1
|
Wang H, Li S, Zhang L, Zhang N. The role of fecal microbiota transplantation in type 2 diabetes mellitus treatment. Front Endocrinol (Lausanne) 2024; 15:1469165. [PMID: 39735647 PMCID: PMC11671274 DOI: 10.3389/fendo.2024.1469165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system. Simultaneously, fecal microbiota transplantation (FMT) has emerged as a focal point, garnering substantial attention in both biomedical and clinical spheres. Research endeavors have uncovered the remarkable therapeutic efficacy of FMT across diverse diseases, with particular emphasis on its application in addressing type 2 diabetes mellitus (T2DM) and associated com-plications. Consequently, this manuscript accentuates the intimate connection between the gut microbiota and disorders within the endocrine system, with a specific focus on exploring the potential of FMT as an intervention in the therapeutic landscape of T2DM and its complications. Furthermore, the article scrutinizes concerns inherent in treatment modalities centered around the gut microbiota, proposing viable solutions to address these issues.
Collapse
Affiliation(s)
| | | | | | - Nan Zhang
- *Correspondence: Nan Zhang, ; Luping Zhang,
| |
Collapse
|
2
|
Friedline RH, Noh HL, Suk S, Albusharif M, Dagdeviren S, Saengnipanthkul S, Kim B, Kim AM, Kim LH, Tauer LA, Baez Torres NM, Choi S, Kim BY, Rao SD, Kasina K, Sun C, Toles BJ, Zhou C, Li Z, Benoit VM, Patel PR, Zheng DXT, Inashima K, Beaverson A, Hu X, Tran DA, Muller W, Greiner DL, Mullen AC, Lee KW, Kim JK. IFNγ-IL12 axis regulates intercellular crosstalk in metabolic dysfunction-associated steatotic liver disease. Nat Commun 2024; 15:5506. [PMID: 38951527 PMCID: PMC11217362 DOI: 10.1038/s41467-024-49633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is a major cause of metabolic dysfunction-associated steatohepatitis (MASH) and is characterized by inflammation and insulin resistance. Interferon-γ (IFNγ) is a pro-inflammatory cytokine elevated in obesity and modulating macrophage functions. Here, we show that male mice with loss of IFNγ signaling in myeloid cells (Lyz-IFNγR2-/-) are protected from diet-induced insulin resistance despite fatty liver. Obesity-mediated liver inflammation is also attenuated with reduced interleukin (IL)-12, a cytokine primarily released by macrophages, and IL-12 treatment in vivo causes insulin resistance by impairing hepatic insulin signaling. Following MASH diets, Lyz-IFNγR2-/- mice are rescued from developing liver fibrosis, which is associated with reduced fibroblast growth factor (FGF) 21 levels. These results indicate critical roles for IFNγ signaling in macrophages and their release of IL-12 in modulating obesity-mediated insulin resistance and fatty liver progression to MASH. In this work, we identify the IFNγ-IL12 axis in regulating intercellular crosstalk in the liver and as potential therapeutic targets to treat MASH.
Collapse
Affiliation(s)
- Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mahaa Albusharif
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bukyung Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Allison M Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren H Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie M Baez Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stephanie Choi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo-Yeon Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Suryateja D Rao
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaushal Kasina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vivian M Benoit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Payal R Patel
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Doris X T Zheng
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunikazu Inashima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Annika Beaverson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Duy A Tran
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Werner Muller
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan C Mullen
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- XO Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Yao D, Qiao F, Song C, Lv Y. Matrix stiffness regulates bone repair by modulating 12-lipoxygenase-mediated early inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112359. [PMID: 34474906 DOI: 10.1016/j.msec.2021.112359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Lipid metabolism in macrophages has been increasingly emphasized in exerting an anti-inflammatory effect and accelerating fracture healing. 12-lipoxygenase (12-LOX) is expressed in several cell types, including macrophages, and oxidizes polyunsaturated fatty acids (PUFAs) to generate both pro- and anti-inflammatory lipid mediators, of which the n-3 PUFAs play an important part in tissue homeostasis/fibrosis. Although mechanical factor regulates the lipid metabolic axis of inflammatory cells, specifically matrix stiffness influences macrophages metabolic responses, little is known about how matrix stiffness affects the 12-LOX-mediated early inflammation in bone repair. In the present study, demineralized bone matrix (DBM) scaffolds with different matrix stiffness were constructed by controlling the duration of decalcification (0 h (control), 1 h (high), 12 h (medium), and 5 d (low)) to repair the defected rat skull. The expression of inflammatory cytokines and macrophages polarization were analyzed. The lipid metabolites and lipid mediators' biosynthesis by matrix stiffness-regulated were further detected. The results showed that the low matrix stiffness could polarize macrophages into an anti-inflammatory phenotype, promote the expression of anti-inflammatory cytokines and specialized pro-resolving lipid mediators (SPMs) biosynthesis beneficial for the osteogenesis of mesenchymal stem cells (MSCs). After treated with ML355, the expression of anti-inflammatory cytokines/proteins and SPMs biosynthesis in macrophages cultured on low-matrix stiffness scaffolds were repressed, and there were almost no statistical differences among all groups. Findings from this study support that matrix stiffness regulates bone repair by modulating 12-LOX-mediated early inflammation, which suggest a direct mechanical impact of matrix stiffness on macrophages lipid metabolism and provide a new insight into the clinical application of SPMs for bone regeneration.
