1
|
Sun J, Zhang Y, Adams JA, Higgins CB, Kelly SC, Zhang H, Cho KY, Johnson UG, Swarts BM, Wada SI, Patti GJ, Shriver LP, Finck BN, Herzog ED, DeBosch BJ. Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock. Cell Rep 2024; 43:114865. [PMID: 39412985 PMCID: PMC11601098 DOI: 10.1016/j.celrep.2024.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Organisms integrate circadian and metabolic signals to optimize substrate selection to survive starvation, yet precisely how this occurs is unclear. Here, we show that hepatocyte Period 1 (Per1) is selectively induced during fasting, and mice lacking hepatocyte Per1 fail to initiate autophagic flux, ketogenesis, and lipid accumulation. Transcriptomic analyses show failed induction of the fasting hepatokine Fgf21 in Per1-deficient mice, and single-nucleus multiome sequencing defines a putative responding hepatocyte subpopulation that fails to induce the chromatin accessibility near the Fgf21 locus. In vivo isotopic tracing and indirect calorimetry demonstrate that hepatocyte Per1-deficient mice fail to transit from oxidation of glucose to fat, which is completely reversible by exogenous FGF21 or by inhibiting pyruvate dehydrogenase. Strikingly, disturbing other core circadian genes does not perturb Per1 induction during fasting. We thus describe Per1 as an important mechanism by which hepatocytes integrate internal circadian rhythm and external nutrition signals to facilitate proper fuel utilization.
Collapse
Affiliation(s)
- Jiameng Sun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua A Adams
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon C Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Y Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ulysses G Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Shun-Ichi Wada
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
3
|
Stamou MI, Chiu CJ, Jadhav SV, Lopes VF, Salnikov KB, Plummer L, Lippincott MF, Lee H, Seminara SB, Balasubramanian R. Defective FGFR1 Signaling Disrupts Glucose Regulation: Evidence From Humans With FGFR1 Mutations. J Endocr Soc 2024; 8:bvae118. [PMID: 38957656 PMCID: PMC11216325 DOI: 10.1210/jendso/bvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/04/2024] Open
Abstract
Context Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the β-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher β-cell function in the face of lower insulin sensitivity compared to controls. Conclusion These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Crystal J Chiu
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shreya V Jadhav
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vanessa Ferreira Lopes
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn B Salnikov
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- MGH Biostatistics Center and MGH Division of Clinical Research (DCR) Biostatistics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie B Seminara
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Shah R, Zhong J, Massier L, Tanriverdi K, Hwang SJ, Haessler J, Nayor M, Zhao S, Perry AS, Wilkins JT, Shadyab AH, Manson JE, Martin L, Levy D, Kooperberg C, Freedman JE, Rydén M, Murthy VL. Targeted Proteomics Reveals Functional Targets for Early Diabetes Susceptibility in Young Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004192. [PMID: 38323454 PMCID: PMC10940209 DOI: 10.1161/circgen.123.004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.
Collapse
Affiliation(s)
- Ravi Shah
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Jiawei Zhong
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Lucas Massier
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kahraman Tanriverdi
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Nayor
- Sections of Preventive Medicine & Epidemiology & Cardiovascular Medicine, Dept of Medicine, Dept of Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA & Framingham Heart Study, Framingham, MA
| | | | - Andrew S. Perry
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | | | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health & Human Longevity Science, Univ of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa Martin
- George Washington Univ School of Medicine & Health Sciences
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Jane E. Freedman
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Mikael Rydén
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
5
|
Larson KR, Jayakrishnan D, Soto Sauza KA, Goodson ML, Chaffin AT, Davidyan A, Pathak S, Fang Y, Gonzalez Magaña D, Miller BF, Ryan KK. FGF21 Induces Skeletal Muscle Atrophy and Increases Amino Acids in Female Mice: A Potential Role for Glucocorticoids. Endocrinology 2024; 165:bqae004. [PMID: 38244215 PMCID: PMC10849119 DOI: 10.1210/endocr/bqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Devi Jayakrishnan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Karla A Soto Sauza
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Aki T Chaffin
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Arik Davidyan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95819, USA
| | - Suraj Pathak
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Benjamin F Miller
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Bollenbecker S, Barnes JW, Krick S. Fibroblast Growth Factor Signaling in Development and Disease. Int J Mol Sci 2023; 24:9734. [PMID: 37298683 PMCID: PMC10253427 DOI: 10.3390/ijms24119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Fibroblast growth factors (FGFs) and their cognate receptors (FGFRs) are important biological molecules with a wide array of pleiotropic functions [...].
