1
|
Amerkamp J, Benli S, Isenmann E, Brinkmann C. Optimizing the lifestyle of patients with type 2 diabetes mellitus - Systematic review on the effects of combined diet-and-exercise interventions. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00365-X. [PMID: 39490277 DOI: 10.1016/j.numecd.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024]
Abstract
AIM To investigate the effects of combined diet-and-exercise interventions in patients with type 2 diabetes mellitus (T2DM). DATA SYNTHESIS A systematic literature search was conducted on PubMed, Web of Science, SPORTDiscus and BISp Surf databases (latest update in June 2024). A total of 14706 records was identified. After screening procedures, 11 randomized controlled trials (n = 24 reports) were included. The included studies compared either the effects of a) a combined intervention versus a diet-only intervention or b) different combinations of diet and exercise. The overall quality of the included study reports was moderate (evaluated with the Risk of Bias 2 (RoB2) tool). Effects of adding exercise to a (calorie-restricted) diet were primarily reflected in increased physical fitness/performance. In far fewer cases, additional beneficial effects on glycemic control, number of subjects taking medication, body weight, body composition, or lipid profile were reported. Combined with regular exercise, an energy-restricted low-carbohydrate (LC) diet with either high-fat (HF) or high-protein (HP) contents showed superior effects compared with an energy-matched conventional (CONV) diet in terms of improvements in medication use (HF-LC versus CONV diet), lipids (HF-LC or HP-LC versus CONV diet) or wellbeing (HP-LC versus CONV diet) in some studies. CONCLUSIONS Complementing a dietary intervention with regular exercise can have additional health benefits in T2DM, specifically improved physical fitness/performance. LC diets might be superior to other diets when combined with regular exercise. Other diet-and-exercise combinations than those analyzed in this review need to be investigated. REVIEW REGISTRATION NUMBER CRD42023458830.
Collapse
Affiliation(s)
- Jessica Amerkamp
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Süleyman Benli
- IST University of Applied Sciences, Erkrather Straße 220, 40233, Düsseldorf, Germany
| | - Eduard Isenmann
- IST University of Applied Sciences, Erkrather Straße 220, 40233, Düsseldorf, Germany; Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; IST University of Applied Sciences, Erkrather Straße 220, 40233, Düsseldorf, Germany.
| |
Collapse
|
2
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
3
|
Henson J, Davies MJ, Brady EM, Edwardson CL, Hall AP, Khunti K, Redman E, Rowlands AV, Sargeant J, Yates T. The potential blunting effect of metformin and/or statin therapy on physical activity-induced associations with HbA1c in type 2 diabetes. J Diabetes 2024; 16:e13495. [PMID: 37964490 PMCID: PMC10859307 DOI: 10.1111/1753-0407.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023] Open
Abstract
Highlights Our analysis indicates a potential blunting effect of metformin and/or statin therapy on physical activity-induced associations with HbA1c. The benefit of daily physical activity on glycemic control in people with type 2 diabetes is potentially more apparent in those prescribed neither metformin nor statin therapy. As physical activity is rarely prescribed in isolation of other background medications used to manage type 2 diabetes, the results of this analysis may help to maximize interventions delivered through routine clinical care, while allowing for personalization in prescribed physical activity and pharmacotherapy.
Collapse
Affiliation(s)
- Joseph Henson
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Melanie J. Davies
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Emer M. Brady
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Charlotte L. Edwardson
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Andrew P. Hall
- Hanning Sleep LaboratoryLeicester General HospitalLeicesterUK
| | - Kamlesh Khunti
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
- NIHRApplied Health Research Collaboration – East Midlands (NIHR ARC‐EM), Leicester Diabetes CentreLeicesterUK
| | - Emma Redman
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Alex V. Rowlands
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human PerformanceUniversity of South Australia, Adelaide, AustraliaAdelaideSouth AustraliaAustralia
| | - Jack Sargeant
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Thomas Yates
- NIHRLeicester Biomedical Research CentreLeicesterUK
- Diabetes Research CentreCollege of Life Sciences, University of LeicesterLeicesterUK
| |
Collapse
|
4
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
5
|
Brinkmann C. Road map for personalized exercise medicine in T2DM. Trends Endocrinol Metab 2023; 34:789-798. [PMID: 37730486 DOI: 10.1016/j.tem.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) is rising at an alarming rate. Regular physical activity and exercise are cornerstones in the therapy of T2DM. While a one-size-fits-all approach fails to account for many between-subject differences, the use of personalized exercise medicine has the potential of optimizing health outcomes. Here, a road map for personalized exercise therapy targeted at patients with T2DM is presented. It considers secondary complications, glucose management, response heterogeneity, and other relevant factors that might influence the effectiveness of exercise as medicine, taking exercise-medication-diet interactions, as well as feasibility and acceptance into account. Furthermore, the potential of artificial intelligence and machine learning-based applications in assisting sports therapists to find appropriate exercise programs is outlined.
Collapse
Affiliation(s)
- Christian Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany; Department of Fitness & Health, IST University of Applied Sciences, Düsseldorf, Germany.
| |
Collapse
|
6
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
7
|
Moreno-Cabañas A, Morales-Palomo F, Alvarez-Jimenez L, Mora-Gonzalez D, Ortega JF, Mora-Rodriguez R. Metformin and exercise effects on postprandial insulin sensitivity and glucose kinetics in pre-diabetic and diabetic adults. Am J Physiol Endocrinol Metab 2023; 325:E310-E324. [PMID: 37584610 DOI: 10.1152/ajpendo.00118.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The potential interaction between metformin and exercise on glucose-lowering effects remains controversial. We studied the separated and combined effects of metformin and/or exercise on fasting and postprandial insulin sensitivity in individuals with pre-diabetes and type 2 diabetes (T2D). Eight T2D adults (60 ± 4 yr) with overweight/obesity (32 ± 4 kg·m-2) under chronic metformin treatment (9 ± 6 yr; 1281 ± 524 mg·day-1) underwent four trials; 1) taking their habitual metformin treatment (MET), 2) substituting during 96 h their metformin medication by placebo (PLAC), 3) placebo combined with 50 min bout of high-intensity interval exercise (PLAC + EX), and 4) metformin combined with exercise (MET + EX). Plasma glucose kinetics using stable isotopes (6,6-2H2 and [U-13C] glucose), and glucose oxidation by indirect calorimetry, were assessed at rest, during exercise, and in a subsequent oral glucose tolerance test (OGTT). Postprandial glucose and insulin concentrations were analyzed as mean and incremental area under the curve (iAUC), and insulin sensitivity was calculated (i.e., MATSUDAindex and OGISindex). During OGTT, metformin reduced glucose iAUC (i.e., MET and MET + EX lower than PLAC and PLAC + EX, respectively; P = 0.023). MET + EX increased MATSUDAindex above PLAC (4.8 ± 1.4 vs. 3.3 ± 1.0, respectively; P = 0.018) and OGISindex above PLAC (358 ± 52 vs. 306 ± 46 mL·min-1·m-2, respectively; P = 0.006). Metformin decreased the plasma appearance of the ingested glucose (Ra OGTT; MET vs. PLAC, -3.5; 95% CI -0.1 to -6.8 µmol·kg-1·min-1; P = 0.043). Metformin combined with exercise potentiates insulin sensitivity during an OGTT in individuals with pre-diabetes and type 2 diabetes. Metformin's blood glucose-lowering effect seems mediated by decreased oral glucose entering the circulation (gut-liver effect) an effect partially blunted after exercise.NEW & NOTEWORTHY Metformin is the most prescribed oral antidiabetic medicine in the world but its mechanism of action and its interactions with exercise are not fully understood. Our stable isotope tracer data suggested that metformin reduces the rates of oral glucose entering the circulation (gut-liver effect). Exercise, in turn, tended to reduce postprandial insulin blood levels potentiating metformin improvements in insulin sensitivity. Thus, exercise potentiates metformin improvements in glycemic control and should be advised to metformin users.