Collapse
Affiliation(s)
- Dongdong Yao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Chenchen Song
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
5
|
Li S, Vaziri ND, Swentek L, Takasu C, Vo K, Stamos MJ, Ricordi C, Ichii H. Prevention of Autoimmune Diabetes in NOD Mice by Dimethyl Fumarate. Antioxidants (Basel) 2021; 10:antiox10020193. [PMID: 33572792 PMCID: PMC7912218 DOI: 10.3390/antiox10020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays critical roles in the pathogenesis of diabetes. This study tested the hypothesis that by protecting β-cells against oxidative stress and inflammation, an Nrf2 activator, dimethyl fumarate (DMF), may prevent or delay the onset of type 1 diabetes in non-obese diabetic (NOD) mice. Firstly, islet isolation was conducted to confirm the antioxidative effects of DMF oral administration on islet cells. Secondly, in a spontaneous diabetes model, DMF (25 mg/kg) was fed to mice once daily starting at the age of 8 weeks up to the age of 22 weeks. In a cyclophosphamide-induced accelerated diabetes model, DMF (25 mg/kg) was fed to mice twice daily for 2 weeks. In the islet isolation study, DMF administration improved the isolation yield, attenuated oxidative stress and enhanced GCLC and NQO1 expression in the islets. In the spontaneous model, DMF significantly reduced the onset of diabetes compared to the control group (25% vs. 54.2%). In the accelerated model, DMF reduced the onset of diabetes from 58.3% to 16.7%. The insulitis score in the islets of the DMF treatment group (1.6 ± 0.32) was significantly lower than in the control group (3.47 ± 0.21). The serum IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-12p70, IFN-γ, TNF-α, MCP-1 and CXCL16 levels in the DMF-treated group were lower than in the control group. In conclusion, DMF may protect islet cells and reduce the incidence of autoimmune diabetes in NOD mice by attenuating insulitis and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| | | | - Lourdes Swentek
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Chie Takasu
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Kelly Vo
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Michael J. Stamos
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (L.S.); (C.T.); (K.V.); (M.J.S.)
- Correspondence: (S.L.); (H.I.); Tel.: +1-714-456-5160 (S.L.); +1-714-456-8698 (H.I.)
| |
Collapse
|
6
|
Amin K, Qadr SH, Hassan Hussein R, Ali KM, Rahman HS. Levels of cytokines and GADA in type I and II diabetic patients. Prim Care Diabetes 2020; 14:61-67. [PMID: 31014937 DOI: 10.1016/j.pcd.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diabetes Mellitus is described as a group of metabolic diseases in which the patient has higher blood glucose levels due to many causes. These include a defect in insulin secretion and failure of the body's cells to respond to the hormone. Cytokines and autoantibodies have a critical role in the pathogenesis of diabetes, especially type I. AIM OF THE STUDY The aim of this study was to measure the serum levels of interleukin-1 beta (IL-1 β), interleukin-3 (IL-3), interferon-gamma (INF- γ), and glutamic acid decarboxylase autoantibody (GADA) in patients with type I and type II diabetes mellitus. MATERIAL AND METHODS In this cross-sectional study, serum samples were taken from 250 individuals, including 100 samples from patients with type II diabetes mellitus, 100 samples from healthy controls, and 50 samples from patients with type I diabetes mellitus. Five milliliters of venous blood were taken from each individual and the samples were analyzed for cytokines (IL-1 β, IL-3, and INF- γ) and GABA using ELISA. RESULTS In the study, we found that the serum levels of IL-1 β were significantly higher in the healthy control group compared to the patients with type I and type II diabetes mellitus. The levels of IL-3 and INF- γ were significantly higher in type II diabetes mellitus, while GABA serum levels were higher in type I diabetes mellitus. CONCLUSION Our data showed that GADA is an important autoantibody, not only in type I but also in type II diabetes mellitus and can probably be used in the future for diagnosis of this disease. There was also a close association of GADA with systemic immunoregulation in type I and II diabetes mellitus. The relation of cytokines (IL-1 β, IL-3, and INF- γ) and GADA in patients with diabetes will also increase our understanding for the immunology of diabetes mellitus and to propose specific treatment on the basis of our findings. Our data also include correlation between age and the level of cytokines and GADA with different conclusion for each parameter.
Collapse
Affiliation(s)
- Kawa Amin
- Department of Medical Science, Respiratory Medicine and Allergology, Clinical Chemistry and Asthma Research Centre, Uppsala University and University Hospital, Uppsala, Sweden; Department of Microbiology/Immunology, College of Medicine, University of Sulaimani, Sulaimani, Iraq.
| | - Shnyar Hamid Qadr
- Department of Clinical Biochemistry, College of Pharmacy, University of Sulaimani, Iraq
| | | | - Kosar Muhammad Ali
- Department of Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | | |
Collapse
|
7
|
Malvandi AM, Loretelli C, Ben Nasr M, Zuccotti GV, Fiorina P. Sitagliptin favorably modulates immune-relevant pathways in human beta cells. Pharmacol Res 2019; 148:104405. [DOI: 10.1016/j.phrs.2019.104405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
8
|
Mizgier ML, Fernández-Verdejo R, Cherfan J, Pinget M, Bouzakri K, Galgani JE. Insights on the Role of Putative Muscle-Derived Factors on Pancreatic Beta Cell Function. Front Physiol 2019; 10:1024. [PMID: 31440170 PMCID: PMC6694406 DOI: 10.3389/fphys.2019.01024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle is a main target of insulin action that plays a pivotal role in postprandial glucose disposal. Importantly, skeletal muscle insulin sensitivity relates inversely with pancreatic insulin secretion, which prompted the hypothesis of the existence of a skeletal muscle-pancreas crosstalk mediated through an endocrine factor. The observation that changes in skeletal muscle glucose metabolism are accompanied by altered insulin secretion supports this hypothesis. Meanwhile, a muscle-derived circulating factor affecting in vivo insulin secretion remains elusive. This factor may correspond to peptides/proteins (so called myokines), exosomes and their cargo, and metabolites. We hereby review the most remarkable evidence encouraging the possibility of such inter-organ communication, with special focus on muscle-derived factors that may potentially mediate such skeletal muscle-pancreas crosstalk.