Collapse
Affiliation(s)
| | | | - Stefanie Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.B.); (J.W.B.)
| |
Collapse
|
7
|
Li Z, Zhang X, Zhu W, Zhang C, Sadak K, Halberstam AA, Brown JR, Perry CJ, Bunn A, Braun DA, Adeniran A, Lee S, Wang A, Perry RJ. FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536558. [PMID: 37090652 PMCID: PMC10120688 DOI: 10.1101/2023.04.12.536558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metabolic homeostasis is one of the most exquisitely tuned systems in mammalian physiology. Metabolic homeostasis requires multiple redundant systems to cooperate to maintain blood glucose concentrations in a narrow range, despite a multitude of physiological and pathophysiological pressures. Cancer is one of the canonical pathophysiological settings in which metabolism plays a key role. In this study, we utilized REnal Gluconeogenesis Analytical Leads (REGAL), a liquid chromatography-mass spectrometry/mass spectrometry-based stable isotope tracer method that we developed to show that in conditions of metabolic stress, the fasting hepatokine fibroblast growth factor-21 (FGF-21)1,2 coordinates a liver-brain-kidney axis to promote renal gluconeogenesis. FGF-21 promotes renal gluconeogenesis by enhancing β2 adrenergic receptor (Adrb2)-driven, adipose triglyceride lipase (ATGL)-mediated intrarenal lipolysis. Further, we show that this liver-brain-kidney axis promotes gluconeogenesis in the renal parenchyma in mice and humans with renal cell carcinoma (RCC). This increased gluconeogenesis is, in turn, associated with accelerated RCC progression. We identify Adrb2 blockade as a new class of therapy for RCC in mice, with confirmatory data in human patients. In summary, these data reveal a new metabolic function of FGF-21 in driving renal gluconeogenesis, and demonstrate that inhibition of renal gluconeogenesis by FGF-21 antagonism deserves attention as a new therapeutic approach to RCC.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Xinyi Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Wanling Zhu
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Cuiling Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Katherine Sadak
- Department of Internal Medicine, Yale University School of Medicine
| | - Alexandra A Halberstam
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Jason R Brown
- Department of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center
- Case Western Reserve University
| | - Curtis J Perry
- Department of Internal Medicine, Yale University School of Medicine
| | - Azia Bunn
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | - David A Braun
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | | | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine
| | - Andrew Wang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| |
Collapse
|
8
|
Cui X, Feng J, Wei T, Zhang L, Lang S, Yang K, Yang J, Liu J, Sterr M, Lickert H, Wei R, Hong T. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66:535-550. [PMID: 36331598 PMCID: PMC9892158 DOI: 10.1007/s00125-022-05822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Wäse K, Bartels T, Schwahn U, Kabiri M. Investigation of the Proliferative Potential of FGF21 or FGF19 in Liver-Specific FGFR4-Deficient Mice. Toxicol Pathol 2023; 51:27-38. [PMID: 37098695 DOI: 10.1177/01926233231164097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Fibroblast growth factor 21 (FGF21) and FGF15/FGF19 belong to the same subgroup of FGFs and are believed to have therapeutic potential in the treatment of type 2 diabetes and associated metabolic dysfunctionalities and pathological conditions. FGF19 has been proposed to induce hyperplasia and liver tumors in FVB mice (named after its susceptibility to Friend leukemia virus B), mediated by the FGF receptor 4 (FGFR4). The goal of this work was to investigate whether FGF21 might also have a potential proliferative effect mediated via FGFR4 using liver-specific Fgfr4 knockout (KO) mice. We conducted a mechanistic 7-day study involving female Fgfr4 fl/fl and Fgfr4 KO mice with a treatment regimen of twice daily or daily subcutaneous injections of FGF21 or FGF19 (positive control), respectively. The Ki-67 liver labeling index (LI) was evaluated by a semi-automated bioimaging analysis. The results showed a statistically significant increase in FGF21- and FGF19-treated Fgfr4 fl/fl mice. Interestingly, in Fgfr4 KO mice, this effect was absent following both treatments of FGF19 and FGF21, indicating that not only the FGFR4 receptor is pivotal for the mediation of hepatocellular proliferation by FGF19 leading finally to liver tumors but it seems also that FGFR4/FGF21 signaling has an impact on the hepatocellular proliferative activity, which does not promote the formation of hepatocellular liver tumors based on the current knowledge.
Collapse
Affiliation(s)
- Kerstin Wäse
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Uwe Schwahn
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | |
Collapse
|
10
|
Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. Int J Biol Sci 2023; 19:66-88. [PMID: 36594101 PMCID: PMC9760446 DOI: 10.7150/ijbs.73936] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular and metabolic disease (CVMD) is becoming increasingly prevalent in developed and developing countries with high morbidity and mortality. In recent years, fibroblast growth factor 21 (FGF21) has attracted intensive research interest due to its purported role as a potential biomarker and critical player in CVMDs, including atherosclerosis, coronary artery disease, myocardial infarction, hypoxia/reoxygenation injury, heart failure, type 2 diabetes, obesity, and nonalcoholic steatohepatitis. This review summarizes the recent developments in investigating the role of FGF21 in CVMDs and explores the mechanism whereby FGF21 regulates the development of CVMDs. Novel molecular targets and related pathways of FGF21 (adenosine 5'-monophosphate-activated protein kinase, silent information regulator 1, autophagy-related molecules, and gut microbiota-related molecules) are highlighted in this review. Considering the poor pharmacokinetics and biophysical properties of native FGF21, the development of new generations of FGF21-based drugs has tremendous therapeutic potential. Related preclinical and clinical studies are also summarized in this review to foster clinical translation. Thus, our review provides a timely and insightful overview of the physiology, biomarker potential, molecular targets, and therapeutic potential of FGF21 in CVMDs.
