1
|
Yan L, Rust BM, Sundaram S, Nielsen FH. Metabolomic Alteration in Adipose Monocyte Chemotactic Protein-1 Deficient Mice Fed a High-Fat Diet. Nutr Metab Insights 2024; 17:11786388241280859. [PMID: 39372559 PMCID: PMC11452861 DOI: 10.1177/11786388241280859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Monocyte chemotactic protein-1 (MCP-1), a small inducible cytokine, is involved in obesity-related chronic disorders. Adipocytes produce MCP-1 that is elevated in obese humans and in rodent models of obesity. This study examined the hepatic metabolomic alterations caused by adipose-specific MCP-1 deficiency in a rodent model of obesity. Wide-type (WT) and adipose-specific Mcp-1 knockdown mice (Mcp-1 -/-) were each assigned randomly to 2 groups and fed the standard AIN93G diet or a high-fat diet (HFD) for 12 weeks. Compared to the AIN93G diet, the HFD increased body weight, body fat mass, and plasma concentrations of insulin and leptin, regardless of genotype. There were no differences in these variables between WT and Mcp-1 -/- mice when they were fed the same diet. Eighty-seven of 172 identified metabolites met the criteria for metabolomic comparisons among the 4 groups. Thirty-nine metabolites differed significantly between the 2 dietary treatments and 15 differed when Mcp-1 -/- mice were compared to WT mice. The metabolites that significantly differed in both comparisons included those involved in amino acid, energy, lipid, nucleotide, and vitamin metabolism. Network analysis found that both HFD and adipose Mcp-1 knockdown may considerably impact amino acid metabolism as evidenced by alteration in the aminoacyl-tRNA biosynthesis pathways, in addition to alteration in the phenylalanine, tyrosine, and tryptophan biosynthesis pathway in Mcp-1 -/- mice. However, decreased signals of amino acid metabolites in mice fed the HFD and increased signals of amino acid metabolites in Mcp-1 -/- mice indicate that HFD may have down-regulated and adipose Mcp-1 knockdown may have up-regulated amino acid metabolism.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| |
Collapse
|
2
|
Chang TT, Li YZ, Mo HW, Chen C, Lin LY, Chang CC, Chen JW. Inhibition of CCL7 improves endothelial dysfunction and vasculopathy in mouse models of diabetes mellitus. Sci Transl Med 2024; 16:eadn1507. [PMID: 39231238 DOI: 10.1126/scitranslmed.adn1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/05/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Diabetic vascular disease is a major complication of diabetes mellitus (DM). Chemokine C-C motif ligand 7 (CCL7) attracts macrophages and monocytes, amplifying inflammatory processes in the vasculature. We hypothesized a causal role for CCL7 in diabetic vasculopathy. CCL7 concentrations were higher in the plasma of patients with type 2 DM, as well as in supernatants from their endothelial progenitor cells (EPCs). High-glucose stimulation increased the secretion of CCL7 from human dermal microvascular endothelial cells (HDMECs) through the c-Fos and c-Jun signaling pathways. CCL7 inhibition using knockdown or neutralization antibody treatment reversed the high glucose-induced impaired tube formation and migration abilities of EPCs, human aortic endothelial cells, human coronary artery endothelial cells, and HDMECs. Administration of recombinant human CCL7 protein impaired tube formation and migration abilities by down-regulating the AKT-endothelial nitric oxide synthase and AKT/nuclear factor erythroid 2-related factor 2/heme oxygenase-1/vascular endothelial growth factor/stromal cell-derived factor-1 pathways and by up-regulating ERK/phosphorylated p65/interleukin-1β/interleukin-6/tumor necrosis factor-α pathways through CC chemokine receptor 3 in endothelial cells. Ccl7 knockout in streptozotocin-treated mice showed improved neovasculogenesis in ischemic limbs and accelerated wound repair, with increased circulating EPCs and capillary density. CCL7 antibody treatment in db/db mice and high-fat diet-induced hyperglycemia mice showed improved neovasculogenesis in ischemic limbs and wound areas, accompanied by up-regulation of angiogenic proteins and down-regulation of inflammatory proteins. Endothelial cell-specific Ccl7-knockout mice showed ameliorated diabetic vasculopathy in streptozotocin-induced DM. This study highlights the potential of CCL7 as a therapeutic target for diabetic vasculopathy.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - You-Zhen Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiao-Wei Mo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chia-Chi Chang
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
3
|
Lin Y, Liu J, Chong SY, Ting HJ, Tang X, Yang L, Zhang S, Qi X, Pei P, Yi Z, Huang C, Hou X, Gao L, Torta F, Liu X, Liu B, Kah JCY, Wang JW. Dual-Function Nanoscale Coordination Polymer Nanoparticles for Targeted Diagnosis and Therapeutic Delivery in Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401659. [PMID: 39185808 DOI: 10.1002/smll.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular events such as heart attacks and strokes. However, current medical practice lacks non-invasive, reliable approaches for both imaging atherosclerotic plaques and delivering therapeutic agents directly therein. Here, a biocompatible and biodegradable pH-responsive nanoscale coordination polymers (NCPs) based theranostic system is reported for managing atherosclerosis. NCPs are synthesized with a pH-responsive benzoic-imine (BI) linker and Gd3+. Simvastatin (ST), a statin not used for lowering blood cholesterol but known for its anti-inflammatory and antioxidant effects in mice, is chosen as the model drug. By incorporating ST into the hydrophobic domain of a lipid bilayer shell on NCPs surfaces, ST/NCP-PEG nanoparticles are created that are designed for dual purposes: they diagnose and treat atherosclerosis. When administered intravenously, they target atherosclerotic plaques, breaking down in the mild acidic microenvironment of the plaque to release ST, which reduces inflammation and oxidative stress, and Gd-complexes for MR imaging of the plaques. ST/NCP-PEG nanoparticles show efficacy in slowing the progression of atherosclerosis in live models and allow for simultaneous in vivo monitoring without observed toxicity in major organs. This positions ST/NCP-PEG nanoparticles as a promising strategy for the spontaneous diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuanzhe Lin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, Singapore, 117583, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore, 117599, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xichuan Tang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Liqiang Yang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xinyi Qi
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Peng Pei
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xiao Hou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Liang Gao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, Singapore, 117583, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore, 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore
| |
Collapse
|
4
|
Zhu A, Baur C, Götz P, Elbs K, Lasch M, Faro A, Preissner KT, Deindl E. The Complement System Is Essential for Arteriogenesis by Enhancing Sterile Inflammation as a Relevant Step in Collateral Artery Growth. Cells 2024; 13:1405. [PMID: 39272977 PMCID: PMC11394660 DOI: 10.3390/cells13171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Arteriogenesis is an inflammatory driven mechanism, describing the growth of a natural bypass from pre-existing collateral arteries to compensate for an occluded artery. The complement system component C3 is a potent natural inflammatory activator. Here, we investigated its impact on the process of collateral artery growth using C3-deficient (C3 -/-) and wildtype control mice in a murine hindlimb model of arteriogenesis. Induction of arteriogenesis by unilateral femoral artery ligation resulted in decreased perfusion recovery in C3 -/- mice on day 7 as shown by Laser Doppler imaging. Immunofluorescence staining revealed a reduced vascular cell proliferation in C3 -/- mice. Gene expression analysis displayed a significant reduction in monocyte chemoattractant protein-1 (MCP-1) expression in C3 -/- mice. Interestingly, 3 days after induction of arteriogenesis, the number of macrophages (CD68+) recruited to growing collaterals was not affected by C3 deficiency. However, a significant reduction in inflammatory M1-like polarized macrophages (CD68+/MRC1-) was noted. Forced mast cell activation by Compound 48/80 as well as exogenous MCP-1 application rescued the number of M1-like polarized macrophages along with perfusion recovery in C3 -/- mice. In summary, this study demonstrates that complement C3 influences arteriogenesis by mediating MCP-1 expression, which is essential for the induction and enhancement of sterile inflammation.
