1
|
James I, Jain R, Wade G, Stevenson PC, Koulman A, Simcox J, Furse S. Systemic analysis shows that cold exposure modulates triglyceride accumulation and phospholipid distribution in mice. PLoS One 2024; 19:e0313205. [PMID: 39509438 PMCID: PMC11542792 DOI: 10.1371/journal.pone.0313205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Environmental exposure to cold is increasingly being associated with changes in metabolism. We developed and tested the hypothesis that exposure to cold drives systemic effects in lipid metabolism. Specifically, (i) that energy storage and provision adapts to the cold by altering triglyceride distribution and (ii) that membranes adapt to cold conditions by becoming more unsaturated. These hypotheses were designed to identify the underlying mechanisms that govern the response of mammalian systems to cold. To test these hypotheses, we used a metabolic network analysis. An established model of cold exposure was used, from which lipidomics data that represents the system was collected. The network analysis showed that triglyceride metabolism is altered on exposure to cold, with several smaller effects that are not straightforward, such as changes to the abundance and distribution of odd chain fatty acids. The range and profile of phosphatidylcholine and phosphatidylinositol were modified, but there was little change in phosphatidylethanolamine or sphingomyelin. These results support the hypothesis, and show that exposure to cold is a system-wide phenomenon that requires or drives changes across a range of metabolic pathways.
Collapse
Affiliation(s)
- Isabella James
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raghav Jain
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gina Wade
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philip C. Stevenson
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Judith Simcox
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Samuel Furse
- Biological Chemistry Group, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Ye Y, Wang H, Chen W, Chen Z, Wu D, Zhang F, Hu F. Dynamic changes of immunocyte subpopulations in thermogenic activation of adipose tissues. Front Immunol 2024; 15:1375138. [PMID: 38812501 PMCID: PMC11133676 DOI: 10.3389/fimmu.2024.1375138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives The effects of cold exposure on whole-body metabolism in humans have gained increasing attention. Brown or beige adipose tissues are crucial in cold-induced thermogenesis to dissipate energy and thus have the potential to combat metabolic disorders. Despite the immune regulation of thermogenic adipose tissues, the overall changes in vital immune cells during distinct cold periods remain elusive. This study aimed to discuss the overall changes in immune cells under different cold exposure periods and to screen several potential immune cell subpopulations on thermogenic regulation. Methods Cibersort and mMCP-counter algorithms were employed to analyze immune infiltration in two (brown and beige) thermogenic adipose tissues under distinct cold periods. Changes in some crucial immune cell populations were validated by reanalyzing the single-cell sequencing dataset (GSE207706). Flow cytometry, immunofluorescence, and quantitative real-time PCR assays were performed to detect the proportion or expression changes in mouse immune cells of thermogenic adipose tissues under cold challenge. Results The proportion of monocytes, naïve, and memory T cells increased, while the proportion of NK cells decreased under cold exposure in brown adipose tissues. Conclusion Our study revealed dynamic changes in immune cell profiles in thermogenic adipose tissues and identified several novel immune cell subpopulations, which may contribute to thermogenic activation of adipose tissues under cold exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
U-Din M, de Mello VD, Tuomainen M, Raiko J, Niemi T, Fromme T, Klåvus A, Gautier N, Haimilahti K, Lehtonen M, Kristiansen K, Newman JW, Pietiläinen KH, Pihlajamäki J, Amri EZ, Klingenspor M, Nuutila P, Pirinen E, Hanhineva K, Virtanen KA. Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans. Cell Rep 2023; 42:113131. [PMID: 37708023 DOI: 10.1016/j.celrep.2023.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
Collapse
Affiliation(s)
- Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Vanessa D de Mello
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjo Tuomainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Juho Raiko
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anton Klåvus
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Marko Lehtonen
- Department of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - John W Newman
- Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
4
|
Penhaligan J, Sequeira-Bisson IR, Miles-Chan JL. The role of postprandial thermogenesis in the development of impaired glucose tolerance and type II diabetes. Am J Physiol Endocrinol Metab 2023; 325:E171-E179. [PMID: 37378621 DOI: 10.1152/ajpendo.00113.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Accounting for 5%-15% of total daily energy expenditure, postprandial thermogenesis (PPT) refers to an acute increase in resting metabolic rate (RMR) in the hours after eating. This is largely explained by the energy costs of processing the macronutrients of a meal. Most individuals spend the majority of the day in the postprandial state, thus over one's lifetime even minor differences in PPT may possess true clinical significance. In contrast to RMR, research indicates that PPT may be reduced in the development of both prediabetes and type II diabetes (T2D). The present analysis of existing literature has found that this impairment may be exaggerated in hyperinsulinemic-euglycemic clamp studies compared with food and beverage consumption studies. Nonetheless, it is estimated that daily PPT following carbohydrate consumption alone is approximately 150 kJ lower among individuals with T2D. This estimate fails to consider protein intake, which is notably more thermogenic than carbohydrate intake (20%-30% vs. 5%-8%, respectively). Putatively, dysglycemic individuals may lack the insulin sensitivity required to divert glucose toward storage-a more energy-taxing pathway. Accordingly, the majority of findings has associated an impaired PPT with a reduced "obligatory" energy output (i.e., the energy costs associated with nutrient processing). More recently, it has been reported that "facultative" thermogenesis [e.g., the energy costs associated with sympathetic nervous system (SNS) stimulation] may also contribute to any impairment in PPT among individuals with prediabetes and T2D. Further longitudinal research is required to truly ascertain whether meaningful changes in PPT manifest in the prediabetic state, before the development of T2D.
Collapse
Affiliation(s)
- Jack Penhaligan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Ivana R Sequeira-Bisson
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jennifer L Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North, New Zealand
| |
Collapse
|
5
|
Ratter-Rieck JM, Roden M, Herder C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 2023; 66:1003-1015. [PMID: 36964771 PMCID: PMC10039694 DOI: 10.1007/s00125-023-05901-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Climate change will be a major challenge for the world's health systems in the coming decades. Elevated temperatures and increasing frequencies of heat waves, wildfires, heavy precipitation and other weather extremes can affect health in many ways, especially if chronic diseases are already present. Impaired responses to heat stress, including compromised vasodilation and sweating, diabetes-related comorbidities, insulin resistance and chronic low-grade inflammation make people with diabetes particularly vulnerable to environmental risk factors, such as extreme weather events and air pollution. Additionally, multiple pathogens show an increased rate of transmission under conditions of climate change and people with diabetes have an altered immune system, which increases the risk for a worse course of infectious diseases. In this review, we summarise recent studies on the impact of climate-change-associated risk for people with diabetes and discuss which individuals may be specifically prone to these risk conditions due to their clinical features. Knowledge of such high-risk groups will help to develop and implement tailored prevention and management strategies to mitigate the detrimental effect of climate change on the health of people with diabetes.