Collapse
Affiliation(s)
- Huiling Tan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tong Yue
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.,✉ Corresponding authors: E-mail: ;
| |
Collapse
|
11
|
Liu Y, Chen Q, Li Y, Bi L, He Z, Shao C, Jin L, Peng R, Zhang X. Advances in FGFs for diabetes care applications. Life Sci 2022; 310:121015. [PMID: 36179818 DOI: 10.1016/j.lfs.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is an endocrine and metabolic disease caused by a variety of pathogenic factors, including genetic factors, environmental factors and behavior. In recent decades, the number of cases and the prevalence of diabetes have steadily increased, and it has become one of the most threatening diseases to human health in the world. Currently, insulin is the most effective and direct way to control hyperglycemia for diabetes treatment at a low cost. However, hypoglycemia is often a common complication of insulin treatment. Moreover, with the extension of treatment time, insulin resistance, considered the typical adverse symptom, can appear. Therefore, it is urgent to develop new targets and more effective and safer drugs for diabetes treatment to avoid adverse reactions and the insulin tolerance of traditional hypoglycemic drugs. SCOPE OF REVIEW In recent years, it has been found that some fibroblast growth factors (FGFs), including FGF1, FGF19 and FGF21, can safely and effectively reduce hyperglycemia and have the potential to be developed as new drugs for the treatment of diabetes. FGF23 is also closely related to diabetes and its complications, which provides a new approach for regulating blood glucose and solving the problem of insulin tolerance. MAJOR CONCLUSIONS This article reviews the research progress on the physiology and pharmacology of fibroblast growth factor in the treatment of diabetes. We focus on the application of FGFs in diabetes care and prevention.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Zhang Z, Diao P, Zhang X, Nakajima T, Kimura T, Tanaka N. Clinically Relevant Dose of Pemafibrate, a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα), Lowers Serum Triglyceride Levels by Targeting Hepatic PPARα in Mice. Biomedicines 2022; 10:biomedicines10071667. [PMID: 35884970 PMCID: PMC9313206 DOI: 10.3390/biomedicines10071667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pemafibrate (PEM) is a novel lipid-lowering drug classified as a selective peroxisome proliferator-activated receptor α (PPARα) modulator whose binding efficiency to PPARα is superior to that of fibrates. This agent is also useful for non-alcoholic fatty liver disease and primary biliary cholangitis with dyslipidemia. The dose of PEM used in some previous mouse experiments is often much higher than the clinical dose in humans; however, the precise mechanism of reduced serum triglyceride (TG) for the clinical dose of PEM has not been fully evaluated. To address this issue, PEM at a clinically relevant dose (0.1 mg/kg/day) or relatively high dose (0.3 mg/kg/day) was administered to male C57BL/6J mice for 14 days. Clinical dose PEM sufficiently lowered circulating TG levels without apparent hepatotoxicity in mice, likely due to hepatic PPARα stimulation and the enhancement of fatty acid uptake and β-oxidation. Interestingly, PPARα was activated only in the liver by PEM and not in other tissues. The clinical dose of PEM also increased serum/hepatic fibroblast growth factor 21 (FGF21) without enhancing hepatic lipid peroxide 4-hydroxynonenal or inflammatory signaling. In conclusion, a clinically relevant dose of PEM in mice efficiently and safely reduced serum TG and increased FGF21 targeting hepatic PPARα. These findings may help explain the multiple beneficial effects of PEM observed in the clinical setting.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Z.Z.); (P.D.); (X.Z.); (T.N.)
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Z.Z.); (P.D.); (X.Z.); (T.N.)
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Z.Z.); (P.D.); (X.Z.); (T.N.)
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Z.Z.); (P.D.); (X.Z.); (T.N.)
