measured enzymatic activity and glycerol incorporation into triglycerides. In vivo studies were performed on wild-type and PPARalpha(-/-) mice. The GyK promoter was studied using chromatin immunoprecipitation and promoter reporter gene assays. RESULTS Among the large number of genes regulated by PGC-1 alpha independently of PPARgamma, new targets involved in metabolism included the gene encoding GyK. The induction of GyK by PGC-1 alpha was observed at the levels of mRNA, enzymatic activity, and glycerol incorporation into triglycerides. PPARalpha was also upregulated by PGC-1 alpha. Its activation led to an increase in GyK expression and activity. PPARalpha was shown to bind and activate the GyK promoter. Experiments in mice confirmed the role of PGC-1 alpha and PPARalpha in the regulation of GyK in vivo. CONCLUSIONS This work uncovers novel pathways regulated by PGC-1 alpha and reveals that PPARalpha controls gene expression in human white adipocytes. The induction of GyK by PGC-1 alpha and PPARalpha may promote a futile cycle of triglyceride hydrolysis and fatty acid reesterification.
Collapse
Affiliation(s)
- Anne Mazzucotelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) U858, Obesity Research Laboratory, Toulouse, F-31432, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|