Collapse
Affiliation(s)
- Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
- Center for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | | - Diego Mora-Gonzalez
- Department of Nursing, Physiotherapy, and Occupational Therapy, University of Castilla-La Mancha, Toledo, Spain
| | - Juan Fernando Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | |
Collapse
|
8
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Azócar-Gallardo J, Ramirez-Campillo R, Afonso J, Sá M, Granacher U, González-Rojas L, Ojeda-Aravena A, García-García JM. Overweight and Obese Adult Patients Show Larger Benefits from Concurrent Training Compared with Pharmacological Metformin Treatment on Insulin Resistance and Fat Oxidation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14331. [PMID: 36361210 PMCID: PMC9655487 DOI: 10.3390/ijerph192114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Metformin, a drug widely used to treat insulin resistance, and training that combines aerobic and strength exercise modalities (i.e., concurrent training) may improve insulin sensitivity. However, there is a paucity of clinical trials investigating the effects of concurrent training, particularly on insulin resistance and fat oxidation in overweight and obese patients. Furthermore, only a few studies have compared the effects of concurrent training with metformin treatment. Therefore, the aim of this study was to examine the effects of a 12-week concurrent training program versus pharmaceutical treatment with metformin on maximum fat oxidation, glucose metabolism, and insulin resistance in overweight or obese adult patients. Male and female patients with insulin resistance were allocated by convenience to a concurrent training group (n = 7 (2 males); age = 32.9 ± 8.3 years; body mass index = 30 ± 4.0 kg·m-2) or a metformin group (n = 7 (2 males); age = 34.4 ± 14.0 years; body mass index = 34.4 ± 6.0 kg·m-2). Before and after the interventions, all participants were assessed for total body mass, body mass index, fat mass, fat-free mass, maximum oxygen consumption, maximal fat oxidization during exercise, fasting glucose, and insulin resistance through the homeostatic model assessment (HOMA-IR). Due to non-normal distribution of the variable maximal fat oxidation, the Mann-Whitney U test was applied and revealed better maximal fat oxidization (Δ = 308%) in the exercise compared with the metformin group (Δ = -30.3%; p = 0.035). All other outcome variables were normally distributed, and significant group-by-time interactions were found for HOMA-IR (p < 0.001, Δ = -84.5%), fasting insulin (p < 0.001, Δ = -84.6%), and increased maximum oxygen consumption (p = 0.046, Δ = 12.3%) in favor of the exercise group. Similar changes were found in both groups for the remaining dependent variables. Concurrent training seems to be more effective compared with pharmaceutical metformin treatment to improve insulin resistance and fat oxidation in overweight and obese adult patients with insulin resistance. The rather small sample size calls for more research in this area.
Collapse
Affiliation(s)
- Jairo Azócar-Gallardo
- Programa de Investigación en Deporte, Sociedad y Buen Vivir (DSBv), Universidad de Los Lagos, Osorno 5290000, Chile
- Departamento de Ciencias de la Actividad Física, Universidad de Los Lagos, Puerto Montt 5480000, Chile
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Mário Sá
- Faculdade de Motricidade Humana, Universidade de Lisboa, 1495-751 Lisboa, Portugal
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, 79102 Freiburg, Germany
| | - Luis González-Rojas
- Centro Tratamiento de la Obesidad, Pontificia Universidad Católica de Chile, Santiago 7550000, Chile
| | - Alex Ojeda-Aravena
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2581967, Chile
| | | |
Collapse
|
10
|
Moreno-Cabañas A, Ortega JF, Morales-Palomo F, Ramirez-Jimenez M, Alvarez-Jimenez L, Mora-Rodriguez R. One Bout of Resistance Training Does Not Enhance Metformin Actions in Prediabetic and Diabetic Individuals. Med Sci Sports Exerc 2022; 54:1043-1050. [PMID: 35142713 DOI: 10.1249/mss.0000000000002889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the separated and combined effects of metformin and resistance exercise on glycemic control, insulin sensitivity, and insulin-like growth factor 1 (IGF-1) in overweight/obese individuals with prediabetes and type 2 diabetes mellitus. METHODS Fourteen adults with a body mass index of 32.1 ± 4.1 kg·m-2, insulin resistance (HOMA-2 1.6 ± 0.6), and poor glycemic control (glycated hemoglobin, 6.9% ± 0.9%; 51.9 ± 10.7 mmol·mol-1) while taking metformin (1561 ± 470 g·d-1) were recruited. Participants underwent four 72-h long experimental trials in a randomized counterbalanced order, either 1) taking metformin (MET), 2) replacing metformin by placebo pills (PLAC), 3) taking placebo and undergoing a resistance training bout (RT + PLAC), and 4) taking metformin and undergoing the same RT bout (RT + MET). Interstitial fluid glucose concentration was frequently sampled to obtain 72-h glucose area under the curve (GAUC) and the percentage hyperglycemic glucose readings (>180 mg·dL-1; GPEAKS). Insulin sensitivity (i.e., HOMA-2) and IGF-1 were also assessed. RESULTS HOMA-2 was not affected by treatments. GAUC and GPEAKS were similarly reduced below PLAC during RT + MET and MET (all P < 0.05). In contrast, RT + PLAC did not affect glucose concentration. Metformin decreased serum IGF-1 concentrations (P = 0.006), and RT did not reverse this reduction. CONCLUSIONS A bout of full-body RT does not interfere or aid on metformin's blood glucose-lowering actions in individuals with prediabetes and type 2 diabetes mellitus.
Collapse
|
11
|
Moreno‐Cabañas A, Morales‐Palomo F, Alvarez‐Jimenez L, Ortega JF, Mora‐Rodriguez R. Effects of chronic metformin treatment on training adaptations in men and women with hyperglycemia: A prospective study. Obesity (Silver Spring) 2022; 30:1219-1230. [PMID: 35578807 PMCID: PMC9321693 DOI: 10.1002/oby.23410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to determine whether chronic metformin use interferes with the improvements in insulin resistance (IR) and cardiorespiratory fitness with aerobic training in people with hyperglycemia and metabolic syndrome (MetS). METHODS A total of 63 middle-aged (53 [7] years) individuals with MetS and obesity (BMI = 32.8 [4.5] kg/m2 ) completed 16 weeks of supervised high-intensity interval training (3 d/wk, 43 min/session). Participants were either taking metformin (EXER+MET; n = 29) or were free of any pharmacological treatment for their MetS factors (EXER; n = 34). Groups were similar in their initial cardiorespiratory fitness (maximal oxygen uptake [VO2MAX ]), age, percentage of women, BMI, and MetS factors (z score). The effects of exercise training on IR (homeostatic model assessment of insulin resistance [HOMA-IR]), MetS z score, VO2MAX , maximal fat oxidation during exercise, and maximal aerobic power output were measured. RESULTS Fasting insulin and HOMA-IR decreased similarly in both groups with training (EXER+MET: -4.3% and -10.6%; EXER: -5.3% and -14.5%; p value for time = 0.005). However, metformin use reduced VO2MAX improvements by half (i.e., EXER+MET: 12.7%; EXER: 25.3%; p value for time × group = 0.012). Maximal fat oxidation during exercise increased similarly in both groups (EXER+MET: 20.7%; EXER: 25.3%; p value for time = 0.040). VO2MAX gains were not associated with HOMA-IR reductions (EXER+MET: r = -0.098; p = 0.580; EXER: r = -0.255; p = 0.182). CONCLUSIONS Metformin use was associated with attenuated VO2MAX improvements but did not affect fasting IR reductions with aerobic training in individuals with hyperglycemia and high cardiovascular risk (i.e., MetS).
Collapse
|
12
|
Brennan AM, Standley RA, Anthony SJ, Grench KE, Helbling NL, DeLany JP, Cornnell HH, Yi F, Stefanovic-Racic M, Toledo FGS, Coen PM, Carnero EA, Goodpaster BH. Weight Loss and Exercise Differentially Affect Insulin Sensitivity, Body Composition, Cardiorespiratory Fitness, and Muscle Strength in Older Adults With Obesity: A Randomized Controlled Trial. J Gerontol A Biol Sci Med Sci 2022; 77:1088-1097. [PMID: 34406407 PMCID: PMC9071425 DOI: 10.1093/gerona/glab240] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Aging-related disease risk is exacerbated by obesity and physical inactivity. It is unclear how weight loss and increased activity improve risk in older adults. We aimed to determine the effects of diet-induced weight loss with and without exercise on insulin sensitivity, VO2peak, body composition, and physical function in older obese adults. METHODS Physically inactive older (68.6 ± 4.5 years) obese (body mass index 37.4 ± 4.9 kg/m2) adults were randomized to health education control (HEC; n = 25); diet-induced weight loss (WL; n = 31); or weight loss and exercise (WLEX; n = 28) for 6 months. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, body composition by dual-energy X-ray absorptiometry and MRI, strength by isokinetic dynamometry, and VO2peak by graded exercise test. RESULTS WLEX improved (p < .05) peripheral insulin sensitivity (+75 ± 103%) versus HEC (+12 ± 67%); WL (+36 ± 47%) versus HEC did not reach statistical significance. WLEX increased VO2peak (+7 ± 12%) versus WL (-2 ± 24%) and prevented reductions in strength and lean mass induced by WL (p < .05). WLEX decreased abdominal adipose tissue (-16 ± 9%) versus HEC (-3 ± 8%) and intermuscular adipose tissue (-15 ± 13%) versus both HEC (+9 ± 15%) and WL (+2 ± 11%; p < .01). CONCLUSIONS Exercise with weight loss improved insulin sensitivity and VO2peak, decreased ectopic fat, and preserved lean mass and strength. Weight loss alone decreased lean mass and strength. Older adults intending to lose weight should perform regular exercise to promote cardiometabolic and functional benefits, which may not occur with calorie restriction-induced weight loss alone.
