1
|
Michael OS, Kanthakumar P, Soni H, Rajesh Lenin R, Abhiram Jha K, Gangaraju R, Adebiyi A. Urotensin II system in chronic kidney disease. Curr Res Physiol 2024; 7:100126. [PMID: 38779598 PMCID: PMC11109353 DOI: 10.1016/j.crphys.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive and long-term condition marked by a gradual decline in kidney function. CKD is prevalent among those with conditions such as diabetes mellitus, hypertension, and glomerulonephritis. Affecting over 10% of the global population, CKD stands as a significant cause of morbidity and mortality. Despite substantial advances in understanding CKD pathophysiology and management, there is still a need to explore novel mechanisms and potential therapeutic targets. Urotensin II (UII), a potent vasoactive peptide, has garnered attention for its possible role in the development and progression of CKD. The UII system consists of endogenous ligands UII and UII-related peptide (URP) and their receptor, UT. URP pathophysiology is understudied, but alterations in tissue expression levels of UII and UT and blood or urinary UII concentrations have been linked to cardiovascular and kidney dysfunctions, including systemic hypertension, chronic heart failure, glomerulonephritis, and diabetes. UII gene polymorphisms are associated with increased risk of diabetes. Pharmacological inhibition or genetic ablation of UT mitigated kidney and cardiovascular disease in rodents, making the UII system a potential target for slowing CKD progression. However, a deeper understanding of the UII system's cellular mechanisms in renal and extrarenal organs is essential for comprehending its role in CKD pathophysiology. This review explores the evolving connections between the UII system and CKD, addressing potential mechanisms, therapeutic implications, controversies, and unexplored concepts.
Collapse
Affiliation(s)
- Olugbenga S. Michael
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raji Rajesh Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Dai H, Zhu L, Pan B, Li H, Dai Z, Su X. The relationship between serum γ-glutamyltransferase (GGT) and diabetic nephropathy in patients with type 2 diabetes mellitus: a cross-sectional study. Clin Exp Med 2023; 23:3619-3630. [PMID: 36630069 DOI: 10.1007/s10238-023-00991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
The relationship between serum γ-glutamyltransferase (GGT) and renal dysfunction is controversial. In this study, we examined the relationship of serum GGT to diabetic nephropathy (DN) in patients with type 2 diabetes mellitus (T2DM). A total of 577 patients with T2DM were enrolled and their basic information and laboratory data were collected and analyzed. The prevalence of DN increased with the elevated serum GGT tertiles. The level of serum GGT in the DN group was higher than in the non-DN groups. Multivariate logistic analysis showed that high GGT was independent risks for DN (OR = 1.041, 95% CIs 1.023-1.059). And the OR of log-transformed serum GGT for DN was 6.190 (95% CIs 4.248-9.021). The OR of DN across increasing tertiles of serum GGT were 1.00, 3.288 (1.851-5.840), and 5.059 (2.620-9.769) (P for trend < 0.001). Stratified receiver operating characteristic (ROC) analysis by gender showed that the area under ROC curve (AUC) value for GGT was 0.781 (0.732-0.825, P < 0.05) in male and was 0.817 (0.761-0.864, P < 0.05) in female. Compared with female, GGT in male showed lower sensitivity (52.86% vs. 82.05%) and higher specificity (90.32% vs. 55.26%). And the AUC value for GGT was greater than creatinine (Cr) and estimated glomerular filtration rate (eGFR) in male and smaller than Cr and eGFR in female, respectively. In Conclusion, there was an independently positive relationship between serum GGT levels and DN, which suggested that elevated GGT was a potential indicator for risk of DN. There were gender differences in the predictive property of GGT for DN.
Collapse
Affiliation(s)
- Huifang Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuanxi Road, Wenzhou, 325000, Zhejiang, China
| | - Lielie Zhu
- Department of Rehabilitation, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, No.9 Jiaowei Road, Wenzhou, 325000, Zhejiang, China.
| | - Bilin Pan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuanxi Road, Wenzhou, 325000, Zhejiang, China
| | - Hai Li
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuanxi Road, Wenzhou, 325000, Zhejiang, China
| | - ZhiJuan Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuanxi Road, Wenzhou, 325000, Zhejiang, China
| | - Xiaoyou Su
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuanxi Road, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
3
|
Janković A, Dimković N, Todorov-Sakić V, Bulatović A, Simović N, Đurić P, Naumović R. Presence of Non-Diabetic Kidney Diseases in Biopsy Specimens of Diabetic Patients' Single Center Experience. Int J Mol Sci 2023; 24:14759. [PMID: 37834207 PMCID: PMC10572831 DOI: 10.3390/ijms241914759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The complications of type 2 diabetes mellitus (T2DM) are well known and one of them is diabetic chronic kidney disease (DCKD). Over time, it has become clear that patients with T2DM can have nondiabetic chronic kidney diseases (NDCKD), especially those that affect the glomeruli. Clinical indicators for identifying DCKD from NDCKD with high sensitivity and specificity have not yet been identified. Therefore, kidney biopsy remains the golden standard for DCKD diagnosis in patients with T2DM. Despite some indications for kidney biopsy, criteria for a biopsy differ between countries, regions, and doctors. The aim of the study was to analyze the biopsy findings in our T2DM population and the justification of the biopsy according to widely accepted criteria. This single center retrospective study analyzed data from 74 patients with T2DM who underwent kidney biopsy from January 2014 to January 2021. According to the biopsy data, we categorized31 patients in the DN group, patients with typical diabetic glomerulopathy, 11 patients in the mixed group, patients who had pathohistological elements for both DN and non-DN glomerulopathy, and 32 patients in the non-DN group, patients with primary glomerulopathy not linked with DM. In the non-DN and mixed groups, the most frequent glomerulopathy was mesangioproliferative glomerulonephritis, including IgA and non-IgA forms, found in 10 patients, and membranous nephropathy (MN) in 10 patients. We analyzed several parameters and only the amount of proteinuria was found to be significantly linked to biopsy findings related to DN. With the existing criteria for kidney biopsy, we managed to detect changes in the kidneys in about half of our patients with T2DM. These patients required specific treatment, different from that which we use for DCKD patients.
Collapse
Affiliation(s)
- Aleksandar Janković
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
| | - Nada Dimković
- Academy of Medical Sciences of the Serbian Medical Society, 11000 Belgrade, Serbia;
| | - Verica Todorov-Sakić
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
| | - Ana Bulatović
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
| | - Nikola Simović
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
| | - Petar Đurić
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
| | - Radomir Naumović
- Clinical Department for Nephrology, University Medical Center Zvezdara, 11000 Belgrade, Serbia; (V.T.-S.); (A.B.); (N.S.); (P.Đ.); (R.N.)
- School of Medicine, Belgrade University, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Lin Y, Wu P, Guo L, Feng Q, Wang L, Lin X, Yang C, Liu N, Wen C, Li X, Ma X, Xue Y, Guan M. Prevalence of Diabetic Kidney Disease with Different Subtypes in Hospitalized Patients with Diabetes and Correlation Between eGFR and LncRNA XIST Expression in PBMCs. Diabetes Ther 2023; 14:1549-1561. [PMID: 37422842 PMCID: PMC10363095 DOI: 10.1007/s13300-023-01439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the leading cause of end-stage kidney disease (ESKD) in most countries. Recently, long noncoding RNA XIST has been found involved in the development of DKD. METHODS A total of 1184 hospitalized patients with diabetes were included and divided into four groups based on their estimated glomerular filtration rate (eGFR) and urinary albumin to creatinine ratio (UACR): normal control group (nDKD), DKD with normoalbuminuric and reduced eGFR (NA-DKD), DKD with albuminuria but without reduced eGFR (A-DKD), and DKD with albuminuria and reduced eGFR (Mixed), and then their clinical characteristics were analyzed. Peripheral blood mononuclear cells (PBMCs) of patients with DKD were isolated, and lncRNA XIST expression was detected by real-time quantitative PCR. RESULTS The prevalence of DKD in hospitalized patients with diabetes mellutus (DM) was 39.9%, and the prevalence of albuminuria and decreased eGFR was 36.6% and 16.2%, respectively. NA-DKD, A-DKD, and Mixed groups accounted for 23.7%, 3.3%, and 12.9%, respectively. Women with DKD had considerably lower levels of lncRNA XIST expression in their PBMCs compared to nDKD. There was a significant correlation between eGFR level and lncRNA XIST expression (R = 0.390, P = 0.036) as well as a negative correlation between HbA1c and lncRNA XIST expression (R = - 0.425, P = 0.027) in female patients with DKD. CONCLUSIONS Our study revealed that 39.9% of DM inpatients who were admitted to the hospital had DKD. Importantly, lncRNA XIST expression in PBMCs of female patients with DKD was significantly correlated with eGFR and HbA1c.
Collapse
Affiliation(s)
- Yingbei Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Peili Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Lei Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qijian Feng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xiaochun Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Chuyi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Nannan Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Churan Wen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xuelin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xiaoqin Ma
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|
5
|
Wang X, Ren L, Huang Y, Feng Z, Zhang G, Dai H. The Role of Tubulointerstitial Markers in Differential Diagnosis and Prognosis in Patients with Type 2 Diabetes and Biopsy Proven Diabetic Kidney Disease. Clin Chim Acta 2023:117448. [PMID: 37331550 DOI: 10.1016/j.cca.2023.117448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE To evaluate the potential application of tubularinterstitial biomarkers in the differential diagnosis of diabetic kidney disease (DKD) from non-diabetic kidney disease (NDKD), as well as investigate key clinical and pathological parameters to help improve the stratification of patients according to end-stage renal disease risk. METHODS 132 type 2 diabetic patients with chronic kidney disease were enrolled. Patients were categorized into 2 groups according to the renal biopsy results: DKD (n=61) and NDKD (n=71).The independent factors of the occurrence of DKD and the diagnostic implications of tubular biomarkers were explored by logistic regression and receiver-operating characteristic curve analysis. Furthermore, predictors were analyzed by least absolute shrinkage and selection operator regression, and constructed a new model for predicting the unfavorable renal outcomes through Cox proportional hazard regression analysis. RESULTS Serum neutrophil gelatinase-associated lipocalin (sNGAL) (OR= 1.007; 95%CI = [1.003, 1.012], p = 0.001) was identified as an independent risk factor for the occurrence of DKD in diabetic patients with CKD. Tubular biomarkers including sNGAL, N-acetyl-β-D-glucosaminidase and β2 microglobulin (β2-MG) could complement albuminuria for DKD detection (AUC = 0.926, specificity = 90.14%, sensitivity = 80.33%).Moreover, among of the 47 variables, 4 predictors such as sNGAL, interstitial fibrosis and tubular atrophy (IFTA)score, β2-MG and estimated glomerular filtration rate were selected to construct a new model for predicting the unfavorable renal outcomes through regression analysis. sNGAL (HR = 1.004; 95%CI = [1.001, 1.007], p = 0.013), IFTA score of 2 (HR = 4.283; 95%CI = [1.086, 16.881], p = 0.038), and IFTA score of 3 (HR = 6.855; 95%CI = [1.766, 26.610], p = 0.005) were considered to be independent risk factors for unfavorable renal outcomes. CONCLUSIONS Tubulointerstitial injury in DKD is independently associated with renal function decline and routinely detected tubular biomarkers are able to enhance the level of non-invasive diagnosis of DKD beyond traditional factors.
