1
|
Custodio RJP, Kim M, Chung YC, Kim BN, Kim HJ, Cheong JH. Thrsp Gene and the ADHD Predominantly Inattentive Presentation. ACS Chem Neurosci 2023; 14:573-589. [PMID: 36716294 DOI: 10.1021/acschemneuro.2c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are three presentations of attention-deficit/hyperactivity disorder (ADHD): the predominantly inattention (ADHD-PI), predominantly hyperactive-impulsive (ADHD-HI), and combined (ADHD-C) presentations of ADHD. These may represent distinct childhood-onset neurobehavioral disorders with separate etiologies. ADHD diagnoses are behaviorally based, so investigations into potential etiologies should be founded on behavior. Animal models of ADHD demonstrate face, predictive, and construct validity when they accurately reproduce elements of the symptoms, etiology, biochemistry, and disorder treatment. Spontaneously hypertensive rats (SHR/NCrl) fulfill many validation criteria and compare well with clinical cases of ADHD-C. Compounding the difficulty of selecting an ideal model to study specific presentations of ADHD is a simple fact that our knowledge regarding ADHD neurobiology is insufficient. Accordingly, the current review has explored a potential animal model for a specific presentation, ADHD-PI, with acceptable face, predictive, and construct validity. The Thrsp gene could be a biomarker for ADHD-PI presentation, and THRSP OE mice could represent an animal model for studying this distinct ADHD presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors─IfADo, Ardeystraße 67, 44139 Dortmund, Germany
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
2
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
3
|
Assessment of sex-related neuropathology and cognitive deficits in the Tg-SwDI mouse model of Alzheimer’s disease. Behav Brain Res 2022; 428:113882. [DOI: 10.1016/j.bbr.2022.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
4
|
Xie L, Li XY, Liang K, Wu C, Wang HY, Zhang YH. Octylphenol influence growth and development of Rana chensinensis tadpoles via disrupting thyroid function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:747-755. [PMID: 30502525 DOI: 10.1016/j.ecoenv.2018.11.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Octylphenol (OP), a class of endocrine disrupting chemicals (EDCs), could produce adverse effects on developmental process of animals. Thyroid hormone is one of the important hormones involved in animal development. To determine whether OP affect the growth and development of amphibian larvae via interfering the thyroid function, Rana chensinensis larvae at Gosner stage 29 were exposed to 10-8, 10-7 and 10-6 mol/L OP in the present study. Results demonstrated that OP could decrease the body length and mass and retard the development of tadpoles. The histologic evaluation showed microscopic structures of thyroid gland were changed in 10-7 and 10-6 mol/L OP treated groups on day 40. The expression levels of Dio2, Dio3, TRα and TRβ mRNA in the liver, brain, skin and tail of tadpoles were detected by qRT-PCR, when treated with OP for 20, 30, 40 and 50 day, respectively. The results of qRT-PCR showed OP could affect the expressions of Dio2, Dio3, TRα and TRβ mRNA in the four tissues, and then influence the activity and function of THs, further affecting the growth and development of the tadpoles.
Collapse
Affiliation(s)
- Lei Xie
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China
| | - Xin-Yi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China
| | - Kai Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China
| | - Chao Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China
| | - Hong-Yuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China
| | - Yu-Hui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, PR China.
| |
Collapse
|
5
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
6
|
Omega-3 fatty acids supplementation with lithium and aripiprazole for improving the balance of circulating hormones and brain neurotransmitters in manic mice model. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:335-346. [DOI: 10.1007/s00210-017-1460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
7
|
Zsarnovszky A, Kiss D, Jocsak G, Nemeth G, Toth I, Horvath TL. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Front Neuroendocrinol 2018; 48:23-36. [PMID: 28987779 DOI: 10.1016/j.yfrne.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Although the effects of phytoestrogens on brain function is widely unknown, they are often regarded as "natural" and thus as harmless. However, the effects of phytoestrogens or environmental pollutants on brain function is underestimated. Estrogen (17beta-estradiol, E2) and thyroid hormones (THs) play pivotal roles in brain development. In the mature brain, these hormones regulate metabolism on cellular and organismal levels. Thus, E2 and THs do not only regulate the energy metabolism of the entire organism, but simultaneously also regulate important homeostatic parameters of neurons and glia in the CNS. It is, therefore, obvious that the mechanisms through which these hormones exert their effects are pleiotropic and include both intra- and intercellular actions. These hormonal mechanisms are versatile, and the experimental investigation of simultaneous hormone-induced mechanisms is technically challenging. In addition, the normal physiological settings of metabolic parameters depend on a plethora of interactions of the steroid hormones. In this review, we discuss conceptual and experimental aspects of the gonadal and thyroid hormones as they relate to in vitro models of the cerebellum.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - David Kiss
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gergely Jocsak
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Gabor Nemeth
- Department of Obstetrics and Gynecology, University of Szeged, School of Medicine, Szeged, Hungary
| | - Istvan Toth
- Departments of Physiology and Biochemistry, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Tamas L Horvath
- Department of Animal Physiology and Animal Health, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Departments of Anatomy and Histology, University of Veterinary Medicine, Budapest 1078, Hungary.