Collapse
Affiliation(s)
- Amanda Zhu
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Carolin Baur
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Katharina Elbs
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Manuel Lasch
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anna Faro
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Elisabeth Deindl
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Benslimane Y, Amalfi K, Lapin S, Perrino S, Brodt P. Estrogen Receptor Blockade Potentiates Immunotherapy for Liver Metastases by Altering the Liver Immunosuppressive Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:1963-1977. [PMID: 39007345 PMCID: PMC11306998 DOI: 10.1158/2767-9764.crc-24-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Liver metastases (LM) remain a major cause of cancer-related death and are a major clinical challenge. LM and the female sex are predictors of a poorer response to immunotherapy but the underlying mechanisms remain unclear. We previously reported on a sexual dimorphism in the control of the tumor microenvironment (TME) of colorectal carcinoma liver metastases (CRCLM) and identified estrogen as a regulator of an immunosuppressive TME in the liver. Here we aimed to assess the effect of estrogen deprivation on the cytokine/chemokine profile associated with CRCLM, using a multiplex cytokine array and the RNAscope technology, and its effects on the innate and adaptive immune responses in the liver. We also evaluated the benefit of combining the selective estrogen-receptor degrader Fulvestrant with immune checkpoint blockade for the treatment of CRCLM. We show that estrogen depletion altered the cytokine/chemokine repertoire of the liver, decreased macrophage polarization, as reflected in reduced accumulation of tumor infiltrating M2 macrophages and increased the accumulation of CCL5+/CCR5+ CD8+ T and NKT cells in the liver TME. Similar results were obtained in a murine pancreatic ductal adenocarcinoma model. Importantly, treatment with Fulvestrant also increased the accumulation of CD8+CCL5+, CD8+CCR5+ T and NK cells in the liver TME and enhanced the therapeutic benefit of anti-PD1 immunotherapy, resulting in a significant reduction in the outgrowth of LM. Taken together, our results show that estrogen regulates immune cell recruitment to the liver and suggest that inhibition of estrogen action could potentiate the tumor-inhibitory effect of immunotherapy in hormone-independent and immunotherapy-resistant metastatic cancer. SIGNIFICANCE The immune microenvironment of the liver plays a major role in controlling the expansion of hepatic metastases and is regulated by estrogen. We show that treatment of tumor-bearing mice with an estrogen receptor degrader potentiated an anti-metastatic effect of immunotherapy. Our results provide mechanistic insight into clinical findings and a rationale for evaluating the efficacy of combination anti-estrogen and immunotherapy for prevention and/or treatment of hepatic metastases in female patients.
Collapse
Affiliation(s)
- Yasmine Benslimane
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada.
- The Research Institute of the McGill University Health Center, Montreal, Canada.
| | - Kevin Amalfi
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Sara Lapin
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Stephanie Perrino
- The Research Institute of the McGill University Health Center, Montreal, Canada.
| | - Pnina Brodt
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada.
- The Research Institute of the McGill University Health Center, Montreal, Canada.
- Department of Surgery, McGill University, Montreal, Canada.
- Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Song Q, Song C, Chen X, Xiong Y, He Z, Su X, Zhou J, Ke H, Dong C, Liao W, Yang S. Oxalate regulates crystal-cell adhesion and macrophage metabolism via JPT2/PI3K/AKT signaling to promote the progression of kidney stones. J Pharm Anal 2024; 14:100956. [PMID: 39035219 PMCID: PMC11259813 DOI: 10.1016/j.jpha.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by phosphatidylinositol 3-kinase (PI3K)/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
7
|
Chen L, Pan D, Zhang Y, Zhang E, Ma L. C-C Motif Chemokine 2 Regulates Macrophage Polarization and Contributes to Myocardial Infarction Healing. J Interferon Cytokine Res 2024; 44:68-79. [PMID: 38153396 DOI: 10.1089/jir.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Macrophages are crucial immune cells that play essential roles in the healing of myocardial infarction (MI), undergoing continuous polarization throughout this process. C-C motif chemokine 2 (CCL2) is a chemokine that regulates inflammatory responses during MI. However, the extent to which CCL2 influences macrophage polarization and MI healing remains incompletely understood. In this study, we investigate the role of CCL2 in macrophage polarization and MI healing. Our findings reveal that CCL2 is differentially expressed in lipopolysaccharide (LPS)-induced M1 and interleukin (IL)-4-induced M2 RAW264.7 macrophages. Knockdown of CCL2 attenuates TNF-α secretion stimulated by LPS, while overexpression of CCL2 mitigates IL-10 production triggered by IL-4 in these macrophages. Moreover, CCL2 deficiency disrupts LPS-induced M1 polarization, whereas CCL2 overexpression reduces M2 polarization of RAW264.7 macrophages induced by IL-4. Further exploration indicates that the promotion of M1 polarization by CCL2 is significantly impaired by inhibition of the p38-mediated MAPK pathway and NF-κB pathway. In a MI mouse model, CCL2 knockdown remarkably reduces infarct size, collagen synthesis, and the expression of cardiac fibrosis and hypertrophy markers. The activity of the p38-mediated MAPK pathway and NF-κB pathway is downregulated by CCL2 knockdown as well. Additionally, the number of total macrophages and M1 macrophages in the infarct decreases, while the number of M2 macrophages increases upon CCL2 deficiency. In conclusion, these results suggest that CCL2 is a key regulator of macrophage polarization, controlling MI healing in vivo.
Collapse
Affiliation(s)
- Liangwei Chen
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dihao Pan
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Zhang
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Ma
- Department of Cardiac and Macrovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Purcell AR, Rodrigo N, Cao Q, Joseph O, Gill AJ, Saad S, Pollock CA, Glastras SJ. Maternal Weight Intervention in the Perinatal Period Improves Liver Health in the Offspring of Mothers with Obesity. Nutrients 2023; 16:109. [PMID: 38201940 PMCID: PMC10780988 DOI: 10.3390/nu16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Early-life exposure to maternal obesity predisposes offspring to metabolic-associated fatty liver disease (MAFLD). This study aimed to determine if peripartum weight loss, either through dietary intervention or pharmacological intervention, improved adverse liver health outcomes in the offspring of mothers with obesity. C57Bl/6 dams were fed a chow diet or a high-fat diet (HFD) for 8 weeks. HFD-fed mice either continued HFD, transitioned to a chow diet, or were administered liraglutide for 4 weeks. Pregnancy was induced following a one-week washout of liraglutide during which all animals remained on their respective diets. A proportion of HFD-fed mice transitioned to a chow diet during pregnancy. All offspring were weaned to the HFD. Offspring anthropometric, metabolic, and hepatic outcomes were assessed at postnatal week 12. The offspring of mothers with obesity had phenotypic changes consistent with MAFLD. The offspring of mothers that had weight loss with perinatal dietary intervention had reduced insulin resistance (p < 0.001) and hepatic expression of markers of inflammation (p < 0.001), oxidative stress (p < 0.05), and fibrosis (p < 0.05). A similar phenotype was observed in the offspring of mothers with pre-pregnancy weight loss via liraglutide despite ongoing consumption of the HFD during pregnancy. All methods and timing of maternal weight intervention were effective at ameliorating adverse liver effects in the offspring.