Collapse
Affiliation(s)
- Jacqueline M Ratter-Rieck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Li L, Wan Q, Long Q, Nie T, Zhao S, Mao L, Cheng C, Zou C, Loomes K, Xu A, Lai L, Liu X, Duan Z, Hui X, Wu D. Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions. Adipocyte 2022; 11:529-549. [PMID: 36000239 PMCID: PMC9427046 DOI: 10.1080/21623945.2022.2111053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/29/2023] Open
Abstract
Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wan
- University of Chinese Academy of Sciences, Beijing, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiaoyun Long
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liufeng Mao
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kerry Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, New Zealand
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziyuan Duan
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Ziyuan Duan Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
- Xiaoyan Hui
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CONTACT Donghai Wu
| |
Collapse
|
7
|
Mun S, Park K, Lee S. Evaluation of thermal sensitivity is of potential clinical utility for the predictive, preventive, and personalized approach advancing metabolic syndrome management. EPMA J 2022; 13:125-135. [PMID: 35265229 PMCID: PMC8897525 DOI: 10.1007/s13167-022-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/28/2023]
Abstract
A possible association between metabolic disorders and ambient temperature has been suggested, and cold exposure as a way of increasing energy expenditure has gained considerable interest for preventative/therapeutic measures toward metabolic disorders. Although thermal sensitivity, which has recently been studied in regard to its utility as a risk assessment/patient stratification for various diseases, might influence physiological responses to ambient temperature on an individual basis, more studies are needed. We aimed to investigate the association between self-identified thermal intolerance/sensation and metabolic syndrome (MetS) to verify the working hypothesis that individuals with altered thermal sensitivity may have a predisposition to MetS. We fitted generalized additive models for thermal intolerance/sensation using body mass index (BMI) and waist–hip ratio in women, and identified those with higher/lower thermal intolerance/sensation than those predicted by the models. Higher heat intolerance, higher heat sensation, and lower cold intolerance were associated with a higher prevalence of MetS. The risk of having MetS was increased in those who had two or three associated conditions compared with those with none of these conditions. In an analysis for MetS components, significant associations of thermal sensitivity were present with high glucose, triglyceride, and blood pressure levels. Overall, higher heat intolerance/sensation and lower cold intolerance were associated with increased prevalence of MetS even at a similar level of obesity. Our study indicates that evaluation of thermal sensitivity may help identify individuals at high risk for MetS, and lead to more advanced patient stratification and personalized treatment strategies for MetS, including cold-induced thermogenesis.
Collapse
|
8
|
Garcia-Beltran C, Cereijo R, Plou C, Gavaldà-Navarro A, Malpique R, Villarroya J, López-Bermejo A, de Zegher F, Ibáñez L, Villarroya F. Posterior Cervical Brown Fat and CXCL14 Levels in the First Year of Life: Sex Differences and Association With Adiposity. J Clin Endocrinol Metab 2022; 107:e1148-e1158. [PMID: 34677618 DOI: 10.1210/clinem/dgab761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Brown adipose tissue (BAT) is particularly abundant in neonates, but its association with measures of adiposity and metabolic health in early infancy is poorly delineated. Besides sustaining nonshivering thermogenesis, BAT secretes brown adipokines that act on systemic metabolism. The chemokine CXCL14 has been identified as a brown adipokine in experimental studies. OBJECTIVE To determine the relationships among BAT activity, adiposity, and circulating CXCL14 levels in the first year of life in girls and boys. METHODS Indices of fat accretion, circulating endocrine-metabolic parameters and serum CXCL14 levels were assessed longitudinally in a cohort of infants at birth and at 4 and 12 months. BAT activity was estimated using infrared thermography only at age 12 months.The main outcome measures were weight and length Z-scores, total and abdominal fat content (by dual X-ray absorptiometry), BAT activity at the posterior cervical and supraclavicular regions, serum levels of glucose, insulin, insulin-like growth factor-I, high-molecular-weight adiponectin, and CXCL14; CXCL14 transcript levels in neonatal BAT and liver. RESULTS Posterior cervical BAT was more active in girls than in boys (P = .02). BAT activity was negatively associated with adiposity parameters only in girls. CXCL14 levels were higher in girls than in boys at age 12 months and correlated positively with the area of active posterior cervical BAT in girls. Neonatal BAT showed high CXCL14 gene expression levels. CONCLUSION BAT activity and the levels of CXCL14-a potential surrogate of BAT activity-are sex specific in the first year of life. Posterior cervical BAT activity associates negatively with indices of adiposity only in girls.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Rubén Cereijo
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Plou
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Rita Malpique
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Joan Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, and Girona Institute for Biomedical Research, 17007 Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| |
Collapse
|
9
|
Kulterer OC, Herz CT, Prager M, Schmöltzer C, Langer FB, Prager G, Marculescu R, Kautzky-Willer A, Hacker M, Haug AR, Kiefer FW. Brown Adipose Tissue Prevalence Is Lower in Obesity but Its Metabolic Activity Is Intact. Front Endocrinol (Lausanne) 2022; 13:858417. [PMID: 35432192 PMCID: PMC9009254 DOI: 10.3389/fendo.2022.858417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Due to its high metabolic activity, brown adipose tissue (BAT) has become a promising target for the development of novel treatment concepts for metabolic disease. Despite several reports of a negative association between the presence of active BAT and obesity, very little is known about the quantitative and qualitative differences of BAT in lean and obese individuals. Systematic studies directly comparing cold-induced BAT activity in leanness and obesity are currently lacking. Here we studied BAT mass and function in 31 lean and 64 obese men and women. After a standardized cooling protocol using a water-perfused vest, 18F-FDG-positron emission tomography/computed tomography scans were performed, and BAT was delineated using lean body-mass adjusted standardized uptake value (SUV) thresholds in anatomic regions with fat radiodensity. Cold-induced thermogenesis (CIT), a functional readout of BAT activity, was quantified by indirect calorimetry. Active BAT was present in a significantly higher proportion of lean than obese individuals (58% vs. 33%, p=0.019). In these participants with active BAT, however, BAT volume and activity did not differ between leanness and obesity. Accordingly, CIT was similar in both weight groups. BAT metrics were not related to adiposity or total fat mass per se. However, in obese participants a strong negative correlation existed between visceral adipose tissue and BAT volume, 18F-FDG uptake and CIT. In summary, despite a significantly lower prevalence of BAT, the metabolic activity and thermogenic capacity of BAT appears to be still intact in obesity and is inversely associated with visceral fat mass.