| |
Collapse
|
8
|
de la Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol 2017; 55:3739-3754. [PMID: 28534274 DOI: 10.1007/s12035-017-0608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
9
|
Pillidge K, Porter AJ, Young JW, Stanford SC. Perseveration by NK1R-/- ('knockout') mice is blunted by doses of methylphenidate that affect neither other aspects of their cognitive performance nor the behaviour of wild-type mice in the 5-Choice Continuous Performance Test. J Psychopharmacol 2016; 30:837-47. [PMID: 27097734 PMCID: PMC4994704 DOI: 10.1177/0269881116642541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R-/-), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of 'productivity') completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate.
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Ashley J Porter
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
10
|
Joustra SD, Andela CD, Oostdijk W, van Trotsenburg ASP, Fliers E, Wit JM, Pereira AM, Middelkoop HAM, Biermasz NR. Mild deficits in attentional control in patients with the IGSF1 deficiency syndrome. Clin Endocrinol (Oxf) 2016; 84:896-903. [PMID: 26387489 DOI: 10.1111/cen.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Male patients with the X-linked IGSF1 deficiency syndrome are characterized by central hypothyroidism, delayed pubertal testosterone rise, adult macroorchidism, variable prolactin deficiency and occasionally transient partial growth hormone deficiency. Thyroid hormone plays a vital role in brain development and functioning, and while most patients receive adequate replacement therapy starting shortly after birth, it is unknown whether this syndrome is accompanied by long-term impaired cognitive functioning. We therefore assessed cognitive functioning in male patients with IGSF1 deficiency. METHODS Fifteen adult male patients with IGSF1 deficiency participated in neuropsychological assessment of executive functioning and memory, and completed validated questionnaires on health-related quality of life (HRQoL), mood and fatigue. Results were compared to data from previous studies by our department: 54 healthy controls (76 for the attention task) for the test battery and 191 healthy controls for the questionnaires. RESULTS All patients had central hypothyroidism, and twelve were treated with levothyroxine. Patients performed worse than controls in tasks that required attentional control (Trail Making Test, Letter-Digit Substitution Test, and Sustained Attention to Response Task) (all P < 0·001). Memory was unaffected. In addition, patients reported more mental fatigue and reduction of activity (Multidimensional Fatigue Inventory) (both P < 0·01), while HRQoL and mood reports were not different from controls. Age at the start of replacement therapy and current thyroxine levels were not related to outcome. CONCLUSIONS Adult male patients with IGSF1 deficiency exhibit mild deficits in attentional control on formal testing. This finding was not related to the age at start of replacement therapy, or current levothyroxine treatment.
Collapse
Affiliation(s)
- S D Joustra
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - C D Andela
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - W Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - A S P van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - A M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - H A M Middelkoop
- Department of Psychology, Section Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - N R Biermasz
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
12
|
Maiti P, Gregg LC, McDonald MP. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function. Behav Brain Res 2015; 298:192-201. [PMID: 26393431 DOI: 10.1016/j.bbr.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 02/09/2023]
Abstract
In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction.
Collapse
Affiliation(s)
- Panchanan Maiti
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Laura C Gregg
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Michael P McDonald
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
13
|
Flanigan TJ, Xue Y, Kishan Rao S, Dhanushkodi A, McDonald MP. Abnormal vibrissa-related behavior and loss of barrel field inhibitory neurons in 5xFAD transgenics. GENES BRAIN AND BEHAVIOR 2014; 13:488-500. [PMID: 24655396 DOI: 10.1111/gbb.12133] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022]
Abstract
A recent study reported lower anxiety in the 5xFAD transgenic mouse model of Alzheimer's disease, as measured by reduced time on the open arms of an elevated plus maze. This is important because all behaviors in experimental animals must be interpreted in light of basal anxiety and response to novel environments. We conducted a comprehensive anxiety battery in the 5xFAD transgenics and replicated the plus-maze phenotype. However, we found that it did not reflect reduced anxiety, but rather abnormal avoidance of the closed arms on the part of transgenics and within-session habituation to the closed arms on the part of wild-type controls. We noticed that the 5xFAD transgenics did not engage in the whisker-barbering behavior typical of mice of this background strain. This is suggestive of abnormal social behavior, and we suspected it might be related to their avoidance of the closed arms on the plus maze. Indeed, transgenic mice exhibited excessive home-cage social behavior and impaired social recognition, and did not permit barbering by wild-type mice when pair-housed. When their whiskers were snipped the 5xFAD transgenics no longer avoided the closed arms on the plus maze. Examination of parvalbumin (PV) staining showed a 28.9% reduction in PV+ inhibitory interneurons in the barrel fields of 5xFAD mice, and loss of PV+ fibers in layers IV and V. This loss of vibrissal inhibition suggests a putatively aversive overstimulation that may be responsible for the transgenics' avoidance of the closed arms in the plus maze.
