1
|
Macedo PE, Batista JES, Souza LR, Dafre AL, Farina M, Kuca K, Posser T, Pinto PM, Boldo JT, Franco JL. Drosophila melanogaster as a model organism for screening acetylcholinesterase reactivators. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:953-972. [PMID: 39292449 DOI: 10.1080/15287394.2024.2401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The widely used insecticide chlorpyrifos (CP) is known to inhibit acetylcholinesterase (AChE) activity attributed to result in various neurological disorders and acetylcholine-dependent organ functions including heart, skeletal muscle, lung, gastrointestinal tract, and central nervous systems. Enzyme reactivators, such as oximes, are known to restore AChE activity and mitigate adverse effects. The identification of compounds that reactivate AChE constitute agents with important therapeutic beneficial effects in cases of pesticide poisoning. However, the screening of novel drugs using traditional models may raise ethical concerns. This study aimed to investigate the potential of Drosophila melanogaster as a model organism for screening AChE reactivators, with a focus on organophosphate poisoning. The efficacy of several oximes, including pralidoxime, trimedoxime, obidoxime, methoxime, HI-6, K027, and K048, against CP-induced AChE activity inhibition in D. melanogaster was determined in silico, in vitro, and in vivo experiments. Molecular docking studies indicated a strong interaction between studied oximes and the active-site gorge of AChE. Data showed that selected oximes (100 μM) are effective in the reactivation of AChE inhibited by CP (10 μM) in vitro. Finally, in vivo investigations demonstrated that selected oximes, pralidoxime and K048 (1.5 ppm), reversed the locomotor deficits, inhibition of AChE activity as well as lowered the mortality rates induced by CP (0.75 ppm). Our findings contribute to utilization of D. melanogaster as a robust model for determination of actions of identified new AChE inhibitory agents with more effective therapeutic properties that those currently in use in the clinical practice in treatment of AChE associated disorders.
Collapse
Affiliation(s)
- Pablo Echeverria Macedo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | | | - Lorena Raspanti Souza
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thais Posser
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Paulo Marcos Pinto
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Juliano Tomazzoni Boldo
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Interdisciplinary Center for Biotechnology Research, Federal University of Pampa, São Gabriel, Brazil
| |
Collapse
|
2
|
Springer F, Freisleben M, Muschik S, Kohl M, Worek F, Meinel L, Seeger T, Niessen KV. Development of a scintillation proximity assay for [ 3H]epibatidine binding sites of Tetronarce californica muscle-type nicotinic acetylcholine receptor. Toxicol Lett 2024; 401:108-115. [PMID: 39276811 DOI: 10.1016/j.toxlet.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The therapy of intoxication with distinct organophosphorus (OP) compounds is still limited today. Especially chemical warfare agents like tabun and soman as well as novichok intoxications are difficult to address using established oxime therapeutics. These neurotoxins inhibit acetylcholinesterase (AChE), a pivotal enzyme in the synaptic cleft. The following accumulation of acetylcholine in the synaptic cleft leads to a dysfunctional, desensitized state of nicotinic acetylcholine receptors (nAChR). Without adequate treatment, the resulting cholinergic crisis leads to death by respiratory arrest. Consequently, the research approach for new therapeutic options needs to be expanded. A promising option would be substances interacting directly with nAChRs. Therefore, screening methods for new drug candidates are needed, with affinity assays playing an important role. In the present work, a saturation and competition scintillation proximity assay (SPA) for binding studies at [3H]epibatidine binding sites, conventionally classified as orthosteric binding sites of the muscle type nAChR was developed. This method offers several advantages over other assay technologies because no separation as well as washing steps are required to remove unbound ligands. Assay precision and solvent tolerance were validated according to the guidelines for validation of bioanalytical methods of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). The newly developed binding assay was successfully implemented on an automated pipetting platform and is suitable for high-throughput-screening of receptor-ligand interactions at the nAChR. Furthermore, it allows to investigate/quantify competition of highly toxic agents such as nerve agents or structurally similar pesticides at the orthosteric binding site. Related to further pharmacological results, the affinity to [3H]epibatidine binding sites can provide additional information on whether potential drug candidates would be suitable for treatment of nerve agent poisoning.
Collapse
Affiliation(s)
- Fabian Springer
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany; Chair for Drug Formulation and Delivery, Julius-Maximilians University Wuerzburg, Am Hubland, Wuerzburg 97074, Germany
| | - Marian Freisleben
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen 78054, Germany
| | - Sebastian Muschik
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen 78054, Germany
| | - Franz Worek
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Lorenz Meinel
- Chair for Drug Formulation and Delivery, Julius-Maximilians University Wuerzburg, Am Hubland, Wuerzburg 97074, Germany
| | - Thomas Seeger
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Karin Veronika Niessen
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany.
| |
Collapse
|
3
|
Wigenstam E, Bucht A, Thors L. Cellular responses following ex vivo lung exposure to the nerve agent VX - Potential for additional treatment targets? Chem Biol Interact 2024; 403:111225. [PMID: 39233266 DOI: 10.1016/j.cbi.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Following inhalation exposure to organophosphorus nerve agents, symptoms rapidly develop and severe respiratory symptoms, such as bronchorrhea and bronchoconstriction are the leading causes of lethality. Nerve agent-induced lung injury is little investigated and the standard treatment for symptomatic relief targets the enzyme acetylcholinesterase and muscarinic acetylcholine and GABAergic receptors. In the present study, cellular responses in lung tissue during the acute (40 min) and extended phase (24 h) following severe exposure to the nerve agent VX have been investigated using an ex vivo rat precision-cut lung slice model including electrostimulation to induce a cholinergic response. Changes in protein amount, cell viability, together with, inflammatory and oxidative stress markers have been determined in both the lung tissue and incubation medium. During the acute phase, VX caused significantly increased airway contraction and decreased airway relaxation. Five micromolar of VX did not affect the sample protein levels and cell viability in lung tissue. Among seven markers of cellular responses investigated in the lung tissue, increased levels of heme oxygenase-1 and matrix metalloproteinase-9 together with decreased levels of glutathione in the incubation medium were observed in the acute phase following VX-exposure compared to electrostimulation only. No difference in cellular response was observed following VX-exposure for 24 h compared to the air control. In comparison, LPS-exposure resulted in time-dependent changes in all markers of inflammation and oxidative response. In conclusion, the present study demonstrated VX-specific patterns of oxidative responses in the lung, as well as, signs of inflammatory response and remodelling of extracellular matrix. These potential mechanisms of tissue injury should be further investigated for their potential as additional therapeutic targets during the acute phase of intoxication.
Collapse
Affiliation(s)
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lina Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
4
|
Tripathy RK, Khandave PY, Bzdrenga J, Nachon F, Brazzolotto X, Pande AH. Role of paraoxonase 1 in organophosphate G-series nerve agent poisoning and future therapeutic strategies. Arch Toxicol 2024:10.1007/s00204-024-03884-2. [PMID: 39356346 DOI: 10.1007/s00204-024-03884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chemical warfare nerve agents (CWNA) are neurotoxic chemicals unethically used as agents of mass destruction by terrorist outfits and during war. The available antidote against CWNA-mediated toxicity is not sufficiently effective and possesses several limitations. As a countermeasure, paraoxonase 1 (PON1), a catalytic bioscavenger, is being developed as a prophylactic treatment. However, the catalytic activity and substrate specificity of human PON1 are insufficient to be used as a potential antidote. Several laboratories have made different approaches to enhance the CWNA hydrolytic activity against various nerve agents. This review explores the holistic view of PON1 as a potential prophylactic agent against G-series CWNA poisoning, from its initial development to recent advancements and limitations. Apart from this, the review also provides an overview of all available PON1 variants that could be used as a potential prophylactic agent and discusses several possible ways to counteract immunogenicity.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India
| | - Prakash Y Khandave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India
| | - Janek Bzdrenga
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Place du Général Valérie André, 91220, Brétigny-Sur-Orge, France
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, 160062, Punjab, India.
| |
Collapse
|
5
|
Li S, Pu C, Cao X, Zheng M, Deng W, Wang P, Wu J. A dual-signals fluorometric and colorimetric peptide-based probe for Cu(II) and glyphosate detection and its application for bioimaging and water testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174163. [PMID: 38906309 DOI: 10.1016/j.scitotenv.2024.174163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A novel dual-signal fluorometric and colorimetric probe FMDH (5-FAM-Met-Asp-His-NH2), incorporating a tripeptide (Met-Asp-His-NH2) linked to 5-carboxyfluorescein (5-FAM), was firstly synthesised. FMDH demonstrated exceptional selectivity and sensitivity, rapid response, wide pH response range and robust anti-interference capabilities for monitoring Cu2+. This was achieved through a distinctive naked-eye colorimetric and fluorescent quenching behaviour. A good linearity within the range of 0-3 μM (R2 = 0.9914) was attained, and the limit of detection (LOD) for Cu2+ was 47.4 nM. Furthermore, the FMDH-Cu2+ ensemble responded to glyphosate with notable selectivity and sensitivity. A good linear correlation (R2 = 0.9926) was observed at the lower concentration range (2.4-7.8 μM) and achieving a detection limit as low as 29.9 nM. The response time of FMDH with Cu2+ and glyphosate were less than 20 s, and the pH range of 7-11 that was suitable for practical application under physiological pH conditions. MTT assays confirmed that FMDH offers good permeability and low toxicity, facilitating successful application in imaging analysis of Cu2+ and glyphosate in living cells and zebrafish. In addition, FMDH was employed in the detection of these analytes in real water samples. Cost-effective, highly sensitive and easily prepared FMDH-impregnated test strips were developed for the efficient visual detection of Cu2+ and glyphosate under 365 nm UV light. Increasing concentrations of Cu2+ and glyphosate resulted in notable colour changes under 365 nm UV light, enabling visual semi-quantitative analysis via a smartphone colour-analysis App.