Collapse
Affiliation(s)
- Amanda R. Purcell
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
| | - Natassia Rodrigo
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Department of Diabetes and Endocrinology, Nepean Hospital, Sydney, NSW 2747, Australia
| | - Qinghua Cao
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
| | - Olivia Joseph
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
| | - Anthony J. Gill
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
| | - Carol A. Pollock
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
| | - Sarah J. Glastras
- Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia
- North Precinct, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
9
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
10
|
Bezerra WP, Salmeron ACA, Branco ACCC, Morais IC, de Farias Sales VS, Machado PRL, Souto JT, de Araújo JMG, Guedes PMDM, Sato MN, Nascimento MSL. Low CCL2 and CXCL8 Production and High Prevalence of Allergies in Children with Microcephaly Due to Congenital Zika Syndrome. Viruses 2023; 15:1832. [PMID: 37766239 PMCID: PMC10535964 DOI: 10.3390/v15091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Congenital Zika Syndrome (CZS) is associated with an increased risk of microcephaly in affected children. This study investigated the peripheral dysregulation of immune mediators in children with microcephaly due to CZS. Gene expression quantified by qPCR in whole blood samples showed an increase in IFNγ and IL-13 transcripts in children affected with microcephaly compared to the control group. The microcephaly group exhibited significantly decreased CCL2 and CXCL8 levels in serum, quantified by CBA assay. An allergic profile questionnaire revealed a high prevalence of allergies in the microcephaly group. In accordance, elevated serum IgE level measured by the Proquantum Immunoassay was observed in children affected with microcephaly compared to the control group. Altogether, these findings show a persistent systemic inflammation in children with microcephaly due to CZS and suggest a possible impairment in leukocyte migration caused by low production of CCL2 and CXCL8, in addition to high levels of IgE associated with high prevalence of allergies. The dysregulation of inflammatory genes and chemokines underscores the importance of understanding the immunological characteristics of CZS. Further investigation into the long-term consequences of systemic inflammation in these children is crucial for developing appropriate therapeutic strategies and tailored vaccination protocols.
Collapse
Affiliation(s)
- Wallace Pitanga Bezerra
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Amanda Costa Ayres Salmeron
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba 59280-000, RN, Brazil;
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo 05403-000, SP, Brazil; (A.C.C.C.B.); (M.N.S.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Ingryd Camara Morais
- Virology Laboratory, Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-190, RN, Brazil;
| | - Valéria Soraya de Farias Sales
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.S.d.F.S.); (P.R.L.M.)
| | - Paula Renata Lima Machado
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.S.d.F.S.); (P.R.L.M.)
| | - Janeusa Trindade Souto
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
- Virology Laboratory, Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-190, RN, Brazil;
| | - Paulo Marcos da Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo 05403-000, SP, Brazil; (A.C.C.C.B.); (M.N.S.)
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, RN, Brazil; (W.P.B.); (J.T.S.); (J.M.G.d.A.); (P.M.d.M.G.)
| |
Collapse
|
11
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
12
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
13
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
14
|
Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022; 11:cells11192953. [PMID: 36230913 PMCID: PMC9564023 DOI: 10.3390/cells11192953] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.
Collapse
Affiliation(s)
- Alireza Hassanshahi
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66179-13446, Iran
| | - Saman Ghalamkari
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Moosa Fadaei
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (A.J.C.); (M.H.)
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Correspondence: (A.J.C.); (M.H.)
| |
Collapse
|
15
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
16
|
Boccardi V, Mancinetti F, Baroni M, Cecchetti R, Bastiani P, Ruggiero C, Mecocci P. Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index. Nutrients 2022; 14:nu14153228. [PMID: 35956404 PMCID: PMC9370138 DOI: 10.3390/nu14153228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammation, along with aging processes, contributes to the development of insulin resistance (IR), but the roles of different inflammatory and other cytokines in this process remain unclear. Thus, we aimed to analyze the association between several plasma cytokines with IR as evaluated by the metabolic score for insulin resistance, METS-IR. METHODS We measured the plasma concentrations of thirty cytokines from a cohort of older persons and analyzed their role as independent factors for IR. We used regression analyses adjusted for known IR-associated factors (including age, gender, cholesterol levels, and BMI) to find the determinants of IR. RESULTS The study evaluated 132 subjects, mostly women (82F/50M), slightly overweight, and with a mean age of 78.5 ± 6.5 years. In the overall population, IL-15 significantly and negatively correlates with METS-IR (r = -0.183, p = 0.036). A regression model showed that the association between IL-15 and METS-IR was significantly modulated by gender and BMI (R2: 0.831). Only in women, EGF, Eotaxin and MCP-1 significantly correlated with METS-IR even after controlling by age (EGF, r = 0.250 p = 0.025; Eotaxin, r = 0.276 p = 0.13; MCP-1, r = 0.237, p = 0.033). Furthermore, regression models showed that these molecules were associated with METS-IR and were strongly mediated by BMI. CONCLUSIONS Our results indicate the association between cytokines and IR has to be interpreted in a gender-specific manner. In women, EGF, Eotaxin, and MCP-1 circulating levels are associated with METS-IR being BMI a significant mediator. Understanding the role of gender in the relationship between cytokines and IR will help to define individualized preventive and treatment interventions to reduce the risk of age-related metabolic disorders.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
- Correspondence: ; Tel.: +39-07-5578-3524
| | - Francesca Mancinetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Marta Baroni
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet Stockholm, 171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Rey-Bedon C, Banik P, Gokaltun A, Hofheinz O, Yarmush ML, Uygun MK, Usta OB. CYP450 drug inducibility in NAFLD via an in vitro hepatic model: Understanding drug-drug interactions in the fatty liver. Biomed Pharmacother 2022; 146:112377. [PMID: 35062050 PMCID: PMC8792443 DOI: 10.1016/j.biopha.2021.112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Drug-drug-interactions (DDIs) occur when a drug alters the metabolic rate, efficacy, and toxicity of concurrently used drugs. While almost 1 in 4 adults now use at least 3 concurrent prescription drugs in the United States, the Non-alcoholic fatty liver disease (NAFLD) prevalence has also risen over 25%. The effect of NALFD on DDIs is largely unknown. NAFLD is characterized by lipid vesicle accumulation in the liver, which can progress to severe steatohepatitis (NASH), fibrosis, cirrhosis, and hepatic carcinoma. The CYP450 enzyme family dysregulation in NAFLD, which might already alter the efficacy and toxicity of drugs, has been partially characterized. Nevertheless, the drug-induced dysregulation of CYP450 enzymes has not been studied in the fatty liver. These changes in enzymatic inducibility during NAFLD, when taking concurrent drugs, could cause unexpected fatalities through inadvertent DDIs. We have, thus, developed an in vitro model to investigate the CYP450 transcriptional regulation in NAFLD. Specifically, we cultured primary human hepatocytes in a medium containing free fatty acids, high glucose, and insulin for seven days. These cultures displayed intracellular macro-steatosis after 5 days and cytokine secretion resembling NAFLD patients. We further verified the model's dysregulation in the transcription of key CYP450 enzymes. We then exposed the NAFLD model to the drug inducers rifampicin, Omeprazole, and Phenytoin as activators of transcription factors pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), respectively. In the NAFLD model, Omeprazole maintained an expected induction of CYP1A1, however Phenytoin and Rifampicin showed elevated induction of CYP2B6 and CYP2C9 compared to healthy cultures. We, thus, conclude that the fatty liver could cause aggravated drug-drug interactions in NAFLD or NASH patients related to CYP2B6 and CYP2C9 enzymes.
Collapse
Affiliation(s)
- Camilo Rey-Bedon
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Peony Banik
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States
| | - Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States; Department of Chemical Engineering, Hacettepe University, 06532 Beytepe, Ankara, Turkey
| | - O Hofheinz
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, United States
| | - M Korkut Uygun
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery at Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Shriners Hospitals for Children, Boston, MA 02114, United States.
| |
Collapse
|
18
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|
19
|
Song X, Dong H, Zang Z, Wu W, Zhu W, Zhang H, Guan Y. Kudzu Resistant Starch: An Effective Regulator of Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4448048. [PMID: 34691353 PMCID: PMC8528595 DOI: 10.1155/2021/4448048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Kudzu is a traditional medicinal dietary supplement, and recent research has shown its significant benefits in the prevention/treatment of type 2 diabetes mellitus (T2DM). Starch is one of the main substances in Kudzu that contribute decisively to the treatment of T2DM. However, the underlying mechanism of the hypoglycemic activity is not clear. In this study, the effect of Kudzu resistant starch supplementation on the insulin resistance, gut physical barrier, and gut microbiota was investigated in T2DM mice. The result showed that Kudzu resistant starch could significantly decrease the value of fasting blood glucose and the levels of total cholesterol, total triglyceride, and high-density lipoprotein, as well as low-density lipoprotein, in the blood of T2DM mice. The insulin signaling sensitivity in liver tissue was analyzed; the result indicated that intake of different doses of Kudzu resistant starch can help restore the expression of IRS-1, p-PI3K, p-Akt, and Glut4 and thus enhance the efficiency of insulin synthesis. Furthermore, the intestinal microorganism changes before and after ingestion of Kudzu resistant starch were also analyzed; the result revealed that supplementation of KRS helps to alleviate and improve the dysbiosis of the gut microbiota caused by T2DM. These results validated that Kudzu resistant starch could improve the glucose sensitivity of T2DM mice by modulating IRS-1/PI3K/AKT/Glut4 signaling transduction. Kudzu resistant starch can be used as a promising prebiotic, and it also has beneficial effects on the gut microbiota structure of T2DM mice.