Collapse
Affiliation(s)
- Xijian Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China
| | - Liang Ren
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China
| | - Ying Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China
| | - Zhengang Feng
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China
| | - Guangdi Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China
| | - Houyong Dai
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong Jiangsu, 226001, PR China.
| |
Collapse
|
6
|
Corremans R, Vervaet BA, Dams G, D'Haese PC, Verhulst A. Metformin and Canagliflozin Are Equally Renoprotective in Diabetic Kidney Disease but Have No Synergistic Effect. Int J Mol Sci 2023; 24:ijms24109043. [PMID: 37240387 DOI: 10.3390/ijms24109043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is a major microvascular complication for diabetic patients and is the most common cause of chronic kidney disease (CKD) and end-stage renal disease. Antidiabetic drugs, such as metformin and canagliflozin, have been shown to exert renoprotective effects. Additionally, quercetin recently showed promising results for the treatment of DKD. However, the molecular pathways through which these drugs exert their renoprotective effects remain partly unknown. The current study compares the renoprotective potential of metformin, canagliflozin, metformin + canagliflozin, and quercetin in a preclinical rat model of DKD. By combining streptozotocin (STZ) and nicotinamide (NAD) with daily oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration, DKD was induced in male Wistar Rats. After two weeks, rats were assigned to five treatment groups, receiving vehicle, metformin, canagliflozin, metformin + canagliflozin, or quercetin for a period of 12 weeks by daily oral gavage. Non-diabetic vehicle-treated control rats were also included in this study. All rats in which diabetes was induced developed hyperglycemia, hyperfiltration, proteinuria, hypertension, renal tubular injury and interstitial fibrosis, confirming DKD. Metformin and canagliflozin, alone or together, exerted similar renoprotective actions and similar reductions in tubular injury and collagen accumulation. Renoprotective actions of canagliflozin correlated with reduced hyperglycemia, while metformin was able to exert these effects even in the absence of proper glycemic control. Gene expression revealed that the renoprotective pathways may be traced back to the NF-κB pathway. No protective effect was seen with quercetin. In this experimental model of DKD, metformin and canagliflozin were able to protect the kidney against DKD progression, albeit in a non-synergistic way. These renoprotective effects may be attributable to the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Raphaëlle Corremans
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Geert Dams
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Amin SN, El-Gamal EM, Rashed LA, Kamar SS, Haroun MA. Inhibition of notch signalling and mesangial expansion by combined glucagon like peptide-1 agonist and crocin therapy in animal model of diabetic nephropathy. Arch Physiol Biochem 2023; 129:544-554. [PMID: 33280420 DOI: 10.1080/13813455.2020.1846203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is one of the devastating complications in diabetes mellitus (DM). Glucagon-like peptide-1 (GLP-1) is one of the incretins secreted from L cells in the intestine. Crocin (a carotenoid component of saffron) has antioxidants properties. We investigated the renal effects of Exendin-4 as a GLP-1 agonist and Crocin in DN.Thirty male rats were divided into five groups: control, type II DM, type II DM + Exendin-4, type II DM + Crocin and type II DM + Exendine-4 + Crocin. At the end of the experimental period, systolic and diastolic blood pressures were measured, and GFR was calculated. Blood and urine samples were collected for biochemical analysis. Tissue samples were collected from the kidney for histological examination and biochemical measurements of protein expression.Treatment with GLP-1 agonist or Crocin caused a significant improvement in renal function. Better results were achieved with simultaneous administration of both drugs with inhibition of notch signalling pathway and the related proteins.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Mumtaz El-Gamal
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology and Cell Biology, Cairo University, Cairo, Egypt
| | - Maged Ahmed Haroun
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Wei S, Song J, Xie Y, Huang J, Yang J. Metabolic dysfunction-associated fatty liver disease can significantly increase the risk of chronic kidney disease in adults with type 2 diabetes. Diabetes Res Clin Pract 2023; 197:110563. [PMID: 36738838 DOI: 10.1016/j.diabres.2023.110563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
AIMS This study is to explore the relationship between metabolic dysfunction-associated fatty liver disease (MAFLD) and chronic kidney disease (CKD) among populations with type 2 diabetes through longitudinal cohort study. METHODS 3,627 subjects who had received at least three health examinations between 2008 and 2015 were included. CKD was stated as subjects with an eGFR < 60 mL/min per 1·73 m2 or the occurrence of 2 or more proteinuria during their follow-up. RESULTS After median of 10·0 years follow up, 837 (23·1%) developed CKD (244·7 per 10,000 person-years; 95 % CI, 228.4 - 261·8). MAFLD ([HR] 1·46; 95 % CI 1·26-1·70, P < 0.001) acts as an important risk factor of developing CKD. After adjusting for confounding factors, this association was consistent (HR 1·30; 95 % CI 1·11-1·53, P < 0.001). In stratified analysis, subjects aged < 60 years were likely to have greater risk of MAFLD-related CKD (HR 1·58 and 1·03; 95 % CI 1·28-1·95 and 0·79-1·33, P < 0.001 in both cases, respectively). CONCLUSIONS The risk of developing CKD in type 2 diabetes adults with MAFLD was higher, especially if they are below 60 years old. This study underscores the importance of early prevention strategies for MAFLD to reduce the occurrence of CKD in type 2 diabetes adults.
Collapse
Affiliation(s)
- Suosu Wei
- Department of Scientific Cooperation of Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jian Song
- Institute of Cardiovascular Diseases of Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yujie Xie
- Department of Breast and Thyroid Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Junzhang Huang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jianrong Yang
- Institute of Health Management of Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, China.
| |
Collapse
|
9
|
PLVAP as an Early Marker of Glomerular Endothelial Damage in Mice with Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24021094. [PMID: 36674624 PMCID: PMC9865597 DOI: 10.3390/ijms24021094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Plasmalemma vesicle-associated protein (PLVAP) is the main component of endothelial diaphragms in fenestrae, caveolae, and transendothelial channels. PLVAP is expressed in the adult kidney glomerulus upon injury. Glomerular endothelial injury is associated with progressive loss of kidney function in diabetic kidney disease (DKD). This study aimed to investigate whether PLVAP could serve as a marker for glomerular endothelial damage in DKD. Glomerular PLVAP expression was analyzed in different mouse models of DKD and their respective healthy control animals using automatic digital quantification of histological whole kidney sections. Transgenic mice expressing a dominant-negative GIP receptor (GIPRdn) in pancreatic beta-cells as a model for diabetes mellitus (DM) type 1 and black and tan brachyuric (BTBR) ob/ob mice, as a model for DM type 2, were used. Distinct PLVAP induction was observed in all diabetic models studied. Traces of glomerular PLVAP expression could be identified in the healthy control kidneys using automated quantification. Stainings for other endothelial injury markers such as CD31 or the erythroblast transformation-specific related gene (ERG) displayed no differences between diabetic and healthy groups at the time points when PLVAP was induced. The same was also true for the mesangial cells marker α8Integrin, while the podocyte marker nephrin appeared to be diminished only in BTBR ob/ob mice. Glomerular hypertrophy, which is one of the initial morphological signs of diabetic kidney damage, was observed in both diabetic models. These findings suggest that PLVAP is an early marker of glomerular endothelial injury in diabetes-induced kidney damage in mice.
Collapse
|
10
|
Youth versus adult-onset type 2 diabetic kidney disease: Insights into currently known structural differences and the potential underlying mechanisms. Clin Sci (Lond) 2022; 136:1471-1483. [PMID: 36326718 PMCID: PMC10175439 DOI: 10.1042/cs20210627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Type 2 diabetes (T2D) is a global health pandemic with significant humanitarian, economic, and societal implications, particularly for youth and young adults who are experiencing an exponential rise in incident disease. Youth-onset T2D has a more aggressive phenotype than adult-onset T2D, and this translates to important differences in rates of progression of diabetic kidney disease (DKD). We hypothesize that youth-onset DKD due to T2D may exhibit morphometric, metabolic, and molecular characteristics that are distinct from adult-onset T2D and develop secondary to inherent differences in renal energy expenditure and substrate metabolism, resulting in a central metabolic imbalance. Kidney structural changes that are evident at the onset of puberty also serve to exacerbate the organ’s baseline high rates of energy expenditure. Additionally, the physiologic state of insulin resistance seen during puberty increases the risk for kidney disease and is exacerbated by both concurrent diabetes and obesity. A metabolic mismatch in renal energetics may represent a novel target for pharmacologic intervention, both for prevention and treatment of DKD. Further investigation into the underlying molecular mechanisms resulting in DKD in youth-onset T2D using metabolomics and RNA sequencing of kidney tissue obtained at biopsy is necessary to expand our understanding of early DKD and potential targets for therapeutic intervention. Furthermore, large-scale clinical trials evaluating the duration of kidney protective effects of pharmacologic interventions that target a metabolic mismatch in kidney energy expenditure are needed to help mitigate the risk of DKD in youth-onset T2D.
Collapse
|
11
|
Alicic R, Nicholas SB. Diabetic Kidney Disease Back in Focus: Management Field Guide for Health Care Professionals in the 21st Century. Mayo Clin Proc 2022; 97:1904-1919. [PMID: 36202498 DOI: 10.1016/j.mayocp.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/28/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022]
Abstract
Chronic kidney disease due to diabetes, or diabetic kidney disease (DKD), is a worldwide leading cause of chronic kidney disease and kidney failure and an increasingly important global public health issue. It is associated with poor quality of life, high burden of chronic diseases, and increased risk of premature death. Until recently, people with DKD had limited therapeutic options. Treatments have focused largely on glycemic and blood pressure control and renin-angiotensin system blockade, leaving patients with significant residual risk for progression of DKD. The availability of newer classes of glucose-lowering agents, namely, sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists, has changed the therapeutic landscape for these patients. These therapies have offered unprecedented opportunities to reduce the risk for progression of kidney disease and the risk of death that have led to recent updates to clinical guidelines. As such, the American Diabetes Association, the Kidney Disease: Improving Global Outcomes, and the European Association for the Study of Diabetes now recommend the use of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists for patients with DKD to provide both kidney and cardiovascular protective benefits. This review highlights the importance of early detection of DKD and summarizes the latest recommendations in the clinical guidelines on management of patients with DKD with hope of facilitating their uptake into everyday clinical practice. An integrated approach to patient care with a multidisciplinary focus can help achieve the necessary shift in clinical care of patients with DKD.