Collapse
Affiliation(s)
- Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Chunmei Pu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Xinlin Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China.
| |
Collapse
|
6
|
Wang L, Liu J, Gui W, Zhang R, Li X, Fang L, Li H, Pan D, Ye W. Molecular interaction mechanisms on (-)-epigallocatechin-3-gallate improving activities of inhibited acetylcholinesterase by selected organophosphorus pesticides in vitro & vivo. Sci Rep 2024; 14:22296. [PMID: 39333189 PMCID: PMC11436701 DOI: 10.1038/s41598-024-72637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is reported to have benefits for the treatment of Alzheimer's disease by binding with acetylcholinesterase (AChE) to enhance the cholinergic neurotransmission. Organophosphorus pesticides (OPs) inhibited AChE and damaged the nervous system. This study investigated the combined effects of EGCG and OPs on AChE activities in vitro & vivo. The results indicated that EGCG significantly reversed the inhibition of AChE caused by OPs. In vitro, EGCG reactived AChE in three group tubes incubated for 110 min, and in vivo, it increased the relative activities of AChE from less than 20% to over 70% in brain and vertebral of zebrafish during the exposure of 34 h. The study also proposed the molecular interaction mechanisms through the reactive kinetics and computational analyses of density functional theory, molecular docking, and dynamic modeling. These analyses suggested that EGCG occupied the key residues, preventing OPs from binding to the catalytic center of AChE, and interfering with the initial affinity of OPs to the central active site. Hydrogen bonding, conjugation, and steric interactions were identified as playing important roles in the molecular interactions. The work suggests that EGCG antagonized the inhibitions of OPs on AChE activities and potentially offered the neuroprotection against the induced damage.
Collapse
Affiliation(s)
- Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Jian Liu
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenqian Gui
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China.
| | - Xinmei Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Liancheng Fang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenling Ye
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| |
Collapse
|
7
|
Pu C, Li S, Cao X, Zhou M, Deng W, Wang P. Rational design of peptide-based fluorescent probe for sequential recognitions of Cu(II) ions and glyphosate: Smartphone, test strip, real sample and living cells applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124424. [PMID: 38733917 DOI: 10.1016/j.saa.2024.124424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
A new peptide-based fluorescent probe named DMDH with easy-to-synthesize, excellent stability, good water solubility and large Stokes shift (225 nm) was synthesized for highly selective sequential detections of copper ions (Cu2+) and glyphosate (Glyp). DMDH demonstrated great detection performance towards Cu2+via strong fluorescence quenching, and forming non-fluorescence DMDH-Cu2+ ensemble. As a new promising cascade probe, the fluorescence of DMDH-Cu2+ ensemble was significantly recovered based on displacement approach after glyphosate was added. Interestingly, the limit of detections (LODs) for Cu2+ and glyphosate were 40.6 nM and 10.6 nM, respectively, which were far lower than those recommended by the WHO guidelines for drinking water. More importantly, DMDH was utilized to evaluate Cu2+ and glyphosate content in three real water samples, demonstrating that its effectiveness in water quality monitoring. Additionally, it is worth noting that DMDH was also applied to analyze Cu2+ and glyphosate in living cells in view of significant cells permeability and low cytotoxicity. Moreover, DMDH soaked in filter paper was used to create qualitative test strips and visually identify Cu2+ and glyphosate through significant color changes. Furthermore, smartphone RGB color recognition provided a new method for semi-quantitative testing of Cu2+ and glyphosate in the absence of expensive instruments.
Collapse
Affiliation(s)
- Chunmei Pu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Xinlin Cao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
8
|
Zheng M, Zhou M, Deng W, Wang P, An Y. Semi-quantitative and visual detection of Cu 2+ and glyphosate in real samples and living cells using fluorescent and colorimetric dual-signals peptide-based probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124327. [PMID: 38669979 DOI: 10.1016/j.saa.2024.124327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The excessive emission of copper ions (Cu2+) and the abuse of glyphosate (Glyp) have caused serious harm to the ecological environment and human health, so it is important to develop a fast and convenient method for the analysis of Cu2+ and glyphosate to ensure environmental and food safety. Herein, a dual-signals peptide-based probe (FASRH) with fluorescent and colorimetric was prepared using 5-carboxyl fluorescein modified tetrapeptide (Ala-Ser-Arg-His-NH2). FASRH was successfully used to recognize Cu2+ as a fluorescence "on-off" probe, forming the FASRH-Cu2+ complex with non-fluorescence. As a new promising cascade probe, FASRH-Cu2+ complex probe has high selectivity (only Glyp), good sensitivity (50.2 nM), good anti-interference ability and wide pH range (7.0-11.0) for the detection of glyphosate by ligand replacement method. In addition, the recognizable color changed markedly under 365 nm UV light and natural light. Notably, FASRH not only achieved accurate monitoring of Cu2+ and glyphosate in two real water samples, but also successfully applied to detect Cu2+ and glyphosate in live Hacat cells based on low cytotoxicity. Moreover, it is worth noting that FASRH-impregnated test strips exhibited significant fluorescence and colorimetric color changes for Cu2+ and glyphosate via naked eye. Furthermore, smartphone-assisted FASRH was used for the portable detection of Cu2+ and glyphosate based on the advantages of simplicity, low cost and fast response.
Collapse
Affiliation(s)
- Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
9
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
10
|
Kronenberg J, Chu S, Olsen A, Britton D, Halvorsen L, Guo S, Lakshmi A, Chen J, Kulapurathazhe MJ, Baker CA, Wadsworth BC, Van Acker CJ, Lehman JG, Otto TC, Renfrew PD, Bonneau R, Montclare JK. Computational Design of Phosphotriesterase Improves V-Agent Degradation Efficiency. ChemistryOpen 2024; 13:e202300263. [PMID: 38426687 PMCID: PMC11230934 DOI: 10.1002/open.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Organophosphates (OPs) are a class of neurotoxic acetylcholinesterase inhibitors including widely used pesticides as well as nerve agents such as VX and VR. Current treatment of these toxins relies on reactivating acetylcholinesterase, which remains ineffective. Enzymatic scavengers are of interest for their ability to degrade OPs systemically before they reach their target. Here we describe a library of computationally designed variants of phosphotriesterase (PTE), an enzyme that is known to break down OPs. The mutations G208D, F104A, K77A, A80V, H254G, and I274N broadly improve catalytic efficiency of VX and VR hydrolysis without impacting the structure of the enzyme. The mutation I106 A improves catalysis of VR and L271E abolishes activity, likely due to disruptions of PTE's structure. This study elucidates the importance of these residues and contributes to the design of enzymatic OP scavengers with improved efficiency.
Collapse
Affiliation(s)
- Jacob Kronenberg
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Stanley Chu
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Andrew Olsen
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Dustin Britton
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Leif Halvorsen
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUnited States
- Center for Computational BiologyFlatiron InstituteNew YorkNew YorkUnited States
| | - Shengbo Guo
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Ashwitha Lakshmi
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Jason Chen
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Maria Jinu Kulapurathazhe
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
| | - Cetara A. Baker
- Medical Toxicology Research DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMarylandUnited States
| | - Benjamin C. Wadsworth
- Medical Toxicology Research DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMarylandUnited States
| | - Cynthia J. Van Acker
- Medical Toxicology Research DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMarylandUnited States
| | - John G. Lehman
- Medical Toxicology Research DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMarylandUnited States
| | - Tamara C. Otto
- Medical Toxicology Research DivisionU.S. Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMarylandUnited States
| | - P. Douglas Renfrew
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUnited States
- Center for Computational BiologyFlatiron InstituteNew YorkNew YorkUnited States
| | - Richard Bonneau
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUnited States
- Center for Computational BiologyFlatiron InstituteNew YorkNew YorkUnited States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
- Department of BiomaterialsNew York University College of DentistryNew YorkNew YorkUnited States
- Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUnited States
- Department of Biomedical EngineeringNew York University Tandon School of EngineeringBrooklynNew YorkUnited States
- Department of ChemistryNew York UniversityNew YorkNew YorkUnited States
| |
Collapse
|
11
|
Schmitt C, Koller M, Köhler A, Worek F. Determination of tissue distribution of VX and its metabolites EMPA and EA-2192 in various rat tissues by LC-ESI-MS/MS after phosphotriesterase treatment. Toxicol Lett 2024; 398:13-18. [PMID: 38857853 DOI: 10.1016/j.toxlet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Phosphotriesterases (PTE) are a new and promising approach for the treatment of organophosphate poisoning, since the current therapy of such intoxications shows some limitations. A previous rat in vivo study confirmed the therapeutic effect of PTE, which were specifically designed for VX breakdown, and demonstrated rapid degradation of VX in whole blood samples. The present study now focuses on the degradation of VX and its distribution in organ tissues of the animals used in the aforementioned study. In order to gain a broader overview, we have extended the investigations to the VX metabolites EA-2192 and EMPA by using methods developed for an LC-ESI-MS/MS system. Applying these methods, we were able to verify the effectiveness of the PTE treatment and gained an overview of VX tissue distribution in poisoned but untreated rats.