Collapse
Affiliation(s)
- Xinqi Song
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Huanhuan Dong
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Wenting Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| |
Collapse
|
20
|
Hong C, Lu H, Jin R, Huang X, Chen M, Dai X, Gong F, Dong H, Wang H, Gao XM. Cytokine Cocktail Promotes Alveolar Macrophage Reconstitution and Functional Maturation in a Murine Model of Haploidentical Bone Marrow Transplantation. Front Immunol 2021; 12:719727. [PMID: 34621268 PMCID: PMC8490745 DOI: 10.3389/fimmu.2021.719727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Infectious pneumonia is one of the most common complications after bone marrow transplantation (BMT), which is considered to be associated with poor reconstitution and functional maturation of alveolar macrophages (AMs) post-transplantation. Here, we present evidence showing that lack of IL-13-secreting group 2 innate lymphoid cells (ILC2s) in the lungs may underlay poor AM reconstitution in a mouse model of haploidentical BMT (haplo-BMT). Recombinant murine IL-13 was able to potentiate monocyte-derived AM differentiation in vitro. When intranasally administered, a cocktail of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-13, and CCL2 not only promoted donor monocyte-derived AM reconstitution in haplo-BMT-recipient mice but also enhanced the innate immunity of the recipient animals against pulmonary bacterial infection. These results provide a useful clue for a clinical strategy to prevent pulmonary bacterial infection at the early stage of recipients post-BMT.
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongyun Lu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaohong Huang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ming Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongliang Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongmin Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Sun X, Sun H, Li P. Association of circulating inflammatory cells and platelets with gestational diabetes and pregnancy outcomes. Clin Chim Acta 2021; 523:87-96. [PMID: 34508686 DOI: 10.1016/j.cca.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is the most common cause of hyperglycemia during pregnancy, and its prevalence has increased over the past decades. GDM is directly related to the recent obstetric outcomes and long-term maternal and child health, which can be greatly improved by early identification and diagnosis of GDM. However, the prediction of the disease has always been a difficult problem due to the lack of simple and practical serological markers. Despite the controversy, recent studies have identified that circulating inflammatory cells and platelets, routinely included in the obstetric blood tests, are related to the development of GDM and adverse pregnancy outcomes. In this review, we summarized the studies in this field based on the recent literature. The inflammatory cell components we included were the total number of white blood cells, neutrophils, lymphocytes, monocytes and platelets, which were routinely examined in the blood tests in pregnancy. The aim of this review is not only to enrich our understanding of the pathogenesis of GDM but also to provide evidence for the value of these novel and practical serological markers in early identification of GDM and the prevention and its adverse outcomes.
Collapse
Affiliation(s)
- Xiaoshi Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
22
|
Cao S, Liu M, Sehrawat TS, Shah VH. Regulation and functional roles of chemokines in liver diseases. Nat Rev Gastroenterol Hepatol 2021; 18:630-647. [PMID: 33976393 PMCID: PMC9036964 DOI: 10.1038/s41575-021-00444-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/03/2023]
Abstract
Inflammation is a major contributor to the pathogenesis of almost all liver diseases. Low-molecular-weight proteins called chemokines are the main drivers of liver infiltration by immune cells such as macrophages, neutrophils and others during an inflammatory response. During the past 25 years, tremendous progress has been made in understanding the regulation and functions of chemokines in the liver. This Review summarizes three main aspects of the latest advances in the study of chemokine function in liver diseases. First, we provide an overview of chemokine biology, with a particular focus on the genetic and epigenetic regulation of chemokine transcription as well as on the cell type-specific production of chemokines by liver cells and liver-associated immune cells. Second, we highlight the functional roles of chemokines in liver homeostasis and their involvement in progression to disease in both human and animal models. Third, we discuss the therapeutic opportunities targeting chemokine production and signalling in the treatment of liver diseases, such as alcohol-associated liver disease and nonalcoholic steatohepatitis, including the relevant preclinical studies and ongoing clinical trials.
Collapse
|
23
|
Kübler M, Beck S, Peffenköver LL, Götz P, Ishikawa-Ankerhold H, Preissner KT, Fischer S, Lasch M, Deindl E. The Absence of Extracellular Cold-Inducible RNA-Binding Protein (eCIRP) Promotes Pro-Angiogenic Microenvironmental Conditions and Angiogenesis in Muscle Tissue Ischemia. Int J Mol Sci 2021; 22:ijms22179484. [PMID: 34502391 PMCID: PMC8431021 DOI: 10.3390/ijms22179484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular Cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released from cells upon hypoxia and cold-stress. The overall absence of extra- and intracellular CIRP is associated with increased angiogenesis, most likely induced through influencing leukocyte accumulation. The aim of the present study was to specifically characterize the role of eCIRP in ischemia-induced angiogenesis together with the associated leukocyte recruitment. For analyzing eCIRPs impact, we induced muscle ischemia via femoral artery ligation (FAL) in mice in the presence or absence of an anti-CIRP antibody and isolated the gastrocnemius muscle for immunohistological analyses. Upon eCIRP-depletion, mice showed increased capillary/muscle fiber ratio and numbers of proliferating endothelial cells (CD31+/CD45−/BrdU+). This was accompanied by a reduction of total leukocyte count (CD45+), neutrophils (MPO+), neutrophil extracellular traps (NETs) (MPO+CitH3+), apoptotic area (ascertained via TUNEL assay), and pro-inflammatory M1-like polarized macrophages (CD68+/MRC1−) in ischemic muscle tissue. Conversely, the number of regenerative M2-like polarized macrophages (CD68+/MRC1+) was elevated. Altogether, we observed that eCIRP depletion similarly affected angiogenesis and leukocyte recruitment as described for the overall absence of CIRP. Thus, we propose that eCIRP is mainly responsible for modulating angiogenesis via promoting pro-angiogenic microenvironmental conditions in muscle ischemia.