Collapse
Affiliation(s)
- Radica Alicic
- Providence Medical Research Center, Providence Health Care, University of Washington, Spokane and Seattle
| | - Susanne B Nicholas
- David Geffen School of Medicine at University of California, Los Angeles.
| |
Collapse
|
12
|
Huang K, Liang Y, Wang K, Ma Y, Wu J, Luo H, Yi B. Elevated ACE Levels Indicate Diabetic Nephropathy Progression or Companied Retina Impaired. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:831128. [PMID: 36992775 PMCID: PMC10012155 DOI: 10.3389/fcdhc.2022.831128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 01/13/2023]
Abstract
Objectives Renin-angiotensin-aldosterone system plays important roles in the development of diabetic nephropathy (DN), and angiotensin converting enzyme (ACE) is the key factor in the process from angiotensin I to angiotensin II, but the variation and roles of serum ACE in DN patients are still unclear. Methods Forty-four type 2 diabetes mellitus (T2DM) patients, 75 DN patients, and 36 age-gender-matched healthy volunteers were recruited who attended Xiangya Hospital of Central South University in this case control study. Serum ACE levels and other indexes were tested with commercial kit. Results ACE levels in DN were significantly higher than T2DM and controls (F = 9.66, P < 0.001). Serum ACE levels significantly correlated with UmALB (r = 0.3650, P < 0.001), BUN (r = 0.3102, P < 0.001), HbA1c (r = 0.2046, P = 0.0221), ACR (r = 0.4187, P < 0.001), ALB (r = -0.1885, P = 0.0192), and eGFR (r = -0.3955, P < 0.001), and we got an equation that Y = 2.839 + 0.648X1 + 2.001X2 + 0.003X3 - 6.637X4 +0.416X5 - 0.134X6 (Y: ACE; X1: BUN; X2: HbA1C; X3: UmALB; X4: gender; X5: ALB; X6: eGFR, R2 = 0.655). When DN patients were divided into advanced-stage and early-stage with or without DR, ACE levels would increase when early-stage DN develops into advanced-stage or companied with DR. Conclusion Elevated serum ACE levels may hint DN progression or retina impaired of DN patients.
Collapse
Affiliation(s)
- Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yating Ma
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
L-NAME Administration Enhances Diabetic Kidney Disease Development in an STZ/NAD Rat Model. Int J Mol Sci 2021; 22:ijms222312767. [PMID: 34884571 PMCID: PMC8657539 DOI: 10.3390/ijms222312767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
One of the most important risk factors for developing chronic kidney disease (CKD) is diabetes. To assess the safety and efficacy of potential drug candidates, reliable animal models that mimic human diseases are crucial. However, a suitable model of diabetic kidney disease (DKD) is currently not available. The aim of this study is to develop a rat model of DKD by combining streptozotocin and nicotinamide (STZ/NAD) with oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration. Diabetes was induced in male Wistar rats by intravenous injection of 65 mg/kg STZ, 15 min after intraperitoneal injection of 230 mg/kg NAD. Rats were assigned to different groups receiving L-NAME (100 mg/kg/day) (STZ/NAD/L-NAME) or vehicle (STZ/NAD) for a period of 9 or 12 weeks by daily oral gavage. All rats developed hyperglycemia. Hyperfiltration was observed at the start of the study, whereas increased serum creatinine, albumin-to-creatinine ratio, and evolving hypofiltration were detected at the end of the study. Daily L-NAME administration caused a rapid rise in blood pressure. Histopathological evaluation revealed heterogeneous renal injury patterns, which were most severe in the STZ/NAD/L-NAME rats. L-NAME-induced NO-deficiency in STZ/NAD-induced diabetic rats leads to multiple characteristic features of human DKD and may represent a novel rat model of DKD.
Collapse
|
14
|
Trajectories of kidney function in diabetes: a clinicopathological update. Nat Rev Nephrol 2021; 17:740-750. [PMID: 34363037 DOI: 10.1038/s41581-021-00462-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy has been traditionally diagnosed based on persistently high albuminuria and a subsequent decline in glomerular filtration rate (GFR), which is widely recognized as the classical phenotype of diabetic kidney disease (DKD). Several studies have emphasized that trajectories of kidney function in patients with diabetes (specifically, changes in GFR and albuminuria over time) can differ from this classical DKD phenotype. Three alternative DKD phenotypes have been reported to date and are characterized by albuminuria regression, a rapid decline in GFR, or non-proteinuric or non-albuminuric DKD. Although kidney biopsies are not typically required for the diagnosis of DKD, a few studies of biopsy samples from patients with DKD have demonstrated that changes in kidney function associate with specific histopathological findings in diabetes. In addition, various clinical and biochemical parameters are related to trajectories of GFR and albuminuria. Collectively, pathological and clinical characteristics can be used to predict trajectories of GFR and albuminuria in diabetes. Furthermore, cohort studies have suggested that the risks of kidney and cardiovascular outcomes might vary among different phenotypes of DKD. A broader understanding of the clinical course of DKD is therefore crucial to improve risk stratification and enable early interventions that prevent adverse outcomes.
Collapse
|
15
|
Lin L, Dekkers IA, Huang L, Tao Q, Paiman EHM, Bizino MB, Jazet IM, Lamb HJ. Renal sinus fat volume in type 2 diabetes mellitus is associated with glycated hemoglobin and metabolic risk factors. J Diabetes Complications 2021; 35:107973. [PMID: 34217586 DOI: 10.1016/j.jdiacomp.2021.107973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
AIMS We aimed to compare renal sinus fat volume assessed by MRI between patients with type 2 diabetes and healthy volunteers, and investigate the association between renal sinus fat and metabolic traits. METHODS In this cross-sectional study, renal sinus fat and parenchyma volumes measured on abdominal MRI were compared between patients and controls using analysis of covariance. Associations of renal parameters with clinical characteristics were analyzed using linear regression analysis. RESULTS A total of 146 participants were enrolled, consisting of 95 type 2 diabetes patients (57.2±8.8years, 49.5% male) and 51 controls (54.0±9.2years, 43.1% male). Patients with diabetes demonstrated larger sinus fat volumes (15.4±7.5cm3 vs. 10.3±7.1cm3, p<0.001) and sinus fat-parenchyma ratio than controls. In the total population, renal sinus fat was positively associated with HbA1c, abdominal VAT, cholesterol and triglycerides, after adjustment for age, sex, ethnicity and type 2 diabetes. In type 2 diabetes patients, increased sinus fat volume was significantly associated with urinary albumin-to-creatinine ratio. CONCLUSION Renal sinus fat volume is positively associated with several metabolic risk factors including HbA1c level and urinary albumin-to-creatinine ratio in type 2 diabetes patients, indicating a potential role of renal sinus fat in the development of diabetic nephropathy. Future studies are needed to investigate whether sinus fat volume can serve as an early biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
- Ling Lin
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands.
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Qiaokou District, Wuhan, Hubei, China
| | - Qian Tao
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Maurice B Bizino
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Ingrid M Jazet
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| |
Collapse
|
16
|
Wu M, Yang Z, Zhang C, Shi Y, Han W, Song S, Mu L, Du C, Shi Y. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism 2021; 118:154748. [PMID: 33675822 DOI: 10.1016/j.metabol.2021.154748] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nucleotide leukin-rich polypeptide 3 (NLRP3) inflammasome is documented as a potent target for treating metabolic diseases and inflammatory disorders. Our recent work demonstrated that inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis in diabetic nephropathy. This study was to investigate the effect of NLRP3 inflammasome on podocyte injury and the underlying mechanism in diabetic nephropathy. METHODS In vivo, db/db mice were treated with MCC950, a NLRP3 inflammasome specific inhibitor. NLRP3 knockout (NKO) mice were induced to diabetes by intraperitoneal injections of streptozotocin (STZ). We assessed renal function, albuminuria, podocyte injury and glomerular lipid accumulation in diabetic mice. In vitro, apoptosis, cytoskeleton change, lipid accumulation, NF-κB p65 activation and reactive oxygen species (ROS) generation were evaluated in podocytes interfered with NLRP3 siRNA or MCC950 under high glucose (HG) conditions. In addition, the effect and mechanism of IL-1β on lipid accumulation was explored in podocytes exposed to normal glucose (NG) or HG. RESULTS MCC950 treatment improved renal function, attenuated albuminuria, mesangial expansion, podocyte loss, as well as glomerular lipid accumulation in db/db mice. The diabetes-induced podocyte loss and glomerular lipid accumulation were reversed in NLRP3 knockout mice. The increased expression of sterol regulatory element-binding protein1 (SREBP1) and SREBP2, and decreased expression of ATP-binding cassette A1 (ABCA1) in podocytes were reversed by MCC950 treatment or NLRP3 knockout in diabetic mice. In vitro, NLRP3 siRNA or MCC950 treatment markedly inhibited HG-induced apoptosis, cytoskeleton change, lipid accumulation, NF-κB p65 activation, and mitochondrial ROS production in cultured podocytes. In addition, BAY11-7082 or tempol treatment inhibited HG-induced lipid accumulation in podocytes. Moreover, exposure of IL-1β to podocytes induced lipid accumulation, NF-κB p65 activation and mitochondrial ROS generation. CONCLUSION Inhibition of NLRP3 inflammasome protects against podocyte damage through suppression of lipid accumulation in diabetic nephropathy. IL-1β/ROS/NF-κB p65 mediates diabetes-associated lipid accumulation in podocytes. The suppression of NLRP3 inflammasome activation may be an effective therapeutic approach to diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengyu Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050017, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
17
|
Duan S, Lu F, Song D, Zhang C, Zhang B, Xing C, Yuan Y. Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:661185. [PMID: 34177803 PMCID: PMC8223745 DOI: 10.3389/fendo.2021.661185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Over decades, substantial progress has been achieved in understanding the pathogenesis of proteinuria in diabetic kidney disease (DKD), biomarkers for DKD screening, diagnosis, and prognosis, as well as novel hypoglycemia agents in clinical trials, thereby rendering more attention focused on the role of renal tubules in DKD. Previous studies have demonstrated that morphological and functional changes in renal tubules are highly involved in the occurrence and development of DKD. Novel tubular biomarkers have shown some clinical importance. However, there are many challenges to transition into personalized diagnosis and guidance for individual therapy in clinical practice. Large-scale clinical trials suggested the clinical relevance of increased proximal reabsorption and hyperfiltration by sodium-glucose cotransporter-2 (SGLT2) to improve renal outcomes in patients with diabetes, further promoting the emergence of renal tubulocentric research. Therefore, this review summarized the recent progress in the pathophysiology associated with involved mechanisms of renal tubules, potential tubular biomarkers with clinical application, and renal tubular factors in DKD management. The mechanism of kidney protection and impressive results from clinical trials of SGLT2 inhibitors were summarized and discussed, offering a comprehensive update on therapeutic strategies targeting renal tubules.