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
- Correspondence: ; Tel.: +81-263-37-2851
| |
Collapse
|
13
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
14
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
15
|
Porflitt-Rodríguez M, Guzmán-Arriagada V, Sandoval-Valderrama R, Tam CS, Pavicic F, Ehrenfeld P, Martínez-Huenchullán S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 2022; 129:155137. [PMID: 35038422 DOI: 10.1016/j.metabol.2022.155137] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been suggested to improve metabolism during aerobic exercise in obesity. However, the variability of exercise interventions gives rise to discrepancies in the field. Therefore, we aimed to systematically review the available literature regarding the effects of aerobic exercise on FGF21 in the context of overweight and obesity. Our search included original articles published between 2009 and November 2021 found in PubMed, Science Direct, and Medline. Clinical and preclinical studies were included. Studies, where subjects or animals presented with other conditions (e.g., cancer, stroke), were excluded. From an initial 43 studies, 19 (clinical studies = 9; preclinical studies = 10) were eligible for inclusion in this review. The main findings were that acute exercise tended to increase circulatory levels of FGF21. In contrast, chronic exercise programs (≥4 weeks) had the opposite effect along with inducing mRNA and protein increases of FGF receptors and β-klotho in adipose tissue, liver, and skeletal muscle. In conclusion, both clinical and preclinical studies showed that aerobic exercise exerts changes in circulatory and tissue FGF21, along with its receptors and co-receptor. Future research is needed to elucidate the mechanisms, along with the physiological and clinical implications of these changes.
Collapse
Affiliation(s)
| | | | | | - Charmaine S Tam
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Francisca Pavicic
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Sergio Martínez-Huenchullán
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile; Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
16
|
Zhao L, Wu T, Li J, Cai C, Yao Q, Zhu YS. Data-independent acquisition-based proteomics analysis correlating type 2 diabetes mellitus with osteoarthritis in total knee arthroplasty patients. Medicine (Baltimore) 2022; 101:e28738. [PMID: 35119024 PMCID: PMC8812634 DOI: 10.1097/md.0000000000028738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To explore the effects of type 2 diabetes mellitus (T2DM) on osteoarthritis (OA), 12 bone tissue samples were obtained surgically from the human total knee arthroplasty patients and analyzed by quantitative proteomics. METHODS Based on patient clinical histories, patient samples were assigned to diabetes mellitus osteoarthritis (DMOA) and OA groups. A data-independent acquisition method for data collection was used with proteomic data analysis to assess intergroup proteomic differences. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis were used to further find the correlation between T2DM and OA. RESULTS GO functional analysis found 153 differentially expressed proteins between DMOA and OA groups, of which 92 differentially expressed proteins were significantly up-regulated and 61 were significantly down-regulated. Kyoto Encyclopedia of Genes and Genome pathway analysis found 180 pathways, including 9 pathways significantly enriched. Further data analysis revealed that 6 signaling pathways were closely associated with T2DM and OA. CONCLUSION OA and DMOA onset and progression were closely related to synthesis and metabolism of extracellular matrix components (e.g., fibronectin, decorin, etc.). The effects of T2DM on OA occur though 2 major ways of oxidative stress and low-grade chronic inflammation, involving in 2 inhibited signaling pathways and 4 activated signaling pathways.
Collapse
Affiliation(s)
- Lulu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, PR China
| | - Tong Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, PR China
| | - Jiayi Li
- Department of Orthopedic Surgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Chunyan Cai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, PR China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
17
|
Fibroblast Growth Factor 21 (FGF21) Administration Sex-Specifically Affects Blood Insulin Levels and Liver Steatosis in Obese Ay Mice. Cells 2021; 10:cells10123440. [PMID: 34943946 PMCID: PMC8700098 DOI: 10.3390/cells10123440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
FGF21 is a promising candidate for treating obesity, diabetes, and NAFLD; however, some of its pharmacological effects are sex-specific in mice with the Ay mutation that evokes melanocortin receptor 4 blockade, obesity, and hepatosteatosis. This suggests that the ability of FGF21 to correct melanocortin obesity may depend on sex. This study compares FGF21 action on food intake, locomotor activity, gene expression, metabolic characteristics, and liver state in obese Ay males and females. Ay mice were administered FGF21 for seven days, and metabolic parameters and gene expression in different tissues were assessed. Placebo-treated females were more obese than males and had lower levels of blood insulin and liver triglycerides, and higher expression of genes for insulin signaling in the liver, white adipose tissue (WAT) and muscles, and pro-inflammatory cytokines in the liver. FGF21 administration did not affect body weight, and increased food intake, locomotor activity, expression of Fgf21 and Ucp1 in brown fat and genes related to lipolysis and insulin action in WAT regardless of sex; however, it decreased hyperinsulinemia and hepatic lipid accumulation and increased muscle expression of Cpt1 and Irs1 only in males. Thus, FGF21’s beneficial effects on metabolic disorders associated with melanocortin obesity are more pronounced in males.