Collapse
Affiliation(s)
- Maria L Mizgier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Rodrigo Fernández-Verdejo
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julien Cherfan
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Jose E Galgani
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health. J Dev Orig Health Dis 2018; 10:164-175. [PMID: 30362448 DOI: 10.1017/s2040174418000764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exposure to the endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with health abnormalities that persist in subsequent generations. However, transgenerational effects of BPA on metabolic health are not widely studied. In a maternal C57BL/6J mice (F0) exposure model using BPA doses that are relevant to human exposure levels (10 μg/kg/day, LowerB; 10 mg/kg/day, UpperB), we showed male- and dose-specific effects on pancreatic islets of the first (F1) and second generation (F2) offspring relative to controls (7% corn oil diet; control). In this study, we determined the transgenerational effects (F3) of BPA on metabolic health and pancreatic islets in our model. Adult F3 LowerB and UpperB male offspring had increased body weight relative to Controls, however glucose tolerance was similar in the three groups. F3 LowerB, but not UpperB, males had reduced β-cell mass and smaller islets which was associated with increased glucose-stimulated insulin secretion. Similar to F1 and F2 BPA male offspring, staining for markers of T-cells and macrophages (CD3 and F4/80) was increased in pancreas of F3 LowerB and UpperB male offspring, which was associated with changes in cytokine levels. In contrast to F3 BPA males, LowerB and UpperB female offspring had comparable body weight, glucose tolerance and insulin secretion as Controls. Thus, maternal BPA exposure resulted in fewer metabolic defects in F3 than F1 and F2 offspring, and these were sex- and dose-specific.
Collapse
|
10
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
11
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
12
|
Page MJ, Bester J, Pretorius E. Interleukin-12 and its procoagulant effect on erythrocytes, platelets and fibrin(ogen): the lesser known side of inflammation. Br J Haematol 2017; 180:110-117. [PMID: 29143311 DOI: 10.1111/bjh.15020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023]
Abstract
Inflammation, with its associated inflammatory molecules, is integral to most chronic diseases, including the various cardiovascular diseases. Interleukin 12 (IL12) is one of the inflammatory cytokines that is upregulated during inflammation; however, we know very little about its exact effect on red blood cells (RBCs), platelets and fibrin(ogen). IL12 is an important pleiotropic cytokine in early inflammatory responses and has potent immunomodulatory, antitumour and anti-infection activity. Here we investigate how low levels of circulating IL12, comparable to levels found during chronic inflammation, affect coagulation parameters, platelets and RBCs. We used thromboelastography, scanning electron microscopy, refractometery and wide-field microscopy. Our results show that IL12 caused hypercoagulation, platelet activation and spreading, as well as RBC agglutination. This phenomenon has far-reaching implications for treatment of the plethora of conditions where IL12 is upregulated, since it suggests aberrant haemorheology as agglutination affects blood flow. This information might be used in future to target the lowering of IL12 in inflammatory conditions, as well as address RBC agglutination.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
13
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
14
|
Weaver J, Taylor-Fishwick DA. Relationship of NADPH Oxidase-1 expression to beta cell dysfunction induced by inflammatory cytokines. Biochem Biophys Res Commun 2017; 485:290-294. [PMID: 28232183 DOI: 10.1016/j.bbrc.2017.02.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Redox stress related loss of beta cell function is a feature of diabetes. Exposure of beta cells and islets to inflammatory mediators elevates reactive oxygen species (ROS) and beta cell dysfunction. Direct molecular manipulation of NADPH oxidase-1 (NOX-1) has identified a key role for NOX-1 in cytokine-induced beta cell dysfunction. Plasmid driven elevation of NOX-1 resulted in elevated ROS, loss of glucose-stimulated-insulin-secretion and increased apoptosis. These outcomes on beta cell function are analogous to cytokine treatment. In contrast, reduction of NOX-1 expression, by shRNA, conferred protection to beta cells and islets from the damaging effects of inflammatory cytokines. Collectively, these data support the therapeutic potential for NOX-1 inhibition in diabetes.
Collapse
Affiliation(s)
- Jessica Weaver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - David A Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
15
|
Zheng H, Ban Y, Wei F, Ma X. Regulation of Interleukin-12 Production in Antigen-Presenting Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:117-138. [PMID: 27734411 DOI: 10.1007/978-94-024-0921-5_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Interleukin-12 is a heterodimeric cytokine produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells, during encountering with intracellular microbes. IL-12 plays a key role in the activation of natural killer cells and CD4+ T helper cells in both innate and adaptive immune responses against infectious agents and immunosurveillance against endogenous malignancies. However, the potency of IL-12 makes it a target for stringent regulation. Indeed, the temporal, spatial, and quantitative expression of IL-12 during an immune response in a microenvironment contributes critically to the determination of the type, extent, and ultimate resolution of the reaction. Breaching of the delicate control and balance involving IL-12 frequently leads to autoimmune inflammatory disorders and pathogenesis. Thus, a better understanding of the regulatory mechanisms in the production and control of this cytokine is both scientifically significant and clinically beneficial. Here we provide an update on the research that has been conducted on this subject particularly in the last 10 years since the publication of a major thesis of this nature.