Collapse
|
18
|
Liu R, Guan S, Gao Z, Wang J, Xu J, Hao Z, Zhang Y, Yang S, Guo Z, Yang J, Shao H, Chang B. Pathological Hyperinsulinemia and Hyperglycemia in the Impaired Glucose Tolerance Stage Mediate Endothelial Dysfunction Through miR-21, PTEN/AKT/eNOS, and MARK/ET-1 Pathways. Front Endocrinol (Lausanne) 2021; 12:644159. [PMID: 33967958 PMCID: PMC8104127 DOI: 10.3389/fendo.2021.644159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is an important prediabetic stage characterized by elevated concentrations of glucose and insulin in the blood. The pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to endothelial cell dysfunction and early renal damage. METHODS The individual and combined effects of insulin and glucose were investigated using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured. The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor. RESULTS High (>16.7 mmol/L) concentration of glucose upregulated the expression of miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1 pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively. High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway, thereby upregulating the expression of ET-1 and downregulating the secretion of NO. MiR-21 was observed to play a key role by directly controlling the activation of the insulin signaling pathways when the cells were cotreated with different concentrations of insulin and glucose. The expression of miR-21 was found to be dependent on the relative concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3 mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on miR-21 expression in the cells attenuated the activation by high glucose concentration, resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO secretion. CONCLUSION Taken together, these results indicate that high insulin and glucose concentrations regulate the secretory function of glomerular endothelial cells in opposite ways by regulating the expression of miRNA-21. Pathological concentrations of insulin and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
Collapse
Affiliation(s)
- Ran Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Shilin Guan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhaohu Hao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shaohua Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hailin Shao
- Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Disease, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailin Shao, ; Baocheng Chang,
| |
Collapse
|
19
|
Multiplex Bead Array Assay of a Panel of Circulating Cytokines and Growth Factors in Patients with Albuminuric and Non-AlbuminuricDiabetic Kidney Disease. J Clin Med 2020; 9:jcm9093006. [PMID: 32961903 PMCID: PMC7565054 DOI: 10.3390/jcm9093006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
A panel of cytokines and growth factors, mediating low-grade inflammation and fibrosis, was assessed in patients with type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). Patients with long-term T2D (N = 130) were classified into four groups: no signs of CKD; estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 without albuminuria; albuminuria and eGFR ≥60 mL/min/1.73 m2; albuminuria and eGFR <60 mL/min/1.73 m2. Thirty healthy subjects were acted as control. Twenty-seven cytokines and growth factors were assessed in serum by multiplex bead array assay. Serum hs-CRP, urinary nephrin, podocine, and WFDC2 were measured by ELISA. Patients with T2D showed elevated IL-1Ra, IL-6, IL-17A, G-CSF, IP-10, MIP-1α, and bFGF levels; concentrations of IL-4, IL-12, IL-15, INF-γ, and VEGF were decreased. IL-6, IL-17A, G-CSF, MIP-1α, and bFGF correlated negatively with eGFR; IL-10 and VEGF demonstrated negative associations with WFDC2; no relationships with podocyte markers were found. Adjusted IL-17A and MIP-1α were predictors of non-albuminuric CKD, IL-13 predicted albuminuria with preserved renal function, meanwhile, IL-6 and hsCRP were predictors of albuminuria with eGFR decline. Therefore, albuminuric and non-albuminuric CKD in T2D patients are associated with different pro-inflammatory shifts in the panel of circulating cytokines.
Collapse
|
20
|
Tong X, Yu Q, Ankawi G, Pang B, Yang B, Yang H. Insights into the Role of Renal Biopsy in Patients with T2DM: A Literature Review of Global Renal Biopsy Results. Diabetes Ther 2020; 11:1983-1999. [PMID: 32757123 PMCID: PMC7434810 DOI: 10.1007/s13300-020-00888-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Renal biopsy performed in patients with type 2 diabetes mellitus (T2DM) for atypical or suspected diabetic kidney disease (DKD) reveals one of three possibilities: diabetic nephropathy (DN, pathological diagnosis of DKD), nondiabetic kidney disease (NDKD) and DN plus NDKD (mixed form). NDKD (including the mixed form) is increasingly being recognized worldwide. With the emerging concept of DKD and the complexity of routine application of renal biopsy, the identification of "clinical indicators" to differentiate DKD from NDKD has been an area of active research. METHODS The PubMed database was searched for relevant articles mainly according to the keyword search method. We reviewed prevalence of the three types of DKD and different pathological lesions of NDKD. We also reviewed the clinical indicators used to identify DKD and NDKD. RESULTS The literature search identified 40 studies (5304 data) worldwide between 1977 and 2019 that looked at global renal biopsy and pathological NDKD lesions. The overall prevalence rate of DN, NDKD and DN plus NDKD is reported to be 41.3, 40.6 and 18.1%, respectively. In Asia, Africa (specifically Morocco and Tunisia) and Europe, the most common isolated NDKD pathological type is membranous nephropathy, representing 24.1, 15.1 and 22.6% of cases, respectively. In contrast, focal segmental glomerulosclerosis is reported to be the primary pathological type in North America (specifically the USA) and Oceania (specifically New Zealand), representing 22% and 63.9% of cases, respectively. Tubulointerstitial disease accounts for a high rate in the mixed group (21.7%), with acute interstitial nephritis being the most prevalent (9.3%), followed by acute tubular necrosis (9.0%). Regarding clinical indicators to differentiate DKD from NDKD, a total of 14 indicators were identified included in 42 studies. Among these, the most commonly studied indicators included diabetic retinopathy, duration of diabetes, proteinuria and hematuria. Regrettably, indicators with high sensitivity and specificity have not yet been identified. CONCLUSION To date, renal biopsy is still the gold standard to diagnose diabetes complicated with renal disease, especially when T2DM patients present atypical DKD symptoms (e.g. absence of diabetic retinopathy, shorter duration of diabetes, microscopic hematuria, sub-nephrotic range proteinuria, lower glycated hemoglobin, lower fasting blood glucose). We conclude that renal biopsy as early as possible is of great significance to enable personalized treatment to T2DM patients.
Collapse
Affiliation(s)
- Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ghada Ankawi
- Department of Internal Medicine and Nephrology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bo Pang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Di Vincenzo A, Bettini S, Russo L, Mazzocut S, Mauer M, Fioretto P. Renal structure in type 2 diabetes: facts and misconceptions. J Nephrol 2020; 33:901-907. [PMID: 32656750 PMCID: PMC7557481 DOI: 10.1007/s40620-020-00797-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
The clinical manifestations of diabetic nephropathy are similar in type 1 and type 2 diabetes, while the renal lesions may differ. Indeed, diabetic glomerulopathy is the predominant renal lesion in type 1 diabetes, although also tubular, interstitial and arteriolar lesions are present in the advanced stages of renal disease. In contrast, in type 2 diabetes renal lesions are heterogeneous, and a substantial number of type 2 diabetic patients with diabetic kidney disease have mild or absent glomerulopathy with tubulointerstitial and/or arteriolar abnormalities. In addition, a high prevalence of non-diabetic renal diseases, isolated or superimposed on classic diabetic nephropathy lesions have been reported in patients with type 2 diabetes, often reflecting the bias of selecting patients for unusual clinical presentations for renal biopsy. This review focuses on renal structural changes in type 2 diabetes, emphasizing the contribution of research kidney biopsy studies to the understanding of the pathogenesis of DKD and of the structural lesions responsible for the different clinical phenotypes. Also, kidney biopsies could provide relevant information in terms of renal prognosis, and help to understand the different responses to different therapies, especially SGLT2 inhibitors, thus allowing personalized medicine.
Collapse
Affiliation(s)
- Angelo Di Vincenzo
- Department of Medicine, Clinica Medica 3, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Silvia Bettini
- Department of Medicine, Clinica Medica 3, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Lucia Russo
- Department of Medicine, Clinica Medica 3, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Sara Mazzocut
- Department of Medicine, Clinica Medica 3, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Paola Fioretto
- Department of Medicine, Clinica Medica 3, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
22
|
Gao Z, Wang Z, Zhu H, Yuan X, Sun M, Wang J, Zuo M, Cui X, Han Y, Zhang Y, Yang S, Qin Y, Xu J, Yang J, Chang B. Hyperinsulinemia contributes to impaired-glucose-tolerance-induced renal injury via mir-7977/SIRT3 signaling. Ther Adv Chronic Dis 2020; 11:2040622320916008. [PMID: 32523663 PMCID: PMC7236569 DOI: 10.1177/2040622320916008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Increasing evidence indicates that impaired glucose tolerance (IGT) is independently associated with chronic kidney disease, but the characteristics and underlying mechanisms remain largely unknown. Methods: Here, the cross-sectional study was performed to study the characteristics of IGT-induced renal injury (IGT-RI). Furthermore, urine microRNA profile was evaluated and microRNAs involved in tubular injury were determined by in-vitro experiments. Results: It was found that 12.1% of IGT patients had microalbuminuria, which we termed “IGT-RI.” Overall, 100% of patients with IGT-RI exhibited reabsorption dysfunction and 58.3% had structural damage in the renal tubules. Two-hour postprandial insulin, retinol-binding protein, and N-acetyl-β-glucosaminidase were significantly associated with microalbuminuria and they were independent risk factors for IGT-RI. The expression of mir-7977 was altered in IGT-RI patients and may be involved in cellular response to oxidative stress. In proximal tubule epithelial cells in vitro, a high level of insulin increased the expression of mir-7977 and decreased that of sirtuin 3 (SIRT3), leading to oxidative stress. Overexpression of mir-7977 further decreased SIRT3 expression, whereas inhibition of mir-7977 had the opposite effect. Furthermore, mir-7977 can bind to the 3′-untranslated region of SIRT3 mRNA and inhibit its expression. Moreover, inhibition of SIRT3 reduced the expression of cubilin and the endocytosis of albumin. Conclusions: In conclusion, IGT-RI mainly manifests as tubular injury, especially reabsorption dysfunction. Compensatory hyperinsulinemia may be involved. A high level of insulin can activate mir-7977/SIRT3 signaling, resulting in tubular injury by inducing oxidative stress as well as reabsorption dysfunction by inhibiting the expression of cubilin, ultimately contributing to IGT-RI.
Collapse
Affiliation(s)
- Zhongai Gao
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Ziyan Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Hong Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinxin Yuan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Mengdi Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Minxia Zuo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiao Cui
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Ying Han
- Department of Endocrinology, Tianjin Haibin People's Hospital, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Shaohua Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Yongzhang Qin
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
23
|
Okada H, Tanaka M, Yasuda T, Okada Y, Norikae H, Fujita T, Nishi T, Oyamada H, Yamane T, Fukui M. Peripheral perfusion, measured by perfusion index, is a novel indicator for renal events in patients with type 2 diabetes mellitus. Sci Rep 2020; 10:6054. [PMID: 32269240 PMCID: PMC7142064 DOI: 10.1038/s41598-020-62926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/21/2020] [Indexed: 11/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end stage renal disease. Despite recent therapies, mortality due to DKD and resources spent on healthcare are important problems. Thus, appropriate markers are needed to predict renal outcomes. Therefore, we investigated the role of peripheral perfusion as an indicator for renal events in patients with type 2 diabetes mellitus. This retrospective cohort study included 566 patients who were admitted to Matsushita Memorial Hospital in Osaka, Japan for type 2 diabetes mellitus. Peripheral perfusion was assessed using perfusion index (PI), which represents the level of circulation through peripheral tissues and was measured on each toe using a Masimo SET Radical-7 (Masimo Corporation, Irvine, CA, USA) instrument. The duration of follow up was 3.0 years. The median age of patients was 70 years (IQR range: 61-77 years) and median PI value was 2.9% (IQR range: 1.8-4.8%). Multiple logistic regression analyses showed that PI (per 1% increase) was associated with an odds ratio of composite of end-stage renal disease (ESRD) and/or doubling of serum creatinine level; n = 40 (odds ratio 0.823 [95% CI: 0.680-0.970]), and composite of ESRD, doubling of serum creatinine level, and renal death and/or cardiovascular death; n = 44 (odds ratio 0.803 [95% CI: 0.665-0.944]). The factors which were statistically significant in univariate analysis and those known to be related factors for renal event were considered simultaneously as independent variables for multiple logistic regression analysis. PI can be a novel indicator for renal events in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Okada
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi, 570-8540, Japan.
| | - Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takashi Yasuda
- Department of Nephrology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Yuki Okada
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi, 570-8540, Japan
| | - Hisahiro Norikae
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Tetsuya Fujita
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Takashi Nishi
- Department of General Affairs, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Hirokazu Oyamada
- Department of Gastroenterology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Tetsuro Yamane
- Department of Surgery, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
24
|
Jiang W, Wang J, Shen X, Lu W, Wang Y, Li W, Gao Z, Xu J, Li X, Liu R, Zheng M, Chang B, Li J, Yang J, Chang B. Establishment and Validation of a Risk Prediction Model for Early Diabetic Kidney Disease Based on a Systematic Review and Meta-Analysis of 20 Cohorts. Diabetes Care 2020; 43:925-933. [PMID: 32198286 DOI: 10.2337/dc19-1897] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/27/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Identifying patients at high risk of diabetic kidney disease (DKD) helps improve clinical outcome. PURPOSE To establish a model for predicting DKD. DATA SOURCES The derivation cohort was from a meta-analysis. The validation cohort was from a Chinese cohort. STUDY SELECTION Cohort studies that reported risk factors of DKD with their corresponding risk ratios (RRs) in patients with type 2 diabetes were selected. All patients had estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio (UACR) <30 mg/g at baseline. DATA EXTRACTION Risk factors and their corresponding RRs were extracted. Only risk factors with statistical significance were included in our DKD risk prediction model. DATA SYNTHESIS Twenty cohorts including 41,271 patients with type 2 diabetes were included in our meta-analysis. Age, BMI, smoking, diabetic retinopathy, hemoglobin A1c, systolic blood pressure, HDL cholesterol, triglycerides, UACR, and eGFR were statistically significant. All these risk factors were included in the model except eGFR because of the significant heterogeneity among studies. All risk factors were scored according to their weightings, and the highest score was 37.0. The model was validated in an external cohort with a median follow-up of 2.9 years. A cutoff value of 16 was selected with a sensitivity of 0.847 and a specificity of 0.677. LIMITATIONS There was huge heterogeneity among studies involving eGFR. More evidence is needed to power it as a risk factor of DKD. CONCLUSIONS The DKD risk prediction model consisting of nine risk factors established in this study is a simple tool for detecting patients at high risk of DKD.
Collapse
Affiliation(s)
- Wenhui Jiang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiaofang Shen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Wenli Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiaochen Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Ran Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Miaoyan Zheng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Bai Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Jing Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
25
|
Nicholas SB. Use of urinary proteomics in diagnosis and monitoring of diabetic kidney disease. Lancet Diabetes Endocrinol 2020; 8:261-262. [PMID: 32135137 DOI: 10.1016/s2213-8587(20)30067-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Susanne B Nicholas
- David Geffen School of Medicine at UCLA, University of Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Liu P, Li F, Xu X, Li S, Dong X, Chen L, Bai B, Wang Y, Qiu M, Dong Y. 1,25(OH) 2D 3 provides protection against diabetic kidney disease by downregulating the TLR4-MyD88-NF-κB pathway. Exp Mol Pathol 2020; 114:104434. [PMID: 32240615 DOI: 10.1016/j.yexmp.2020.104434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
The over-activation of Toll-like receptors (TLRs) is a typical immune response to injury. Previous work has suggested that controlling the over-activation of TLR4-MyD88-NF-κB may represent a new therapeutic option for diabetic kidney disease (DKD). 1,25(OH)2D3 has also been shown to exert a protective effect on DKD, although the mechanism involved has yet to be elucidated. The aim of this study was to investigate whether 1,25(OH)2D3 protects against DKD by down-regulating the innate immune TLR-NF-κB pathway. NRK-52E cells were cultured under normal or high-glucose conditions. We then used siRNA to knock down TLR4 expression under high-glucose conditions. NRK-52E cells cultured under high-glucose conditions, and streptozotocin (STZ)-induced diabetic rats, were treated with different doses of 1,25(OH)2D3 and used as in vitro and in vivo models, respectively. Renal biochemical indicators were then measured to evaluate the influence of 1,25(OH)2D3 treatment on DKD in diabetic rats. Histological analysis was also performed to determine the extent of infiltration by inflammatory cells and tubulointerstitial fibrosis. Using RT-qPCR, western blotting, immunohistochemistry and immunofluorescence, we determined the expression levels of TLR4, MyD88, NF-κB p65, MCP-1 and α-SMA to investigate whether 1,25(OH)2D3 could reduce the development of tubulointerstitial fibrosis. Knocking down TLR4 abolished the tubulointerstitial fibrosis caused by high-glucose conditions. High doses of 1,25(OH)2D3 consistently reduced the expression of TLR4-MyD88-NF-κB in NRK-52E cells. Moreover, high doses of 1,25(OH)2D3 had an obvious protective effect on kidney injury and inhibited the infiltration of inflammatory cells and tubulointerstitial fibrosis in diabetic rats. In conclusion, high doses of 1,25(OH)2D3 protected against tubulointerstitial fibrosis both in vitro and in vivo by downregulating the expression of TLR4-MyD88-NF-κB.
Collapse
Affiliation(s)
- Ping Liu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Fengao Li
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin 300041, China
| | - Xiaoyan Xu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Suning Li
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoying Dong
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ling Chen
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Bin Bai
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yarong Wang
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Mingcai Qiu
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin 300041, China
| | - Youping Dong
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
27
|
Araújo LS, da Silva MV, da Silva CA, Borges MDF, Palhares HMDC, Rocha LP, Corrêa RRM, Rodrigues Júnior V, dos Reis MA, Machado JR. Analysis of serum inflammatory mediators in type 2 diabetic patients and their influence on renal function. PLoS One 2020; 15:e0229765. [PMID: 32130282 PMCID: PMC7055870 DOI: 10.1371/journal.pone.0229765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Aim To evaluate the serum concentrations of inflammatory mediators in patients with type 2 diabetes mellitus (T2DM) with or without renal alteration (RA) function. Methods Serum samples from 76 patients with T2DM and 24 healthy individuals were selected. Patients with T2DM were divided into two groups according to eGFR (> or < 60mL/min/1.73m2). Cytokines, chemokines and adipokines levels were evaluated using the Multiplex immunoassay and ELISA. Results TNFR1 and leptin were higher in the T2DM group with RA than in the T2DM group without RA and control group. All patients with T2DM showed increased resistin, IL-8, and MIP-1α compared to the control group. Adiponectin were higher and IL-4 decreased in the T2DM group with RA compared to the control group. eGFR positively correlated with IL-4 and negatively with TNFR1, TNFR2, and leptin in patients with T2DM. In the T2DM group with RA, eGFR was negatively correlated with TNFR1 and resistin. TNFR1 was positively correlated with resistin and leptin, as well as resistin with IL-8 and leptin. Conclusion Increased levels of TNFR1, adipokines, chemokines and decrease of IL-4 play important role in the inflammatory process developed in T2DM and decreased renal function. We also suggest that TNFR1 is a strong predictor of renal dysfunction in patients with T2DM.
Collapse
Affiliation(s)
- Liliane Silvano Araújo
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Crislaine Aparecida da Silva
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria de Fátima Borges
- Discipline of Endocrinology and Metabolism, Health Sciences Institute of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Heloísa Marcelina da Cunha Palhares
- Discipline of Endocrinology and Metabolism, Health Sciences Institute of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Laura Penna Rocha
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antônia dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
28
|
Ninčević V, Omanović Kolarić T, Roguljić H, Kizivat T, Smolić M, Bilić Ćurčić I. Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. Int J Mol Sci 2019; 20:ijms20235831. [PMID: 31757028 PMCID: PMC6928920 DOI: 10.3390/ijms20235831] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most perilous side effects of diabetes mellitus type 1 and type 2 (T1DM and T2DM).). It is known that sodium/glucose cotransporter 2 inhibitors (SGLT 2i) and glucagone like peptide-1 receptor agonists (GLP-1 RAs) have renoprotective effects, but the molecular mechanisms are still unknown. In clinical trials GLP-1 analogs exerted important impact on renal composite outcomes, primarily on macroalbuminuria, possibly through suppression of inflammation-related pathways, however enhancement of natriuresis and diuresis is also one of possible mechanisms of nephroprotection. Dapagliflozin, canagliflozin, and empagliflozin are SGLT2i drugs, useful in reducing hyperglycemia and in their potential renoprotective mechanisms, which include blood pressure control, body weight loss, intraglomerular pressure reduction, and a decrease in urinary proximal tubular injury biomarkers. In this review we have discussed the potential synergistic and/or additive effects of GLP 1 RA and SGLT2 inhibitors on the primary onset and progression of kidney disease, and the potential implications on current guidelines of diabetes type 2 management.
Collapse
Affiliation(s)
- Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Hrvoje Roguljić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department for Cardiovascular Disease, University Hospital Osijek, 4, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department for Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek; J. Huttlera 4, 31000 Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ines Bilić Ćurčić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (H.R.)
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
29
|
Carrara C, Abbate M, Conti S, Rottoli D, Rizzo P, Marchetti G. Histological Examination of the Diabetic Kidney. Methods Mol Biol 2019; 2067:63-87. [PMID: 31701446 DOI: 10.1007/978-1-4939-9841-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The increasing prevalence of diabetes worldwide has led to a concomitant rise in diabetic kidney disease (DKD) as a major cause of end-stage renal disease. Glomerular lesions constitute the most striking and consistent features identified in biopsies from patients with DKD, although tubulointerstitial injury has an important and often under-recognized role in the progression to overt nephropathy. In advanced stages of the disease, podocyte detachment is a pivotal event in the loss of glomerular filtration barrier integrity and may explain, at least in part, the inability of current therapies to halt renal function decline. This chapter details the systematic method that can be used to study renal tissue samples from diabetic patients, and the specific role of different imaging techniques, such as light microscopy, immunofluorescence microscopy, and transmission and scanning electron microscopy in detecting histologic lesions specific to DKD.
Collapse
Affiliation(s)
- Camillo Carrara
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| | - Mauro Abbate
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paola Rizzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Gianfranco Marchetti
- Unit of Nephrology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
30
|
Klimontov VV, Korbut AI. Albuminuric and non-albuminuric patterns of chronic kidney disease in type 2 diabetes. Diabetes Metab Syndr 2019; 13:474-479. [PMID: 30641747 DOI: 10.1016/j.dsx.2018.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
A growing body of evidence supports a shift in the natural history of chronic kidney disease (CKD) in subjects with diabetes. Specifically, normoalbuminuric chronic kidney disease (NA-CKD), which is characterized by a decline in the glomerular filtration rate in the absence of a preceding or accompanying elevation of albuminuria, has become a widely prevalent variant of renal impairment in diabetes. Diabetic women and nonsmoking individuals with better glycemic control have a better chance of preserving normoalbuminuria, even in the case of declining renal function. The wide use of renin-angiotensin system blockers, advances in antihyperglycemic, antihypertensive, and hypolipidemic therapy, and smoking cessation are suspected to be responsible for an increasing proportion of NA-CKD among diabetic subjects with renal impairment. Significant differences in the sets of risk factors, renal morphology, comorbidity, and outcomes were found between the albuminuric and normoalbuminuric CKD patterns. NA-CKD, even if a more favorable option in terms of the risk of end-stage renal disease, is clearly associated with cardiovascular disease and its risk factors. The presence of NA-CKD in patients with diabetes increases the risk of myocardial infarction, stroke, and cardiovascular death. The study of the molecular pathways, clinical course, and outcomes of NA-CKD in diabetic subjects and the search for more specific diagnostic and treatment options are challenges for future research.