Collapse
Affiliation(s)
- Christian Schmitt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany.
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| |
Collapse
|
12
|
Bernauer T, Nitsche V, Kaiser J, Gertzen CGW, Höfner G, Niessen KV, Seeger T, Steinritz D, Worek F, Gohlke H, Wanner KT, Paintner FF. Synthesis and biological evaluation of novel MB327 analogs as resensitizers for desensitized nicotinic acetylcholine receptors after intoxication with nerve agents. Toxicol Lett 2024; 397:151-162. [PMID: 38759939 DOI: 10.1016/j.toxlet.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90-0012 and PTMD90-0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research.
Collapse
Affiliation(s)
- Tamara Bernauer
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Valentin Nitsche
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| | - Klaus T Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz F Paintner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
13
|
Noga M, Michalska A, Jurowski K. The estimation of acute oral toxicity (LD 50) of G-series organophosphorus-based chemical warfare agents using quantitative and qualitative toxicology in silico methods. Arch Toxicol 2024; 98:1809-1825. [PMID: 38493428 DOI: 10.1007/s00204-024-03714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
The idea of this study was the estimation of the theoretical acute toxicity (t-LD50, rat, oral dose) of organophosphorus-based chemical warfare agents from the G-series (n = 12) using different in silico methods. Initially identified in Germany, the G-type nerve agents include potent compounds such as tabun, sarin, and soman. Despite their historical significance, there is a noticeable gap in acute toxicity data for these agents. This study employs qualitative (STopTox and AdmetSAR) and quantitative (TEST; CATMoS; ProTox-II and QSAR Toolbox) in silico methods to predict LD50 values, offering an ethical alternative to animal testing. Additionally, we conducted quantitative extrapolation from animals, and the results of qualitative tests confirmed the acute toxicity potential of these substances and enabled the identification of toxicophoric groups. According to our estimations, the most lethal agents within this category were GV, soman (GD), sarin (GB), thiosarin (GBS), and chlorosarin (GC), with t-LD50 values (oral administration, extrapolated from rat to human) of 0.05 mg/kg bw, 0.08 mg/kg bw, 0.12 mg/kg bw, 0.15 mg/kg bw, and 0.17 mg/kg bw, respectively. On the contrary, compounds with a cycloalkane attached to the phospho-oxygen linkage, specifically methyl cyclosarin and cyclosarin, were found to be the least toxic, with values of 2.28 mg/kg bw and 3.03 mg/kg bw. The findings aim to fill the knowledge gap regarding the acute toxicity of these agents, highlighting the need for modern toxicological methods that align with ethical considerations, next-generation risk assessment (NGRA) and the 3Rs (replacement, reduction and refinement) principles.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
14
|
Lin X, Chen T, Hu J, Mao X, Liu M, Zeng R, Zhong Q, Chen W. Construction of a novel fluorescent probe for sensitive determination of glyphosate in food and imaging living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3364-3371. [PMID: 38742948 DOI: 10.1039/d4ay00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 μM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.
Collapse
Affiliation(s)
- Xiaoping Lin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Taiyi Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Jiayun Hu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Xiaoqiong Mao
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Mengqing Liu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Rongying Zeng
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Qingmei Zhong
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Wen Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| |
Collapse
|
15
|
Voros C, Dias J, Timperley CM, Nachon F, Brown RCD, Baati R. The risk associated with organophosphorus nerve agents: from their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem Biol Interact 2024; 395:110973. [PMID: 38574837 DOI: 10.1016/j.cbi.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.
Collapse
Affiliation(s)
- Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France.
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France; OPGS Pharmaceuticals, Paris BioTech Santé, 24 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
| |
Collapse
|
16
|
Tressler CM, Wadsworth B, Carriero S, Dillman N, Crawford R, Hahm TH, Glunde K, Cadieux CL. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. Int J Mol Sci 2024; 25:5624. [PMID: 38891812 PMCID: PMC11172367 DOI: 10.3390/ijms25115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Wadsworth
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Samantha Carriero
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Natalie Dillman
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Crawford
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-Hun Hahm
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristine Glunde
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C. Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| |
Collapse
|
17
|
Gorecki L, Markova A, Hepnarova V, Zivna N, Junova L, Hrabinova M, Janousek J, Kobrlova T, Prchal L, Jun D, Soukup O, Horn G, Worek F, Marek J, Korabecny J. Uncharged mono- and bisoximes: In search of a zwitterion to countermeasure organophosphorus intoxication. Chem Biol Interact 2024; 394:110941. [PMID: 38493910 DOI: 10.1016/j.cbi.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Aneta Markova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Hospital Pharmacy, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Natalie Zivna
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Jan Marek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Epidemiology, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
18
|
Wei Z, Zhang D, Liu X, Nie H, Ouyang Q, Zhang X, Zheng Z. Screening of efficient salicylaldoxime reactivators for DFP and paraoxon-inhibited acetylcholinesterase. RSC Med Chem 2024; 15:1225-1235. [PMID: 38665821 PMCID: PMC11042241 DOI: 10.1039/d3md00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 04/28/2024] Open
Abstract
Previously we reported two salicylaldoxime conjugates (L7R3 and L7R5) showing equal or even higher reactivating efficiency for both organophosphorus nerve agent and pesticide inhibited acetylcholinesterase in comparison to obidoxime and HI-6. In this study, L7R3 and L7R5 were selected as lead compounds and refined by employing a fragment-based drug design strategy, and a total of 32 novel salicylaldoxime conjugates were constructed and screened for DFP and paraoxon inhibited acetylcholinesterase. The findings demonstrate that the conjugate L73R3, which contains a 4-nitrophenyl group, exhibited a higher reactivation efficacy against paraoxon-inhibited acetylcholinesterase compared to obidoxime and HI-6. It was confirmed that the combination of a 4-pyridinyl or 4-nitrophenyl peripheral site ligand, a piperazine linker and a methyl or chloro-substituted salicylaldoxime could construct efficient nonquaternary oxime reactivators. The results hold promise for developing a new generation of highly effective antidotes for organophosphate poisoning.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Dongxu Zhang
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Xueying Liu
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Huifang Nie
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Qin Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University Chongqing 400038 China
| | - Xinlei Zhang
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Zhibing Zheng
- Department of Medicinal Chemistry, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences Beijing 100850 China
| |
Collapse
|
19
|
Ravikumar A, Kavitha S, Arul A, Rajaji P, G T, Li X, Wu B, Surya VJ, Tang J, Sivalingam Y, Zhang Z. Prussian blue analogues of Ni-Co-MoS 2 nanozymes with high peroxidase like activity for sensitive detection of glyphosate and copper. Talanta 2024; 270:125542. [PMID: 38109810 DOI: 10.1016/j.talanta.2023.125542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
The rational development of efficient nanozymes for the colorimetric detection of targets is still challenging. Herein, Prussian blue analogues of Ni-Co-MoS2 nano boxes were fabricated for colorimetric detection of glyphosate and copper ions owing to its peroxidase like activity. At the sensing system, the Ni-Co-MoS2 nano boxes display high peroxidase activity, which could catalytically oxidize the colourless TMB to blue colour oxTMB. In presence of glyphosate in this sensing system the blue colour is diminished, ascribed to the inhibit the catalytic activity of Ni-Co-MoS2 nano boxes. Concurrently, the addition of copper ion, which result in blue colour was reappear due to the generation of glyphosate-copper complex formation. The Ni-Co-MoS2 nano boxes based colorimetric sensing platform was developed to sensitive detection of glyphosate and copper ions with low detection limit of 3 nM for glyphosate and 3.8 nM for copper. This method also displays satisfactory outcomes from real samples analysis and its good accuracy. Therefore, this work provides a great potential for rapid detection of the targets from the environments.