Collapse
Affiliation(s)
- Andrea M Brennan
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Robert A Standley
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Steven J Anthony
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Kory E Grench
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Nicole L Helbling
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - James P DeLany
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | - Fanchao Yi
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Elvis A Carnero
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
| | - Bret H Goodpaster
- AdventHealth, Translational Research Institute, Orlando, Florida, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Long DE, Kosmac K, Dungan CM, Bamman MM, Peterson CA, Kern PA. Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals. Front Physiol 2022; 13:872745. [PMID: 35492586 PMCID: PMC9047873 DOI: 10.3389/fphys.2022.872745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (>65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT.Trial Registration: ClinicalTrials.gov, NCT02308228, Registered on 25 November 2014.
Collapse
Affiliation(s)
- Douglas E. Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Cory M. Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Marcas M. Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charlotte A. Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Philip A. Kern,
| |
Collapse
|
14
|
Pilmark NS, Lyngbæk M, Oberholzer L, Elkjær I, Petersen-Bønding C, Kofoed K, Siebenmann C, Kellenberger K, van Hall G, Abildgaard J, Ellingsgaard H, Lauridsen C, Ried-Larsen M, Pedersen BK, Hansen KB, Karstoft K. The interaction between metformin and physical activity on postprandial glucose and glucose kinetics: a randomised, clinical trial. Diabetologia 2021; 64:397-409. [PMID: 32979074 DOI: 10.1007/s00125-020-05282-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS The aim of this parallel-group, double-blinded (study personnel and participants), randomised clinical trial was to assess the interaction between metformin and exercise training on postprandial glucose in glucose-intolerant individuals. METHODS Glucose-intolerant (2 h OGTT glucose of 7.8-11.0 mmol/l and/or HbA1c of 39-47 mmol/mol [5.7-6.5%] or glucose-lowering-medication naive type 2 diabetes), overweight/obese (BMI 25-42 kg/m2) individuals were randomly allocated to a placebo study group (PLA, n = 15) or a metformin study group (MET, n = 14), and underwent 3 experimental days: BASELINE (before randomisation), MEDICATION (after 3 weeks of metformin [2 g/day] or placebo treatment) and TRAINING (after 12 weeks of exercise training in combination with metformin/placebo treatment). Training consisted of supervised bicycle interval sessions with a mean intensity of 64% of Wattmax for 45 min, 4 times/week. The primary outcome was postprandial glucose (mean glucose concentration) during a mixed meal tolerance test (MMTT), which was assessed on each experimental day. For within-group differences, a group × time interaction was assessed using two-way repeated measures ANOVA. Between-group changes of the outcomes at different timepoints were compared using unpaired two-tailed Student's t tests. RESULTS Postprandial glucose improved from BASELINE to TRAINING in both the PLA group and the MET group (∆PLA: -0.7 [95% CI -1.4, 0.0] mmol/l, p = 0.05 and ∆MET: -0.7 [-1.5, -0.0] mmol/l, p = 0.03), with no between-group difference (p = 0.92). In PLA, the entire reduction was seen from MEDICATION to TRAINING (-0.8 [-1.3, -0.1] mmol/l, p = 0.01). Conversely, in MET, the entire reduction was observed from BASELINE to MEDICATION (-0.9 [-1.6, -0.2] mmol/l, p = 0.01). The reductions in mean glucose concentration during the MMTT from BASELINE to TRAINING were dependent on differential time effects: in the PLA group, a decrease was observed at timepoint (t) = 120 min (p = 0.009), whereas in the MET group, a reduction occurred at t = 30 min (p < 0.001). V̇O2peak increased 15% (4.6 [3.3, 5.9] ml kg-1 min-1, p < 0.0001) from MEDICATION to TRAINING and body weight decreased (-4.0 [-5.2, -2.7] kg, p < 0.0001) from BASELINE to TRAINING, with no between-group differences (p = 0.7 and p = 0.5, respectively). CONCLUSIONS/INTERPRETATION Metformin plus exercise training was not superior to exercise training alone in improving postprandial glucose. The differential time effects during the MMTT suggest an interaction between the two modalities. FUNDING The Beckett foundation, A.P Møller Foundation, DDA, the Research Foundation of Rigshospitalet and Trygfonden. TRIAL REGISTRATION ClinicalTrials.gov (NCT03316690). Graphical abstract.
Collapse
Affiliation(s)
- Nanna S Pilmark
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mark Lyngbæk
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura Oberholzer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elkjær
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christina Petersen-Bønding
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katja Kofoed
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Siebenmann
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Katja Kellenberger
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Section for Elite Sport, Swiss Federal Institute of Sports, Magglingen, Switzerland
| | - Gerrit van Hall
- Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Julie Abildgaard
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Helga Ellingsgaard
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lauridsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen University College, Copenhagen N, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristian Karstoft
- Centre for Physical Activity Research (CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Long DE, Peck BD, Tuggle SC, Villasante Tezanos AG, Windham ST, Bamman MM, Kern PA, Peterson CA, Walton RG. Associations of muscle lipid content with physical function and resistance training outcomes in older adults: altered responses with metformin. GeroScience 2021; 43:629-644. [PMID: 33462708 PMCID: PMC8110673 DOI: 10.1007/s11357-020-00315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Preserving muscle mass and strength is critical for long-term health and longevity. Age-related muscle lipid accumulation has been shown to be detrimental to muscle health. In healthy older individuals, we sought to determine whether muscle lipid content, determined from computed tomography, is associated with self-reported physical function, laboratory-measured performance, and the response to progressive resistance training (PRT), and how metformin may alter these responses (N = 46 placebo, 48 metformin). Using multiple linear regression models adjusted for confounders in a large cohort, we show that intermuscular adipose tissue (IMAT) was not associated with baseline function or response to PRT, contrary to previous reports. On the other hand, thigh muscle density (TMD), as an indicator of intra- and extramyocellular lipid (IMCL and EMCL), remained strongly and independently positively associated with physical function and performance following adjustment. Baseline TMD was inversely associated with gains in strength, independent of muscle mass. Percent change in TMD was positively associated with improved chair stand and increased type II fiber frequency but was not associated with muscle hypertrophy or overall strength gain following PRT. For the first time, we show that metformin use during PRT blunted density and strength gains by inhibiting fiber type switching primarily in those with low baseline TMD. These results indicate that participants with higher muscle lipid content derive the most performance benefit from PRT. Our results further indicate that muscle density may be as influential as muscle size for strength, physical function, and performance in healthy older adults. ClinicalTrials.gov , NCT02308228, Registered on 25 November 2014.
Collapse
Affiliation(s)
- Douglas E Long
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Charles T. Wethington Bldg., Lexington, KY, 40536-0200, USA.
| | - Bailey D Peck
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Charles T. Wethington Bldg., Lexington, KY, 40536-0200, USA
| | - Steven C Tuggle
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Charles T. Wethington Bldg., Lexington, KY, 40536-0200, USA
| | - Rosicka G Walton
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Charles T. Wethington Bldg., Lexington, KY, 40536-0200, USA
| |
Collapse
|
16
|
Jevtovic F. Combination of Metformin and Exercise in Management of Metabolic Abnormalities Observed in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4043-4057. [PMID: 34557007 PMCID: PMC8453852 DOI: 10.2147/dmso.s328694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Excess nutrient intake and lack of exercise characterize the problem of obesity and are common factors in insulin resistance (IR). With an increasing number of prediabetic, and type 2 diabetic populations, metformin is still the most prescribed glucose-lowering drug and is often accompanied by recommendations for regular physical exercise. Metformin, by the inhibition of complex 1 of the electron transport chain, and exercise, by increasing energy expenditure, both elicit a low cellular energy state that leads to improvements in glucose control via activation of adenosine 5' monophosphate-activated protein kinase (AMPK). An augmented stimulation of the energy-sensing enzyme AMPK by either of the two modalities leads to an increase in glycogenolysis, glucose uptake, fat oxidation, a decrease in glycogen and protein synthesis, and gluconeogenesis in muscle and the liver, which are remarked as having positive effects on metabolic pathophysiology observed in IR and type 2 diabetes mellitus (T2DM). While both modalities exploit the energy-sensing enzyme AMPK to attain glucose homeostasis, the synergistic effect of these two treatments is not distinctly supported by the literature. Further, an antagonistic dynamic has been observed in cases where metformin and exercise were combined. Reduction of insulin-sensitizing effects of exercise and an overall hindrance of exercise performance and adaptations have been reported and could suggest the possible incongruity of these two modalities. The aim of this review is to elucidate the effect that metformin and exercise have on the management of the metabolic abnormalities observed in T2DM and to provide an insight into the interaction of these two modalities.