Collapse
Affiliation(s)
- Vadim V Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| | - Anton I Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
31
|
Zhang Y, Yang S, Cui X, Yang J, Zheng M, Jia J, Han F, Yang X, Wang J, Guo Z, Chang B, Chang B. Hyperinsulinemia Can Cause Kidney Disease in the IGT Stage of OLETF Rats via the INS/IRS-1/PI3-K/Akt Signaling Pathway. J Diabetes Res 2019; 2019:4709715. [PMID: 31737684 PMCID: PMC6815570 DOI: 10.1155/2019/4709715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/19/2019] [Accepted: 08/17/2019] [Indexed: 11/18/2022] Open
Abstract
AIMS We investigated the changes of renal structure and its function in normal glucose tolerance (NGT), impaired glucose tolerance (IGT), diabetes mellitus (DM), and diabetic kidney disease (DKD) stages in OLETF rats and explored the role of the INS/IRS-1/PI3-K/Akt signaling pathway. METHODS OLETF rats were assigned into four groups on the basis of OGTT results and 24 h urinary microalbumin: NGT, IGT, DM, and DKD groups. The changes of renal structure and function and the corresponding pathological changes were observed. The absorption of albumin and the expression of megalin, cubilin, IRS-1, PI3-K, and Akt in NRK-52E cells were measured after being stimulated by different concentrations of insulin. RESULTS In the IGT group, the index which reflects the function of renal tubule-like N-acetyl-β-glucosaminidase, neutrophil gelatinase-associated lipocalin, retinol-binding protein, and cystatin C was higher than those in the control group and the NGT group (P < 0.05). Significant renal structure damages, especially in renal tubules, were observed in the IGT group. In the presence of insulin at a high concentration, the IRS-1/PI3-K/Akt signaling pathway in renal tubular epithelial cells was inhibited, and the expression of megalin and cubilin was significantly downregulated which was accompanied by a minimum uptake of albumin. CONCLUSIONS In contrast to DKD, the renal structural damage and functional changes in the IGT stage, in which we propose the term "IGT kidney disease," mainly manifest as renal tubular injury. Insulin resistance and compensatory hyperinsulinemia may be involved in its pathogenesis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Shaohua Yang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xiao Cui
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Juhong Yang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Miaoyan Zheng
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Junya Jia
- Department of Nephropathy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fei Han
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoyun Yang
- Department of Endocrine Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingyu Wang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Zhenhong Guo
- Department of Endocrine Metabolism, Zhengzhou Yihe Hospital, Zhengzhou 450047, China
| | - Bai Chang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Baocheng Chang
- Department of Nephropathy, NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
32
|
Abstract
Urinary albumin excretion (UAE) is widely used in clinical practice as indicator of diabetic kidney disease. According to the classical concept of the natural course of diabetic nephropathy, an increase in UAE usually precedes a decline in renal function. Meanwhile, a growing body of evidences indicates a high prevalence of normoalbuminuric chronic kidney disease (NA-CKD) in diabetic subjects, especially among patients with type 2 diabetes. An increase in NA-CKD prevalence can be results of improved glucose, blood pressure, and lipid control, widespread use of renin-angiotensin system blockers, and smoking cessation. It was shown that NA-CKD is more prevalent among women and is associated with arterial hypertension and coronary artery disease. The renal structure in subjects with NA-CKD is more heterogeneous when compared to patients with increased albuminuria, wherein interstitial changes and arteriolosclerosis could be the principal morphological findings, while signs of glomerulopathy may be absent. The prognostic value of NA-CKD needs to be clarified. It was shown that NA-CKD increases the risk of myocardial infarction, stroke and cardiovascular death in patients with diabetes. The search for alternative diagnostic markers for detecting of diabetic kidney disease in the absence of albuminuria, is of practical importance. The evaluations of the markers of tubular damage and interstitial fibrosis, as well as proteomic approaches, are considered as perspective diagnostic and prognostic options in NA-CKD. The study of pathogenesis, pathology, clinical course of NA-CKD in diabetic patients, as well as the development of more specific diagnostic and treatment options is a challenge for future research.
Collapse
|
33
|
Satirapoj B, Dispan R, Radinahamed P, Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol 2018; 19:246. [PMID: 30241508 PMCID: PMC6150979 DOI: 10.1186/s12882-018-1043-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased monocyte chemoattractant protein-1 (MCP-1) and decreased epidermal growth factor (EGF) are promising biomarkers to predict progressive decline in kidney function in non-diabetic kidney diseases. We aimed to evaluate the performance of urinary EGF, MCP-1 or their ratio in predicting rapid decline of GFR in a cohort of Type 2 diabetic patients (T2DM) with diabetic kidney disease (DKD). METHODS T2DM patients (n = 83) with DKD at high risk for renal progression were followed up prospectively. The baseline urine values of MCP-1 to creatinine ratio (UMCP-1), EGF to creatinine ratio (UEGF), EGF to MCP-1 ratio (UEGF/MCP-1) and albumin to creatinine ratio (UACR) were measured. The primary outcome was a decline in estimated glomerular filtration rate (GFR) of ≥25% yearly from baseline. RESULTS During follow-up time of 23 months, patients with rapid decline in estimated GFR of ≥25% yearly from baseline had significantly higher baseline levels of UMCP-1, and UACR and lower UEGF and UEGF/MCP-1 ratio. All renal biomarkers predicted primary outcomes with ROC (95%CI) for UMCP-1=0.73 (0.62-0.84), UEGF=0.68 (0.57-0.80), UEGF/MCP-1=0.74 (0.63-0.85), and UACR =0.84 (0.75-0.93). By univariate analysis, blood pressure, GFR, UACR, UMCP-1, UEGF, and UEGF/MCP-1 were associated with rapid decline GFR. By multivariate analysis, UACR, systolic blood pressure, and UMCP-1 or UEGF/MCP-1 were independently associated with rapid GFR decline. CONCLUSIONS UMCP-1 or UEGF/MCP-1 ratio were associated with rapid renal progression independent from conventional risk factors in DKD.
Collapse
Affiliation(s)
- Bancha Satirapoj
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Rattanawan Dispan
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Piyanuch Radinahamed
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd, Bangkok, 10400 Thailand
| | - Chagriya Kitiyakara
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd, Bangkok, 10400 Thailand
| |
Collapse
|
34
|
Agarwal SK, Saikia UK, Sarma D, Devi R. Assessment of Glomerular and Tubular Function in the Evaluation of Diabetic Nephropathy: A Cross-sectional Study. Indian J Endocrinol Metab 2018; 22:451-456. [PMID: 30148087 PMCID: PMC6085973 DOI: 10.4103/ijem.ijem_303_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) occurs in 20%-40% of patients with diabetes, and it is characterized by proteinuria and progressive loss of renal functions ultimately leading to end-stage renal disease. Classically, albuminuria is regarded as a consequence of diabetes-induced glomerular damage. It is now being appreciated that the renal tubulointerstitium also plays a role in the development of DN.[1] Urinary cystatin C (UCC) is an emerging marker of DN. It is totally catabolized by proximal tubular cells and is not normally present in the urine. However, in the presence of tubulopathy, it is excreted in urine, and serum levels also are elevated due to lack of catabolism. MATERIALS AND METHODS The present study was conducted to evaluate the presence of glomerulopathy and tubulopathy in patients with type 2 diabetes mellitus (T2DM) and to correlate them with established risk factors for nephropathy. We aimed at evaluating the level of UCC as a marker of tubulointerstitial damage in patients with T2DM in relation to the level of albuminuria and other parameters. Seventy-two patients with T2DM (mean age, 47.44 ± 10.40 years) and 45 healthy age- and sex-matched subjects were evaluated for UCC, serum creatinine, and urinary albumin-creatinine ratio (UACR) along with other parameters. RESULTS Of the 72 patients included in the study, microalbuminuria was found in 26% and macroalbuminuria in 10% of cases. UCC was significantly higher in micro- and macro-albuminuric groups in comparison with normoalbuminuric patients and correlated positively with UACR. Among the 46 patients with normoalbuminuria, 11 had elevated UCC levels indicating early tubular dysfunction. CONCLUSIONS This finding may support the hypothesis of a "tubular phase" of diabetic kidney disease preceding overt DN, and hence, the use of UCC measurement for early evaluation of renal involvement.