Collapse
Affiliation(s)
- Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Weaver JR, Nadler JL, Taylor-Fishwick DA. Interleukin-12 (IL-12)/STAT4 Axis Is an Important Element for β-Cell Dysfunction Induced by Inflammatory Cytokines. PLoS One 2015; 10:e0142735. [PMID: 26555476 PMCID: PMC4640700 DOI: 10.1371/journal.pone.0142735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Pathology driving β-cell loss in diabetes is poorly defined. Chronic subclinical inflammation is associated with β-cell dysfunction. Acute in vitro exposure of islets and β-cells to an inflammatory cytokine cocktail (IL-1β/TNF-α/IFN-γ) results in loss of cell function and viability. The contribution of each cytokine alone or in combination has been evaluated in homogeneous mouse β-cell lines and primary mouse islets. Cytokine cooperation is required for β-cell apoptosis with the most potent combinations including IL-1β. Single cytokine exposure did not induce β-cell apoptosis. Expression of endogenous interleukin-12 in β-cells correlated with inflammatory cytokine combinations that induced β-cell apoptosis. Uncoupling of the IL-12 axis by a block of IL-12 production, inhibition of IL-12 receptor/ligand interaction or disruption of IL-12 receptor signaling conferred protection to β-cells from apoptosis induced by inflammatory cytokine stimulation. Signaling through STAT4 is indicated since disruption of IL-12 concomitantly reduced inflammatory cytokine stimulation of endogenous IFN-γ expression. Primary mouse islets isolated from mice deficient in STAT4 show resistance to inflammatory-cytokine-induced cell death when compared to islets isolated from wild type mice. Collectively, the data identify IL-12 as an important mediator of inflammation induced β-cell apoptosis. Modulation of IL-12/STAT4 signaling may be a valuable therapeutic strategy to preserve islet/β-cell viability in established diabetes.
Collapse
Affiliation(s)
- Jessica R. Weaver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - David A. Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Liu Y, Zhang Q. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho. J Diabetes Investig 2015; 7:303-11. [PMID: 27330715 PMCID: PMC4847883 DOI: 10.1111/jdi.12410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Aims/Introduction Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β‐cells with pro‐inflammatory cytokines‐related immune mechanism in a mouse model. Materials and Methods C57BL/6‐db/db and inbred C57BL/6 mice were chosen here to establish a mouse model with periodontitis, which was induced by ligatures for 8 weeks. Glucose‐stimulated insulin secretion was introduced to evaluate the function of pancreatic islets and β‐cells. Serum levels of pro‐inflammatory cytokines and Klotho were also measured, and the correlation between immunostimulation and Klotho level was deeply investigated in vitro. Results Pancreatic β‐cell failure, with insulin resistance, was observed in db/db mice, while periodontitis could aggravate β‐cell dysfunction‐related features. Serum levels of interleukin (IL)‐12 and Klotho showed a negatively synergistic change, whereas the expression of Klotho was also inhibited under IL‐12 treatment in MIN6 β‐cells or isolated islets. Furthermore, IL‐12‐induced immune stimulation and also decreased insulin secretion were proven to be reversed by Klotho overexpression. Conclusions Periodontitis aggravated pancreatic β‐cell failure in diabetic mice. Further in vitro studies showed IL‐12 regulation on Klotho, while Klotho also acted as an inhibitor on IL‐12, indicating the potential of Klotho for preserving pancreatic β‐cell function in diabetes.
Collapse
Affiliation(s)
- Yihua Liu
- Department of Stomatology Affiliated Hospital of Inner Mongolia University For The Nationalities Inner Mongolia Tongliao China
| | - Qiuli Zhang
- Department of Ophthalmology Affiliated Hospital of Inner Mongolia University For The Nationalities Inner Mongolia Tongliao China
| |
Collapse
|
18
|
The analysis of correlation between IL-12 gene expression and hepatitis B virus in the affected patients. Virusdisease 2015; 26:196-9. [PMID: 26396987 DOI: 10.1007/s13337-015-0261-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B viral (HBV) infection, which is one of the global public health concerns, is among the most common causes of cirrhosis and hepatocellular carcinoma. It was proposed that cytokine-mediated immunity plays a critical role in determining the outcomes of hepatitis B virus infection. Interleukin 12 (IL-12) is a heterodimeric cytokine that shows a broad range of immunoregulatory properties during immune responses and combats host invading pathogens. The main purpose of this study was to investigate the possible association between expression levels of IL-12 gene with HBV infection in patients with HBV infection. This clinical study was performed on 30 HBV patients and 30 healthy controls. SYBR Green Real-time PCR was performed to examine the expression level of IL-12 gene in HBV patients. Then, the rate of expression was calculated using the Livak ([Formula: see text] ) method. ΔCT of samples in the two groups were compared using t test method. PCR was also used for HBV-DNA evidence. The results of our study demonstrated that the difference in mean of IL-12 gene expression between healthy subjects and HBV patients is statistically significant.