Collapse
Affiliation(s)
- Filip Jevtovic
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
- Correspondence: Filip Jevtovic East Carolina University; School of Dental Medicine, Ledyard E. Ross Hall; 1851 MacGregor Downs Road, Mail Stop 701, Greenville, NC, 27834, USATel +1 616 844 8323Fax +1 252 737 7024 Email
| |
Collapse
|
17
|
Malin SK, Stewart NR. Metformin May Contribute to Inter-individual Variability for Glycemic Responses to Exercise. Front Endocrinol (Lausanne) 2020; 11:519. [PMID: 32849302 PMCID: PMC7431621 DOI: 10.3389/fendo.2020.00519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin and exercise independently improve glycemic control. Metformin traditionally is considered to reduce hepatic glucose production, while exercise training is thought to stimulate skeletal muscle glucose disposal. Collectively, combining treatments would lead to the anticipation for additive glucose regulatory effects. Herein, we discuss recent literature suggesting that metformin may inhibit, enhance or have no effect on exercise mediated benefits toward glucose regulation, with particular emphasis on insulin sensitivity. Importantly, we address issues surrounding the impact of metformin on exercise induced glycemic benefit across multiple insulin sensitive tissues (e.g., skeletal muscle, liver, adipose, vasculature, and the brain) in effort to illuminate potential sources of inter-individual glycemic variation. Therefore, the review identifies gaps in knowledge that require attention in order to optimize medical approaches that improve care of people with elevated blood glucose levels and are at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, United States
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Nathan R. Stewart
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Acosta-Manzano P, Rodriguez-Ayllon M, Acosta FM, Niederseer D, Niebauer J. Beyond general resistance training. Hypertrophy versus muscular endurance training as therapeutic interventions in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Obes Rev 2020; 21:e13007. [PMID: 32067343 DOI: 10.1111/obr.13007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Resistance training (RT) is a powerful first-line intervention for the management of type 2 diabetes mellitus (T2DM). Nonetheless, the effects of the most frequent RT (hypertrophy training [HT] and muscular endurance training [MERT]) employed for the management of T2DM, and which type of RT might exert superior effects, remain elusive. Thus, this review aims to assess the effects of HT and MERT on glycaemic control, physical fitness, body composition, lipid profile, blood pressure, C-reactive protein, and quality of life in patients with T2DM; to analyse which particular RT is more effective; to assess the effects of general RT; and to identify RT components, characteristics of patients, and medications that could mediate the effects of RT. Randomized controlled trials (RCT) and non-RCT (RT≥ 4 weeks) in adults with T2DM were selected. Both HT and MERT improved HbA1c, insulin levels and sensitivity, muscle strength, body mass index, waist circumference, and fat mass. Additionally, HT improved glucose, cardiorespiratory fitness, fat percentage, lean body mass, lipid profile, systolic blood pressure, and C-reactive protein, and MERT improved weight. Overall, HT and MERT exert beneficial effects well comparable with aerobic training. Both types of RT can be used as potent therapeutic interventions for the management of T2DM depending on patients' limitations/preferences.
Collapse
Affiliation(s)
- Pedro Acosta-Manzano
- PA-HELP "Physical Activity for Health Promotion, CTS-1018" Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, Granada, Spain.,Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain
| | - María Rodriguez-Ayllon
- Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, Spain
| | - Francisco M Acosta
- Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain.,PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, Spain
| | - David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
19
|
Brennan AM, Standley RA, Yi F, Carnero EA, Sparks LM, Goodpaster BH. Individual Response Variation in the Effects of Weight Loss and Exercise on Insulin Sensitivity and Cardiometabolic Risk in Older Adults. Front Endocrinol (Lausanne) 2020; 11:632. [PMID: 33013705 PMCID: PMC7511700 DOI: 10.3389/fendo.2020.00632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
Weight loss induced by decreased energy intake (diet) or exercise generally has favorable effects on insulin sensitivity and cardiometabolic risk. The variation in these responses to diet-induced weight loss with or without exercise, particularly in older obese adults, is less clear. The objectives of our study were to (1) examine the effect of weight loss with or without exercise on the variability of responses in insulin sensitivity and cardiometabolic risk factors and (2) to explore whether baseline phenotypic characteristics are associated with response. Sedentary older obese (BMI 36.3 ± 5.0 kg/m2) adults (68.6 ± 4.7 years) were randomized to one of 3 groups: health education control (HED); diet-induced weight loss (WL); or weight loss and exercise (WL + EX) for 6 months. Composite Z-scores were calculated for changes in insulin sensitivity (C_IS: rate of glucose disposal/insulin at steady state during hyperinsulinemic euglycemic clamp, HOMA-IR, and HbA1C) and cardiometabolic risk (C_CMR: waist circumference, triglycerides, and fasting glucose). Baseline measures included body composition (MRI), cardiorespiratory fitness, in vivo mitochondrial function (ATPmax; P-MRS), and muscle fiber type. WL + EX groups had a greater proportion of High Responders in both C_IS and C_CMR compared to HED and WL only (all p < 0.05). Pre-intervention measures of insulin (r = 0.60) and HOMA-IR (r = 0.56) were associated with change in insulin sensitivity (C_IS) in the WL group (p < 0.05). Pre-intervention measures of glucose (r = 0.55), triglycerides (r = 0.53), and VLDL (r = 0.53) were associated with change in cardiometabolic risk (C_CMR) in the WL group (p < 0.05), whereas triglycerides (r = 0.59) and VLDL (r = 0.59) were associated with C_CMR (all p < 0.05) in WL + EX. Thus, the addition of exercise to diet-induced weight loss increases the proportion of older obese adults who improve insulin sensitivity and cardiometabolic risk. Additionally, individuals with poorer metabolic status are more likely to experience greater improvements in cardiometabolic risk during weight loss with or without exercise.
Collapse
|
20
|
Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F, Bamman MM, Kern PA, Peterson CA. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell 2019; 18:e13039. [PMID: 31557380 PMCID: PMC6826125 DOI: 10.1111/acel.13039] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 12/25/2022] Open
Abstract
Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double‐blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body mass (p = .003) and thigh muscle mass (p < .001) than metformin. CT scan showed that increases in thigh muscle area (p = .005) and density (p = .020) were greater in placebo versus metformin. There was a trend for blunted strength gains in metformin that did not reach statistical significance. Analyses of vastus lateralis muscle biopsies showed that metformin did not affect fiber hypertrophy, or increases in satellite cell or macrophage abundance with PRT. However, placebo had decreased type I fiber percentage while metformin did not (p = .007). Metformin led to an increase in AMPK signaling, and a trend for blunted increases in mTORC1 signaling in response to PRT. These results underscore the benefits of PRT in older adults, but metformin negatively impacts the hypertrophic response to resistance training in healthy older individuals. ClinicalTrials.gov Identifier: NCT02308228.