Collapse
Affiliation(s)
- Sandeep Kumar Agarwal
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Uma Kaimal Saikia
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Dipti Sarma
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Runi Devi
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| |
Collapse
|
35
|
Chang KC, Petrash JM. Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:173-202. [PMID: 30362099 DOI: 10.1007/978-3-319-98788-0_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms linking the action of AR to these diseases are not well understood. As DR and cataract are among the leading causes of blindness in the world, there is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer onset and progression. In this review we examine possible mechanisms that relate AR to molecular signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer as well as diseases of the eye such as uveitis, cataract, and retinopathy.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
36
|
Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol 2017; 12:2032-2045. [PMID: 28522654 PMCID: PMC5718284 DOI: 10.2215/cjn.11491116] [Citation(s) in RCA: 1538] [Impact Index Per Article: 219.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease develops in approximately 40% of patients who are diabetic and is the leading cause of CKD worldwide. Although ESRD may be the most recognizable consequence of diabetic kidney disease, the majority of patients actually die from cardiovascular diseases and infections before needing kidney replacement therapy. The natural history of diabetic kidney disease includes glomerular hyperfiltration, progressive albuminuria, declining GFR, and ultimately, ESRD. Metabolic changes associated with diabetes lead to glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Despite current therapies, there is large residual risk of diabetic kidney disease onset and progression. Therefore, widespread innovation is urgently needed to improve health outcomes for patients with diabetic kidney disease. Achieving this goal will require characterization of new biomarkers, designing clinical trials that evaluate clinically pertinent end points, and development of therapeutic agents targeting kidney-specific disease mechanisms (e.g., glomerular hyperfiltration, inflammation, and fibrosis). Additionally, greater attention to dissemination and implementation of best practices is needed in both clinical and community settings. INTRODUCTION
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Health Care, Spokane, Washington
- University of Washington School of Medicine, Seattle, Washington
| | | | - Katherine R. Tuttle
- Providence Health Care, Spokane, Washington
- University of Washington School of Medicine, Seattle, Washington
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington
- Institute of Translational Health Sciences, Seattle, Washington; and
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
37
|
Zha D, Cheng H, Li W, Wu Y, Li X, Zhang L, Feng YH, Wu X. High glucose instigates tubulointerstitial injury by stimulating hetero-dimerization of adiponectin and angiotensin II receptors. Biochem Biophys Res Commun 2017; 493:840-846. [PMID: 28870804 DOI: 10.1016/j.bbrc.2017.08.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/13/2017] [Indexed: 01/04/2023]
Abstract
Abnormal expression and dysfunction of adiponectin and the cognate receptors are involved in diabetes and diabetic kidney disease (DKD), whereas angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) alleviate diabetic albuminuria and prevent development of DKD through upregulation of adiponectin expression. Here we report that high glucose stimulates expression of angiotensin II (AngII) receptors (AT1 and AT2) in renal proximal tubular epithelial cells (NRK-52E). These receptors underwent hetero-dimerization with adiponectin receptor AdipoR1 and AdipoR2, respectively. High glucose inhibited the dimerization between AT1 and AT2. Interestingly, these hetero-dimers instigated tubulointerstitial injury by inhibiting the cytoprotective action of the adiponectin receptors. These modes of receptor-receptor hetero-dimerization may contribute to high glucose-induced renal tubulointerstitial injury and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaiyan Cheng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weiwei Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yizhe Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Li
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lian Zhang
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying-Hong Feng
- Dept. of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Chen H, Yang X, Lu K, Lu C, Zhao Y, Zheng S, Li J, Huang Z, Huang Y, Zhang Y, Liang G. Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol Lett 2017; 278:48-58. [PMID: 28700904 DOI: 10.1016/j.toxlet.2017.07.212] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/25/2023]
Abstract
Hyperglycemia-induced inflammation and fibrosis have important roles in the pathogenesis of diabetic nephropathy and cardiomyopathy. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be an effective approach to new avenue for treating diabetic complications. J17, a molecule with structural similarities to curcumin, exhibited good anti-inflammatory activities by inhibiting LPS-induced inflammatory response in macrophages. However, its ability to alleviate hyperglycemia-induced injury via its anti-inflammatory actions remained unclear. Thus, we reported that J17 exerts significant inhibitory effects on hyperglycemia-induced inflammation and fibrosis in NRK-52E cells, H9C2 cells and a streptozotocin-induced diabetic mouse model. We also found that the anti-inflammatory and anti-fibrosis activities of J17 are associated with the inhibition of the P38 and AKT signal pathway, respectively. In vivo oral administration of J17 suppressed hyperglycemia-induced inflammation, hypertrophy and fibrosis, thereby reducing key markers for renal and cardiac dysfunction and improving in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. The results of this study indicated that J17 can be potentially used as a cardio- and reno-protective agent and that targeting the P38 and AKT pathways may be an effective therapeutic strategy for diabetic complications.
Collapse
Affiliation(s)
- Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Yang
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; The First People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Kongqin Lu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chun Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suqing Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhangjian Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210038, China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
39
|
Chen GJ, Wu F, Pang XX, Zhang AH, Shi JB, Lu M, Tang CS. Retraction statement: ‘Urotensin II inhibits autophagy in renal tubular epithelial cells and induces extracellular matrix production in early diabetic mice’ by Guan‐Jong Chen, Fei Wu, Xin‐Xin Pang, Ai‐Hua Zhang, Jun‐Bao Shi, Min Lu and Chao‐Shu Tang. J Diabetes Investig 2017; 8:629. [PMID: 27459313 PMCID: PMC5497045 DOI: 10.1111/jdi.12557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/20/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022] Open
Abstract
AIMS/INTRODUCTION Urotensin II (UII) and autophagy have been considered as important components in the pathogenesis of diabetic nephropathy. The present study explores whether UII can regulate autophagy in the kidney, and its effect in diabetes. MATERIALS AND METHODS Immunohistochemistry and western blot were carried out on the kidney tissues of diabetic UII receptor (UT) gene knockout mice, wild-type diabetic mice and normal control mice. For the in vitro experiment, HK-2 cells were treated with UII (10-7 mol/L) in the presence or absence of UT antagonist, SB-657510, (10-6 mol/L) or autophagy inducer, rapamycin (10-3 mol/L), for 12 h. Markers for autophagy (LC3-II, p62/SQSTM1) and extracellular matrix (fibronectin, collagen IV) were analyzed. RESULTS In diabetic UT knockout mice, expression of LC3-II is increased and p62 was reduced in comparison with that of the normal diabetic mice. Fibronectin and collagen IV were downregulated in diabetic UT knockout mice when compared with that of the normal diabetic mice. For the in vitro cell experiment, UII was shown to inhibit expression LC3-II and increase expression of p62 in comparison with that of the normal control. Treatment with SB-657510 can block UII-induced downregulation of LC3-II and upregulation of p62 while inhibiting UII-induced upregulation of fibronectin and collagen IV. Adding autophagy inducer, rapamycin, also inhibited UII-induced upregulation of fibronectin and collagen IV. CONCLUSIONS The present study is the first to show that UII can downregulate autophagy in the kidney while accompanying the increased production of extracellular matrix in early diabetes. Our in vitro study also showed that upregulation of autophagy can decrease UII-induced production of extracellular matrix in HK-2 cells.
Collapse
Affiliation(s)
- Guan-Jong Chen
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Fei Wu
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Xin-Xin Pang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Ai-Hua Zhang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Jun-Bao Shi
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Min Lu
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Chao-Shu Tang
- Department of Pathology and Physiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
40
|
Mesenchymal Stem Cell-Based Therapies against Podocyte Damage in Diabetic Nephropathy. Tissue Eng Regen Med 2017; 14:201-210. [PMID: 30603477 DOI: 10.1007/s13770-017-0026-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Injury to podocytes is an early event in diabetic nephropathy leading to proteinuria with possible progression to end-stage renal failure. The podocytes are unique and highly specialized cells that cover the outer layer of kidney ultra-filtration barrier and play an important role in glomerular function. In the past few decades, adult stem cells, such as mesenchymal stem cells (MSCs) with a regenerative and differentiative capacity have been extensively used in cell-based therapies. In addition to their capability for regeneration and differentiation, MSCs contributes to their milieu by paracrine action of a series of growth factors via antiapoptotic, mitogenic and other cytokine actions that actively participate in treatment of podocyte damage through prevention of podocyte effacement, detachment and apoptosis. It is hoped that novel stem cell-based therapies will be developed in the future to prevent podocyte injury, thereby reducing the burden of kidney disease.
Collapse
|
41
|
Nah EH, Cho S, Kim S, Cho HI. Comparison of Urine Albumin-to-Creatinine Ratio (ACR) Between ACR Strip Test and Quantitative Test in Prediabetes and Diabetes. Ann Lab Med 2017; 37:28-33. [PMID: 27834062 PMCID: PMC5107614 DOI: 10.3343/alm.2017.37.1.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/19/2016] [Accepted: 10/05/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Albuminuria is generally known as a sensitive marker of renal and cardiovascular dysfunction. It can be used to help predict the occurrence of nephropathy and cardiovascular disorders in diabetes. Individuals with prediabetes have a tendency to develop macrovascular and microvascular pathology, resulting in an increased risk of retinopathy, cardiovascular diseases, and chronic renal diseases. We evaluated the clinical value of a strip test for measuring the urinary albumin-to-creatinine ratio (ACR) in prediabetes and diabetes. METHODS Spot urine samples were obtained from 226 prediabetic and 275 diabetic subjects during regular health checkups. Urinary ACR was measured by using strip and laboratory quantitative tests. RESULTS The positive rates of albuminuria measured by using the ACR strip test were 15.5% (microalbuminuria, 14.6%; macroalbuminuria, 0.9%) and 30.5% (microalbuminuria, 25.1%; macroalbuminuria, 5.5%) in prediabetes and diabetes, respectively. In the prediabetic population, the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of the ACR strip method were 92.0%, 94.0%, 65.7%, 99.0%, and 93.8%, respectively; the corresponding values in the diabetic population were 80.0%, 91.6%, 81.0%, 91.1%, and 88.0%, respectively. The median [interquartile range] ACR values in the strip tests for measurement ranges of <30, 30-300, and >300 mg/g were 9.4 [6.3-15.4], 46.9 [26.5-87.7], and 368.8 [296.2-575.2] mg/g, respectively, using the laboratory method. CONCLUSIONS The ACR strip test showed high sensitivity, specificity, and negative predictive value, suggesting that the test can be used to screen for albuminuria in cases of prediabetes and diabetes.
Collapse
Affiliation(s)
- Eun Hee Nah
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea.
| | - Seon Cho
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Suyoung Kim
- Department of Laboratory Medicine and Health Promotion Research Institute, Korea Association of Health Promotion, Seoul, Korea
| | - Han Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Cheongju, Korea
| |
Collapse
|
42
|
Li HY, Oh YS, Choi JW, Jung JY, Jun HS. Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int 2017; 91:1362-1373. [PMID: 28111010 DOI: 10.1016/j.kint.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/03/2023]
Abstract
Lysophosphatidic acid (LPA) is known to regulate various biological responses by binding to LPA receptors. The serum level of LPA is elevated in diabetes, but the involvement of LPA in the development of diabetes and its complications remains unknown. Therefore, we studied LPA signaling in diabetic nephropathy and the molecular mechanisms involved. The expression of autotaxin, an LPA synthesis enzyme, and LPA receptor 1 was significantly increased in both mesangial cells (SV40 MES13) maintained in high-glucose media and the kidney cortex of diabetic db/db mice. Increased urinary albumin excretion, increased glomerular tuft area and volume, and mesangial matrix expansion were observed in db/db mice and reduced by treatment with ki16425, a LPA receptor 1/3 antagonist. Transforming growth factor (TGF)β expression and Smad-2/3 phosphorylation were upregulated in SV40 MES13 cells by LPA stimulation or in the kidney cortex of db/db mice, and this was blocked by ki16425 treatment. LPA receptor 1 siRNA treatment inhibited LPA-induced TGFβ expression, whereas cells overexpressing LPA receptor 1 showed enhanced LPA-induced TGFβ expression. LPA treatment of SV40 MES13 cells increased phosphorylated glycogen synthase kinase (GSK)3β at Ser9 and induced translocation of sterol regulatory element-binding protein (SREBP)1 into the nucleus. Blocking GSK3β phosphorylation inhibited SREBP1 activation and consequently blocked LPA-induced TGFβ expression in SV40 MES13 cells. Phosphorylated GSK3β and nuclear SREBP1 accumulation were increased in the kidney cortex of db/db mice and ki16425 treatment blocked these pathways. Thus, LPA receptor 1 signaling increased TGFβ expression via GSK3β phosphorylation and SREBP1 activation, contributing to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Hui Ying Li
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Department of Internal Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea.
| | - Ji-Woong Choi
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Ji Yong Jung
- Gachon Medical Research Institute, Gil Hospital, Incheon, Korea; Division of Nephrology, Department of Internal Medicine, Gachon University School of Medicine, Incheon, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea; College of Pharmacy, Gachon University, Incheon, Korea.
| |
Collapse
|
43
|
Qi C, Mao X, Zhang Z, Wu H. Classification and Differential Diagnosis of Diabetic Nephropathy. J Diabetes Res 2017; 2017:8637138. [PMID: 28316995 PMCID: PMC5337846 DOI: 10.1155/2017/8637138] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world in both developed and developing countries. This review briefly introduces the characteristic pathological changes of DN and Tervaert pathological classification, which divides DN into four classifications according to glomerular lesions, along with a separate scoring system for tubular, interstitial, and vascular lesions. Given the heterogeneity of the renal lesions and the complex mechanism underlying diabetic nephropathy, Tervaert classification has both significance and controversies in the guidance of diagnosis and prognosis. Applications and evaluations using Tervaert classification and indications for renal biopsy are summarized in this review according to recent studies. Meanwhile, differential diagnosis with another nodular glomerulopathy and the situation that a typical DN superimposed with a nondiabetic renal disease (NDRD) are discussed and concluded in this review.