Collapse
|
18
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
19
|
Zhang X, Lv S, Luo Z, Hu Y, Peng X, Lv J, Zhao S, Feng J, Huang G, Wan QL, Liu J, Huang H, Luan B, Wang D, Zhao X, Lin Y, Zhou Q, Zhang ZN, Rong Z. MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression in vivo. Nucleic Acids Res 2021; 49:4171-4185. [PMID: 33751124 PMCID: PMC8053112 DOI: 10.1093/nar/gkab174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
CRISPR-mediated gene activation (CRISPRa) is a promising therapeutic gene editing strategy without inducing DNA double-strand breaks (DSBs). However, in vivo implementation of these CRISPRa systems remains a challenge. Here, we report a compact and robust miniCas9 activator (termed miniCAFE) for in vivo activation of endogenous target genes. The system relies on recruitment of an engineered minimal nuclease-null Cas9 from Campylobacter jejuni and potent transcriptional activators to a target locus by a single guide RNA. It enables robust gene activation in human cells even with a single DNA copy and is able to promote lifespan of Caenorhabditis elegans through activation of longevity-regulating genes. As proof-of-concept, delivered within an all-in-one adeno-associated virus (AAV), miniCAFE can activate Fgf21 expression in the liver and regulate energy metabolism in adult mice. Thus, miniCAFE holds great therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sihan Lv
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhenhuan Luo
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xin Peng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin-Li Wan
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
20
|
Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021; 184:26-39. [PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, 94300, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
21
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2021; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
- *Correspondence: Laura J. den Hartigh,
| |
Collapse
|
22
|
Keinicke H, Sun G, Mentzel CMJ, Fredholm M, John LM, Andersen B, Raun K, Kjaergaard M. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr Connect 2020; 9:755-768. [PMID: 32688339 PMCID: PMC7424338 DOI: 10.1530/ec-20-0152] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).
Collapse
Affiliation(s)
- Helle Keinicke
- Insulin and Device Trial Operations, Novo Nordisk A/S, Søborg, Denmark
| | - Gao Sun
- Pharmacology and Histopathology, Novo Nordisk A/S, China
| | - Caroline M Junker Mentzel
- Department of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Linu Mary John
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Birgitte Andersen
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Kirsten Raun
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Marina Kjaergaard
- Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
- Correspondence should be addressed to M Kjaergaard:
| |
Collapse
|
23
|
Catalina MOS, Redondo PC, Granados MP, Cantonero C, Sanchez-Collado J, Albarran L, Lopez JJ. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem 2019; 26:4119-4144. [PMID: 29210636 DOI: 10.2174/0929867325666171205162248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.
Collapse
Affiliation(s)
| | - Pedro C Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Maria P Granados
- Aldea Moret's Medical Center, Extremadura Health Service, 10195-Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
24
|
Lewis JE, Monnier C, Marshall H, Fowler M, Green R, Cooper S, Chiotellis A, Luckett J, Perkins AC, Coskun T, Adams AC, Samms RJ, Ebling FJP, Tsintzas K. Whole-body and adipose tissue-specific mechanisms underlying the metabolic effects of fibroblast growth factor 21 in the Siberian hamster. Mol Metab 2019; 31:45-54. [PMID: 31918921 PMCID: PMC6889485 DOI: 10.1016/j.molmet.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. Methods We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. Results Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. Conclusions These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis. FGF21 increases glucose and lipid uptake in adipose tissue. The selective FGF21-induced increase in lipid uptake in BAT may fuel thermogenesis. Unlike BAT, glucose uptake in WAT may be used for lipogenesis.
Collapse
Affiliation(s)
- Jo E Lewis
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, CB0 0QQ, UK
| | - Chloe Monnier
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Hayley Marshall
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Rebecca Green
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Aristeidis Chiotellis
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Jeni Luckett
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Tamer Coskun
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Andrew C Adams
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Ricardo J Samms
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Kostas Tsintzas
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK.
| |
Collapse
|
25
|
Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH. Nutrients 2019; 11:nu11112709. [PMID: 31717358 PMCID: PMC6893460 DOI: 10.3390/nu11112709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.