Collapse
Affiliation(s)
- R. Grace Walton
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Cory M. Dungan
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Douglas E. Long
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - S. Craig Tuggle
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Kate Kosmac
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Bailey D. Peck
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Heather M. Bush
- Department of Biostatistics College of Public Health University of Kentucky Lexington Kentucky
| | | | - Gerald McGwin
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Epidemiology School of Public Health University of Alabama at Birmingham Birmingham Alabama
| | - Samuel T. Windham
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Surgery School of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Fernando Ovalle
- Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Marcas M. Bamman
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Cell, Developmental & Integrative Biology School of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Philip A. Kern
- Division of Endocrinology Department of Medicine University of Kentucky Lexington Kentucky
| | - Charlotte A. Peterson
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| |
Collapse
|
21
|
Linden MA, Ross TT, Beebe DA, Gorgoglione MF, Hamilton KL, Miller BF, Braun B, Esler WP. The combination of exercise training and sodium-glucose cotransporter-2 inhibition improves glucose tolerance and exercise capacity in a rodent model of type 2 diabetes. Metabolism 2019; 97:68-80. [PMID: 31132381 DOI: 10.1016/j.metabol.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Exercise is recommended in addition to pharmacotherapies for the management of type 2 diabetes, but metformin and exercise training may have non-additive or even inhibitory effects on exercise-induced improvements in glycemic control and exercise capacity. The objectives of this report were to determine if co-treatment with a sodium-glucose cotransporter-2 inhibitor and exercise could (1) further improve glycemic control when compared to either monotherapy and (2) not worsen exercise capacity when compared to exercise alone. METHODS A rodent model of type 2 diabetes (30 mg/kg streptozotocin and high-fat feeding in male Sprague-Dawley rats) was used to assess 12 weeks of co-treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2i) and exercise (EX; treadmill running) on glycemic control and exercise capacity. Animals were randomized to the following conditions (n = 7-10/group): vehicle (0.5% methyl cellulose) sedentary (VEH SED), VEH EX, canagliflozin (3 mg kg-1 d-1) SED (SGLT2i SED), or SGLT2i EX. RESULTS Both EX and SGLT2i independently improved indices of glycemic control. The combination of SGLT2i and EX further improved glucose tolerance (glucose area under the curve 1109 ± 51 vs 1427 ± 82 mmol/ L 120 min-1 for SGLT2i EX vs. SGLT2i SED, respectively; p < 0.05) and insulin responses (insulin area under the curve 24,524 ± 4126 vs. 41,208 ± 2714 pmol L-1 120 min-1 for SGLT2i EX vs. VEH EX, respectively; p < 0.05) during an oral glucose tolerance test. Only the combination of SGLT2i EX lowered body weight compared to VEH SED (p < 0.01). SGLT2i caused several metabolic adaptations including increased ketone production and a greater reliance on fat as a source of energy during normal cage activity. Interestingly, animals that were given the SGLT2i and underwent exercise training (SGLT2i EX) had better submaximal exercise capacity than EX alone, as indicated by distance run prior to fatigue (882 ± 183 vs.433 ± 33 m for SGLT2i EX and VEH EX, respectively; p < 0.01), and this was accompanied by a greater reliance on fat as an energy source during exercise (p < 0.01). CONCLUSIONS If these findings with the combination of SGLT2i and exercise translate to humans, they will have important clinical health implications.
Collapse
Affiliation(s)
- Melissa A Linden
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States of America; Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States of America
| | - David A Beebe
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States of America
| | - Matthew F Gorgoglione
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States of America
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK., United States of America
| | - Barry Braun
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, United States of America.
| |
Collapse
|
22
|
Terada T, Boulé NG. Does metformin therapy influence the effects of intensive lifestyle intervention? Exploring the interaction between first line therapies in the Look AHEAD trial. Metabolism 2019; 94:39-46. [PMID: 30653978 DOI: 10.1016/j.metabol.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
AIMS Metformin and lifestyle intervention are frequently prescribed together as first-line treatments for type 2 diabetes. However, little is known about their interplay. We investigated if the effects of a lifestyle intervention on glycemia, body mass and cardiorespiratory fitness (CRF) were influenced by metformin therapy. METHODS Participants randomized to intensive lifestyle intervention (ILI) or diabetes support and education (DSE) from the Look AHEAD trial were categorized into metformin therapy vs. no metformin. A two-by-two ANCOVA (i.e., metformin therapy vs. no metformin by ILI vs. DSE) was used to examine the changes in glycated hemoglobin A1C, fasting plasma glucose (FPG), body mass, and CRF over the first year post-randomization, with a primary interest in the metformin-by-lifestyle interaction effect. RESULTS Data from 1982 participants were analyzed. There was a significant metformin-by-lifestyle interaction effect on A1C (p = 0.031) and FPG (p = 0.043), resulting from larger reductions associated with metformin therapy compared to no metformin following DSE, but slightly smaller reduction associated with metformin therapy compared to no metformin following ILI. Metformin therapy was associated with smaller weight loss (-4.7 ± 6.2 vs. -5.7 ± 6.3 kg; main effect: p = 0.001) but not with differential CRF changes when compared to no metformin. CONCLUSIONS The interaction between metformin therapy and lifestyle intervention on glycemia highlights the complicated nature of combining therapies. While the small influence of background metformin therapy on intensive lifestyle intervention should not discourage the concomitant use of these therapies, our results showed that, for individuals undergoing intensive lifestyle therapy, background metformin therapy conferred little additional benefits.
Collapse
Affiliation(s)
- Tasuku Terada
- Division of Cardiac Prevention and Rehabilitation, Exercise Physiology and Cardiovascular Health Lab, University of Ottawa Heart Institute, Ottawa, ON K1C 4W7, Canada
| | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, and Alberta Diabetes Institute, University of Alberta, 1-052 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
23
|
Eckstein ML, Williams DM, O'Neil LK, Hayes J, Stephens JW, Bracken RM. Physical exercise and non-insulin glucose-lowering therapies in the management of Type 2 diabetes mellitus: a clinical review. Diabet Med 2019; 36:349-358. [PMID: 30536728 DOI: 10.1111/dme.13865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 01/05/2023]
Abstract
In the UK the National Institute of Health and Care Excellence (NICE) advocates intensive lifestyle programmes that attain the levels of daily physical activity set out by the Chief Medical Officer as a first-line strategy for improving the health of people at risk of developing diabetes or reducing the risk of development of Type 2 diabetes. For people with Type 2 diabetes, lifestyle measures complement pharmacological treatments that include both oral and injectable therapies. In line with this, NICE guidelines also support intensification of efforts to improve patient lifestyle along with these glucose-lowering therapies. There is a paucity of evidence, however, in the available published literature examining the association between glucose-lowering therapies and exercise metabolism. In the present review we explore the current knowledge with regard to the potential interactions of oral and non-insulin injectable therapies with physical activity in people at risk of, or who have, Type 2 diabetes, and present evidence that may inform healthcare professionals of the need to monitor patients more closely in their adaptation to both pharmacological therapy and physical activity.
Collapse
Affiliation(s)
- M L Eckstein
- Diabetes Research Group, Swansea University, Medical School, Swansea, UK
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| | - D M Williams
- Diabetes Research Group, Swansea University, Medical School, Swansea, UK
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, UK
| | - L K O'Neil
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, UK
| | - J Hayes
- Diabetes Research Group, Swansea University, Medical School, Swansea, UK
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, UK
| | - J W Stephens
- Diabetes Research Group, Swansea University, Medical School, Swansea, UK
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, UK
| | - R M Bracken
- Diabetes Research Group, Swansea University, Medical School, Swansea, UK
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
24
|
Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA, Musci RV, Safairad OD, Linden MA, Biela LM, Bailey SM, Hamilton KL, Miller BF. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 2019; 18:e12880. [PMID: 30548390 PMCID: PMC6351883 DOI: 10.1111/acel.12880] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise‐induced improvement in insulin sensitivity and cardiorespiratory fitness. The purpose of this study was to test the hypothesis that metformin diminishes the improvement in insulin sensitivity and cardiorespiratory fitness after aerobic exercise training (AET) by inhibiting skeletal muscle mitochondrial respiration and protein synthesis in older adults (62 ± 1 years). In a double‐blinded fashion, participants were randomized to placebo (n = 26) or metformin (n = 27) treatment during 12 weeks of AET. Independent of treatment, AET decreased fat mass, HbA1c, fasting plasma insulin, 24‐hr ambulant mean glucose, and glycemic variability. However, metformin attenuated the increase in whole‐body insulin sensitivity and VO2max after AET. In the metformin group, there was no overall change in whole‐body insulin sensitivity after AET due to positive and negative responders. Metformin also abrogated the exercise‐mediated increase in skeletal muscle mitochondrial respiration. The change in whole‐body insulin sensitivity was correlated to the change in mitochondrial respiration. Mitochondrial protein synthesis rates assessed during AET were not different between treatments. The influence of metformin on AET‐induced improvements in physiological function was highly variable and associated with the effect of metformin on the mitochondria. These data suggest that prior to prescribing metformin to slow aging, additional studies are needed to understand the mechanisms that elicit positive and negative responses to metformin with and without exercise.