Collapse
|
19
|
Zundler S, Neurath MF. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev 2015; 26:559-68. [PMID: 26182974 DOI: 10.1016/j.cytogfr.2015.07.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/01/2015] [Indexed: 02/01/2023]
Abstract
Interleukin-12 (IL-12) was the first member of the IL-12 family of cytokines to be identified and has therefore become its eponym. It is a heterodimeric protein of two subunits (p35, p40) secreted by phagocytic cells in response to pathogens and mainly acts through STAT4 to induce IFN-γ production in T and NK cells. IFN-γ in turn mediates proinflammatory functions and activates T-bet. As IL-12 engages in TH1 development, it is believed to represent an important link between innate and adaptive immunity. Following its identification and the finding of its association to TH1 commitment, great hopes were placed in IL-12 to become a target for therapeutic applications in multiple settings of autoimmunity and cancer. Though, the discovery of the related members of the IL-12 family and several rather disappointing attempts to translate experimental results into clinical practice, have relativized these hopes. Nevertheless, IL-12 remains a cytokine of outstanding importance with lots of unresolved questions. In this review, we will first briefly depict the biochemistry of the cytokine, its receptor and the related signal transduction, before summarizing the regulation of IL-12 production and its biological functions. We will then describe the current knowledge about the implication of IL-12 in different murine disease models as well as in the corresponding human conditions and comment on possible consequences for future clinical applications.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research & Translational Research Center, Medical Clinic 1, Ulmenweg 18, 91054 Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research & Translational Research Center, Medical Clinic 1, Ulmenweg 18, 91054 Erlangen, Germany.
| |
Collapse
|
20
|
Taylor-Fishwick DA, Weaver J, Glenn L, Kuhn N, Rai G, Jadhav A, Simeonov A, Dudda A, Schmoll D, Holman TR, Maloney DJ, Nadler JL. Selective inhibition of 12-lipoxygenase protects islets and beta cells from inflammatory cytokine-mediated beta cell dysfunction. Diabetologia 2015; 58:549-57. [PMID: 25417214 DOI: 10.1007/s00125-014-3452-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Islet inflammation leads to loss of functional pancreatic beta cell mass. Increasing evidence suggests that activation of 12-lipoxygenase leads to inflammatory beta cell loss. This study evaluates new specific small-molecule inhibitors of 12-lipoxygenase for protecting rodent and human beta cells from inflammatory damage. METHODS Mouse beta cell lines and mouse and human islets were treated with inflammatory cytokines IL-1β, TNFα and IFNγ in the absence or presence of novel selective 12-lipoxygenase inhibitors. Glucose-stimulated insulin secretion (GSIS), gene expression, cell survival and 12-S-hydroxyeicosatetraenoic acid (12-S-HETE) levels were evaluated using established methods. Pharmacokinetic analysis was performed with the lead inhibitor in CD1 mice. RESULTS Inflammatory cytokines led to the loss of human beta cell function, elevated cell death, increased inflammatory gene expression and upregulation of 12-lipoxygenase expression and activity (measured by 12-S-HETE generation). Two 12-lipoxygenase inhibitors, Compounds 5 and 9, produced a concentration-dependent reduction of stimulated 12-S-HETE levels. GSIS was preserved in the presence of the 12-lipoxygenase inhibitors. 12-Lipoxygenase inhibition preserved survival of primary mouse and human islets. When administered orally, Compound 5 reduced plasma 12-S-HETE in CD1 mice. Compounds 5 and 9 preserved the function and survival of human donor islets exposed to inflammatory cytokines. CONCLUSIONS/INTERPRETATION Selective inhibition of 12-lipoxygenase activity confers protection to beta cells during exposure to inflammatory cytokines. These concept validation studies identify 12-lipoxygenase as a promising target in the prevention of loss of functional beta cells in diabetes.
Collapse
Affiliation(s)
- David A Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 W. Olney Road, Norfolk, VA, 23507, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Grzesik WJ, Nadler JL, Machida Y, Nadler JL, Imai Y, Morris MA. Expression pattern of 12-lipoxygenase in human islets with type 1 diabetes and type 2 diabetes. J Clin Endocrinol Metab 2015; 100:E387-95. [PMID: 25532042 PMCID: PMC4333045 DOI: 10.1210/jc.2014-3630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Inflammation in the pancreas can cause β-cell stress, leading to diabetes development. Access to human pancreas tissues via the Network for Pancreatic Organ Donors with Diabetes (nPOD) has allowed characterization of pathways leading to this inflammation. OBJECTIVE 12-Lipoxygenase (12-LO) induces inflammation and has been implicated in diabetes development. Our goal was to determine expression of 12-LO in human islets from control, autoantibody-positive, type 1 diabetic, and type 2 diabetic nPOD pancreas donors. DESIGN Pancreas tissues from nPOD donors were examined by immunohistochemistry and immunofluorescence for islet expression of 12-LO in different subsets of islet cells. PARTICIPANTS Donor pancreas samples were obtained from nPOD based on disease status (control, n = 7; autoantibody-positive, n = 8; type 1 diabetic, n = 17; or type 2 diabetic donors, n = 15). MAIN OUTCOME MEASURE Determination of 12-LO expression within human islets served as the main outcome measure, including distinguishing which types of islet cells expressed 12-LO. RESULTS Islets from control participants (nondiabetic) lacked islet expression of 12-LO. Of donors in the other groups, 25% to 37% expressed islet 12-LO with a clear inverse relation between the numbers of β-cells and 12-LO(+) cells within islets of 12-LO(+) cases. 12-LO expression was not seen within macrophages, endothelial cells, α-cells, or β-cells, but only within cells expressing low levels of pancreatic polypeptide (PP) and increased levels of vimentin. CONCLUSIONS 12-LO expression colocalizes within a specific type of islet PP(+) cell under prediabetic and diabetic conditions. The costaining of PP and vimentin suggests that 12-LO participates in the process leading to β-cell dedifferentiation in the islet.