Collapse
Affiliation(s)
- A Ravikumar
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - S Kavitha
- Department of Chemistry, The M.D.T Hindu College (Affiliated to Manonmanium Sundaranar University), Tirunelveli, 627010, Tamil Nadu, India
| | - Amutha Arul
- Department of Chemistry, Francis Xavier Engineering College, Tirunelveli, 627003, Tamil Nadu, India
| | - P Rajaji
- Department of Chemistry, Dhanalakshmi Srinivasan College of Engineering and Technology, Mamallapuram, Chennai, 603104, Tamil Nadu, India
| | - Tamilselvan G
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China
| | - Velappa Jayaraman Surya
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China.
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
20
|
Trancart M, Hanak AS, Dambrune C, Madi M, Voros C, Baati R, Calas AG. No-observed-adverse-effect-level (NOAEL) assessment as an optimized dose of cholinesterase reactivators for the treatment of exposure to warfare nerve agents in mice. Chem Biol Interact 2024; 392:110929. [PMID: 38417730 DOI: 10.1016/j.cbi.2024.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.
Collapse
Affiliation(s)
- Marilène Trancart
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Anne-Sophie Hanak
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Chloé Dambrune
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France; Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - Méliati Madi
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France
| | - Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25, Rue Becquerel, F-67087, Strasbourg, France
| | - André-Guilhem Calas
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, Brétigny-sur-Orge, France.
| |
Collapse
|
21
|
Hrabinova M, Pejchal J, Hepnarova V, Muckova L, Junova L, Opravil J, Zdarova Karasova J, Rozsypal T, Dlabkova A, Rehulkova H, Kucera T, Vecera Z, Caisberger F, Schmidt M, Soukup O, Jun D. A-series agent A-234: initial in vitro and in vivo characterization. Arch Toxicol 2024; 98:1135-1149. [PMID: 38446233 PMCID: PMC10944400 DOI: 10.1007/s00204-024-03689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.
Collapse
Affiliation(s)
- Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| | - Lubica Muckova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Jakub Opravil
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Rozsypal
- University of Defence, Nuclear, Biological, and Chemical Defence Institute, Vita Nejedleho 1, 68203, Vyskov, Czech Republic
| | - Alzbeta Dlabkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Helena Rehulkova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Tomas Kucera
- University of Defence, Military Faculty of Medicine, Department of Military Medical Service Organization and Management, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Zbyněk Vecera
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - Filip Caisberger
- University Hospital Hradec Kralove, Department of Neurology, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Monika Schmidt
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
- University Hradec Kralove, Department of Chemistry, Faculty of Science, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.
| |
Collapse
|
22
|
Haufe Y, Loser D, Danker T, Nicke A. Symmetrical Bispyridinium Compounds Act as Open Channel Blockers of Cation-Selective Ion Channels. ACS Pharmacol Transl Sci 2024; 7:771-786. [PMID: 38495220 PMCID: PMC10941285 DOI: 10.1021/acsptsci.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024]
Abstract
Current treatments against organophosphate poisoning (OPP) do not directly address effects mediated by the overstimulation of nicotinic acetylcholine receptors (nAChR). Non-oxime bispyridinium compounds (BPC) promote acetylcholine esterase-independent recovery of organophosphate-induced paralysis. Here, we test the hypothesis that they act by positive modulatory action on nAChRs. Using two-electrode voltage clamp analysis in combination with mutagenesis and molecular docking analysis, the potency and molecular mode of action of a series of nine BPCs was investigated on human α7 and muscle-type nAChRs expressed in Xenopus laevis oocytes. The investigated BPCs inhibited α7 and/or muscle-type nAChRs with IC50 values in the high nanomolar to high micromolar range. Further analysis of the most potent analogues revealed a noncompetitive, voltage-dependent inhibition. Co-application with the α7-selective positive allosteric modulator PNU120596 and generation of α7/5HT3 receptor chimeras excluded direct interaction with the PNU120596 binding site and binding to the extracellular domain of the α7 nAChR, suggesting that they act as open channel blockers (OCBs). Molecular docking supported by mutagenesis localized the BPC binding area in the outer channel vestibule between the extracellular and transmembrane domains. Analysis of BPC action on other cation-selective channels suggests a rather nonspecific inhibition of pentameric cation channels. BPCs have been shown to ameliorate organophosphate-induced paralysis in vitro and in vivo. Our data support molecular action as OCBs at α7 and muscle-type nAChRs and suggest that their positive physiological effects are more complex than anticipated and require further investigation.
Collapse
Affiliation(s)
- Yves Haufe
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Dominik Loser
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Timm Danker
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Annette Nicke
- Walther
Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
23
|
Xia JD, Wang H, Hua LW, Xu M, Zheng X, Zhang K. Comparative analysis of organophosphorus versus carbamate pesticide poisoning: a case study. Arh Hig Rada Toksikol 2024; 75:81-84. [PMID: 38548379 PMCID: PMC10978098 DOI: 10.2478/aiht-2024-75-3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Organophosphorus poisoning is a critical condition that can cause central nervous system depression, respiratory failure, and death early on. As its clinical manifestations closely resemble those of carbamate pesticide poisoning, the aim of this case study is to present a case of misdiagnosis, initially identifying carbofuran poisoning as organophosphate in a patient suspect of a heatstroke. We also present a case of intentional self-poisoning with organophosphate dichlorvos to underline the likelihood of pesticide poisoning in patients exhibiting acute cholinergic symptoms when the ingested substance is not known. In such cases, empirical treatment with atropine and oxime can be started pending timely differential diagnosis to adjust treatment as necessary.
Collapse
Affiliation(s)
- Jia-ding Xia
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| | - Hui Wang
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| | - Li-wei Hua
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| | - Min Xu
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| | - Xin Zheng
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| | - Kun Zhang
- Affiliated Hospital of Chengde Medical University, Intensive Care Unit, Chengde, China
| |
Collapse
|
24
|
Martin-Romera J, Borrego-Marin E, Jabalera-Ortiz PJ, Carraro F, Falcaro P, Barea E, Carmona FJ, Navarro JAR. Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9900-9907. [PMID: 38344949 PMCID: PMC10910433 DOI: 10.1021/acsami.3c18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
Collapse
Affiliation(s)
- Javier
D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Emilio Borrego-Marin
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Pedro J. Jabalera-Ortiz
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francesco Carraro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Paolo Falcaro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Elisa Barea
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| |
Collapse
|
25
|
Kronenberg J, Britton D, Halvorsen L, Chu S, Kulapurathazhe MJ, Chen J, Lakshmi A, Renfrew PD, Bonneau R, Montclare JK. Supercharged Phosphotriesterase for improved Paraoxon activity. Protein Eng Des Sel 2024; 37:gzae015. [PMID: 39292622 PMCID: PMC11436286 DOI: 10.1093/protein/gzae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
Phosphotriesterases (PTEs) represent a class of enzymes capable of efficient neutralization of organophosphates (OPs), a dangerous class of neurotoxic chemicals. PTEs suffer from low catalytic activity, particularly at higher temperatures, due to low thermostability and low solubility. Supercharging, a protein engineering approach via selective mutation of surface residues to charged residues, has been successfully employed to generate proteins with increased solubility and thermostability by promoting charge-charge repulsion between proteins. We set out to overcome the challenges in improving PTE activity against OPs by employing a computational protein supercharging algorithm in Rosetta. Here, we discover two supercharged PTE variants, one negatively supercharged (with -14 net charge) and one positively supercharged (with +12 net charge) and characterize them for their thermodynamic stability and catalytic activity. We find that positively supercharged PTE possesses slight but significant losses in thermostability, which correlates to losses in catalytic efficiency at all temperatures, whereas negatively supercharged PTE possesses increased catalytic activity across 25°C-55°C while offering similar thermostability characteristic to the parent PTE. The impact of supercharging on catalytic efficiency will inform the design of shelf-stable PTE and criteria for enzyme engineering.