Collapse
Affiliation(s)
- Adam R. Konopka
- Department of Kinesiology and Community Health University of Illinois Urbana‐Champaign Urbana Illinois
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Jaime L. Laurin
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Hayden M. Schoenberg
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Justin J. Reid
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - William M. Castor
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Christopher A. Wolff
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Robert V. Musci
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Oscar D. Safairad
- Department of Kinesiology and Community Health University of Illinois Urbana‐Champaign Urbana Illinois
| | - Melissa A. Linden
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Laurie M. Biela
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Susan M. Bailey
- Department of Environmental & Radiological Health Sciences Colorado State University Fort Collins Colorado
| | - Karyn L. Hamilton
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
| | - Benjamin F. Miller
- Department of Health and Exercise Science Colorado State University Fort Collins Colorado
- Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma
| |
Collapse
|
25
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
26
|
Eltonsy S, Dufour Doiron M, Simard P, Jose C, Sénéchal M, Bouchard DR, LeBlanc R, Bélanger M. Effects of the combination of metformin and exercise on glycated hemoglobin, functional capacity, lipid profile, quality of life, and body weight. J Int Med Res 2019; 47:1131-1145. [PMID: 30614342 PMCID: PMC6421378 DOI: 10.1177/0300060518817164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective To evaluate the impact of the combination of metformin and exercise on
changes in glycated hemoglobin (HbA1c), functional capacity, the
lipid profile, quality of life, and weight. Methods Data from a 12-week cardiovascular rehabilitation program (2014–2016) were
retrospectively evaluated. Metformin exposure was determined through
recorded prescriptions, and average minutes of exercise per week were
computed from exercise logs. The primary outcomes were changes in
HbA1c and functional capacity (6-minute walk test [6MWT])
over 12 weeks. The secondary outcomes were changes in the lipid profile,
quality of life, and weight. Directed acyclic graphs were used to identify
potential confounders, accounted for with multiple linear regression. Results The cohort comprised 403 patients (85 metformin users, 318 non-users). The
average amount of exercise was 102.7±48.7 minutes/week among metformin users
and 107.7±58.1 minutes/week among non-users. Although changes in
HbA1c were similar for both groups, the coefficient for the
metformin–exercise interaction indicated significantly greater improvements
in the 6MWT among metformin users. There were no between-group differences
in any secondary outcomes. Conclusions The combination of metformin and exercise led to greater gains in functional
capacity than exercise alone. This combination did not appear to influence
the effects of either treatment on other outcomes.
Collapse
Affiliation(s)
- Sherif Eltonsy
- Centre de formation médicale du Nouveau-Brunswick, Canada, Université de Moncton, Canada
| | | | | | - Caroline Jose
- Centre de formation médicale du Nouveau-Brunswick, Canada, Université de Moncton, Canada.,Department of Family Medicine, Université de Sherbrooke, Canada
| | - Martin Sénéchal
- Cardio-metabolic Exercise & Lifestyle Laboratory, Faculty of Kinesiology, University of New Brunswick, Canada
| | - Danielle R Bouchard
- Cardio-metabolic Exercise & Lifestyle Laboratory, Faculty of Kinesiology, University of New Brunswick, Canada
| | - Rémi LeBlanc
- Department of Family Medicine, Université de Sherbrooke, Canada
| | - Mathieu Bélanger
- Centre de formation médicale du Nouveau-Brunswick, Canada, Université de Moncton, Canada.,Department of Family Medicine, Université de Sherbrooke, Canada
| |
Collapse
|
27
|
Hamasaki H. Effects of glucose-lowering agents on cardiorespiratory fitness. World J Diabetes 2018; 9:230-238. [PMID: 30588285 PMCID: PMC6304298 DOI: 10.4239/wjd.v9.i12.230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Exercise therapy is essential for the management of type 2 diabetes (T2D). However, patients with T2D show lower physical activity and reduced cardiorespiratory fitness than healthy individuals. It would be ideal for clinicians to co-prescribe glucose-lowering agents that improve cardiorespiratory fitness or exercise capacity in conjunction with exercise therapy. Metformin does not improve cardiorespiratory fitness and may attenuate any beneficial effect of exercise in patients with T2D. In contrast, thiazolidinediones appear to improve cardiorespiratory fitness in patients with T2D. Although evidence is limited, sodium-glucose cotransporter 2 (SGLT2) inhibitors may improve cardiorespiratory fitness in patients with heart failure, and the effect of glucagon-like peptide-1 (GLP-1) receptor agonists on cardiorespiratory fitness is controversial. Recent clinical trials have shown that both SGLT2 inhibitors and GLP-1 receptor agonists exert a favorable effect on cardiovascular disease. It becomes more important to choose drugs that have beneficial effects on the cardiovascular system beyond glucose-lowering effects. Further studies are warranted to determine an ideal glucose-lowering agent combined with exercise therapy for the treatment of T2D.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Endocrinology and Metabolism, Internal Medicine, Hamasaki Clinic, Kagoshima 890-0046, Japan
| |
Collapse
|
28
|
Das S, Behera SK, Srinivasan A, Xavier AS, Selvarajan S, Kamalanathan S, Sahoo JP, Nair NS. Effect of metformin on exercise capacity: A meta-analysis. Diabetes Res Clin Pract 2018; 144:270-278. [PMID: 30217594 DOI: 10.1016/j.diabres.2018.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
AIMS To evaluate the effect of metformin on various parameters of exercise capacity [oxygen consumption (VO2), peak oxygen consumption (VO2peak), heart rate (HR), exercise test duration, respiratory exchange ratio (RER), rating of perceived exertion (RPE), lactate and ventilatory anaerobic threshold (VAT)]. METHODS Studies reporting change in VO2 or VO2peak after metformin administration were included. Subgroup analyses were performed as applicable. Mean difference with 95% CIs were pooled using random-effects model [RevMan (v5.3)]. RESULTS There were no changes in VO2 and VO2peak in the overall population [VO2: n = 388, mean difference: -0.12 ml/kg/min, 95% CI: -0.74, 0.51, p = 0.71 (i2 = 0%, p = 0.99); VO2peak: n = 345, mean difference: 0.41 ml/kg/min, 95% CI: -0.51, 1.33, p = 0.38 (i2 = 0%, p = 0.89)], healthy volunteers and patients (type 2 diabetes mellitus, insulin resistance, impaired glucose tolerance/impaired fasting glucose and metabolic syndrome). For patients with insulin resistance, there was a decrease in VO2peak, but not VO2. In the overall population, there was a significant decrease in HR and RER, a significant increase in RPE, and no changes in exercise test duration and VAT. In addition, there was an increased VAT in the healthy volunteers. CONCLUSIONS In the overall population, metformin did not affect VO2, VO2peak, exercise test duration and VAT, although it significantly decreased HR, RER and increased RPE.
Collapse
Affiliation(s)
- Saibal Das
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sapan Kumar Behera
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Akila Srinivasan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Alphienes Stanley Xavier
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Jaya Prakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - N Sreekumaran Nair
- Department of Biostatistics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
29
|
Solomon TPJ. Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose. Front Physiol 2018; 9:896. [PMID: 30061841 PMCID: PMC6055062 DOI: 10.3389/fphys.2018.00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
In the context of type 2 diabetes, inter-individual variability in the therapeutic response of blood glucose control to exercise exists to the extent that some individuals, occasionally referred to as “non-responders,” may not experience therapeutic benefit to their blood glucose control. This narrative review examines the evidence and, more importantly, identifies the sources of such inter-individual variability. In doing so, this review highlights that no randomized controlled trial of exercise has yet prospectively measured inter-individual variability in blood glucose control in individuals with prediabetes or type 2 diabetes. Of the identified sources of inter-individual variability, neither has a prospective randomized controlled trial yet quantified the impact of exercise dose, exercise frequency, exercise type, behavioral/environmental barriers, exercise-meal timing, or anti-hyperglycemic drugs on changes in blood glucose control, in individuals with prediabetes or type 2 diabetes. In addition, there is also an urgent need for prospective trials to identify molecular or physiological predictors of inter-individual variability in the changes in blood glucose control following exercise. Therefore, the narrative identifies critical science gaps that must be filled if exercise scientists are to succeed in optimizing health care policy recommendations for type 2 diabetes, so that the therapeutic benefit of exercise may be maximized for all individuals with, or at risk of, diabetes.