Collapse
Affiliation(s)
- Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sebastian Beck
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Lisa Lilian Peffenköver
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Silvia Fischer
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-(0)-89-2180-76504
| |
Collapse
|
24
|
Liu X, Guo A, Tu Y, Li W, Li L, Liu W, Ju Y, Zhou Y, Sang A, Zhu M. Fruquintinib inhibits VEGF/VEGFR2 axis of choroidal endothelial cells and M1-type macrophages to protect against mouse laser-induced choroidal neovascularization. Cell Death Dis 2020; 11:1016. [PMID: 33247124 PMCID: PMC7695853 DOI: 10.1038/s41419-020-03222-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Abstract
Wet age-related macular degeneration, which is characterized by choroidal neovascularization (CNV) and induces obvious vision loss. Vascular endothelial growth factor (VEGF) family member VEGF-A (also named as VEGF) and its receptor VEGFR2 contribute to the pathogenesis of CNV. Choroidal endothelial cells (CECs) secret C–C motif chemokine ligand 2 (CCL2), which attracts macrophages to CNV lesion and promotes macrophage M1 polarization. Accordingly, infiltrating macrophages secret inflammatory cytokines to promote CNV. In vivo, intravitreal injection of fruquintinib (HMPL-013), an antitumor neovascularization drug, alleviated mouse CNV formation without obvious ocular toxicity. Meanwhile, HMPL-013 inhibited VEGF/VEGFR2 binding in CECs and macrophages, as well as macrophage M1 polarization. In vitro, noncontact coculture of human choroidal vascular endothelial cells (HCVECs) and macrophages under hypoxia conditions was established. HMPL-013 downregulated VEGF/VEGFR2/phosphoinositide-3-kinase/protein kinase B (AKT)/nuclear factor kappa B pathway and CCL2 secretion in HCVECs, as well as VEGF/VEGFR2-induced macrophage M1 polarization under hypoxia condition. In addition, HMPL-013 inhibited HCEVC derived CCL2-induced macrophage migration and M1 polarization, along with macrophage M1 polarization-induced HCVECs proliferation, migration, and tube formation. Altogether, HMPL-013 alleviated CNV formation might via breaking detrimental cross talk between CECs and macrophages.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China
| | - Yuanyuan Ju
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
25
|
Du Q, Fu YX, Shu AM, Lv X, Chen YP, Gao YY, Chen J, Wang W, Lv GH, Lu JF, Xu HQ. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy. Life Sci 2020; 272:118808. [PMID: 33245967 DOI: 10.1016/j.lfs.2020.118808] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIMS The theory of inflammation is one of the important theories in the pathogenesis of diabetic nephropathy (DN). We herein aimed to explore whether loganin affected macrophage infiltration and activation upon diabetic nephropathy (DN) by a spontaneous DN mice and a co-culture system of glomerular mesangial cells (GMCs) and macrophage cells (RAW264.7) which was induced by advanced glycation end products (AGEs). METHODS AND KEY FINDINGS Loganin showed remarkable capacity on protecting renal from damage by mitigating diabetic symptoms, improving the histomorphology of the kidney, decreasing the expression of extracellular matrix such as FN, COL-IV and TGF-β, reversing the production of IL-12 and IL-10 and decreasing the number of infiltrating macrophages in the kidney. Moreover, loganin showed markedly effects by suppressing iNOS and CD16/32 expressions (M1 markers), increasing Arg-1 and CD206 expressions (M2 markers), which were the phenotypic transformation of macrophage. These effects may be attributed to the inhibition of the receptor for AGEs (RAGE) /monocyte chemotactic protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2) signaling pathway, with significantly down-regulated expressions of RAGE, MCP-1 and CCR2 by loganin. Loganin further decreased MCP-1 secretion when RAGE was silenced, which means other target was involved in regulating the MCP-1 expression. While loganin combinated with the inhibitor of CCR2 exerted stronger anti-inhibition effects of iNOS expression, suggesting that CCR2 was the target of loganin in regulating the activation of macrophages. SIGNIFICANCE Loganin could ameliorate DN kidney damage by inhibiting macrophage infiltration and activation via the MCP-1/CCR2 signaling pathway in DN.
Collapse
Affiliation(s)
- Qiu Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Ying-Xue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - An-Mei Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Xing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201210, China
| | - Yu-Ping Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Yu-Yan Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Wei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Gao-Hong Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jin-Fu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Hui-Qin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
26
|
Effects of Greenshell Mussel (Perna canaliculus) Intake on Pathological Markers of Multiple Phenotypes of Osteoarthritis in Rats. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prevalence of metabolic osteoarthritis has been increasing worldwide, particularly among women. The aim of this study was to investigate the effects of the New Zealand greenshell mussel (Perna canaliculus; GSM) on osteoarthritis (OA) prevention in a rat model. One-hundred-and-eight female rats aged 12 weeks were divided into four test groups, containing 24 rats each, plus an additional control group. Each test group received one of the four experimental diets: normal control diet (ND), normal control diet supplemented with GSM (ND + GSM), high fat/high sugar diet (HFHS), or high fat/high sugar diet supplemented GSM (HFHS + GSM), for 36 weeks (end of the study). After 8 weeks on experimental diets, half of each group was subjected to ovariectomy (OVX) and the remaining half received a sham operation (ovaries left intact). The study evaluated body composition, bone mass, plasma cytokines, adipokines, HbA1c, CTX-II, and knee joint’s histopathology. HFHS diet and OVX significantly induced body weight gain and leptin production. OVX rats lost bone mineral density but increased adiponectin, HbA1C, and MCP-1. The OVX rats fed HFHS showed the highest Mankin scores. Importantly, inclusion of GSM reduced these pathological features. In conclusion, GSM might be beneficial in halting the progression of OA.
Collapse
|
27
|
Ji X, Yang L, Zhang Z, Zhang K, Chang N, Zhou X, Hou L, Yang L, Li L. Sphingosine 1‐phosphate/microRNA‐1249‐5p/MCP‐1 axis is involved in macrophage‐associated inflammation in fatty liver injury in mice. Eur J Immunol 2020; 50:1746-1756. [DOI: 10.1002/eji.201948351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaofang Ji
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Le Yang
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Zhi Zhang
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Kai Zhang
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Na Chang
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Xuan Zhou
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Lei Hou
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Lin Yang
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| | - Liying Li
- Department of Cell Biology Municipal Laboratory for Liver Protection and Regulation of Regeneration Capital Medical University Beijing China
| |
Collapse
|
28
|
Li L, Ni L, Heary RF, Elkabes S. Astroglial TLR9 antagonism promotes chemotaxis and alternative activation of macrophages via modulation of astrocyte-derived signals: implications for spinal cord injury. J Neuroinflammation 2020; 17:73. [PMID: 32098620 PMCID: PMC7041103 DOI: 10.1186/s12974-020-01748-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The recruitment of immune system cells into the central nervous system (CNS) has a profound effect on the outcomes of injury and disease. Glia-derived chemoattractants, including chemokines, play a pivotal role in this process. In addition, cytokines and chemokines influence the phenotype of infiltrating immune cells. Depending on the stimuli present in the local milieu, infiltrating macrophages acquire the classically activated M1 or alternatively activated M2 phenotypes. The polarization of macrophages into detrimental M1 versus beneficial M2 phenotypes significantly influences CNS pathophysiology. Earlier studies indicated that a toll-like receptor 9 (TLR9) antagonist modulates astrocyte-derived cytokine and chemokine release. However, it is not known whether these molecular changes affect astrocyte-induced chemotaxis and polarization of macrophages. The present studies were undertaken to address these issues. METHODS The chemotaxis and polarization of mouse peritoneal macrophages by spinal cord astrocytes were evaluated in a Transwell co-culture system. Arrays and ELISA were utilized to quantify chemokines in the conditioned medium (CM) of pure astrocyte cultures. Immunostaining for M1- and M2-specific markers characterized the macrophage phenotype. The percentage of M2 macrophages at the glial scar was determined by stereological approaches in mice sustaining a mid-thoracic spinal cord contusion injury (SCI) and intrathecally treated with oligodeoxynucleotide 2088 (ODN 2088), the TLR9 antagonist. Statistical analyses used two-tailed independent-sample t-test and one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. A p value < 0.05 was considered to be statistically significant. RESULTS ODN 2088-treated astrocytes significantly increased the chemotaxis of peritoneal macrophages via release of chemokine (C-C motif) ligand 1 (CCL1). Vehicle-treated astrocytes polarized macrophages into the M2 phenotype and ODN 2088-treated astrocytes promoted further M2 polarization. Reduced CCL2 and CCL9 release by astrocytes in response to ODN 2088 facilitated the acquisition of the M2 phenotype, suggesting that CCL2 and CCL9 are negative regulators of M2 polarization. The percentage of M2 macrophages at the glial scar was higher in mice sustaining a SCI and receiving ODN 2088 treatment as compared to vehicle-treated injured controls. CONCLUSIONS TLR9 antagonism could create a favorable environment during SCI by supporting M2 macrophage polarization and chemotaxis via modulation of astrocyte-to-macrophage signals.