Collapse
Affiliation(s)
- Jacob Kronenberg
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Leif Halvorsen
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Stanley Chu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Maria Jinu Kulapurathazhe
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Jason Chen
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Ashwitha Lakshmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - P Douglas Renfrew
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Chemistry, New York University, New York, New York 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, USA
- Department of Biomedical Engineering, New York University, New York, NY 11201, USA
| |
Collapse
|
26
|
Pirollo KF, Moghe M, Guan M, Rait AS, Wang A, Kim SS, Chang EH, Harford JB. A Pralidoxime Nanocomplex Formulation Targeting Transferrin Receptors for Reactivation of Brain Acetylcholinesterase After Exposure of Mice to an Anticholinesterase Organophosphate. Int J Nanomedicine 2024; 19:307-326. [PMID: 38229703 PMCID: PMC10790653 DOI: 10.2147/ijn.s443498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Antonina S Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Aibing Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD, 20854, USA
| | - Esther H Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Joe B Harford
- SynerGene Therapeutics, Inc., Potomac, MD, 20854, USA
| |
Collapse
|
27
|
Thakur A, Patwa J, Pant S, Jeet Singh Flora S, Sharma A. Synthesis and evaluation of small organic molecule as reactivator of organophosphorus inhibited acetylcholinesterase. Drug Chem Toxicol 2024; 47:26-41. [PMID: 36514993 DOI: 10.1080/01480545.2022.2150210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
A series of uncharged salicylaldehyde oximes were synthesized and evaluated for the reactivation of organophosphorus (OP) nerve agents simulants Diethylchlorophosphonate (DCP) & Diethylcyanophosphonate (DCNP) and pesticides (paraoxon & malaoxon) inhibited electric eel Acetylcholinesterase (AChE). The computational software Swiss ADME and molinspiration were used to unfold the probability of drug-likeness properties of the oximes derivatives. Substituted aromatic oximes with diethylamino or bromo group with free hydroxyl group ortho to oxime moiety were found efficient to regenerate the enzymatic activity in in-vitro AChE assay. The alkylation of the ortho hydroxyl group of derivatives led to the loss of reactivation potential. The derivatives with a hydroxyl group and without oxime group and vice versa did not show significant reactivation potency against tested OP toxicants. Further, we also evaluated the reactivation potential of these selected molecules on the rat brain homogenate against different OPs inhibited ChE and found maximum reactivation potency of oxime 2e. The in-vitro results were further validated by molecular docking and dynamic studies which showed that the hydroxyl group interacted with serine amino acids in the catalytic anionic site of AChE enzyme and was stable up to 200 ns consequently providing proper orientation to oxime moiety for reactivating the OP inhibited enzyme. It has thus been proved by the structure-activity relationship of oximes derivatives that hydroxyl group ortho to oxime is essential for reactivating OP inhibited electric eel AChE. Amongst the twenty-one oximes derivatives, 2e was found to be most active in regenerating the paraoxon, malaoxon, DCP and DCNP inhibited AChE enzyme.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
28
|
Noga M, Michalska A, Jurowski K. The prediction of acute toxicity (LD 50) for organophosphorus-based chemical warfare agents (V-series) using toxicology in silico methods. Arch Toxicol 2024; 98:267-275. [PMID: 38051368 PMCID: PMC10761519 DOI: 10.1007/s00204-023-03632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Nerve agents are organophosphate chemical warfare agents that exert their toxic effects by irreversibly inhibiting acetylcholinesterase, affecting the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. Due to the risk of exposure to dangerous nerve agents and for animal welfare reasons, in silico methods have been used to assess acute toxicity safely. The next-generation risk assessment (NGRA) is a new approach for predicting toxicological parameters that can meet modern requirements for toxicological research. The present study explains the acute toxicity of the examined V-series nerve agents (n = 9) using QSAR models. Toxicity Estimation Software Tool (ver. 4.2.1 and ver. 5.1.2), QSAR Toolbox (ver. 4.6), and ProTox-II browser application were used to predict the median lethal dose. The Simplified Molecular Input Line Entry Specification (SMILES) was the input data source. The results indicate that the most deadly V-agents were VX and VM, followed by structural VX analogues: RVX and CVX. The least toxic turned out to be V-sub x and Substance 100A. In silico methods for predicting various parameters are crucial for filling data gaps ahead of experimental research and preparing for the upcoming use of nerve agents.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Agata Michalska
- Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland.
| |
Collapse
|
29
|
Abdelhamid S, Abel Kareem M, Ashry S, Saeed S. Evaluation of the effectiveness of fresh frozen plasma transfusion as adjuvant treatment in acute organophosphate-poisoned patients: A randomized clinical trial. Hum Exp Toxicol 2024; 43:9603271241260655. [PMID: 38861017 DOI: 10.1177/09603271241260655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Organophosphorus (OP) poisoning is a significant cause of morbidity and mortality worldwide. Recent research has explored new approaches to improving treatment options, which present several challenges. This study aimed to evaluate the role of fresh frozen plasma (FFP) as an adjunctive therapy for acute OP intoxication. A prospective single-blinded randomized clinical trial was conducted on patients of both sexes admitted to the Intensive Care Unit (ICU) of the Poison Control Center at Ain Shams University Hospital (PCC-ASUH) with acute OP toxicity during the period from the beginning of August 2022 to the end of July 2023. According to the Peradeniya score, Group I consisted of 48 patients (52%) with moderate OP poisoning, and Group II consisted of 44 patients (48%) with severe OP poisoning. Patients in the moderate group were assigned to receive either standard treatment (Group Ia, n = 24) or standard treatment plus FFP (Group Ib, n = 24). In addition, patients in the severe group were assigned to receive either standard treatment (Group IIa, n = 22) or standard treatment plus FFP (Group IIb, n = 22). A total of 46 patients received FFP transfusion. The authors demonstrated that the early use of a total of nine packs of FFP (250 mL each) over three consecutive days significantly reduced the total doses of atropine and oximes, the total hospitalization period, and the requirement for mechanical ventilation in patients with OP poisoning, both in the moderate and severe groups.
Collapse
Affiliation(s)
- Somaia Abdelhamid
- Forensic medicine and Clinical Toxicology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Manal Abel Kareem
- Forensic medicine and Clinical Toxicology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Soha Ashry
- Forensic medicine and Clinical Toxicology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| | - Sara Saeed
- Forensic medicine and Clinical Toxicology department, Faculty of medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Rice H, Whitfield SJ, Fairhall SJ, Scott IR, Steventon GB, Tattersall JEH. Efficacy of the oxime HI-6 dimethanesulphonate in the treatment of guinea-pigs exposed to the nerve agents GB and GD. Toxicol Lett 2024; 391:26-31. [PMID: 38048886 DOI: 10.1016/j.toxlet.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.
Collapse
Affiliation(s)
- Helen Rice
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK.
| | - Sarah J Whitfield
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - Sarah J Fairhall
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - Iain R Scott
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - Glyn B Steventon
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - John E H Tattersall
- Chemical, Biological and Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
31
|
Kutarna S, Chen W, Xiong Y, Liu R, Gong Y, Peng H. Screening of Indoor Transformation Products of Organophosphates and Organophosphites with an in Silico Spectral Database. ACS MEASUREMENT SCIENCE AU 2023; 3:469-478. [PMID: 38145028 PMCID: PMC10740125 DOI: 10.1021/acsmeasuresciau.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS2 fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS2 fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.
Collapse
Affiliation(s)
- Steven Kutarna
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Wanzhen Chen
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ying Xiong
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Runzeng Liu
- Shandong
Key Laboratory of Environmental Processes and Health, School of Environmental
Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yufeng Gong
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
32
|
Váňová N, Múčková L, Kalíšková T, Lochman L, Bzonek P, Švec F. In Vitro Evaluation of Oxidative Stress Induced by Oxime Reactivators of Acetylcholinesterase in HepG2 Cells. Chem Res Toxicol 2023; 36:1912-1920. [PMID: 37950699 PMCID: PMC10731658 DOI: 10.1021/acs.chemrestox.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.
Collapse
Affiliation(s)
- Nela Váňová
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - L’ubica Múčková
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - Tereza Kalíšková
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Lukáš Lochman
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Petr Bzonek
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| |
Collapse
|
33
|
Hanson C, Huddle LN, Kockanowski J, Whaley KD. Acute Organophosphate Poisoning Case Review With Consideration of Off-Gassing During Postmortem Examination. Am J Forensic Med Pathol 2023; 44:354-357. [PMID: 37549027 PMCID: PMC10662577 DOI: 10.1097/paf.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ABSTRACT Although self-harm via ingestion of organophosphorus compounds is relatively common in the developing world, it is rare in the United States. This article reviews the signs and symptoms associated with acute organophosphate poisoning and highlights the effects of organophosphate off-gassing during postmortem examinations to increase awareness of this potentially dangerous workplace exposure.Paramedics responded to a 42-year-old man with pulseless electrical activity. Spontaneous circulation was restored after aggressive resuscitation. Before loss of consciousness, the patient exhibited diaphoresis, vomiting, and diarrhea. Upon admission, the patient had a Glasgow Coma Scale score of 3. Significant laboratory values included a pH of 6.8, p co2 of 72 mm Hg, and lactic acid of 21.8 mmol/L. Electrocardiography suggested inferior ST-elevation myocardial infarction. Electroencephalogram revealed severe cerebral dysfunction. The patient died shortly thereafter.Scene investigation revealed suicidal ideations, which included a snapshot of a bottle containing granular sediment associated with statements that he had imbibed fertilizer. During the postmortem examination, the decedent exuded a petroleum-like odor. In addition, autopsy personnel developed symptoms consistent with organophosphate exposure.A reported history of suspected organophosphate exposure in a decedent should prompt increased safety practices to avoid potential harm to autopsy personnel.