Collapse
Affiliation(s)
- Thomas P J Solomon
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Byrne H, Caulfield B, De Vito G. Effects of Self-directed Exercise Programmes on Individuals with Type 2 Diabetes Mellitus: A Systematic Review Evaluating Their Effect on HbA 1c and Other Metabolic Outcomes, Physical Characteristics, Cardiorespiratory Fitness and Functional Outcomes. Sports Med 2018; 47:717-733. [PMID: 27459860 DOI: 10.1007/s40279-016-0593-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Type two diabetes mellitus (T2DM) is caused and progressed by an individual's lifestyle and, therefore, its optimal day-to-day management may involve the patient taking responsibility for this, including fulfilling a planned and prescribed exercise regime used as part of the treatment. A prescription of exercise designed to meet a patient's individual needs with minimal supervision from healthcare practitioners would facilitate this. However, the optimal prescription of exercise in the population remains unclear. OBJECTIVE This review examines the effects planned self-directed exercise has on glycosylated haemoglobin and other outcomes in individuals with T2DM and aims to identify the most suitable forms of planned self-directed exercise for individuals with T2DM that can be carried out independently. METHODS A search of the electronic databases PubMed, SPORTDiscus, CINAHL, EMBASE, Cochrane (Trials) and ClinicalTrials.gov was conducted along with reference lists of previous reviews. Randomised controlled trials published in English between January 1990 and February 2015 examining participants diagnosed with T2DM only were included. Studies were critically appraised using the PEDro (Physiotherapy Evidence Database) scale and data were presented on standardised tables. RESULTS Twenty-eight articles that used five element gymnastics, a games console exercise intervention (Wii fit plus) or aerobic, resistance or combined training were included. CONCLUSION This review comprehensively summarised the effects planned self-directed exercise interventions had on individuals with T2DM. The review found that self-directed exercise was found to be beneficial for individuals with T2DM for improving glycosylated haemoglobin, physical characteristics, cardiorespiratory fitness, functional measures and other metabolic outcomes.
Collapse
Affiliation(s)
- Hugh Byrne
- The Insight Centre for Data Analytics, O'Brien Centre for Science, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland. .,UCD School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin, Ireland.
| | - Brian Caulfield
- The Insight Centre for Data Analytics, O'Brien Centre for Science, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin, Ireland
| | - Giuseppe De Vito
- The Insight Centre for Data Analytics, O'Brien Centre for Science, University College Dublin, Science Centre East, Belfield, Dublin 4, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Huang T, Lu C, Schumann M, Le S, Yang Y, Zhuang H, Lu Q, Liu J, Wiklund P, Cheng S. Timing of Exercise Affects Glycemic Control in Type 2 Diabetes Patients Treated with Metformin. J Diabetes Res 2018; 2018:2483273. [PMID: 29785399 PMCID: PMC5896215 DOI: 10.1155/2018/2483273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/18/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The purpose of the study was to examine the acute effects of the timing of exercise on the glycemic control during and after exercise in T2D. METHODS This study included 26 T2D patients (14 women and 12 men) who were treated with metformin. All patients were tested on four occasions: metformin administration alone (Metf), high-intensity interval training (HIIT) performed at 30 minutes (EX30), 60 minutes (EX60), and 90 minutes (EX90) postbreakfast, respectively. Glucose, insulin, and superoxide dismutase (SOD) activity were examined. RESULTS Glucose decreased significantly after the exercise in EX30, EX60, and EX90. Compared with Metf, the decline in glucose immediately after the exercise was larger in EX30 (-2.58 mmol/L; 95% CI, -3.36 to -1.79 mmol/L; p < 0.001), EX60 (-2.13 mmol/L; 95% CI, -2.91 to -1.34 mmol/L; p < 0.001), and EX90 (-1.87 mmol/L; 95% CI, -2.65 to -1.08 mmol/L; p < 0.001), respectively. Compared with Metf, the decrease in insulin was larger in EX30 and EX60 (both p < 0.001). CONCLUSIONS Timing of exercise is a factor to consider when prescribing exercise for T2D patients treated with metformin. This trial is registered with ChiCTR-IOR-16008469 on 13 May 2016.
Collapse
Affiliation(s)
- Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Lu
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Moritz Schumann
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Shenglong Le
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Yifan Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haihui Zhuang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwei Lu
- Jiangchuan Community Health Service Center, Shanghai, China
| | - Jinsheng Liu
- School Infirmary, Shanghai Jiao Tong University, Shanghai, China
| | - Petri Wiklund
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- The Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sulin Cheng
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- The Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Putiri AL, Close JR, Lilly HR, Guillaume N, Sun GC. Qigong Exercises for the Management of Type 2 Diabetes Mellitus. MEDICINES (BASEL, SWITZERLAND) 2017; 4:medicines4030059. [PMID: 28930273 PMCID: PMC5622394 DOI: 10.3390/medicines4030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/08/2017] [Indexed: 04/13/2023]
Abstract
Background: The purpose of this article is to clarify and define medical qigong and to identify an appropriate study design and methodology for a large-scale study looking at the effects of qigong in patients with type 2 diabetes mellitus (T2DM), specifically subject enrollment criteria, selection of the control group and study duration. Methods: A comprehensive literature review of English databases was used to locate articles from 1980-May 2017 involving qigong and T2DM. Control groups, subject criteria and the results of major diabetic markers were reviewed and compared within each study. Definitions of qigong and its differentiation from physical exercise were also considered. Results: After a thorough review, it was found that qigong shows positive effects on T2DM; however, there were inconsistencies in control groups, research subjects and diabetic markers analyzed. It was also discovered that there is a large variation in styles and definitions of qigong. Conclusions: Qigong exercise has shown promising results in clinical experience and in randomized, controlled pilot studies for affecting aspects of T2DM including blood glucose, triglycerides, total cholesterol, weight, BMI and insulin resistance. Due to the inconsistencies in study design and methods and the lack of large-scale studies, further well-designed randomized control trials (RCT) are needed to evaluate the 'vital energy' or qi aspect of internal medical qigong in people who have been diagnosed with T2DM.
Collapse
Affiliation(s)
- Amy L Putiri
- Institute of Qigong and Integrative Medicine (IQ & IM), 10127 Main Place, Suite B, Bothell, WA 98011, USA.
| | - Jacqueline R Close
- Institute of Qigong and Integrative Medicine (IQ & IM), 10127 Main Place, Suite B, Bothell, WA 98011, USA.
- Seattle Healing Acupuncture, LLC, 1307 N 45th Street, Suite 204, Seattle, WA 98103, USA.
| | - Harold Ryan Lilly
- Institute of Qigong and Integrative Medicine (IQ & IM), 10127 Main Place, Suite B, Bothell, WA 98011, USA.
| | - Nathalie Guillaume
- Institute of Qigong and Integrative Medicine (IQ & IM), 10127 Main Place, Suite B, Bothell, WA 98011, USA.
- Healing Happy Hour, 930 Grand Concourse, Ground FL, New York, NY 10451, USA.
| | - Guan-Cheng Sun
- Institute of Qigong and Integrative Medicine (IQ & IM), 10127 Main Place, Suite B, Bothell, WA 98011, USA.
- Bastyr University Research Institute, 14500 Juanita Dr. NE, Kenmore, WA 98028, USA.
| |
Collapse
|
33
|
Pesta DH, Goncalves RLS, Madiraju AK, Strasser B, Sparks LM. Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutr Metab (Lond) 2017; 14:24. [PMID: 28270856 PMCID: PMC5335813 DOI: 10.1186/s12986-017-0173-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/14/2017] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is rapidly increasing, and effective strategies to manage and prevent this disease are urgently needed. Resistance training (RT) promotes health benefits through increased skeletal muscle mass and qualitative adaptations, such as enhanced glucose transport and mitochondrial oxidative capacity. In particular, mitochondrial adaptations triggered by RT provide evidence for this type of exercise as a feasible lifestyle recommendation to combat T2D, a disease typically characterized by altered muscle mitochondrial function. Recently, the synergistic and antagonistic effects of combined training and Metformin use have come into question and warrant more in-depth prospective investigations. In the future, clinical intervention studies should elucidate the mechanisms driving RT-mitigated mitochondrial adaptations in muscle and their link to improvements in glycemic control, cholesterol metabolism and other cardiovascular disease risk factors in individuals with T2D.