Collapse
Affiliation(s)
- Oana C. Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T. Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Schmöltzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B. Langer
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R. Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian W. Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian W. Kiefer,
| |
Collapse
|
10
|
Rahbani JF, Chouchani ET, Spiegelman BM, Kazak L. Measurement of Futile Creatine Cycling Using Respirometry. Methods Mol Biol 2022; 2448:141-153. [PMID: 35167096 PMCID: PMC9165624 DOI: 10.1007/978-1-0716-2087-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Thermogenic adipose tissue plays a vital function in regulating whole-body energy expenditure and nutrient homeostasis due to its capacity to dissipate chemical energy as heat, in a process called non-shivering thermogenesis. A reduction of creatine levels in adipocytes impairs thermogenic capacity and promotes diet-induced obesityKazak et al, Cell 163, 643-55, 2015; Kazak et al, Cell Metab 26, 660-671.e3, 2017; Kazak et al, Nat Metab 1, 360-370, 2019). Mechanistically, thermogenic respiration can be promoted by the liberation of an excess quantity of ADP that is dependent on addition of creatine. A model of a two-enzyme system, which we term the Futile Creatine Cycle, has been posited to support this thermogenic action of creatine. Futile creatine cycling can be monitored in purified mitochondrial preparations wherein creatine-dependent liberation of ADP is monitored through the measurement of oxygen consumption under ADP-limiting conditions. The current model proposes that, in thermogenic fat cells, mitochondria-targeted creatine kinase B (CKB) uses mitochondrial-derived ATP to phosphorylate creatine (Rahbani JF, Nature 590, 480-485, 2021). The creatine kinase reaction generates phosphocreatine and ADP, and ADP stimulates respiration. Next, a pool of mitochondrial phosphocreatine is directly hydrolyzed by a phosphatase, to regenerate creatine. The liberated creatine can then engage mitochondrial CKB to trigger another round of this cycle to support ADP-dependent respiration. In this model, the coordinated action of creatine phosphorylation and phosphocreatine hydrolysis triggers a futile cycle that produces a molar excess of mitochondrial ADP to promote thermogenic respiration (Rahbani JF, Nature 590, 480-485, 2021; Kazak and Cohen, Nat Rev Endocrinol 16, 421-436, 2020). Here, we provide a detailed method to perform respiratory measurements on isolated mitochondria and calculate the stoichiometry of creatine-dependent ADP liberation. This method provides a direct measure of the futile creatine cycle.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Costa JSR, Fonseca GFAC, Ottone NCDS, Silva PA, Antonaccio RF, Silva G, Rocha MDSA, Coimbra CC, Esteves EA, Mang ZA, Amorim FT, Magalhães FDC. Strength training improves insulin resistance and differently affects mitochondria in skeletal muscle and visceral adipose tissue in high-fat fed mice. Life Sci 2021; 278:119639. [PMID: 34043987 DOI: 10.1016/j.lfs.2021.119639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
AIMS Strength training (ST) improves insulin resistance and glucose tolerance by yet unknown mechanisms. The aims of this study were to investigate the effects of ST on mitochondrial adaptation in skeletal muscle and adipose tissue, on heat shock protein 72 (Hsp72) in skeletal muscle, and on visceral adipocyte size in mice with high-fat diet (HFD)-induced insulin resistance. MATERIALS AND METHODS Male Balb/c mice were divided into sedentary control-chow (C-chow), strength trained-chow (ST-chow), sedentary control-HFD (C-HFD) and strength trained-HFD (ST-HFD). Diet was provided for 12 weeks, while ladder climbing ST was performed for the final six weeks of the study at a frequency of three days per week. KEY FINDINGS Strength training led to increased strength, muscular endurance, and skeletal muscle hypertrophy. Compared to the C-HFD group, mice in the ST-HFD group decreased their whole-body insulin resistance, improved their glucose tolerance, and had higher activation of the insulin pathway in skeletal muscle. ST increased citrate synthase (CS) activity in skeletal muscle, but this increase was blunted in ST-HFD. Conversely, HFD reduced adipose tissue CS activity regardless of training status. Hsp72 content was reduced in C-HFD, but returned to control levels in ST-HFD. Finally, reduced epididymal adipocyte size was observed in ST-HFD. SIGNIFICANCE These results suggest that the improvement in insulin resistance induced by ST is related to mitochondrial adaptation in skeletal muscle, but not in adipose tissue. Moreover, this improvement might be related to increased skeletal muscle Hsp72 and reduced epididymal adipocyte size.
Collapse
Affiliation(s)
- Juliana Sales Rodrigues Costa
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Graciene Fernandes Araújo Campos Fonseca
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Natielle Cecília Dos Santos Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrick Almeida Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Romulo Fernandes Antonaccio
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Gabriela Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Maíra da Silva Almeida Rocha
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Candido Celso Coimbra
- Endocrinology Laboratory, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elizabethe Adriana Esteves
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Zachary A Mang
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Flávio de Castro Magalhães
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.
| |
Collapse
|
12
|
Tournissac M, Vu TM, Vrabic N, Hozer C, Tremblay C, Mélançon K, Planel E, Pifferi F, Calon F. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. ALZHEIMERS RESEARCH & THERAPY 2021; 13:103. [PMID: 34020681 PMCID: PMC8140479 DOI: 10.1186/s13195-021-00842-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Background Old age, the most important risk factor for Alzheimer’s disease (AD), is associated with thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits, and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation. Since metabolic disorders and AD share strong pathogenic links, we hypothesized that BAT stimulation through a β3AR agonist could exert benefits in AD as well. Methods CL-316,243, a specific β3AR agonist, was administered to the triple transgenic mouse model of AD (3xTg-AD) and non-transgenic controls from 15 to 16 months of age at a dose of 1 mg/kg/day i.p. Results Here, we show that β3AR agonist administration decreased body weight and improved peripheral glucose metabolism and BAT thermogenesis in both non-transgenic and 3xTg-AD mice. One-month treatment with a β3AR agonist increased recognition index by 19% in 16-month-old 3xTg-AD mice compared to pre-treatment (14-month-old). Locomotion, anxiety, and tau pathology were not modified. Finally, insoluble Aβ42/Aβ40 ratio was decreased by 27% in the hippocampus of CL-316,243-injected 3xTg-AD mice. Conclusions Overall, our results indicate that β3AR stimulation reverses memory deficits and shifts downward the insoluble Aβ42/Aβ40 ratio in 16-month-old 3xTg-AD mice. As β3AR agonists are being clinically developed for metabolic disorders, repurposing them in AD could be a valuable therapeutic strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00842-3.