Collapse
Affiliation(s)
- Courtney Hanson
- From the University of North Dakota (UND) School of Medicine and Health Sciences
| | - Lauren N. Huddle
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| | - Julia Kockanowski
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| | - Kevin D. Whaley
- Department of Pathology, UND School of Medicine and Health Sciences, Grand Forks, ND
| |
Collapse
|
34
|
Ebrahimnejad P, Davoodi A, Irannejad H, Akhtari J, Mohammadi H. Polyethyleneglycol-serine nanoparticles as a novel antidote for organophosphate poisoning: synthesis, characterization, in vitro and in vivo studies. Drug Chem Toxicol 2023; 46:915-930. [PMID: 35938408 DOI: 10.1080/01480545.2022.2107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
Acute organophosphate pesticide poisoning causes considerable worldwide mortality and morbidity. In this study, serine was attached to the polyethylene glycol-bisaldehyde (PEG) as a novel antidote for diazinon (DZ) poisoning. Serine and PEG were conjugated with a reductive amination reaction. PEG-serine NPs (PEG-NPs) were purified and their structure was analyzed by 1H NMR, 13 C NMR, IR, and particle size was determined via dynamic light scattering. In vitro studies, including hemolysis assay and cytotoxicity on SK-BR-3 and HFFF2 cell lines, were performed. In vivo studies of PEG-NPs were evaluated on DZ-exposed mice. PEG-NPs were administered (i.p.) 20 min after a single dose of DZ (LD50; 166 mg/kg). Atropine (20 mg/kg, i.p.) with pralidoxime (20 mg/kg, i.p.) was used as the standard therapy compared to PEG-NPs. NMR and IR data confirmed that the conjugation of PEG to serine occurred successfully. The average NP size was 22.1 ± 1.8 nm. The hemolysis of the PEG-NPs was calculated at 0.867%, 50% inhibitory concentration (IC50) was calculated 36 ± 4.5, and 41 ± 3.4 mg/mL on SK-BR-3 and HFFF2 cell lines, respectively. Percentage of surviving significantly improved by 12.5, 25, and 25% through the usage of PEG-NPs at doses of 100, 200, and 400 mg/kg, respectively, when compared with the DZ group. Cholinesterase enzyme activity, lipid peroxidation, and mitochondrial function significantly improved through PEG-NPs when compared with the DZ group. PEG conjugated serine is very biocompatible with low toxicity and can reduce the acute toxicity of DZ as a new combination therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Schmid RD, Lombardo D, Hovda LR. Suspected intermediate syndrome in a dog after organophosphate poisoning. J Vet Emerg Crit Care (San Antonio) 2023; 33:705-709. [PMID: 37943072 DOI: 10.1111/vec.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To discuss the clinical presentation and successful treatment of a suspected case of intermediate syndrome due to organophosphate (OP) poisoning in a dog. CASE SUMMARY Two dogs presented with acute cholinergic signs after ingesting an OP insecticide containing 50% acephate. Clinical signs consistent with acute cholinergic crisis resolved in both dogs within 24 hours postingestion. One dog developed an onset of neurological signs consistent with intermediate syndrome approximately 24 hours postingestion. This patient's clinical signs resolved with the use of pralidoxime chloride. NEW OR UNIQUE INFORMATION PROVIDED OP poisoning most commonly presents as an acute cholinergic crisis, with rare instances of animals developing intermediate syndrome. Few reports of successful treatment and recovery from intermediate syndrome exist in the veterinary literature, particularly with instances in which 2 dogs within the same exposure setting were treated for acute cholinergic signs and only 1 progressed to an intermediate syndrome. This report also highlights the importance of early intervention with pralidoxime chloride prior to the onset of aging.
Collapse
Affiliation(s)
- Renee D Schmid
- Pet Poison Helpline/SafetyCall International, LLC, Bloomington, Minnesota, USA
| | | | - Lynn R Hovda
- Pet Poison Helpline/SafetyCall International, LLC, Bloomington, Minnesota, USA
| |
Collapse
|
36
|
Lavonas EJ, Akpunonu PD, Arens AM, Babu KM, Cao D, Hoffman RS, Hoyte CO, Mazer-Amirshahi ME, Stolbach A, St-Onge M, Thompson TM, Wang GS, Hoover AV, Drennan IR. 2023 American Heart Association Focused Update on the Management of Patients With Cardiac Arrest or Life-Threatening Toxicity Due to Poisoning: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2023; 148:e149-e184. [PMID: 37721023 DOI: 10.1161/cir.0000000000001161] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this focused update, the American Heart Association provides updated guidance for resuscitation of patients with cardiac arrest, respiratory arrest, and refractory shock due to poisoning. Based on structured evidence reviews, guidelines are provided for the treatment of critical poisoning from benzodiazepines, β-adrenergic receptor antagonists (also known as β-blockers), L-type calcium channel antagonists (commonly called calcium channel blockers), cocaine, cyanide, digoxin and related cardiac glycosides, local anesthetics, methemoglobinemia, opioids, organophosphates and carbamates, sodium channel antagonists (also called sodium channel blockers), and sympathomimetics. Recommendations are also provided for the use of venoarterial extracorporeal membrane oxygenation. These guidelines discuss the role of atropine, benzodiazepines, calcium, digoxin-specific immune antibody fragments, electrical pacing, flumazenil, glucagon, hemodialysis, hydroxocobalamin, hyperbaric oxygen, insulin, intravenous lipid emulsion, lidocaine, methylene blue, naloxone, pralidoxime, sodium bicarbonate, sodium nitrite, sodium thiosulfate, vasodilators, and vasopressors for the management of specific critical poisonings.
Collapse
|
37
|
Disley J, Gil-Ramírez G, Eaton P, Gonzalez-Rodriguez J. A smart chitosan-graphite molecular imprinted composite for the effective trapping and sensing of dimethyl methylphosphonate based on changes in resistance. Analyst 2023; 148:5012-5021. [PMID: 37672009 DOI: 10.1039/d3an01293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A molecular imprinted polymer (MIP) fabricated from a chitosan doped with graphite to create a conductive composite (CG-MIC) with the ability to trap and detect dimethyl methylphosphonate (DMMP) through a change in resistance of the material has been successfully manufactured. The GC-MIC presented a maximum trapping capacity of 96 ppm (0.096 mg g-1) of DMMP. A similar non-imprinted composite made of chitosan-graphite (CG-NIC) had a surface adsorption of 48 ppm (0.048 mg g-1) of DMMP. The manufacturing process was tested for consistency and there were no significant differences in resistance between batches of CG-MIC before (around 450 Ω) and after (around 70 Ω) DMMP extraction, representing a homogeneous manufacturing process. Although Atomic Force Microscopy studies revealed that the graphite was not homogenously distributed throughout the chitosan matrix, the response was consistent. The changes in the concentration of DMMP within the self-sensing material, being proportional to those in gas concentration, could be followed by the changes in resistance. The inclusion of common interferents: Acetic acid, acetone, ethanol, ammonium hydroxide and 2-propanol, equivalent in concentration to the DMMP, caused a change in the resistance of the material but did not substantially affect the specific resistance response of the composite material. Based on this data, the CG-MIC could be used as a smart material with sensing capabilities to monitor trapping levels of DMMP.
Collapse
Affiliation(s)
- James Disley
- University of Lincoln, School of Chemistry, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, UK.
| | - Guzmán Gil-Ramírez
- University of Lincoln, School of Chemistry, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, UK.
| | - Peter Eaton
- University of Lincoln, School of Chemistry, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, UK.
- The Bridge, University of Lincoln, 4 Edgewest Road, Lincoln LN6 7EL, UK
| | - Jose Gonzalez-Rodriguez
- University of Lincoln, School of Chemistry, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, UK.
| |
Collapse
|
38
|
Wei P, Xiao L, Hou P, Wang Q, Wang P. A novel Cu(II)-assisted peptide fluorescent probe for highly sensitive detection of glyphosate in real samples: real application in test strips and smartphone. Anal Bioanal Chem 2023; 415:5985-5996. [PMID: 37505235 DOI: 10.1007/s00216-023-04869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Glyphosate (Glyp) is an organophosphorus herbicide, and its abuse causes potential harm to the environment and human health. Thus, the development of simple and portable methods for rapid and visual detection of glyphosate is of great importance. Herein, we successfully developed a new fluorescent probe L with dansyl fluorophore as a fluorescent dye and tetrapeptide (Ala-Ser-Arg-His-NH2) as a recognition group. According to the design, L exhibited a specific fluorescence quenching response to Cu2+ and formed an L-Cu2+ ensemble with a molecular ratio of 2:1, demonstrating a limit of detection (LOD) as low as 12.04 nM. Interestingly, the L-Cu2+ ensemble as a relay response probe exhibited a specific fluorescence "off-on" response to glyphosate without interference from other pesticides and anions based on the strong complexation of glyphosate and Cu2+. The LOD of the L-Cu2+ ensemble for glyphosate was calculated as 12.59 nM. Additionally, the results of three recovery experiments with real samples showed that L has good practicability and accuracy in detecting glyphosate. Test strips were also fabricated to achieve facile detection of glyphosate to demonstrate the practical application potential of the L-Cu2+ ensemble. The L-Cu2+ ensemble was integrated with a smartphone for semi-quantification of glyphosate in a field environment under a 365 nm UV lamp.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Peilian Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Qifan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, People's Republic of China.
| |
Collapse
|
39
|
Opravil J, Pejchal J, Finger V, Korabecny J, Rozsypal T, Hrabinova M, Muckova L, Hepnarova V, Konecny J, Soukup O, Jun D. A-agents, misleadingly known as "Novichoks": a narrative review. Arch Toxicol 2023; 97:2587-2607. [PMID: 37612377 PMCID: PMC10475003 DOI: 10.1007/s00204-023-03571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.