Collapse
|
26
|
Alemán G, Castro AL, Vigil-Martínez A, Torre-Villalvazo I, Díaz-Villaseñor A, Noriega LG, Medina-Vera I, Ordáz G, Torres N, Tovar AR. Interaction between the amount of dietary protein and the environmental temperature on the expression of browning markers in adipose tissue of rats. GENES AND NUTRITION 2019; 14:19. [PMID: 31178938 PMCID: PMC6549346 DOI: 10.1186/s12263-019-0642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
Background A low-protein diet increases the expression and circulating concentration of FGF21. FGF21 stimulates the browning process of WAT by enhancing the expression of UCP1 coupled with an increase in PGC1α. Interestingly, the consumption of a low-protein diet could stimulate WAT differentiation into beige/brite cells by increasing FGF21 expression and Ucp1 mRNA abundance. However, whether the stimulus of a low-protein diet on WAT browning can synergistically interact with another browning stimulus, such as cold exposure, remains elusive. Results In the present study, rats were fed 6% (low), 20% (adequate), or 50% (high) dietary protein for 10 days and subsequently exposed to 4 °C for 72 h. Body weight, food intake, and energy expenditure were measured, as well as WAT browning and BAT thermogenesis markers and FGF21 circulating levels. The results showed that during cold exposure, the consumption of a high-protein diet reduced UCP1, TBX1, Cidea, Cd137, and Prdm16 in WAT when compared with the consumption of a low-protein diet. In contrast, at room temperature, a low-protein diet increased the expression of UCP1, Cidea, and Prdm16 associated with an increase in FGF21 expression and circulating levels when compared with a consumption of a high-protein diet. Consequently, the consumption of a low-protein diet increased energy expenditure. Conclusions These results indicate that in addition to the environmental temperature, WAT browning is nutritionally modulated by dietary protein, affecting whole-body energy expenditure. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gabriela Alemán
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ana Laura Castro
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ana Vigil-Martínez
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Ivan Torre-Villalvazo
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Andrea Díaz-Villaseñor
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico.,2Instituto de Investigaciones Biomédicas, UNAM, 04510 Mexico City, Mexico
| | - Lilia G Noriega
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Isabel Medina-Vera
- 3Department of Research Methodology, Instituto Nacional de Pediatría, 04530 Mexico City, Mexico
| | - Guillermo Ordáz
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Nimbe Torres
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| | - Armando R Tovar
- 1Department of Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, 14080 México, D.F, Mexico
| |
Collapse
|
27
|
Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, Marcó S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferré T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 2019; 10:emmm.201708791. [PMID: 29987000 PMCID: PMC6079533 DOI: 10.15252/emmm.201708791] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Darriba
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Rodó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ignasi Grass
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Tura Ferré
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sandra Motas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sylvie Franckhauser
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Francisca Mulero
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marc Navarro
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain .,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
28
|
Esler WP, Bence KK. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2019; 8:247-267. [PMID: 31004828 PMCID: PMC6698700 DOI: 10.1016/j.jcmgh.2019.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
The prevalence and diagnosis of nonalcoholic fatty liver disease (NAFLD) is on the rise worldwide and currently has no FDA-approved pharmacotherapy. The increase in disease burden of NAFLD and a more severe form of this progressive liver disease, nonalcoholic steatohepatitis (NASH), largely mirrors the increase in obesity and type 2 diabetes (T2D) and reflects the hepatic manifestation of an altered metabolic state. Indeed, metabolic syndrome, defined as a constellation of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension, is the major risk factor predisposing the NAFLD and NASH. There are multiple potential pharmacologic strategies to rebalance aspects of disordered metabolism in NAFLD. These include therapies aimed at reducing hepatic steatosis by directly modulating lipid metabolism within the liver, inhibiting fructose metabolism, altering delivery of free fatty acids from the adipose to the liver by targeting insulin resistance and/or adipose metabolism, modulating glycemia, and altering pleiotropic metabolic pathways simultaneously. Emerging data from human genetics also supports a role for metabolic drivers in NAFLD and risk for progression to NASH. In this review, we highlight the prominent metabolic drivers of NAFLD pathogenesis and discuss the major metabolic targets of NASH pharmacotherapy.
Collapse
Key Words
- acc, acetyl-coa carboxylase
- alt, alanine aminotransferase
- aso, anti-sense oligonucleotide
- ast, aspartate aminotransferase
- chrebp, carbohydrate response element binding protein
- ci, confidence interval
- dgat, diacylglycerol o-acyltransferase
- dnl, de novo lipogenesis
- fas, fatty acid synthase
- ffa, free fatty acid
- fgf, fibroblast growth factor
- fxr, farnesoid x receptor
- glp-1, glucagon-like peptide-1
- hdl, high-density lipoprotein
- homa-ir, homeostatic model assessment of insulin resistance
- ldl, low-density lipoprotein
- nafld, nonalcoholic fatty liver disease
- nas, nonalcoholic fatty liver disease activity score
- nash, nonalcoholic steatohepatitis
- or, odds ratio
- pdff, proton density fat fraction
- ppar, peroxisome proliferator-activated receptor
- sglt2, sodium glucose co-transporter 2
- srebp-1c, sterol regulatory element binding protein-1c
- t2d, type 2 diabetes
- t2dm, type 2 diabetes mellitus
- tg, triglyceride
- th, thyroid hormone
- thr, thyroid hormone receptor
- treg, regulatory t cells
- tzd, thiazolidinedione
- vldl, very low-density lipoprotein
Collapse
Affiliation(s)
- William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts.
| |
Collapse
|
29
|
Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice. Nutr Diabetes 2019; 9:9. [PMID: 30858378 PMCID: PMC6411991 DOI: 10.1038/s41387-019-0077-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-ε-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.