Collapse
Affiliation(s)
- Marine Tournissac
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Tra-My Vu
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Nika Vrabic
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Clara Hozer
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Koralie Mélançon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada. .,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
13
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Poursharifi P, Attané C, Mugabo Y, Al-Mass A, Ghosh A, Schmitt C, Zhao S, Guida J, Lussier R, Erb H, Chenier I, Peyot ML, Joly E, Noll C, Carpentier AC, Madiraju SRM, Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 2020; 5:140294. [PMID: 33201859 PMCID: PMC7819748 DOI: 10.1172/jci.insight.140294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis. Visceral adipose adipose α/β-hydrolase domain 6 regulates cold adaptation and acts as a brake for heat production via the regulation of thermogenic glycerolipid/free fatty acid cycling.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Mugabo
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Clémence Schmitt
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shangang Zhao
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julian Guida
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Roxane Lussier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Heidi Erb
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Isabelle Chenier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Erik Joly
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
15
|
SOCS2 Inhibits Mitochondrial Fatty Acid Oxidation via Suppressing LepR/JAK2/AMPK Signaling Pathway in Mouse Adipocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3742542. [PMID: 32733634 PMCID: PMC7376435 DOI: 10.1155/2020/3742542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an important role in fat deposition, skeletal muscle, central nervous system development, and mitochondria biogenesis. Nevertheless, the regulatory mechanisms of SOCS2 on mitochondrial fatty acid oxidation (FAO) remain unclear. Leptin could inhibit food intake and increase thermogenesis through leptin receptor (LepR), which was present in the hypothalamus and certain peripheral organs, including adipose tissue. With strong interest, we focused on the connection between leptin and SOCS2 and their effect on FAO in adipocytes. In our study, we found that the mRNA level of SOCS2 and the protein levels of PGC-1α, CPT-1b, FAT, and p-ACC were elevated by leptin in the inguinal adipose tissue of mice. On the contrary, the protein levels of FABP4, FATP1, and FAS were declined. The genes related to fatty acid oxidation such as PGC-1α, NRF-1, TFAM, CPT-1b, AOX1, COX2, and UCP2 were attenuated by SOCS2, but elevated by leptin. Moreover, fatty acid oxidation enzyme MCAD, LCAD, and Cyt C levels were reduced in response to SOCS2. These reductions correspond well with the reduced release of free fatty acid and the reduction of mitochondrial complexes I and III by SOCS2. Furthermore, JAK2/AMPK pathway-specific inhibitors could block the mitochondrial FAO; hence, this pathway was implied to have a potential impact on FAO. Together, these studies suggested that SOCS2 had a negative effect on mitochondrial fatty acid oxidation, and the LepR/JAK2/AMPK pathway played a crucial role in this process.
Collapse
|
16
|
Tavernier G, Caspar-Bauguil S, Viguerie N. Apolipoprotein M: new connections with diet, adipose tissue and metabolic syndrome. Curr Opin Lipidol 2020; 31:8-14. [PMID: 31815756 DOI: 10.1097/mol.0000000000000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To focus on state-of-the-art knowledge on the apolipoprotein M (ApoM) physiology and physiopathology regarding metabolism. RECENT FINDINGS In humans, the ApoM was recently described as secreted by adipocytes. Obesity, metabolic syndrome and type 2 diabetes are associated with low circulating ApoM and adipose tissue APOM expression. Dieting-induced weight loss enhances adipose tissue expression and secretion, and exercise training increases plasma ApoM. The ApoM is a chaperone for the bioactive sphingolipid, sphingosine-1-phosphate (S1P), which has a specific role in inflammation. Its association with S1P in the inhibition of brown adipose tissue activity and subsequent insulin sensitivity was reported with the model of ApoM-deficient mouse. SUMMARY The adipose tissue is an endocrine organ responsible for obesity-related comorbidities. Obesity and dieting impact the adipose tissue secretory profile. The recent demonstration of ApoM being secreted by healthy adipocytes questions about the possible role of this adipose production in metabolic diseases. Low-circulating ApoM is associated with unhealthy metabolic phenotype. The lower circulating apoM during metabolic syndrome might be a cause of obesity-related comorbidities. Lifestyle interventions enhance ApoM production. Whether it acts in combination to S1P or other small lipidic molecules deserves further investigations.
Collapse
Affiliation(s)
- Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
- Departments of Clinical Biochemistry and Nutrition, Toulouse University Hospitals, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC)
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University
| |
Collapse
|
17
|
Tang W, Zhang B, Wang H, Li M, Wang H, Liu F, Zhu D, Bi Y. Improved skeletal muscle energy metabolism relates to the recovery of β cell function by intensive insulin therapy in drug naïve type 2 diabetes. Diabetes Metab Res Rev 2019; 35:e3177. [PMID: 31077529 DOI: 10.1002/dmrr.3177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
AIMS Diminished energy turnover of skeletal muscle is involved in the development of type 2 diabetes. Intensive insulin therapy has been reported to maintain glycaemic control in newly diagnosed type 2 diabetes, while the underlying mechanism remains unclear. Herein, we aimed to characterize the contribution of muscular mitochondrial oxidative phosphorylation (OxPhos) activity to insulin-induced glycaemic control. MATERIALS AND METHODS There were 21 drug naïve patients with type 2 diabetes receiving continuous subcutaneous insulin infusion for 7 days. Nine nondiabetics matched for age, body mass index, and physical activity were recruited as controls. We applied 31 P magnetic resonance spectroscopy to record in vivo muscular phosphocreatine (PCr) flux in controls and diabetics before and after insulin therapy. The mitochondrial OxPhos rate was calculated as ΔPCr / Δtime during the first 50 seconds after cessation of exercise. RESULTS In drug naïve type 2 diabetes, muscular mitochondrial OxPhos rate was restored after insulin therapy. Notably, this alteration was positively associated with the improvements of 1,5-anhydroglucitol, a serum marker for glucose control over the last 1 week, as well as homeostasis model assessment of β cell function and C-peptide/glucose ratio t0 , two indices for basal insulin secretion. Furthermore, patients with diabetes family history and more severe glucotoxicity tend to achieve greater improvement in mitochondrial function by insulin. CONCLUSIONS This study provides evidence that intensive insulin therapy facilitates muscular energy metabolism in drug naïve type 2 diabetes. It correlates to the recovery of β cell function, contributing to insulin-induced glucose control.