Collapse
Affiliation(s)
- Jakub Opravil
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vladimir Finger
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomas Rozsypal
- Nuclear, Biological and Chemical Defence Institute, University of Defence, Vita Nejedleho 1, 682 03 Vyskov, Czech Republic
| | - Martina Hrabinova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Konecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
40
|
Baghersad MH, Habibi A, Dehdashti Nejad A. Novel uncharged triazole salicylaldoxime derivatives as potential acetylcholinesterase reactivators: comprehensive computational study, synthesis and in vitro evaluation. RSC Adv 2023; 13:28527-28541. [PMID: 37780731 PMCID: PMC10534079 DOI: 10.1039/d3ra05658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
The present study aims to design and synthesise novel uncharged aldoximes and explore their reactivation abilities, structures, descriptors, and mechanisms of action, as well as assessing the interactions and stabilities in the active site of paraoxon-inhibited acetylcholinesterase enzyme using computational studies and in vitro assay. The comprehensive computational studies including quantum chemical, molecular dynamics simulations and molecular docking were conducted on paraoxon-inhibited human acetylcholinesterase to investigate the reactivation ability of the novel aldoximes and compare them with pralidoxime as a reactivator model molecule.
Collapse
Affiliation(s)
- Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| | - Azizollah Habibi
- Faculty of Chemistry, Kharazmi University No. 43, P. Code 15719-14911, Mofatteh Street, Enghelab Ave. Tehran Iran
| | - Arash Dehdashti Nejad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
41
|
Rosenberg YJ, Garcia K, Diener J, Gerk W, Donahue S, Mao L, Lees J, Jiang X, Urban LA, Sullivan D. The impact of solvents on the toxicity of the banned parathion insecticide. Chem Biol Interact 2023; 382:110635. [PMID: 37453609 PMCID: PMC10574261 DOI: 10.1016/j.cbi.2023.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The aerial crop dusting and spraying of fields with the phosphorothioate insecticide parathion in the late 1900s, significantly improved crop yields but resulted in high levels of occupational toxicity in handlers and agricultural workers, as well as cases of intentional self-harm poisoning, culminating in its banning in many western countries by early 2000s. However because of the low solubility and volatility of parathion, most available products were formulated using organic solvents e.g. xylene, to increase the efficacy of the aerosols and dusts. In the present study, the toxicity of parathion was assessed when formulated in an aqueous solvents (ethanol/PBS (1:9)), and delivered to macaques as an aerosol. Doses of 780 μg/kg and 1.56 mg/kg were delivered one day apart, using a modified nebulizer calculated to result in lung deposition of ∼480 μg/kg with a similar or larger amount being swallowed; these doses being similar to the estimated lethal oral dose 286ug/kg - 1.43 mg/kg of formulated parathion in humans. Surprisingly, this dose (a combined amount of ∼14 mg) caused only low AChE inhibition and moderate BChE inhibition with no clinical symptoms, indicating that the use of organic solvents may have previously played a critical role in the severity of parathion toxicity following inhalation exposure. In addition, unlike constitutively toxic OPs, which are highly toxic when inhaled, these results are consistent with the idea that phosphorothioate insecticides appear to be more intoxicating following oral than inhalation exposure. However, this still remains uncertain because the presence of organic solvents in the ingested parathion studies was not always known.
Collapse
|
42
|
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023; 11:2427. [PMID: 37760868 PMCID: PMC10525278 DOI: 10.3390/biomedicines11092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disorder. Recent clinical and experimental studies reveal that environmental pollutants, including organophosphorus-organochloride pesticides and air pollution, may contribute to the development of cardiac arrhythmias including AF. Here, we discussed the unifying cascade of events that may explain the role of pollutant exposure in the development of AF. Following ingestion and inhalation of pollution-promoting toxic compounds, damage-associated molecular pattern (DAMP) stimuli activate the inflammatory response and oxidative stress that may negatively affect the respiratory, cognitive, digestive, and cardiac systems. Although the detailed mechanisms underlying the association between pollutant exposure and the incidence of AF are not completely elucidated, some clinical reports and fundamental research data support the idea that pollutant poisoning can provoke perturbed ion channel function, myocardial electrical abnormalities, decreased action potential duration, slowed conduction, contractile dysfunction, cardiac fibrosis, and arrhythmias including AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Alexia Fundere
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| |
Collapse
|
43
|
Zandona A, Madunić J, Miš K, Maraković N, Dubois-Geoffroy P, Cavaco M, Mišetić P, Padovan J, Castanho M, Jean L, Renard PY, Pirkmajer S, Neves V, Katalinić M. Biological response and cell death signaling pathways modulated by tetrahydroisoquinoline-based aldoximes in human cells. Toxicology 2023:153588. [PMID: 37419273 DOI: 10.1016/j.tox.2023.153588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The uncharged 3-hydroxy-2-pyridine aldoximes with protonatable tertiary amines are studied as antidotes in toxic organophosphates (OP) poisoning. Due to some of their specific structural features, we hypothesize that these compounds could exert diverse biological activity beyond their main scope of application. To examine this further, we performed an extensive cell-based assessment to determine their effects on human cells (SH-SY5Y, HEK293, HepG2, HK-2, myoblasts and myotubes) and possible mechanism of action. As our results indicated, aldoxime having a piperidine moiety did not induce significant toxicity up to 300µM within 24hours, while those with a tetrahydroisoquinoline moiety, in the same concentration range, showed time-dependent effects and stimulated mitochondria-mediated activation of the intrinsic apoptosis pathway through ERK1/2 and p38-MAPK signaling and subsequent activation of initiator caspase 9 and executive caspase 3 accompanied with DNA damage as observed already after 4hour exposure. Mitochondria and fatty acid metabolism were also likely targets of 3-hydroxy-2-pyridine aldoximes with tetrahydroisoquinoline moiety, due to increased phosphorylation of acetyl-CoA carboxylase. In silico analysis predicted kinases as their most probable target class, while pharmacophores modeling additionally predicted the inhibition of a cytochrome P450cam. Overall, if the absence of significant toxicity for piperidine bearing aldoxime highlights the potential of its further studies in medical counter-measures, the observed biological activity of aldoximes with tetrahydroisoquinoline moiety could be indicative for future design of compounds either in a negative context in OP antidotes design, or in a positive one for design of compounds for the treatment of other phenomena like cell proliferating malignancies.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | - Josip Madunić
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| | | | - Marco Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | | | | | - Miguel Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ludovic Jean
- Université Paris Cité, CNRS, INSERM, CiTCoM (UMR 8038), F-75006, Paris, France.
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, POB 291, HR-10001 Zagreb, Croatia.
| |
Collapse
|
44
|
Fan N, Li Q, Liu Y, Ma B, Li M, Yin D. Preparation of an HI-6-loaded brain-targeted liposomes based on the nasal delivery route and the evaluation of its reactivation of central toxic acetylcholinesterase. Eur J Pharm Sci 2023; 184:106406. [PMID: 36805055 DOI: 10.1016/j.ejps.2023.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
PURPOSE Organophosphorus compounds (OPs) is a serious threat to human health and life safety, but because of the existence of blood-brain barrier, most of the therapeutic drugs cannot enter the center, reactivate centrally located toxic acetylcholinesterase (AChE), it is urgent to find an efficient treatment method. METHODS The c(RGDyK) cyclic peptide modified HI-6-loaded brain targeting liposomes [c(RGDyK)-PEG2000HI-6-lipo] were prepared by ammonium sulfate gradient method. The in vitro blood-brain barrier (BBB) model was established, and the function of the liposomes was evaluated. The animal model of DDVP poisoning was established, and the central toxic enzyme reactivation ability of c(RGDyK)-PEG2000HI-6-lipo by both the intravenous and nasal administration route was verified. RESULTS The HI-6-loaded liposomes with brain targeting function were successfully synthesized and prepared with high encapsulation efficiency (70.23 ± 2.18%), drug loading (2.86 ± 0.07)%, average particle size 242.9 nm (polydispersion index 0.149), and ζ potential -16.2 mV. Combined with the in vitro and in vivo studies, the c(RGDyK)-PEG2000HI-6-lipo has better ability to cross the BBB. In addition, compared with intravenous injection, nasal administration was proved to be more effective against organophosphorus poisoning, and the reactivation rate of brain acetylcholinesterase reached (26.19 ± 7.70)%. CONCLUSION The prepared c(RGDyK)-PEG2000HI-6-lipo has a better ability to cross BBB. Nasal administration, as a way to bypass the BBB and directly deliver drugs into the brain, effectively improves the bioavailability of HI-6 in the brain. This study holds promise by providing a non-invasive approach to deliver water-soluble oxime antidote into the brain and reactivate central acetylcholinesterase via the naso-brain route.