Collapse
Affiliation(s)
- Dominik H Pesta
- Department of Sport Science, Medical Section, University of Innsbruck, Fürstenweg 185, Innsbruck, Austria.,Department of Visceral, Transplant, and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Renata L S Goncalves
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Anila K Madiraju
- Salk Institute for Biological Studies, 10010N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Barbara Strasser
- Biocenter, Medical University Innsbruck, Innrain 80-82, Innsbruck, Austria
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL 32804 USA.,Sanford Burnham Prebys Medical Discovery Institute, Center for Clinical and Molecular Origins of Disease, Orlando, FL USA
| |
Collapse
|
34
|
Liepinsh E, Makrecka-Kuka M, Makarova E, Volska K, Svalbe B, Sevostjanovs E, Grinberga S, Kuka J, Dambrova M. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol Res 2015; 113:788-795. [PMID: 26621248 DOI: 10.1016/j.phrs.2015.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 01/14/2023]
Abstract
The important pathological consequences of insulin resistance arise from the detrimental effects of accumulated long-chain fatty acids and their respective acylcarnitines. The aim of this study was to test whether exercise combined with decreasing the content of long-chain acylcarnitines represents an effective strategy to improve insulin sensitivity in diabetes. We used a novel compound, 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB), treatment and exercise to decrease acylcarnitine contents in the plasma and muscles in the insulin resistance models of high fat diet (HFD) fed C57BL/6 mice and db/db mice. The methyl-GBB treatment induced a substantial decrease in all acylcarnitine concentrations in both fed and fasted states as well as when it was combined with exercise. In the HFD fed mice methyl-GBB treatment improved both glucose and insulin tolerance. Methyl-GBB administration, exercise and the combination of both improved insulin sensitivity and reduced blood glucose levels in db/db mice. Methyl-GBB administration and the combination of the drug and exercise activated the PPARα/PGC1α signaling pathway and stimulated the corresponding target gene expression. Insulin insensitivity in db/db mice was not induced by significantly increased fatty acid metabolism, while increased insulin sensitivity by both treatments was not related to decreased fatty acid metabolism in muscles. The pharmacologically reduced long-chain acylcarnitine content represents an effective strategy to improve insulin sensitivity. The methyl-GBB treatment and lifestyle changes via increased physical activity for one hour a day have additive insulin sensitizing effects in db/db mice.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia.
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia; Riga Stradins University, Faculty of Pharmacy, Dzirciema Str 16, Riga LV1007, Latvia
| | - Elina Makarova
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga LV1006, Latvia; Riga Stradins University, Faculty of Pharmacy, Dzirciema Str 16, Riga LV1007, Latvia
| |
Collapse
|
35
|
Hansen M, Palsøe MK, Helge JW, Dela F. The effect of metformin on glucose homeostasis during moderate exercise. Diabetes Care 2015; 38:293-301. [PMID: 25468944 DOI: 10.2337/dc14-1480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the role of metformin on glucose kinetics during moderate exercise. RESEARCH DESIGN AND METHODS Before, during, and after a 45-min bout of exercise at 60% VO2max, glucose kinetics were determined by isotope tracer technique in patients with type 2 diabetes mellitus with metformin treatment (DM2+Met) or without metformin treatment (DM2) and in healthy control subjects (CON) matched for BMI and age. Glucoregulatory hormones and metabolites were measured throughout the study. RESULTS Plasma glucose concentration was unchanged during exercise in CON but decreased in DM2. No significant change was found in DM2+Met. Hormones and metabolites showed no differences among the groups except for elevated exercise-induced concentrations of lactate in DM2 (area under the curve [AUC] 31 ± 1% vs. CON) and glucagon in DM2 (AUC 5 ± 1% vs. DM2+Met). Free fatty acid levels were lower in DM2+Met than in DM2 (AUC -14 ± 1%). Absolute values of the baseline glucose rate of appearance (Ra) were elevated in DM2 and DM2+Met, but the increase in glucose Ra relative to baseline was blunted in DM2 (19 ± 1%) and DM2+Met (18 ± 4%) compared with CON (46 ± 4%). Glucose rate of disappearance relative to baseline increased more in CON (31 ± 3%) than in DM2 (6 ± 1%) and DM2+Met (21 ± 2%), showing a small increase caused by metformin. Glucose metabolic clearance rate relative to baseline was similar during exercise in DM2 (33 ± 1%) and CON (35 ± 3%) but was improved in DM2+Met (37 ± 3%) compared with DM2. CONCLUSIONS Metformin has a positive effect on glucose homeostasis during exercise.
Collapse
Affiliation(s)
- Merethe Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie K Palsøe
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
de Moura BP, Marins JCB, Franceschini SDCC, Reis JS, Amorim PRDS. Aerobic exercise did not have compensatory effects on physical activity levels in type 2 diabetes patients. J Sports Sci 2014; 33:545-51. [PMID: 25259751 DOI: 10.1080/02640414.2014.951875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although exercise promotes beneficial effects in diabetic patients, some studies have questioned the degree of their importance in terms of the increase in total energy expenditure. In these studies, the decrease of physical activity levels (PAL) was referred as "compensatory effect of exercise". However, our aim was to investigate whether aerobic exercise has compensatory effects on PAL in type 2 diabetes patients. Eight volunteers (51.1 ± 8.2 years) were enrolled in a supervised exercise programme for 8 weeks (3 d · wk(-1), 50-60% of VO2 peak for 30-60 min). PAL was measured using tri-axial accelerometers in the 1st, 8th and 12th weeks. Biochemical tests, cardiorespiratory fitness, anthropometric assessment and body composition were measured in the 2nd and 11th weeks. Statistical analysis was performed using non-parametric tests (Friedman and Wilcoxon, P < 0.05). We found no significant differences in PAL between intervention periods, and participants spent the majority of their awake time in sedentary activities. However, the exercise programme generated a significant 14.8% increase in VO2 peak and a 15% reduction in fructosamine. The exercise programme had no compensatory effects on PAL in type 2 diabetes patients, but improved their cardiorespiratory fitness and glycaemic control.
Collapse
Affiliation(s)
- Bruno Pereira de Moura
- a Department of Physical Education, Human Performance Laboratory , Universidade Federal de Viçosa , Viçosa , Brazil
| | | | | | | | | |
Collapse
|
37
|
Moura BP, Amorim PRS, Silva BPP, Franceschini SCC, Reis JS, Marins JCB. Effect of a short-term exercise program on glycemic control measured by fructosamine test in type 2 diabetes patients. Diabetol Metab Syndr 2014; 6:16. [PMID: 24512719 PMCID: PMC3925446 DOI: 10.1186/1758-5996-6-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glycated hemoglobin (A1C) and Fasting Plasma Glucose (FPG) are the two monitoring blood glucose tests most frequently used. However, both methods are shown to be insensitive to detect glycemic variations in short duration periods. Therefore, we aimed to assess the effect of a short-term exercise program on glycemic levels measured by fructosamine concentrations in type 2 diabetes patients. METHODS Eight volunteers (51.1 ± 8.2 years) underwent a supervised exercise program during eight weeks (3 d.wk-1, 50-60% of VO2 peak for 30-60 minutes). The body composition, VO2 peak, A1C, FPG, fructosamine and capillary blood glucose (CBG) were evaluated. We used ANOVA - One Way for repeated measures followed by Tukey post-hoc test and paired t test. P values <0.05 were considered significant. RESULTS We found statistical differences on the concentrations of fructosamine, VO2 peak and CBG. However, A1C and FPG showed no statistical difference. Fructosamine declined by 15% (57 μmol/L) between the beginning and the end of the study. Individually, 50% of the sample reached the reference values for the normality in fructosamine test. VO2 peak increased by 14.8% (3.8 ml.kg-1.min-1) and CBG decreased on an average of 34.4% (69.3 mg/dL). CONCLUSIONS Fructosamine test is effective in the evaluation of glucose with type 2 diabetes patients when undergoing a short exercise program, alternatively to the traditional A1C and FPG assessment. Our results are relevant in clinical practice, because the significant improvement in glycemic status can help to evaluate the inclusion of exercise as adjunct therapy to replace the prescription of additional drugs in poorly controlled patients.
Collapse
Affiliation(s)
- Bruno P Moura
- Department of Physical Education, Human Performance Laboratory, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paulo RS Amorim
- Department of Physical Education, Human Performance Laboratory, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Bruno PP Silva
- Department of Physical Education, Human Performance Laboratory, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Janice S Reis
- Institute of Education and Research of Santa Casa de Belo Horizonte, IER-SCBH, Belo Horizonte, Minas Gerais, Brazil
| | - João CB Marins
- Department of Physical Education, Human Performance Laboratory, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|