Collapse
Affiliation(s)
- Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Huiting Wang
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Ming Li
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Winn NC, Acin-Perez R, Woodford ML, Hansen SA, Haney MM, Ayedun LA, Rector RS, Vieira-Potter VJ, Shirihai OS, Sacks HS, Kanaley JA, Padilla J. A Thermogenic-Like Brown Adipose Tissue Phenotype Is Dispensable for Enhanced Glucose Tolerance in Female Mice. Diabetes 2019; 68:1717-1729. [PMID: 30862679 PMCID: PMC6702635 DOI: 10.2337/db18-1070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevailing dogma is that thermogenic brown adipose tissue (BAT) contributes to improvements in glucose homeostasis in obesogenic animal models, though much of the evidence supporting this premise is from thermostressed rodents. Determination of whether modulation of the BAT morphology/function drives changes in glucoregulation at thermoneutrality requires further investigation. We used loss- and gain-of-function approaches including genetic manipulation of the lipolytic enzyme Pnpla2, change in environmental temperature, and lifestyle interventions to comprehensively test the premise that a thermogenic-like BAT phenotype is coupled with enhanced glucose tolerance in female mice. In contrast to this hypothesis, we found that 1) compared to mice living at thermoneutrality, enhanced activation of BAT and its thermogenic phenotype via chronic mild cold stress does not improve glucose tolerance in obese mice, 2) silencing of the Pnpla2 in interscapular BAT causes a brown-to-white phenotypic shift accompanied with inflammation but does not disrupt glucose tolerance in lean mice, and 3) exercise and low-fat diet improve glucose tolerance in obese mice but these effects do not track with a thermogenic BAT phenotype. Collectively, these findings indicate that a thermogenic-like BAT phenotype is not linked to heightened glucose tolerance in female mice.
Collapse
Affiliation(s)
- Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rebeca Acin-Perez
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO
| | - Megan M Haney
- Office of Animal Resources, University of Missouri, Columbia, MO
| | - Lolade A Ayedun
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - R Scott Rector
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | | | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Harold S Sacks
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jill A Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
- Child Health, University of Missouri, Columbia, MO
| |
Collapse
|
19
|
Intrinsic expression of viperin regulates thermogenesis in adipose tissues. Proc Natl Acad Sci U S A 2019; 116:17419-17428. [PMID: 31341090 DOI: 10.1073/pnas.1904480116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid β-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.
Collapse
|
20
|
Nascimento EBM, Konings M, Schaart G, Groen AK, Lütjohann D, van Marken Lichtenbelt WD, Schrauwen P, Plat J. In vitro effects of sitosterol and sitostanol on mitochondrial respiration in human brown adipocytes, myotubes and hepatocytes. Eur J Nutr 2019; 59:2039-2045. [PMID: 31317217 PMCID: PMC7351807 DOI: 10.1007/s00394-019-02052-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022]
Abstract
Purpose Lowering of LDL cholesterol levels by plant sterols and stanols is associated with decreased risk of cardiovascular disease in humans. Plant sterols and stanols also lower triacylglycerol (TG). However, it is not fully understood how reduction in TG is achieved and what the full potential of plant sterols and stanols is on whole-body metabolism. We here hypothesize that high levels of plant sterols and stanols stimulate whole-body energy expenditure, which can be attributed to changes in mitochondrial function of brown adipose tissue (BAT), skeletal muscle and liver. Methods Phytosterolemic mice were fed chow diets for 32 weeks to examine whole-body weight gain. In vitro, 24-h incubation were performed in adipocytes derived from human BAT, human myotubes or HepG2 human hepatocytes using sitosterol or sitostanol. Following mitochondrial function was assessed using seahorse bioanalyzer. Results Chow feeding in phytosterolemic mice resulted in diminished increase in body weight compared to control mice. In vitro, sitosterol or sitostanol did not change mitochondrial function in adipocytes derived from human BAT or in cultured human myotubes. Interestingly, maximal mitochondrial function in HepG2 human hepatocytes was decreased following sitosterol or sitostanol incubation, however, only when mitochondrial function was assessed in low glucose-containing medium. Conclusions Beneficial in vivo effects of plant sterols and stanols on lipid and lipoprotein metabolism are well recognized. Our results indicate that alterations in human mitochondrial function are apparently not involved to explain these beneficial effects.
Collapse
Affiliation(s)
- Emmani B M Nascimento
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Maurice Konings
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam Diabetes Center, Amsterdam University Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, 9713 ZG, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127, Bonn, Germany
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
21
|
Moreira VM, Almeida D, da Silva Franco CC, Gomes RM, Palma-Rigo K, Prates KV, Tófolo LP, Malta A, Francisco FA, Pavanello A, Previate C, da Silva Silveira S, Ribeiro TA, Martins IP, de Moraes AMP, Matiusso CCI, Saavedra LPJ, de Barros Machado KG, Fabbri Corá T, Gongora A, Cardozo LE, da Silva PHO, Venci R, Vieira E, de Oliveira JC, Miranda RA, de Souza HM, Miksza D, da Costa Lima LD, de Castro-Prado MAA, Rinaldi W, de Freitas Mathias PC. Moderate exercise training since adolescence reduces Walker 256 tumour growth in adult rats. J Physiol 2019; 597:3905-3925. [PMID: 31210356 DOI: 10.1113/jp277645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V ̇ O 2 max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V ̇ O 2 max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.