Collapse
|
30
|
Castaño-Martinez T, Schumacher F, Schumacher S, Kochlik B, Weber D, Grune T, Biemann R, McCann A, Abraham K, Weikert C, Kleuser B, Schürmann A, Laeger T. Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB J 2019; 33:7092-7102. [PMID: 30841758 PMCID: PMC6529347 DOI: 10.1096/fj.201900150r] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary methionine restriction (MR) is well known to reduce body weight by increasing energy expenditure (EE) and insulin sensitivity. An elevated concentration of circulating fibroblast growth factor 21 (FGF21) has been implicated as a potential underlying mechanism. The aims of our study were to test whether dietary MR in the context of a high-fat regimen protects against type 2 diabetes in mice and to investigate whether vegan and vegetarian diets, which have naturally low methionine levels, modulate circulating FGF21 in humans. New Zealand obese (NZO) mice, a model for polygenic obesity and type 2 diabetes, were placed on isocaloric high-fat diets (protein, 16 kcal%; carbohydrate, 52 kcal%; fat, 32 kcal%) that provided methionine at control (Con; 0.86% methionine) or low levels (0.17%) for 9 wk. Markers of glucose homeostasis and insulin sensitivity were analyzed. Among humans, low methionine intake and circulating FGF21 levels were investigated by comparing a vegan and a vegetarian diet to an omnivore diet and evaluating the effect of a short-term vegetarian diet on FGF21 induction. In comparison with the Con group, MR led to elevated plasma FGF21 levels and prevented the onset of hyperglycemia in NZO mice. MR-fed mice exhibited increased insulin sensitivity, higher plasma adiponectin levels, increased EE, and up-regulated expression of thermogenic genes in subcutaneous white adipose tissue. Food intake and fat mass did not change. Plasma FGF21 levels were markedly higher in vegan humans compared with omnivores, and circulating FGF21 levels increased significantly in omnivores after 4 d on a vegetarian diet. These data suggest that MR induces FGF21 and protects NZO mice from high-fat diet–induced glucose intolerance and type 2 diabetes. The normoglycemic phenotype in vegans and vegetarians may be caused by induced FGF21. MR akin to vegan and vegetarian diets in humans may offer metabolic benefits via increased circulating levels of FGF21 and merits further investigation.—Castaño-Martinez, T., Schumacher, F., Schumacher, S., Kochlik, B., Weber, D., Grune, T., Biemann, R., McCann, A., Abraham, K., Weikert, C., Kleuser, B., Schürmann, A., Laeger, T. Methionine restriction prevents onset of type 2 diabetes in NZO mice.
Collapse
Affiliation(s)
- Teresa Castaño-Martinez
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Silke Schumacher
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Ronald Biemann
- Institute for Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany; and
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany; and
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Thomas Laeger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany
| |
Collapse
|
31
|
Hill CM, Berthoud HR, Münzberg H, Morrison CD. Homeostatic sensing of dietary protein restriction: A case for FGF21. Front Neuroendocrinol 2018; 51:125-131. [PMID: 29890191 PMCID: PMC6175661 DOI: 10.1016/j.yfrne.2018.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Restriction of dietary protein intake increases food intake and energy expenditure, reduces growth, and alters amino acid, lipid, and glucose metabolism. While these responses suggest that animals 'sense' variations in amino acid consumption, the basic physiological mechanism mediating the adaptive response to protein restriction has been largely undescribed. In this review we make the case that the liver-derived metabolic hormone FGF21 is the key signal which communicates and coordinates the homeostatic response to dietary protein restriction. Support for this model centers on the evidence that FGF21 is induced by the restriction of dietary protein or amino acid intake and is required for adaptive changes in metabolism and behavior. FGF21 occupies a unique endocrine niche, being induced when energy intake is adequate but protein and carbohydrate are imbalanced. Collectively, the evidence thus suggests that FGF21 is the first known endocrine signal of dietary protein restriction.
Collapse
Affiliation(s)
- Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | |
Collapse
|
32
|
Zhang J, Weng W, Wang K, Lu X, Cai L, Sun J. The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci 2018; 14:1000-1011. [PMID: 29989062 PMCID: PMC6036735 DOI: 10.7150/ijbs.25026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Data from the International Diabetes Federation show that 347 million people worldwide have diabetes, and the incidence is still rising. Although the treatment of diabetes has been advanced, the current therapeutic options and outcomes, e.g. complications, are yet far from ideal. Therefore, an urgent need exists for the development of more effective therapies. Numerous studies have been conducted to establish and confirm whether FGF21 exerts beneficial effects on obesity and diabetes along with its complications. However, most of the studies associated with FGF21 were conducted in the patients with type 2 diabetes. Subsequently, the effect of FGF21 in the prevention or treatment of type 1 diabetes and its complications were also increasingly reported. In this review, we summarize the findings available on the function of FGF21 and the status of FGF21's treatment for type 1 diabetes. Based on the available information, we found that FGF21 exerts a hypoglycemic effect, restores the function of brown fat, and inhibits various complications in type 1 diabetes patients. Although these features are predominantly similar to those observed in the studies that showed the beneficial impact of FGF21 on type 2 diabetes and its complications, there are also certain distinct features and findings that may be of provide important and instructive for us to understand mechanistic insights and further promote the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China.,Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Wenya Weng