Collapse
|
22
|
Sarikonda G, Sachithanantham S, Pettus J, Rodriguez-Calvo T, Phatak S, Edelman S, von Herrath M. Higher proinflammatory cytokine production and spontaneous activation in some type 1 and type 2 diabetic subjects. Clin Immunol 2014; 155:27-29. [DOI: 10.1016/j.clim.2014.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
23
|
Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Curr Diab Rep 2014; 14:530. [PMID: 25142715 PMCID: PMC4174350 DOI: 10.1007/s11892-014-0530-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Juvenile Diabetes Research Foundation (JDRF) Network for Pancreatic Organ Donors with Diabetes (JDRF nPOD) was established to obtain human pancreata and other tissues from organ donors with type 1 diabetes (T1D) in support of research focused on disease pathogenesis. Since 2007, nPOD has recovered tissues from over 100 T1D donors and distributed specimens to approximately 130 projects led by investigators worldwide. More recently, nPOD established a programmatic expansion that further links the transplantation world to nPOD, nPOD-Transplantation; this effort is pioneering novel approaches to extend the study of islet autoimmunity to the transplanted pancreas and to consent patients for postmortem organ donation directed towards diabetes research. Finally, nPOD actively fosters and coordinates collaborative research among nPOD investigators, with the formation of working groups and the application of team science approaches. Exciting findings are emerging from the collective work of nPOD investigators, which covers multiple aspects of islet autoimmunity and beta cell biology.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA,
| | | | | | | | | | | |
Collapse
|
24
|
Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction. Diabetes 2014; 63:1698-711. [PMID: 24222351 DOI: 10.2337/db13-0863] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet amyloid polypeptide (IAPP) aggregates to form amyloid fibrils in patients with type 2 diabetes and acts as a potent stimulus for interleukin (IL)-1β secretion by bone marrow-derived macrophages. We sought to determine the contribution of resident islet macrophages to IAPP-induced inflammation and β-cell dysfunction. In cultured islets, macrophages (F4/80(+)CD11b(+)CD11c(+) cells) were required for IAPP-induced mRNA expression of the proinflammatory cytokines IL-1β, tumor necrosis factor-α, and IL-6 and the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist. Moreover, IAPP-induced IL-1β synthesis and caspase-1 activation were detected in macrophages but not other islet cell types. Transgenic mice with β-cell human IAPP (hIAPP) expression had impaired glucose tolerance, elevated islet Il1b mRNA, and decreased Il10 and Il1rn expression following high-fat feeding. Islet macrophages were the major source of these transcripts and expressed increased cell surface Ly6C and CD11c in hIAPP transgenic mice. Clodronate liposome-mediated depletion of islet macrophages improved glucose tolerance and blocked proinflammatory gene expression in hIAPP-expressing mice, despite increasing the amount of islet amyloid. These data provide the first evidence that IAPP aggregates skew resident islet macrophages toward a proinflammatory phenotype and suggest a mechanism by which anti-inflammatory therapies may protect β-cells from IAPP-induced islet dysfunction.
Collapse
Affiliation(s)
- Clara Y Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
25
|
Butcher MJ, Hallinger D, Garcia E, Machida Y, Chakrabarti S, Nadler J, Galkina EV, Imai Y. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 2014; 57:491-501. [PMID: 24429578 PMCID: PMC3966210 DOI: 10.1007/s00125-013-3116-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/01/2013] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Chronic inflammation in type 2 diabetes is proposed to affect islets as well as insulin target organs. However, the nature of islet inflammation and its effects on islet function in type 2 diabetes remain unclear. Moreover, the immune cell profiles of human islets in healthy and type 2 diabetic conditions are undefined. We aimed to investigate the correlation between proinflammatory cytokine expression, islet leucocyte composition and insulin secretion in type 2 diabetic human islets. METHODS Human islets from organ donors with or without type 2 diabetes were studied. First and second phases of glucose-stimulated insulin secretion were determined by perifusion. The expression of inflammatory markers was obtained by quantitative PCR. Immune cells within human islets were analysed by FACS. RESULTS Type 2 diabetic islets, especially those without first-phase insulin secretion, displayed higher CCL2 and TNFa expression than healthy islets. CD45(+) leucocytes were elevated in type 2 diabetic islets, to a greater extent in moderately functional type 2 diabetic islets compared with poorly functional ones, and corresponded with elevated ALOX12 but not with CCL2 or TNFa expression. T and B lymphocytes and CD11c(+) cells were detectable within both non-diabetic and type 2 diabetic islet leucocytes. Importantly, the proportion of B cells was significantly elevated within type 2 diabetic islets. CONCLUSIONS/INTERPRETATION Elevated total islet leucocyte content and proinflammatory mediators correlated with islet dysfunction, suggesting that heterogeneous insulitis occurs during the development of islet dysfunction in type 2 diabetes. In addition, the altered B cell content highlights a potential role for the adaptive immune response in islet dysfunction.