Collapse
Affiliation(s)
- Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Douglas Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Katia Gama de Barros Machado
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Thauany Fabbri Corá
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Adriane Gongora
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Lucas Eduardo Cardozo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Henrique Olivieri da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Renan Venci
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Elaine Vieira
- Post-Graduate Program of Physical Education, Catholic University of Brasília, Águas Claras, DF, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Biophysis Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Daniele Miksza
- Department of Physiology, State University of Londrina, Londrina, PR, Brazil
| | - Luiz Delmar da Costa Lima
- Superior School of Physical Education and Physical Therapy of Goiás State, State University of Goiás, Goiânia, GO, Brazil
| | - Marialba Avezum Alves de Castro-Prado
- Laboratory of Microorganisms Genetics and Mutagenesis, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Wilson Rinaldi
- Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
22
|
Calcagno M, Kahleova H, Alwarith J, Burgess NN, Flores RA, Busta ML, Barnard ND. The Thermic Effect of Food: A Review. J Am Coll Nutr 2019; 38:547-551. [PMID: 31021710 DOI: 10.1080/07315724.2018.1552544] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-thirds of U.S. adults are overweight. There is an urgent need for effective methods for weight management. A potentially modifiable component of energy expenditure is the thermic effect of food (TEF), the increase in the metabolic rate that occurs after a meal. Evidence suggests that TEF is increased by larger meal sizes (as opposed to frequent small meals), intake of carbohydrate and protein (as opposed to dietary fat), and low-fat plant-based diets. Age and physical activity may also play roles in TEF. The effects of habitual diet, meal timing, and other factors remain to be clarified. Further research into the factors that affect TEF may lead to better treatment methods for improved weight management. Key teaching points Measurement of the thermic effect of food. Physiological determinants of the thermic effect of food. The effects of meal variations on postprandial thermogenesis. Effect of age and physical activity on the thermic effect of food.
Collapse
Affiliation(s)
- Manuel Calcagno
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Hana Kahleova
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Jihad Alwarith
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Nora N Burgess
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Rosendo A Flores
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Melissa L Busta
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA
| | - Neal D Barnard
- a Clinical Research, Physicians Committee for Responsible Medicine , Washington , DC , USA.,b Adjunct Faculty, George Washington University School of Medicine and Health Sciences , Washington , DC , USA
| |
Collapse
|
23
|
Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019; 92:51-60. [PMID: 30458177 DOI: 10.1016/j.metabol.2018.11.009] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Obesity-related disease complications reduce life quality and expectancy and increase health-care costs. Some studies have suggested that obesity not always entails metabolic abnormalities and increased risk of cardiometabolic complications. Because of the lack of universally accepted criteria to identify metabolically healthy obesity (MHO), its prevalence varies widely among studies. Moreover, the prognostic value of MHO is hotly debated, mainly because it likely shifts gradually towards metabolically unhealthy obesity (MUO). In this review, we outline the differential factors contributing to the metabolic heterogeneity of obesity by discussing the behavioral, genetic, phenotypical, and biological aspects associated with each of the two metabolic phenotypes (MHO and MUO) of obesity and their clinical implications. Particular emphasis will be laid on the role of adipose tissue biology and function, including genetic determinants of body fat distribution, depot-specific fat metabolism, adipose tissue plasticity and, particularly, adipogenesis. Finally, the emerging role of gut microbiota in obesity and adipose tissue dysfunction as well as the search for novel biomarkers for the obesity-related metabolic traits and associated diseases will be briefly presented. A better understanding of the main determinants of a healthy metabolic status in obesity would allow promotion of this favorable condition by targeting the relevant pathways.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.
| |
Collapse
|
24
|
Kuhn E, Lamribet K, Viengchareun S, Le Menuet D, Fève B, Lombès M. UCP1 transrepression in Brown Fat in vivo and mineralocorticoid receptor anti-thermogenic effects. ANNALES D'ENDOCRINOLOGIE 2019; 80:1-9. [DOI: 10.1016/j.ando.2018.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022]
|
25
|
de-Lima-Júnior JC, Souza GF, Moura-Assis A, Gaspar RS, Gaspar JM, Rocha AL, Ferrucci DL, Lima TI, Victório SC, Bonfante ILP, Cavaglieri CR, Pareja JC, Brunetto SQ, Ramos CD, Geloneze B, Mori MA, Silveira LR, Segundo GRS, Ropelle ER, Velloso LA. Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine 2018; 39:436-447. [PMID: 30502051 PMCID: PMC6355943 DOI: 10.1016/j.ebiom.2018.11.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. Methods The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. Findings IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. Interpretation IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. Fund Sao Paulo Research Foundation grant 2013/07607-8.
Collapse
Affiliation(s)
- José C de-Lima-Júnior
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Gabriela F Souza
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Rodrigo S Gaspar
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil(.)
| | - Joana M Gaspar
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Danilo L Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil; National Institute of Photonics Applied to Cell Biology (INFABiC), Campinas, São Paulo, Brazil
| | - Tanes I Lima
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Sheila C Victório
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Ivan L P Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Claudia R Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP 13083-970, Brazil
| | - José C Pareja
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro, Department of Surgery, University of Campinas (UNICAMP), Campinas, SP 13081-970, Brazil
| | - Sérgio Q Brunetto
- Biomedical Engineering Center, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Celso D Ramos
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Radiology, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Bruno Geloneze
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro, Department of Surgery, University of Campinas (UNICAMP), Campinas, SP 13081-970, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Gesmar R S Segundo
- Department of Pediatrics, Federal University of Uberlandia, Uberlandia, Brazil
| | - Eduardo R Ropelle
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil; CEPECE - Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil(.)
| | - Lício A Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo 13084-970, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo 13084-970, Brazil.
| |
Collapse
|
26
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
27
|
Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, Liu T, Rosen ED. Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metab 2018; 28:631-643.e3. [PMID: 30078553 PMCID: PMC6170693 DOI: 10.1016/j.cmet.2018.07.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.
Collapse
Affiliation(s)
- Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peng Zhou
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lawrence Kazak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Danielle Tenen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian A Dawes
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara B Kahn
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Institute of Metabolism and Integrative Biology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PR China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, PR China.