Collapse
Affiliation(s)
- Lun Li
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 205 South Orange Avenue, F-1204, Newark, NJ 07103 USA
| | - Li Ni
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 205 South Orange Avenue, F-1204, Newark, NJ 07103 USA
| | - Robert F. Heary
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 205 South Orange Avenue, F-1204, Newark, NJ 07103 USA
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 205 South Orange Avenue, F-1204, Newark, NJ 07103 USA
| |
Collapse
|
29
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Hey YY, O'Neill TJ, O'Neill HC. A novel myeloid cell in murine spleen defined through gene profiling. J Cell Mol Med 2019; 23:5128-5143. [PMID: 31210415 PMCID: PMC6653018 DOI: 10.1111/jcmm.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
A novel myeloid antigen presenting cell can be generated through in vitro haematopoiesis in long‐term splenic stromal cocultures. The in vivo equivalent subset was recently identified as phenotypically and functionally distinct from the spleen subsets of macrophages, conventional (c) dendritic cells (DC), resident monocytes, inflammatory monocytes and eosinophils. This novel subset which is myeloid on the basis of cell surface phenotype, but dendritic‐like on the basis of cell surface marker expression and antigen presenting function, has been tentatively labelled “L‐DC.” Transcriptome analysis has now been employed to determine the lineage relationship of this cell type with known splenic cDC and monocyte subsets. Principal components analysis showed separation of “L‐DC” and monocytes from cDC subsets in the second principal component. Hierarchical clustering then indicated a close lineage relationship between this novel subset, resident monocytes and inflammatory monocytes. Resident monocytes were the most closely aligned, with no genes specifically expressed by the novel subset. This subset, however, showed upregulation of genes reflecting both dendritic and myeloid lineages, with strong upregulation of several genes, particularly CD300e. While resident monocytes were found to be dependent on Toll‐like receptor signalling for development and were reduced in number in Myd88‐/‐ and Trif‐/‐ mutant mice, both the novel subset and inflammatory monocytes were unaffected. Here, we describe a novel myeloid cell type closely aligned with resident monocytes in terms of lineage but distinct in terms of development and functional capacity.
Collapse
Affiliation(s)
- Ying-Ying Hey
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| | | | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|
32
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
33
|
Amirkalali B, Sohrabi MR, Esrafily A, Jalali M, Gholami A, Hosseinzadeh P, Keyvani H, Shidfar F, Zamani F. Erythrocyte membrane fatty acid profile & serum cytokine levels in patients with non-alcoholic fatty liver disease. Indian J Med Res 2018; 147:352-360. [PMID: 29998870 PMCID: PMC6057244 DOI: 10.4103/ijmr.ijmr_1065_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background & objectives Fatty acids may affect the expression of genes, and this process is influenced by sex hormones. Cytokines are involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), so this study was aimed to assess the association of erythrocyte membrane fatty acids with three cytokines and markers of hepatic injury in NAFLD patients and to explore whether these associations were the same in both sexes. Methods In this cross-sectional study, 62 consecutive patients (32 men and 30 women) with NAFLD during the study period. Tumour necrosis factor-α (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), aspartate aminotransferase and alanine aminotransferase were measured in a fasting serum sample, and Fibroscan was conducted for each individual. Gas chromatography was used to measure erythrocyte membrane fatty acids. Univariate and multiple linear regressions were used to analyze data. Results In men, IL-6 had a significant (P <0.05) positive association with total ω-3 polyunsaturated fatty acids (PUFAs). In women, TNF-α had a significant positive association with total ω-3 (P <0.05) and ω-6 (P <0.01) PUFAs, IL-6 had a significant (P <0.05) positive association with total monounsaturated fatty acids and MCP-1 had a significant positive association with total trans-fatty acids (P <0.05). No significant associations were observed between erythrocyte membrane fatty acids and liver enzymes or Fibroscan report in both sexes. In this study, women were significantly older than men [51 (42.75-55) vs 35.5 (29-52), P <0.01], so the associations were adjusted for age and other confounders. Interpretation & conclusions Erythrocyte membrane fatty acid profile was not associated with serum liver enzymes or Fibroscan reports in NAFLD patients, but it had significant associations with serum TNF-α, IL-6 and MCP-1 and these associations were probably sex dependent.
Collapse
Affiliation(s)
- Bahareh Amirkalali
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafily
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Jalali
- Department of Nutrition & Biochemistry, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran; Department of Public Health, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Payam Hosseinzadeh
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Bajpai A, Tilley DG. The Role of Leukocytes in Diabetic Cardiomyopathy. Front Physiol 2018; 9:1547. [PMID: 30443223 PMCID: PMC6221939 DOI: 10.3389/fphys.2018.01547] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes is predominant risk factor for cardiovascular diseases such as myocardial infarction and heart failure. Recently, leukocytes, particularly neutrophils, macrophages, and lymphocytes, have become targets of investigation for their potential role in a number of chronic inflammatory diseases such as diabetes and heart failure. While leukocytes contribute significantly to the progression of diabetes and heart failure individually, understanding their participation in the pathogenesis of diabetic heart failure is much less understood. The present review summarizes the role of leukocytes in the complex interplay between diabetes and heart failure, which is critical to the discovery of new targeted therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Fibronectin Type III Domain Containing 4 attenuates hyperlipidemia-induced insulin resistance via suppression of inflammation and ER stress through HO-1 expression in adipocytes. Biochem Biophys Res Commun 2018; 502:129-136. [PMID: 29787756 DOI: 10.1016/j.bbrc.2018.05.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Although Fibronectin Type III Domain Containing 4 (FNDC4) has been reported to be involved in the modulation of inflammation in macrophages, its effects on inflammation and insulin resistance in adipose tissue are unknown. In the current study, we investigated the effects of FNDC4 on hyperlipidemia-mediated endoplasmic reticulum (ER) stress, inflammation, and insulin resistance in adipocytes via the AMP-activated protein kinase (AMPK)/heme oxygenase-1 (HO-1)-mediated pathway. Hyperlipidemia-induced nuclear factor κB (NFκB), inhibitory κBα (IκBα) phosphorylation, and pro-inflammatory cytokines such as TNFα and MCP-1 were markedly mitigated by FNDC4. Furthermore, FNDC4 treatment attenuated impaired insulin signaling in palmitate-treated differentiated 3T3-L1 cells and in subcutaneous adipose tissue of HFD-fed mice. FNDC4 administration ameliorated glucose intolerance and reduced HFD-induced body weight gain in mice. However, FNDC4 treatment did not affect calorie intake. Additionally, treatment with FNDC4 attenuated hyperlipidemia-induced phosphorylation or expression of ER stress markers such as IRE-1, eIF2α, and CHOP in 3T3-L1 adipocytes and in subcutaneous adipose tissue of mice. FNDC4 treatment stimulated AMPK phosphorylation and HO-1 expression in 3T3-L1 adipocytes and in subcutaneous adipose tissue of mice. siRNA-mediated suppression of AMPK and HO-1 abrogated the suppressive effects of FNDC4 on palmitate-induced ER stress, inflammation, and insulin resistance. In conclusion, our results show that FNDC4 ameliorates insulin resistance via AMPK/HO-1-mediated suppression of inflammation and ER stress, indicating that FNDC4 may be a novel therapeutic agent for treating insulin resistance and type 2 diabetes.