Collapse
Affiliation(s)
- Ning Fan
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China
| | - Qian Li
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China
| | - Yuan Liu
- Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Bohua Ma
- Department of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Meng Li
- Department of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Dongfeng Yin
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China.
| |
Collapse
|
45
|
Miri P, Karbhal I, Satnami ML, Jena VK, Ghosh S. β-Cyclodextrin Stabilized Nanoceria for Hydrolytic Cleavage of Paraoxon in Aqueous and Cationic Micellar Media. ACS APPLIED BIO MATERIALS 2023; 6:1488-1494. [PMID: 36939183 DOI: 10.1021/acsabm.2c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Beta-cyclodextrin (β-CD) stabilized cerium oxide nanoparticles (β-CD@CeO2 NPs) were synthesized through a hydrothermal route. The electronic properties, surface functional group, surface composition, size, and morphologies of the as-synthesized β-CD@CeO2 NPs were characterized using UV-visible spectroscopy, FTIR analysis, high resolution X-ray photoelectron spectroscopy (HRXPS), high resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM). The pH-dependent variation of the ζ-potential of β-CD@CeO2 NPs and the catalytic activity of the NPs for the hydrolysis of paraoxon were investigated. The observed pseudo-first-order rate constant (kobs) for the hydrolysis of paraoxon is increased with increasing pH and the ζ-potential of β-CD@CeO2 NPs. The kinetics and mechanism of hydrolysis of paraoxon in the aqueous and cationic micellar media have been discussed.
Collapse
Affiliation(s)
- Pinki Miri
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur 492010, Chhattisgarh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vinod K Jena
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur 492010, Chhattisgarh, India
| | - Sanjay Ghosh
- Department of Chemistry, Government Nagarjuna Post Graduate College of Science, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
46
|
González L, Martín-Romera JD, Sánchez-Sánchez P, Navarro JAR, Barea E, Maldonado CR, Carmona FJ. Oxime@Zirconium-Metal-Organic Framework Hybrid Material as a Potential Antidote for Organophosphate Poisoning. Inorg Chem 2023; 62:5049-5053. [PMID: 36939843 PMCID: PMC10074384 DOI: 10.1021/acs.inorgchem.3c00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A novel material with dual activity toward organophosphate (OP) poisoning, based on Zr-MOF-808 and neutral oxime RS69N, has been prepared. The hybrid material has a significant drug payload (5.2 ± 0.9 oxime to MOF-808 molar ratio) and shows a sustained oxime release in simulated physiological media, leading to the successful reactivation of OP-inhibited acetylcholinesterase. At the same time, the hybrid system presents an efficient and moderately fast removal rate of a toxic organophosphorus model compound (diisopropylfluorophosphate) from simulated physiological media (t1/2 = 183 min; 95% removal rate after 24 h).
Collapse
Affiliation(s)
- Lydia González
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| | - Javier D Martín-Romera
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| | | | - Jorge A R Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| | - Elisa Barea
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| | - Carmen R Maldonado
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, Granada 18071, Spain
| |
Collapse
|
47
|
Zhao D, Liu J, Zhou Y, Zhang L, Zhong Y, Yang Y, Zhao B, Yang M, Wang Y. Penetrating the Blood-Brain Barrier for Targeted Treatment of Neurotoxicant Poisoning by Nanosustained-Released 2-PAM@VB1-MIL-101-NH 2(Fe). ACS APPLIED MATERIALS & INTERFACES 2023; 15:12631-12642. [PMID: 36867458 DOI: 10.1021/acsami.2c18929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is very important to establish a sustained-release pralidoxime chloride (2-PAM) drug system with brain targeting function for the treatment of neurotoxicant poisoning. Herein, Vitamin B1 (VB1), also known as thiamine, which can specifically bind to the thiamine transporter on the surface of the blood-brain barrier, was incorporated onto the surface of MIL-101-NH2(Fe) nanoparticles with a size of ∼100 nm. Pralidoxime chloride was further loaded within the interior of the above resulted composite by soaking, and a resulting composite drug (denoted as 2-PAM@VB1-MIL-101-NH2(Fe)) with a loading capacity of 14.8% (wt) was obtained. The results showed that the drug release rate of the composite drug was increased in PBS solution with the increase of pH (2-7.4) and a maximum drug release rate of 77.5% at pH 4. Experiments on the treatment of poisoning by gavage with the nerve agent sarin in mice combined with atropine revealed that sustained release of 2-PAM from the composite drug was achieved for more than 72 h. Sustained and stable reactivation of poisoned acetylcholinesterase (AChE) was observed with an enzyme reactivation rate of 42.7% in the ocular blood samples at 72 h. By using both zebrafish brain and mouse brain as models, we found that the composite drug could effectively cross the blood-brain barrier and restore the AChE activity in the brain of poisoned mice. The composite drug is expected to be a stable therapeutic drug with brain targeting and prolonged drug release properties for nerve agent intoxication in the middle and late stages of treatment.
Collapse
Affiliation(s)
- Dianfa Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baoquan Zhao
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengru Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
48
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Loewenthal D, Dagan S, Drug E. Integrating Effect-Directed Analysis and Chemically Indicative Mass Spectral Fragmentation to Screen for Toxic Organophosphorus Compounds. Anal Chem 2023; 95:2623-2627. [PMID: 36689728 DOI: 10.1021/acs.analchem.2c04842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Analytical chemists are often challenged to screen for bioactive compounds in complex matrices, sometimes without a priori knowledge of the exact compound of interest. Therefore, "flagging" techniques, highlighting common characteristics of bioactive compounds, are highly sought after. In this work, we demonstrate a double flagging method, where unknown organophosphorus acetylcholinesterase inhibitors are "flagged" out of a complex matrix by the presence of organophosphorus-indicative ions as well as their acetylcholinesterase inhibition. This is accomplished by flagging the LC chromatographic retention time of phosphorus-indicative ions using accurate mass high-energy in-source CID products, and the retention time of acetylcholinesterase inhibiting compounds using a parallel microfractionation-based bioassay. We successfully apply this method to screen VX, VM, and RVX nerve agents as well as methomyl, a carbamate pesticide, out of soil and whole blood samples at low μM to sub-μM concentrations. This methodology can be easily extended to diverse chemical families and biological activities of interest.
Collapse
Affiliation(s)
- Dan Loewenthal
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel.,School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv6997801, Israel
| | - Shai Dagan
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel
| | - Eyal Drug
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness-Ziona7410001, Israel
| |
Collapse
|
50
|
Job L, Köhler A, Testanera M, Escher B, Worek F, Skerra A. Engineering of a phosphotriesterase with improved stability and enhanced activity for detoxification of the pesticide metabolite malaoxon. Protein Eng Des Sel 2023; 36:gzad020. [PMID: 37941439 DOI: 10.1093/protein/gzad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Organophosphorus (OP) pesticides are still widely applied but pose a severe toxicological threat if misused. For in vivo detoxification, the application of hydrolytic enzymes potentially offers a promising treatment. A well-studied example is the phosphotriesterase of Brevundimonas diminuta (BdPTE). Whereas wild-type BdPTE can hydrolyse pesticides like paraoxon, chlorpyrifos-oxon and mevinphos with high catalytic efficiencies, kcat/KM >2 × 107 M-1 min-1, degradation of malaoxon is unsatisfactory (kcat/KM ≈ 1 × 104 M-1 min-1). Here, we report the rational engineering of BdPTE mutants with improved properties and their efficient production in Escherichia coli. As result, the mutant BdPTE(VRNVVLARY) exhibits 37-fold faster malaoxon hydrolysis (kcat/KM = 4.6 × 105 M-1 min-1), together with enhanced expression yield, improved thermal stability and reduced susceptibility to oxidation. Therefore, this BdPTE mutant constitutes a powerful candidate to develop a biocatalytic antidote for the detoxification of this common pesticide metabolite as well as related OP compounds.
Collapse
Affiliation(s)
- Laura Job
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Anja Köhler
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstr, 11, 80937 München, Germany
| | - Mauricio Testanera
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Benjamin Escher
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstr, 11, 80937 München, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|