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Tyrphostin AG17 inhibits adipocyte differentiation in vivo and in vitro. Lipids Health Dis 2018; 17:128. [PMID: 29843731 PMCID: PMC5975476 DOI: 10.1186/s12944-018-0784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Background Excessive subcutaneous adiposity in obesity is associated to positive white adipocyte tissue (WAT) differentiation (adipogenesis) and WAT expandability. Here, we hypothesized that supplementation with the insulin inhibitor and mitochondrial uncoupler, Tyrphostin (T-AG17), in vitro and in vivo inhibits adipogenesis and adipocyte hypertrophy. Methods We used a 3T3-L1 proadipocyte cell line to identify the potential effect of T-AG17 on adipocyte differentiation and fat accumulation in vitro. We evaluated the safety of T-AG17 and its effects on physiological and molecular metabolic parameters including hormonal profile, glucose levels, adipogenesis and adipocyte hypertrophy in a diet-induced obesity model using C57BL/6 mice. Results We found that T-AG17 is effective in preventing adipogenesis and lipid synthesis in the 3T3-L1 cell line, as evidenced by a significant decrease in oil red staining (p < 0.05). In obese C57BL/6 mice, oral administration of T-AG17 (0.175 mg/kg for 2 weeks) lead to decreased fat accumulation and WAT hypertrophy. Further, T-AG17 induced adipocyte apoptosis by activating caspase-3. In the hepatocytes of obese mice, T-AG17 promoted an increase in the size of lipid inclusions, which was accompanied by glycogen accumulation. T-AG17 did not alter serum biochemistry, including glucose, insulin, leptin, free fatty acids, creatinine, and aspartate aminotransferase. Conclusion T-AG17 promotes adipocyte apoptosis in vivo and is an effective modulator of adipocyte differentiation and WAT hypertrophy in vitro and in vivo. Therefore, T-AG17 may be useful as a pharmacological obesity treatment.
Collapse
|
30
|
Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:79-90. [PMID: 29793055 DOI: 10.1016/j.bbalip.2018.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/10/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.
Collapse
Affiliation(s)
- Sandra Steensels
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Baran A Ersoy
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
31
|
Markussen LK, Winther S, Wicksteed B, Hansen JB. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep 2018; 8:3469. [PMID: 29472592 PMCID: PMC5823915 DOI: 10.1038/s41598-018-21795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2018] [Indexed: 01/23/2023] Open
Abstract
Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. β-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identified glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and β-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. β-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)-dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module. In summary, our data describe GSK3 as a novel negative regulator of β-adrenergic signaling in brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
You Y, Han X, Guo J, Guo Y, Yin M, Liu G, Huang W, Zhan J. Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
33
|
Chung HS, Hwang SY, Choi JH, Lee HJ, Kim NH, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi KM. Implications of circulating Meteorin-like (Metrnl) level in human subjects with type 2 diabetes. Diabetes Res Clin Pract 2018; 136:100-107. [PMID: 29199003 DOI: 10.1016/j.diabres.2017.11.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
AIMS Meteorin-like (Metrnl) was recently identified as a novel adipomyokine induced by exercise and cold exposure. Metrnl improves glucose tolerance, increases systemic energy expenditure, induces white adipose browning, and promotes anti-inflammatory gene programs in obese/diabetic mice. However, the relationship of Metrnl with diabetes and cardiometabolic risk variables in humans has not been explored. METHODS In 800 subjects (400 patients with type 2 diabetes and 400 non-diabetes), Metrnl concentration was measured with an enzyme-linked immunosorbent assay, and the correlations of Metrnl level with anthropometric parameters, lifestyle factors, body composition values, and laboratory measurements were assessed. RESULTS Metrnl concentration was significantly higher in patients with diabetes than in those without diabetes [median (inter-quartile range); diabetes: 1219.9 (1020.6, 1535.6), non-diabetes: 1131.2 (993.1, 1313.6) pg/ml, P < .001]. After adjustment for age and sex, Metrnl level was significantly associated with fasting plasma glucose, blood pressure, lipid profile, and eGFR, but not with BMI or percent body fat. Multiple stepwise regression analysis exhibited that Metrnl level was independently associated with diabetes status (P < .001), eGFR (P < .001), and total cholesterol (P = .026) (R2 = 0.127). In multiple logistic regression analysis, the odds ratio for the risk of diabetes was 3.53 (95% confidence interval: 2.04-6.10) in the highest tertile of Metrnl compared to the lowest after adjustment for confounding factors. CONCLUSIONS This study is the first to demonstrate that Metrnl level is elevated in human subjects with type 2 diabetes and is inversely related to various cardiometabolic risk factors, including renal function.
Collapse
Affiliation(s)
- Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soon Young Hwang
- Department of Biostatistics, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ju Hee Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji-A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Schreiber R, Diwoky C, Schoiswohl G, Feiler U, Wongsiriroj N, Abdellatif M, Kolb D, Hoeks J, Kershaw EE, Sedej S, Schrauwen P, Haemmerle G, Zechner R. Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue. Cell Metab 2017; 26:753-763.e7. [PMID: 28988821 PMCID: PMC5683855 DOI: 10.1016/j.cmet.2017.09.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022]
Abstract
Fatty acids (FAs) activate and fuel UCP1-mediated non-shivering thermogenesis (NST) in brown adipose tissue (BAT). Release of FAs from intracellular fat stores by adipose triglyceride lipase (ATGL) is considered a key step in NST. Accordingly, the severe cold intolerance of global ATGL knockout (AKO) mice has been attributed to defective BAT lipolysis. Here we show that this conclusion is incorrect. We demonstrate that although the BAT-specific loss of ATGL impairs BAT lipolysis and alters BAT morphology, it does not compromise the β3-adrenergic thermogenic response or cold-induced NST. Instead, NST depends on nutrient supply or lipolysis in white adipose tissue during fasting, suggesting that circulating energy substrates are sufficient to fuel NST. Cold intolerance in AKO mice is not caused by BAT dysfunction as previously suspected but by severe cardiomyopathy. We conclude that functional NST requires adequate substrate supply and cardiac function, but does not depend on ATGL-mediated lipolysis in BAT.
Collapse
Affiliation(s)
- Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Ursula Feiler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Dagmar Kolb
- Institute of Cell Biology, Histology, and Embryology, Core Facility of Ultrastructural Analyses, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Joris Hoeks
- Department of Human Biology and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
35
|
Loh RKC, Kingwell BA, Carey AL. Human brown adipose tissue as a target for obesity management; beyond cold-induced thermogenesis. Obes Rev 2017; 18:1227-1242. [PMID: 28707455 DOI: 10.1111/obr.12584] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 02/01/2023]
Abstract
Elevating energy expenditure via adaptive thermogenesis in brown adipose tissue (BAT) is a potential strategy to reverse obesity. Much early enthusiasm for this approach, based on rodent studies, was tempered by the belief that BAT was relatively inconsequential in healthy adult humans. Interest was reinvigorated a decade ago when a series of studies re-identified BAT, primarily in upper thoracic regions, in adults. Despite the ensuing explosion of pre-clinical investigations and identification of an extensive list of potential target molecules for BAT recruitment, our understanding of human BAT physiology remains limited, particularly regarding interventions which might hold therapeutic promise. Cold-induced BAT thermogenesis (CIT) has been well studied, although is not readily translatable as an anti-obesity approach, whereas little is known regarding the role of BAT in human diet-induced thermogenesis (DIT). Furthermore, human studies dedicated to translating known pharmacological mechanisms of adipose browning from animal models are sparse. Several lines of recent evidence suggest that molecular regulation and physiology of human BAT differ to that of laboratory rodents, which form the majority of our knowledge base. This review will summarize knowledge on CIT and expand upon the current understanding and evidence gaps related to human adaptive thermogenesis via mechanisms other than cold.