Collapse
Affiliation(s)
- Chenyang Qi
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xing Mao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute for Kidneys and Dialysis, Shanghai, China
| | - Huijuan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute for Kidneys and Dialysis, Shanghai, China
- *Huijuan Wu:
| |
Collapse
|
44
|
Huang J, Rajapakse A, Xiong Y, Montani JP, Verrey F, Ming XF, Yang Z. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity. Front Physiol 2016; 7:560. [PMID: 27920727 PMCID: PMC5118905 DOI: 10.3389/fphys.2016.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/04/2016] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II−/−) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II−/− mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II−/− mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II−/− mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Angana Rajapakse
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - François Verrey
- Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland; Institute of Physiology, University of ZurichZurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Division of Physiology, Department of Medicine, University of FribourgFribourg, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis "Kidney.CH"Zurich, Switzerland
| |
Collapse
|
45
|
Abstract
Diabetes and diabetic kidney diseases have continually exerted a great burden on our society. Although the recent advances in medical research have led to a much better understanding of diabetic kidney diseases, there is still no successful strategy for effective treatments for diabetic kidney diseases. Recently, treatment of diabetic kidney diseases relies either on drugs that reduce the progression of renal injury or on renal replacement therapies, such as dialysis and kidney transplantation. On the other hand, searching for biomarkers for early diagnosis and effective therapy is also urgent. Discovery of microRNAs has opened to a novel field for posttranscriptional regulation of gene expression. Results from cell culture experiments, experimental animal models, and patients under diabetic conditions reveal the critical role of microRNAs during the progression of diabetic kidney diseases. Functional studies demonstrate not only the capability of microRNAs to regulate expression of target genes, but also their therapeutic potential to diabetic kidney diseases. The existence of microRNAs in plasma, serum, and urine suggests their possibility to be biomarkers in diabetic kidney diseases. Thus, identification of the functional role of microRNAs provides an essentially clinical impact in terms of prevention and treatment of progression in diabetic kidney diseases as it enables us to develop novel, specific therapies and diagnostic tools for diabetic kidney diseases.
Collapse
|
46
|
An autopsy study suggests that diabetic nephropathy is underdiagnosed. Kidney Int 2016; 90:149-56. [PMID: 27165826 DOI: 10.1016/j.kint.2016.01.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
Abstract
The reported prevalence of diabetic nephropathy (DN) among patients with diabetes varies widely. Most studies use the presence of microalbuminuria for clinical onset of DN in the absence of a histopathologic evaluation. In this autopsy study, we collected and analyzed data from a cohort of patients with type 1 or 2 diabetes and determined the prevalence of histologically proven DN in patients with or without clinical manifestations of renal disease. We also examined the distribution among histopathologic classes with respect to clinical parameters. Renal tissue specimens from autopsies and clinical data were collected retrospectively from 168 patients with diabetes. The histopathologic classification for DN was scored as were interstitial and vascular parameters. In this cohort, 106 of 168 patients had histopathologic changes in the kidney characteristic of DN. Twenty of the 106 histologically proven DN cases did not present with DN-associated clinical manifestations within their lifetime. Glomerular and interstitial lesions were associated with renal function but not with proteinuria. We also found that underdiagnosed DN may encompass all histopathologic classes except the sclerotic class. Thus, the prevalence of histologically proven DN was higher than previously appreciated, and we found a relatively high proportion of DN that was clinically underdiagnosed yet histologically proven, suggesting that DN lesions may develop before the onset of clinical findings.
Collapse
|
47
|
Montero RM, Covic A, Gnudi L, Goldsmith D. Diabetic nephropathy: What does the future hold? Int Urol Nephrol 2015; 48:99-113. [PMID: 26438328 PMCID: PMC4705119 DOI: 10.1007/s11255-015-1121-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/19/2015] [Indexed: 12/24/2022]
Abstract
The consensus management of diabetic nephropathy (DN) in 2015 involves good control of glycaemia, dyslipidaemia and blood pressure (BP). Blockade of the renin-angiotensin-aldosterone system using angiotensin-converting enzyme inhibitors, angiotensin-2 receptor blockers or mineralocorticoid inhibitors are key therapeutic approaches, shown to be beneficial once overt nephropathy is manifest, as either, or both, of albuminuria and loss of glomerular filtration rate. Some significant additional clinical benefits in slowing the progression of DN was reported from the Remission clinic experience, where simultaneous intensive control of BP, tight glycaemic control, weight loss, exercise and smoking cessation were prioritised in the management of DN. This has not proved possible to translate to more conventional clinical settings. This review briefly looks over the history and limitations of current therapy from landmark papers and expert reviews, and following an extensive PubMed search identifies the most promising clinical biomarkers (both established and proposed). Many challenges need to be addressed urgently as in order to obtain novel therapies in the clinic; we also need to examine what we mean by remission, stability and progression of DN in the modern era.
Collapse
Affiliation(s)
- R M Montero
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK.
| | - A Covic
- Hospital "C.I.Parhon" and University of Medicine "Grigore T Popa", Iasi, Romania
| | - L Gnudi
- Cardiovascular Division, Department of Diabetes and Endocrinology, Guy's and St Thomas' Hospital, School of Medicine and Life Science, King's College London, London, UK
| | - D Goldsmith
- Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
48
|
Hou J, Xiong W, Cao L, Wen X, Li A. Spironolactone Add-on for Preventing or Slowing the Progression of Diabetic Nephropathy: A Meta-analysis. Clin Ther 2015; 37:2086-2103.e10. [PMID: 26254276 DOI: 10.1016/j.clinthera.2015.05.508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this meta-analysis was to evaluate the benefits and potential adverse effects of adding spironolactone to standard antidiabetic/renoprotective/antihypertensive (AD/RP/AHT) treatment in patients with diabetic nephropathy (DN). METHODS PubMed/MEDLINE and Web of Knowledge were searched for relevant randomized, controlled studies (RCTs) or quasi-RCTs of the effects of adding spironolactone to standard AD/RP/AHT treatment in patients with DN. Results were summarized with a random-effects model or a fixed-effects model. FINDINGS According to the outcomes measured (benefits and risks of adding spironolactone to standard AD/RP/AHT treatment), compared with controls, the addition of spironolactone significantly decreased end-of-treatment (EOT) 24-hour urinary albumin/protein excretion and significantly increased percentage reduction from baseline in urinary albumin/creatinine ratio (UACR), although it did not significantly affect EOT UACR. The addition of spironolactone further led to a significantly greater reduction from baseline in glomerular filtration rate (GFR)/estimated (e) GFR, although it did not significantly affect EOT GFR/eGFR. Further, the addition of spironolactone significantly reduced EOT in-office, 24-hour, and daytime systolic and diastolic blood pressure (SBP and DBP, respectively) and led to significantly greater reductions from baseline in in-office SBP and DBP, although it did not significantly affect nighttime SBP or DBP. Finally, the addition of spironolactone significantly increased mean serum/plasma potassium levels and the risk for hyperkalemia. IMPLICATIONS Spironolactone could be added to preexisting AD/RP/AHT therapy in patients with DN to prevent or slow DN progression by reducing proteinuria. The addition of spironolactone would likely provide even more beneficial effect in patients with DN and hypertension due to the BP reduction associated with spironolactone use. However, the beneficial effects of spironolactone add-on should be weighed against its potential risks, especially hyperkalemia. The long-term effects of spironolactone add-on on renal outcomes and mortality need to be studied.
Collapse
Affiliation(s)
- Jing Hou
- Renal Department of Internal Medicine.
| | | | - Ling Cao
- Renal Department of Internal Medicine
| | | | - Ailing Li
- Center of Evidence-Based Medicine, The Affiliated Hospital, Luzhou Medical College, Luzhou, People's Republic of China
| |
Collapse
|
49
|
Porrini E, Ruggenenti P, Mogensen CE, Barlovic DP, Praga M, Cruzado JM, Hojs R, Abbate M, de Vries APJ. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol 2015; 3:382-91. [PMID: 25943757 DOI: 10.1016/s2213-8587(15)00094-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
Abstract
Largely on the basis of data from patients with type 1 diabetes, the natural history of diabetic renal disease has been classified as a sequence of three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Progressive decline of glomerular filtration rate (GFR) was thought to parallel the onset of macroalbuminuria (overt nephropathy), whereas glomerular hyperfiltration was deemed a hallmark of early disease. However, researchers have since shown that albuminuria is a continuum and that GFR can start to decline before progression to overt nephropathy. In addition to proteinuria, other risk factors might contribute to GFR deterioration including female sex, obesity, dyslipidaemia (in particular hypertriglyceridaemia), hypertension, and glomerular hyperfiltration, at least in a subgroup of patients. This phenomenon could explain why patients with type 2 diabetes can have renal insufficiency even before the onset of overt nephropathy, and might also suggest why the heterogeneous phenotype of type 2 diabetic renal disease does not necessarily associate with typical histological lesions of diabetic renal disease, unlike in type 1 diabetic renal disease. Patients with renal insufficiency but without albuminuria are usually excluded from randomised clinical trials in overt nephropathy, thus optimum treatment for this group of patients is unknown. The wide inter-patient variability of the disease probably needs individually tailored intervention.
Collapse
Affiliation(s)
- Esteban Porrini
- Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, Tenerife, Spain.
| | - Piero Ruggenenti
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | - Drazenka Pongrac Barlovic
- Department of Endocrinology, Diabetes and Metabolism, Ljubljana University Medical Center, Ljubljana, Slovenia
| | - Manuel Praga
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Clinical Centre and Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Manuela Abbate
- Department of Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Aiko P J de Vries
- Division of Nephrology, Department of Medicine, Leiden University Medical Center and Leiden University, Leiden, Netherlands
| | | |
Collapse
|
50
|
Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. J Diabetes Res 2015; 2015:697010. [PMID: 26064987 PMCID: PMC4430644 DOI: 10.1155/2015/697010] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a worldwide epidemic that has led to a rise in diabetic kidney disease (DKD). Over the past two decades, there has been significant clarification of the various pathways implicated in the pathogenesis of DKD. Nonetheless, very little has changed in the way clinicians manage patients with this disorder. Indeed, treatment is primarily centered on controlling hyperglycemia and hypertension and inhibiting the renin-angiotensin system. The purpose of this review is to describe the current understanding of how the hemodynamic, metabolic, inflammatory, and alternative pathways are all entangled in pathogenesis of DKD and detail the various therapeutic targets that may one day play a role in quelling this epidemic.
Collapse
Affiliation(s)
- Stephanie Toth-Manikowski
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| | - Mohamed G. Atta
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| |
Collapse
|