Collapse
Affiliation(s)
- Matthew J. Butcher
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Daniel Hallinger
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Eden Garcia
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Yui Machida
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Swarup Chakrabarti
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Jerry Nadler
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| |
Collapse
|
26
|
Pugliese A, Yang M, Kusmarteva I, Heiple T, Vendrame F, Wasserfall C, Rowe P, Moraski JM, Ball S, Jebson L, Schatz DA, Gianani R, Burke GW, Nierras C, Staeva T, Kaddis JS, Campbell-Thompson M, Atkinson MA. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model and emerging findings. Pediatr Diabetes 2014; 15:1-9. [PMID: 24325575 PMCID: PMC4282794 DOI: 10.1111/pedi.12097] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
nPOD actively promotes a multidisciplinary and unbiased approach toward a better understanding of T1D and identify novel therapeutic targets, through its focus on the study of human samples. Unique to this effort is the coordination of collaborative efforts and real-time data sharing. Studies supported by nPOD are providing direct evidence that human T1D isa complex and heterogeneous disease, in which a multitude of pathogenic factors may be operational and may contribute to the onset of the disease. Importantly, the concept that beta cell destruction is almost completed and that the autoimmune process is almost extinguished soon after diagnosis is being challenged. nPOD investigators are exploring the hypothesis that beta cell dysfunction may also be a significant cause of hyperglycemia, at least around the time of diagnosis, and are uncovering novel molecules and pathways that are linked to the pathogenesis and etiology of human T1D. The validation of therapeutic targets is also a key component of this effort, with recent and future findings providing new strategic direction for clinical trials.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of MedicineMiami, FL, USA,Department of Immunology and Microbiology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Mingder Yang
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Irina Kusmarteva
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Tiffany Heiple
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Francesco Vendrame
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Patrick Rowe
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Jayne M Moraski
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Suzanne Ball
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Les Jebson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| | | | - George W Burke
- Department of Surgery, University of Miami Miller School of MedicineMiami, FL, USA
| | | | | | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical CenterDuarte, CA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA,Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| |
Collapse
|
27
|
Abstract
Considerable efforts have been invested to understand the mechanisms by which pro-inflammatory cytokines mediate the demise of β-cells in type 1 diabetes but much less attention has been paid to the role of anti-inflammatory cytokines as potential cytoprotective agents in these cells. Despite this, there is increasing evidence that anti-inflammatory molecules such as interleukin (IL)-4, IL-10 and IL-13 can exert a direct influence of β-cell function and viability and that the circulating levels of these cytokines may be reduced in type 1 diabetes. Thus, it seems possible that targeting of anti-inflammatory pathways might offer therapeutic potential in this disease. In the present review, we consider the evidence implicating IL-4, IL-10 and IL-13 as cytoprotective agents in the β-cell and discuss the receptor components and downstream signaling pathways that mediate these effects.
Collapse
Affiliation(s)
- M A Russell
- Institute of Biomedical and Clinical Science; University of
Exeter Medical School; Exeter, Devon, UK
- Correspondence to: MA
Russell;
| | - N G Morgan
- Institute of Biomedical and Clinical Science; University of
Exeter Medical School; Exeter, Devon, UK
| |
Collapse
|
28
|
Secchiero P, Toffoli B, Melloni E, Agnoletto C, Monasta L, Zauli G. The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40. Acta Diabetol 2013; 50:899-906. [PMID: 23615706 DOI: 10.1007/s00592-013-0476-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 01/09/2023]
Abstract
Besides its well-established oncosuppressor activity, a key function of p53 in regulating metabolic pathways has been recently identified. Nevertheless, the role of p53 with respect to diabetes mellitus (DM) appears highly controversial. To address this issue, we have used the cis-imidazoline compound Nutlin-3, an inhibitor of MDM2/p53 interaction, which represents a potent and selective non-genotoxic activator of the p53 pathway both in in vivo and in vitro experimental settings. Experimental DM was induced by intraperitoneal injections of low concentrations of streptozotocin (STZ) in C57BL/6N mice (n = 20). A group of control vehicle-injected mice (n = 10) and of STZ-treated mice (n = 10) was co-injected with Nutlin-3. Mice co-injected with STZ + Nutlin-3 exhibited attenuated features of DM with respect to animals treated with STZ alone. Indeed, STZ + Nutlin-3-treated mice were characterized by significantly (p < 0.05) lower levels of hyperglycemia, reduced weight loss, and increased spleen weight. In addition, STZ alone promoted a marked decrease in the levels of several circulating cytokines, including interleukin-12 (IL-12)p40. On the other hand, co-injection of STZ + Nutlin-3 significantly (p < 0.01) counteracted IL-12p40 down-modulation. In vitro experiments performed on the RAW264.7 macrophagic cell line model, used as cellular source of IL-12p40, demonstrated that Nutlin-3 treatment increased IL-12p40 release, strongly suggesting a direct effect of Nutlin-3 on the immune system. Overall, these data demonstrate that systemic administration of Nutlin-3 ameliorates the severity of STZ-induced DM and increases the levels of circulating IL-12p40.