Collapse
|
36
|
Chen L, Wang S, Wang Y, Zhang W, Ma K, Hu C, Zhu H, Liang S, Liu M, Xu N. IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget 2018; 9:17443-17454. [PMID: 29707119 PMCID: PMC5915127 DOI: 10.18632/oncotarget.24734] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/21/2018] [Indexed: 02/05/2023] Open
Abstract
Macrophages play a crucial role in tumorigenesis depending upon the phenotype of macrophages found in tumor microenvironments. To date, how the tumor microenvironment affects the phenotypes of macrophages is not yet fully understood. In this study, we constructed a NIH3T3/Src cell line stably overexpresses the Src protein and found that conditioned medium from this cell line was able to induce polarization towards the M2 phenotype in primary bone marrow-derived macrophages (BMDM) and Ana-1 macrophages. Further investigation revealed that IL-6 produced by NIH3T3/Src cells plays a key role in M2 polarization. During the development of colorectal cancer in C57BL/6J-ApcMin/+ mice, increased IL-6 secretion in the interstitial fluid of the colorectal tissues was observed. Furthermore, tumorigenesis in IL-6tm1Kopf mice treated with AOM-DSS, an IL-6 knockout mouse strain, was significantly inhibited compared with the control group, suggesting the important role of IL-6 in promoting tumorigenicity. Our findings identify the target molecules and proinflammatory cytokines responsible for promoting polarization towards the M2 phenotype in macrophages present in tumor microenvironment, which may be useful for the design of novel therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weina Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
37
|
|
38
|
Abstract
Adipose tissue represents a large volume of biologically active tissue that exerts substantial systemic effects in health and disease. Alcohol consumption can profoundly disturb the normal functions of adipose tissue by inducing adipocyte death and altering secretion of adipokines, pro-inflammatory mediators and free fatty acids from adipose tissue, which have important direct and indirect effects on the pathogenesis of alcoholic liver disease (ALD). Cessation of alcohol intake quickly reverses inflammatory changes in adipose tissue, and pharmacological treatment that normalizes adipose tissue function improves experimental ALD. Obesity exacerbates liver injury induced by chronic or binge alcohol consumption, and obesity and alcohol can synergize to increase risk of ALD and progression. Physicians who care for individuals with ALD should be aware of the effects of adipose tissue dysfunction on liver function, and consider strategies to manage obesity and insulin resistance. This Review examines the effect of alcohol on adiposity and adipose tissue and the relationship between alcohol, adipose tissue and the liver.
Collapse
|
39
|
Rubinow KB, Rubinow DR. In immune defense: redefining the role of the immune system in chronic disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566944 PMCID: PMC5442360 DOI: 10.31887/dcns.2017.19.1/drubinow] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.
Collapse
Affiliation(s)
- Katya B Rubinow
- Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Mousa A, Abell SK, Shorakae S, Harrison CL, Naderpoor N, Hiam D, Moreno-Asso A, Stepto NK, Teede HJ, de Courten B. Relationship between vitamin D and gestational diabetes in overweight or obese pregnant women may be mediated by adiponectin. Mol Nutr Food Res 2017; 61. [PMID: 28741856 DOI: 10.1002/mnfr.201700488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
SCOPE Maternal vitamin D deficiency has been implicated in adverse pregnancy outcomes. However, the association between vitamin D and inflammation, particularly adipokines, remains unexplored in pregnancy. METHODS AND RESULTS In 102 overweight or obese pregnant women at high-risk of gestational diabetes mellitus (GDM), we investigated relationships between maternal 25-hydroxyvitamin D (25(OH)D) concentrations at 12-15 wk gestation (baseline) and serum lipids, inflammatory markers, novel adipokines (omentin-1, visfatin, high molecular weight (HMW) adiponectin), and subsequent pregnancy outcomes (GDM, preeclampsia, preterm birth [PTB]). After adjustment for maternal factors (age, BMI, parity, ethnicity, and smoking status), baseline 25(OH)D concentrations were inversely associated with total cholesterol and triglycerides, and positively associated with HMW-adiponectin. Higher baseline 25(OH)D concentrations were associated with decreased fasting and 1-h post-OGTT glucose and reduced risk of GDM at 26-28 wk, as well as with longer gestation and reduced risk of PTB upon additional adjustment for caesarean section. Adding HMW-adiponectin to the multivariable models attenuated most associations, and HMW-adiponectin was a significant predictor in the models. CONCLUSION Our findings suggest that lower maternal 25(OH)D concentrations in overweight/obese pregnant women at high-risk of GDM are associated with increased cardiometabolic risks during pregnancy and adverse pregnancy outcomes, and that these associations may be mediated by HMW-adiponectin.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Sally K Abell
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Soulmaz Shorakae
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Cheryce L Harrison
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Alba Moreno-Asso
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Nigel K Stepto
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia.,Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Nio Y, Tanaka M, Hirozane Y, Muraki Y, Okawara M, Hazama M, Matsuo T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti‐inflammatory effects in mdx mice with Duchenne muscular dystrophy. FASEB J 2017; 31:5307-5320. [DOI: 10.1096/fj.201700249r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yasunori Nio
- Extra Value Generation and General Medicine Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Masayuki Tanaka
- Inflammation Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Yoshihiko Hirozane
- Biomolecular Research LaboratoriesPharmaceutical Research DivisionTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Yo Muraki
- Extra Value Generation and General Medicine Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Mitsugi Okawara
- Extra Value Generation and General Medicine Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Masatoshi Hazama
- Extra Value Generation and General Medicine Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| | - Takanori Matsuo
- Extra Value Generation and General Medicine Drug Discovery UnitTakeda Pharmaceutical Company Limited Fujisawa Japan
| |
Collapse
|
42
|
Abe T, Hirasaka K, Nikawa T. Involvement of Cbl-b-mediated macrophage inactivation in insulin resistance. World J Diabetes 2017; 8:97-103. [PMID: 28344752 PMCID: PMC5348625 DOI: 10.4239/wjd.v8.i3.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/31/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Aging and overnutrition cause obesity in rodents and humans. It is well-known that obesity causes various diseases by producing insulin resistance (IR). Macrophages infiltrate the adipose tissue (AT) of obese individuals and cause chronic low-level inflammation associated with IR. Macrophage infiltration is regulated by the chemokines that are released from hypertrophied adipocytes and the immune cells in AT. Saturated fatty acids are recognized by toll-like receptor 4 (TLR4) and induce inflammatory responses in AT macrophages (ATMs). The inflammatory cytokines that are released from activated ATMs promote IR in peripheral organs, such as the liver, skeletal muscle and AT. Therefore, ATM activation is a therapeutic target for IR in obesity. The ubiquitin ligase Casitas b-lineage lymphoma-b (Cbl-b) appears to potently suppress macrophage migration and activation. Cbl-b is highly expressed in leukocytes and negatively regulates signals associated with migration and activation. Cbl-b deficiency enhances ATM accumulation and IR in aging- and diet-induced obese mice. Cbl-b inhibits migration-related signals and SFA-induced TLR4 signaling in ATMs. Thus, targeting Cbl-b may be a potential therapeutic strategy to reduce the IR induced by ATM activation. In this review, we summarize the regulatory functions of Cbl-b in ATMs.
Collapse
|
43
|
Carson WF, Salter-Green SE, Scola MM, Joshi A, Gallagher KA, Kunkel SL. Enhancement of macrophage inflammatory responses by CCL2 is correlated with increased miR-9 expression and downregulation of the ERK1/2 phosphatase Dusp6. Cell Immunol 2017; 314:63-72. [PMID: 28242024 DOI: 10.1016/j.cellimm.2017.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/09/2017] [Accepted: 02/18/2017] [Indexed: 11/27/2022]
Abstract
Macrophage polarization plays a central role in both protective immunity and immunopathology. While the role of cytokines in driving macrophage polarization is well characterized, less is understood about the role of chemokines. The purpose of this study was to determine if CC chemokine 2 (CCL2/MCP1) could influence macrophage polarization in response to subsequent activation with cytokines and microbial products. Treatment of bone marrow-derived macrophages with CCL2 alone did not result in increased expression of either classical or alternatively-activated macrophage genes as compared to standard skewing cytokines or Toll-like receptor agonists. However, subsequent stimulation of CCL2 pre-treated macrophages with classical activation stimuli resulted in enhanced expression of genes associated with classical activation. This enhancement correlated with increased phosphorylation of ERK1/2 kinases, a decrease in expression of the ERK phosphatase Dusp6 and enhanced expression of miR-9. These results indicate that CCL2 supports the classical activation of macrophages, with miR-9 mediated down-regulation of Dusp6 and enhanced ERK-mediated signal transduction possibly mediating this enhanced pro-inflammatory gene expression.