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Kai Wang
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Lu Cai
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Jian Sun
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Laeger T, Castaño-Martinez T, Werno MW, Japtok L, Baumeier C, Jonas W, Kleuser B, Schürmann A. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes. Diabetologia 2018; 61:1459-1469. [PMID: 29550873 PMCID: PMC6449005 DOI: 10.1007/s00125-018-4595-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. METHODS We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. RESULTS Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. CONCLUSION/INTERPRETATION Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Teresa Castaño-Martinez
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin W Werno
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
34
|
Choi HS, Lee HA, Kim SW, Cho EH. Association between Serum Fibroblast Growth Factor 21 Levels and Bone Mineral Density in Postmenopausal Women. Endocrinol Metab (Seoul) 2018; 33:273-277. [PMID: 29947182 PMCID: PMC6021318 DOI: 10.3803/enm.2018.33.2.273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the beneficial effect of fibroblast growth factor 21 (FGF21) on metabolic disease, there are concerns about adverse effects on bone metabolism, supported by animal studies. However, a recent human study showed the positive association between serum FGF21 level and bone mineral density (BMD) in healthy premenopausal women. We undertook this study to examine the association between FGF21 level and BMD in healthy postmenopausal Korean women who are susceptible to osteoporosis. METHODS We used data of 115 participants from a cohort of healthy postmenopausal women (>50 years old) to examine the association between serum FGF21 level and BMD. The clinical characteristics were obtained from the participants, and blood testing and serum FGF21 testing were undertaken. BMD of the lumbar spine, femoral neck and total hip area, and bone markers were used in the analyses. RESULTS The mean age of the participants was 60.2±7.2 years. Serum FGF21 levels showed negative correlation with BMD and T-scores in all three areas, but there were no statistically significant differences. Multivariate analyses with adjustment for age and body mass index also did not show significant association between serum FGF21 level and BMD. In addition, serum FGF21 level also showed no correlation with osteocalcin and C-telopeptide levels. CONCLUSION In our study, serum FGF21 level showed no significant correlation with BMD and T-scores.
Collapse
Affiliation(s)
- Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyang Ah Lee
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
35
|
Yin J, Ren W, Huang X, Li T, Yin Y. Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:256-262. [PMID: 29596961 DOI: 10.1016/j.bbcan.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers.
Collapse
Affiliation(s)
- Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xingguo Huang
- Department of Animal science, Hunan Agriculture University, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
36
|
Auer MK, Ebert T, Pietzner M, Defreyne J, Fuss J, Stalla GK, T'Sjoen G. Effects of Sex Hormone Treatment on the Metabolic Syndrome in Transgender Individuals: Focus on Metabolic Cytokines. J Clin Endocrinol Metab 2018; 103:790-802. [PMID: 29216353 DOI: 10.1210/jc.2017-01559] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
CONTEXT Hormonal treatment in transgender persons affects many components of the metabolic syndrome (MS). OBJECTIVE To determine the role of direct hormonal effects, changes in metabolic cytokines, and body composition on metabolic outcomes. DESIGN, SETTING, AND PARTICIPANTS 24 transwomen and 45 transmen from the European Network for the Investigation of Gender Incongruence were investigated at baseline and after 12 months of hormonal therapy. OUTCOME MEASURES Best predictors for changes in components of MS, applying least absolute shrinkage and selection operator regression. RESULTS In transwomen, a decrease in triglyceride levels was best explained by a decrease in fat mass and an increase in fibroblast growth factor 21 (FGF-21); the decrease in total and low-density lipoprotein cholesterol levels was principally due to a decrease in resistin. A decrease in high-density lipoprotein cholesterol depended on an inverse association with fat mass. In contrast, in transmen, an increase in low-density lipoprotein cholesterol was predicted by a decrease in FGF-21 and an increase in the waist/hip ratio; a decrease in the high-density lipoprotein/total cholesterol ratio depended on a decline in adiponectin levels. In transwomen, worsened insulin resistance and increased early insulin response seemed to be due to a direct treatment effect; however, improvements in hepatic insulin sensitivity in transmen were best predicted by a positive association with chemerin, resistin, and FGF-21 and were inversely related to changes in the waist/hip ratio and leptin and adipocyte fatty acid-binding protein levels. CONCLUSIONS The effects of hormonal therapy on different components of the MS are sex-specific and involve a complex interplay of direct hormonal effects, changes in body composition, and metabolic cytokine secretion.
Collapse
Affiliation(s)
- Matthias K Auer
- Endocrinology, Diabetology and Internal Medicine, Max Planck Institute of Psychiatry, Munich, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Ebert
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Justine Defreyne
- Department of Endocrinology and Center of Sexology and Gender, Ghent University Hospital, Ghent, Belgium
| | - Johannes Fuss
- Human Behavior Laboratory, Institute of Sex Research and Forensic Psychiatry, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Günter K Stalla
- Endocrinology, Diabetology and Internal Medicine, Max Planck Institute of Psychiatry, Munich, Germany
| | - Guy T'Sjoen
- Department of Endocrinology and Center of Sexology and Gender, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|