Collapse
Affiliation(s)
- Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Canivell S, Ruano EG, Sisó-Almirall A, Kostov B, González-de Paz L, Fernandez-Rebollo E, Hanzu F, Párrizas M, Novials A, Gomis R. Gastric inhibitory polypeptide receptor methylation in newly diagnosed, drug-naïve patients with type 2 diabetes: a case-control study. PLoS One 2013; 8:e75474. [PMID: 24086540 PMCID: PMC3781044 DOI: 10.1371/journal.pone.0075474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes could be present in GIP receptor of T2D patients. This study aimed to assess the differences in DNA methylation profile of GIPR promoter between T2D patients and age- and Body Mass Index (BMI)-matched controls. We included 93 T2D patients (cases) that were uniquely on diet (without any anti-diabetic pharmacological treatment). We matched one control (with oral glucose tolerance test negative, non diabetic), by age and BMI, for every case. Cytokines and hormones were determined by ELISA. DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Our results showed that T2D patients were more insulin resistant and had a poorer β cell function than their controls. Fasting adiponectin was lower in T2D patients as compared to controls (7.0±3.8 µgr/mL vs. 10.0±4.2 µgr/mL). Levels of IL 12 in serum were almost double in T2D patients (52.8±58.3 pg/mL vs. 29.7±37.4 pg/mL). We found that GIPR promoter was hypomethylated in T2D patients as compared to controls. In addition, HOMA-IR and fasting glucose correlated negatively with mean methylation of GIPR promoter, especially in T2D patients. This case-control study confirms that newly diagnosed, drug-naïve T2D patients are more insulin resistant and have worse β cell function than age- and BMI-matched controls, which is partly related to changes in the insulin-sensitizing metabolites (adiponectin), in the proinflammatory profile (IL12) and we suggest in the methylation pattern of GIPR. Our study provides novel findings on GIPR promoter methylation profile which may improve our ability to understand type 2 diabetes pathogenesis.
Collapse
Affiliation(s)
- Silvia Canivell
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Les Corts Primary Health Care Centre, Transverse group for research in primary care-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Elena G. Ruano
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Antoni Sisó-Almirall
- Les Corts Primary Health Care Centre, Transverse group for research in primary care-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Belchin Kostov
- Les Corts Primary Health Care Centre, Transverse group for research in primary care-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Luis González-de Paz
- Les Corts Primary Health Care Centre, Transverse group for research in primary care-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Eduardo Fernandez-Rebollo
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Felicia Hanzu
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marcelina Párrizas
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Anna Novials
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Ramon Gomis
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Diabetes and Obesity Laboratory-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Imai Y, Dobrian AD, Weaver JR, Butcher MJ, Cole BK, Galkina EV, Morris MA, Taylor-Fishwick DA, Nadler JL. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab 2013; 15 Suppl 3:117-29. [PMID: 24003928 PMCID: PMC3777698 DOI: 10.1111/dom.12161] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/12/2013] [Indexed: 12/17/2022]
Abstract
Inflammation is an established pathogenic player in insulin resistance, islet demise and atherosclerosis. The complex interactions between cytokines, immune cells and affected tissues result in sustained inflammation in diabetes and atherosclerosis. 12- and 15-lipoxygenase (LO), such as 12/15-LO, produces a variety of metabolites through peroxidation of fatty acids and potentially contributes to the complex molecular crosstalk at the site of inflammation. 12- and 15-LO pathways are frequently activated in tissues affected by diabetes and atherosclerosis including adipose tissue (AT), islets and the vasculature. Moreover, mice with whole body and tissue-specific knockout of 12/15-LO are protected against insulin resistance, hyperglycaemia and atherosclerosis supporting functional contribution of 12- and 15-LO pathways in diabetes and atherosclerosis. Recently, it has emerged that there is a temporal regulation of the particular isoforms of 12- and 15-LO in human AT and islets during the development of type 1 and type 2 diabetes and obesity. Analyses of tissues affected by diabetes and atherosclerosis also implied the roles of interleukin (IL)-12 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-1 (NOX-1) in islets and IL-17A in atherosclerosis. Future studies should aim to test the efficacy of inhibitions of these mediators for treatment of diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Y Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 2013; 24:351-60. [PMID: 23484621 PMCID: PMC3686848 DOI: 10.1016/j.tem.2013.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
In the past decade, islet inflammation has emerged as a contributor to the loss of functional β cell mass in both type 1 (T1D) and type 2 diabetes (T2D). Evidence supports the idea that overnutrition and insulin resistance result in the production of proinflammatory mediators by β cells. In addition to compromising β cell function and survival, cytokines may recruit macrophages into islets, thus augmenting inflammation. Limited but intriguing data imply a role of adaptive immune response in islet dysfunction in T2D. Clinical trials have validated anti-inflammatory therapies in T2D, whereas immune therapy for T1D remains challenging. Further research is required to improve our understanding of islet inflammatory pathways and to identify more effective therapeutic targets for T1D and T2D.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | |
Collapse
|
32
|
Green-Mitchell SM, Tersey SA, Cole BK, Ma K, Kuhn NS, Cunningham TD, Maybee NA, Chakrabarti SK, McDuffie M, Taylor-Fishwick DA, Mirmira RG, Nadler JL, Morris MA. Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15(null) mice, leading to protection against type 1 diabetes development. PLoS One 2013; 8:e56763. [PMID: 23437231 PMCID: PMC3578926 DOI: 10.1371/journal.pone.0056763] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. METHODS 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. RESULTS 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. CONCLUSIONS These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.
Collapse
Affiliation(s)
- Shamina M. Green-Mitchell
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Banumathi K. Cole
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Kaiwen Ma
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Norine S. Kuhn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Tina Duong Cunningham
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Nelly A. Maybee
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Swarup K. Chakrabarti
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Marcia McDuffie
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - David A. Taylor-Fishwick
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Margaret A. Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|