Collapse
Affiliation(s)
- William F Carson
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Sarah E Salter-Green
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Melissa M Scola
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Amrita Joshi
- Department of Vascular Surgery, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Katherine A Gallagher
- Department of Vascular Surgery, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Ahmed M, de Winther MPJ, Van den Bossche J. Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology 2016; 222:937-943. [PMID: 27613200 DOI: 10.1016/j.imbio.2016.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
The alarming rise of obesity and type 2 diabetes (T2D) has put a tremendous strain on global healthcare systems. Over the past decade extensive research has focused on the role of macrophages as key mediators of inflammation in T2D. The inflammatory environment in the obese adipose tissue and pancreatic β-cell islets creates and perpetuates imbalanced inflammatory macrophage activation. Consequences of this chronic low-grade inflammation include insulin resistance in the adipose tissue and pancreatic β-cell dysfunction. Recently, the emerging field of epigenetics has provided new insights into the pathogenesis of T2D, while also affording potential new opportunities for treatment. In macrophages, epigenetic mechanisms are increasingly being recognized as crucial controllers of their phenotype. Here, we first describe the role of macrophages in T2D. Then we elaborate on epigenetic mechanisms that regulate macrophage activation, thereby focusing on T2D. Next, we highlight how diabetic conditions such as hyperlipidemia and hyperglycemia could induce epigenetic changes that promote an inflammatory macrophage phenotype. In conclusion we discuss possible therapeutic interventions by targeting macrophage epigenetics and speculate on future research directions.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximillian's University, Munich, Germany.
| | - Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Andrés-Blasco I, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, Piqueras L, Sanz MJ, Burks DJ, González-Navarro H. Hepatic lipase deficiency produces glucose intolerance, inflammation and hepatic steatosis. J Endocrinol 2015; 227:179-91. [PMID: 26423094 DOI: 10.1530/joe-15-0219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease, which affects up to 90% of obese people and nearly 70% of the overweight, is commonly associated with MetS characteristics such as obesity, insulin resistance, hypertension and dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hypercholesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation and steatosis. In addition, compared with WT mice, HL(-/-) mice exhibited enhanced circulating MCP1 levels, monocytosis and higher percentage of CD4+Th17+ cells. Consistent with increased inflammation, livers from HL(-/-) mice had augmented activation of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases in livers from WT mice. Analysis of HL(-/-) and WT mice fed regular chow diet showed dyslipidemia and glucose intolerance in HL(-/-) mice without any other changes in inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes hepatic steatosis and inflammation in mice which are, at least in part, mediated by the activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses the viability of therapeutic strategies based on the modulation of these kinases to reduce hepatic steatosis associated to lipase dysfunction.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Andrea Herrero-Cervera
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Ángela Vinué
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Laura Piqueras
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - María Jesús Sanz
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Deborah Jane Burks
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain
| |
Collapse
|
46
|
Mojumdar K, Liang F, Giordano C, Lemaire C, Danialou G, Okazaki T, Bourdon J, Rafei M, Galipeau J, Divangahi M, Petrof BJ. Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR2. EMBO Mol Med 2015; 6:1476-92. [PMID: 25312642 PMCID: PMC4237472 DOI: 10.15252/emmm.201403967] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myofiber necrosis and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), leading to lethal weakness of the diaphragm. Macrophages (MPs) are required for successful muscle regeneration, but the role of inflammatory monocyte (MO)-derived MPs in either promoting or mitigating DMD is unclear. We show that DMD (mdx) mouse diaphragms exhibit greatly increased expression of CCR2 and its chemokine ligands, along with inflammatory (Ly6C(high)) MO recruitment and accumulation of CD11b(high) MO-derived MPs. Loss-of-function of CCR2 preferentially reduced this CD11b(high) MP population by impeding the release of Ly6C(high) MOs from the bone marrow but not the splenic reservoir. CCR2 deficiency also helped restore the MP polarization balance by preventing excessive skewing of MPs toward a proinflammatory phenotype. These effects were linked to amelioration of histopathological features and increased muscle strength in the diaphragm. Chronic inhibition of CCR2 signaling by mutated CCL2 secreted from implanted mesenchymal stem cells resulted in similar improvements. These data uncover a previously unrecognized role of inflammatory MOs in DMD pathogenesis and indicate that CCR2 inhibition could offer a novel strategy for DMD management.
Collapse
Affiliation(s)
- Kamalika Mojumdar
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Feng Liang
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Christian Giordano
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Christian Lemaire
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Gawiyou Danialou
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Tatsuma Okazaki
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Johanne Bourdon
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Jacques Galipeau
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Centre and Research Institute, Montreal, QC, Canada
| |
Collapse
|
47
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
48
|
Vinué Á, Andrés-Blasco I, Herrero-Cervera A, Piqueras L, Andrés V, Burks DJ, Sanz MJ, González-Navarro H. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1729-42. [PMID: 26022372 DOI: 10.1016/j.bbadis.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
Abstract
Single nucleotide polymorphisms near the Ink4/Arf locus have been associated with type-2 diabetes mellitus. Previous studies indicate a protective role of the locus in the carbohydrate metabolism derangement associated with ageing in wild-type mice. The present study demonstrates that the increased Ink4/Arf locus expression in 1-year-old mice, partially-deficient for the insulin receptor substrate (IRS)2 (Irs2+/-SuperInk4/Arf mice) ameliorates hepatic steatosis, inflammation and insulin resistance. Irs2+/-SuperInk4/Arf mice displayed improved glucose tolerance and insulin sensitivity compared with Irs2+/- mice which were glucose intolerant and insulin resistant compared with age-matched wild-type mice. These changes in Irs2+/- mice were accompanied by enhanced hepatic steatosis, proinflammatory macrophage phenotype, increased Ly6C(hi)-monocyte percentage, T-lymphocyte activation and MCP1 and TNF-α cytokine levels. In Irs2+/-SuperInk4/Arf mice, steatosis and inflammatory parameters were markedly reduced and similar to those of wild-type counterparts. In vivo insulin signalling also revealed reduced activation of the IRS/AKT-dependent signalling in Irs2+/- mice. This was restored upon increased locus expression in Irs2+/-SuperInk4/Arf mice which display similar activation levels as those for wild-type mice. In vivo treatment of Irs2+/-SuperInk4/Arf mice with TNF-α diminished insulin canonical IRS/AKT-signalling and enhanced the stress SAPK/JNK-phosphoSer307IRS1-pathway suggesting that cytokine levels might potentially affect glucose homeostasis through changes in these insulin-signalling pathways. Altogether, these results indicate that enhanced Ink4/Arf locus expression restores glucose homeostasis and that this is associated with diminished hepatic steatosis and inflammation in mice with insulin resistance. Therefore, pharmacological interventions targeted to modulate the Ink4/Arf locus expression could be a tentative therapeutic approach to alleviate the inflammation associated with insulin resistance.
Collapse
Affiliation(s)
- Ángela Vinué
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain
| | | | | | - Laura Piqueras
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain
| | - Vicente Andrés
- Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Deborah J Burks
- Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain
| | - María Jesús Sanz
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain; Departamento de Farmacología, Universidad de Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain.
| |
Collapse
|
49
|
Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology 2015; 156:1794-803. [PMID: 25521584 PMCID: PMC4398765 DOI: 10.1210/en.2014-1794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.
Collapse
Affiliation(s)
- Fabian Benencia
- Department of Biomedical Sciences (F.B., J.J.K., D.E.B.), Heritage College of Osteopathic Medicine; Russ College of Engineering and Technology (F.B.); Diabetes Institute (F.B., E.O.L., M.A.-N., J.J.K., D.E.B.); Edison Biotechnology Institute (S.H., S.D.-O., E.R.L., E.O.L., L.H., J.J.K., D.E.B.); School of Applied Health Sciences and Wellness (S.H., S.D.-O., D.E.B.), College of Health Sciences and Professions; Department of Biological Sciences (M.A.-N.), Ohio University Zanesville; School of Electrical Engineering and Computer Science (X.L., L.W.); and Biomedical Engineering Program (L.W.), Ohio University, Athens, Ohio 45701
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Milène Catoire
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|