Collapse
Affiliation(s)
- R K C Loh
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - B A Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - A L Carey
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
36
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
37
|
Mutie PM, Giordano GN, Franks PW. Lifestyle precision medicine: the next generation in type 2 diabetes prevention? BMC Med 2017; 15:171. [PMID: 28934987 PMCID: PMC5609030 DOI: 10.1186/s12916-017-0938-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
The driving force behind the current global type 2 diabetes epidemic is insulin resistance in overweight and obese individuals. Dietary factors, physical inactivity, and sedentary behaviors are the major modifiable risk factors for obesity. Nevertheless, many overweight/obese people do not develop diabetes and lifestyle interventions focused on weight loss and diabetes prevention are often ineffective. Traditionally, chronically elevated blood glucose concentrations have been the hallmark of diabetes; however, many individuals will either remain 'prediabetic' or regress to normoglycemia. Thus, there is a growing need for innovative strategies to tackle diabetes at scale. The emergence of biomarker technologies has allowed more targeted therapeutic strategies for diabetes prevention (precision medicine), though largely confined to pharmacotherapy. Unlike most drugs, lifestyle interventions often have systemic health-enhancing effects. Thus, the pursuance of lifestyle precision medicine in diabetes seems rational. Herein, we review the literature on lifestyle interventions and diabetes prevention, describing the biological systems that can be characterized at scale in human populations, linking them to lifestyle in diabetes, and consider some of the challenges impeding the clinical translation of lifestyle precision medicine.
Collapse
Affiliation(s)
- Pascal M Mutie
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Giuseppe N Giordano
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden.
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden.
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA.
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Tchero H, Herlin C, Bekara F, Kangambega P, Sergiu F, Teot L. Failure rates of artificial dermis products in treatment of diabetic foot ulcer: A systematic review and network meta-analysis. Wound Repair Regen 2017; 25:691-696. [PMID: 28597935 DOI: 10.1111/wrr.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Diabetic foot ulcer (DFU) is a frequent complication in diabetic patients, occurring in up to 25% of those affected. Among the treatments available to clinicians, the use of bioengineered skin substitutes is an attractive alternative. Artificial dermis functions as a matrix, covering the wound and supporting healing and reconstruction of the lost tissue. This study was aimed at reviewing the use of five regeneration matrices (namely, Integra, Nevelia, Matriderm, Pelnac, and Renoskin) as reported by clinical trials. We searched Medline, Embase, ISI Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases for relevant studies. Risk of failure rates was analysed by relative risk ratio method and complete ulcer healing was studied using network meta-analysis. Thirteen studies (12 randomized clinical trials and one cohort study) were eligible for analysis. The network meta-analysis based on a single study for Matriderm and 12 studies for other products showed that Matriderm was statistically inferior in achieving complete ulcer healing, as compared to all other products combined. In the second phase analysis, which was limited to three studies using artificial dermis products, there was a 57% reduction in the risk of reepithelialization failure for DFU patients who used Matriderm or Pelnac, compared to those who used Pelnac with basic fibroblast growth factor spray or skin grafting. The data showed an overall low failure rate suggesting that these bioengineered skin products provide a suitable support and microenvironment for healing of DFUs with low ulcer recurrence rates. This systematic review with meta-analysis highlights the pressing need for more studies investigating the safety, efficacy and failure rates of regeneration matrices in the treatment of DFUs.
Collapse
Affiliation(s)
- Huidi Tchero
- Department of Trauma and Orthopedic Surgery, CH Saint Martin, Guadeloupe, France
| | - Christian Herlin
- Department of Reconstructive and Plastic Surgery, Montpellier, France
| | - Farid Bekara
- Department of Reconstructive and Plastic Surgery, Montpellier, France
| | - Pauline Kangambega
- Department of Division of Diabetes, Endocrinology and Metabolism, CHRU de Pointe-A-Pitre, Pointe-A-Pitre, Guadeloupe, France
| | - Fluieraru Sergiu
- Department of Reconstructive and Plastic Surgery, Montpellier, France
| | - Luc Teot
- Department of Reconstructive and Plastic Surgery, Montpellier, France
| |
Collapse
|
39
|
Okla M, Kim J, Koehler K, Chung S. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis. Adv Nutr 2017; 8:473-483. [PMID: 28507012 PMCID: PMC5421122 DOI: 10.3945/an.116.014332] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentrations, and insulin sensitivity; this suggests that strategies aimed at BAT-mediated bioenergetics are an attractive therapeutic target in combating the continuing epidemic of obesity and diabetes. Despite advances in knowledge regarding the developmental lineage and transcriptional regulators of brown and beige adipocytes, our current understanding of environmental modifiers of BAT thermogenesis, such as diet, is limited. In this review, we consolidated the latest research on dietary molecules that may serve to promote BAT thermogenesis. Here, we summarized the thermogenic function of selected phytochemicals (e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids (e.g., fish oil and conjugated linoleic acids), and all-trans retinoic acid, a vitamin A metabolite. We also delineated the proposed mechanisms whereby these dietary molecules promote BAT activity and/or browning of white adipose tissue. Characterizing thermogenic dietary factors may offer novel insight into revising nutritional intervention strategies aimed at obesity and diabetes prevention and management.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyoung Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| |
Collapse
|
40
|
Abstract
Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- High Field MR CentreDepartment of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and MetabolismDepartment of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Schrauwen P, van Marken Lichtenbelt W. Brown adipose tissue: The magic bullet? Obesity (Silver Spring) 2017; 25:499. [PMID: 28169495 DOI: 10.1002/oby.21749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology and Human Movement Sciences, NUTRIM school for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|