Collapse
Affiliation(s)
| | | | | | | | - M P McDonald
- Department of Neurology.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Wu SM, Cheng WL, Lin CD, Lin KH. Thyroid hormone actions in liver cancer. Cell Mol Life Sci 2013; 70:1915-36. [PMID: 22955376 PMCID: PMC11113324 DOI: 10.1007/s00018-012-1146-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
The thyroid hormone 3,3',5-triiodo-L-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).
Collapse
Affiliation(s)
- Sheng-Ming Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| | - Wan-Li Cheng
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| | - Crystal D. Lin
- Pre-med Program, Pacific Union College, Angwin, CA 94508 USA
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| |
Collapse
|
15
|
Leo D, Gainetdinov RR. Transgenic mouse models for ADHD. Cell Tissue Res 2013; 354:259-71. [PMID: 23681253 PMCID: PMC3785710 DOI: 10.1007/s00441-013-1639-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental disorder characterized by symptoms of inattention, impulsivity and hyperactivity that adversely affect many aspects of life. Whereas the etiology of ADHD remains unknown, growing evidence indicates a genetic involvement in the development of this disorder. The brain circuits associated with ADHD are rich in monoamines, which are involved in the mechanism of action of psychostimulants and other medications used to treat this disorder. Dopamine (DA) is believed to play a major role in ADHD but other neurotransmitters are certainly also involved. Genetically modified mice have become an indispensable tool used to analyze the contribution of genetic factors in the pathogenesis of human disorders. Although rodent models cannot fully recapitulate complex human psychiatric disorders such as ADHD, transgenic mice offer an opportunity to directly investigate in vivo the specific roles of novel candidate genes identified in ADHD patients. Several knock-out and transgenic mouse models have been proposed as ADHD models, mostly based on targeting genes involved in DA transmission, including the gene encoding the dopamine transporter (DAT1). These mutant models provided an opportunity to evaluate the contribution of dopamine-related processes to brain pathology, to dissect the neuronal circuitry and molecular mechanisms involved in the antihyperkinetic action of psychostimulants and to evaluate novel treatments for ADHD. New transgenic models mouse models targeting other genes have recently been proposed for ADHD. Here, we discuss the recent advances and pitfalls in modeling ADHD endophenotypes in genetically altered animals.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy,
| | | |
Collapse
|
16
|
Boone MD, Hammond SA, Veldhoen N, Youngquist M, Helbing CC. Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:139-148. [PMID: 23399446 DOI: 10.1016/j.aquatox.2012.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 06/01/2023]
Abstract
The orchestration of anuran metamorphosis is initiated and integrated by thyroid hormones, which change dynamically during larval development and which may represent a target of disruption by environmental contaminants. Studies have found that some anurans experience increased rates of development when exposed to the insecticide carbaryl later in larval development, suggesting that this insecticide could affect thyroid hormone-associated biological pathways. However, the time in development when tadpoles are sensitive to insecticide exposure has not been clearly defined nor has the mechanism been tested. In two separate studies, we exposed recently hatched green frog (Lithobates clamitans) tadpoles to a single, three day carbaryl exposure in the laboratory at either 2, 4, 8, or 16 weeks post-hatching. We examined the impact of carbaryl exposure on mRNA abundance patterns in the brains of frogs following metamorphosis months after a single three day exposure (experiment 1) and in tadpole tails three days after exposure (experiment 2) using cDNA microarrays and quantitative real time polymerase chain reaction (QPCR) analyses. For tadpoles reared through metamorphosis, we measured tadpole growth and development, as well as time to, mass at, and survival to metamorphosis. Although carbaryl did not significantly impact tadpole development, metamorphosis, or survival, clear exposure-related alterations in both tail and brain transcript levels were evident when tadpoles were exposed to carbaryl, particularly in tadpoles exposed at weeks 8 and 16 post-hatching, indicating both short-term and long-term alterations in mRNA expression. These results indicate that carbaryl can have long-lasting effects on brain development when exposure occurs at sensitive developmental stages, which may have implications for animal fitness and function later in the life cycle.
Collapse
|
17
|
Sawano E, Negishi T, Aoki T, Murakami M, Tashiro T. Alterations in local thyroid hormone signaling in the hippocampus of the SAMP8 mouse at younger ages: association with delayed myelination and behavioral abnormalities. J Neurosci Res 2012; 91:382-92. [PMID: 23224839 PMCID: PMC3588156 DOI: 10.1002/jnr.23161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 08/16/2012] [Accepted: 09/29/2012] [Indexed: 01/19/2023]
Abstract
The senescence-accelerated mouse (SAM) strains were established through selective inbreeding of the AKR/J strain based on phenotypic variations of aging and consist of senescence-prone (SAMP) and senescence-resistant (SAMR) strains. Among them, SAMP8 is considered as a model of neurodegeneration displaying age-associated learning and memory impairment and altered emotional status. Because adult hypothyroidism is one of the common causes of cognitive impairment and various psychiatric disorders, we examined the possible involvement of thyroid hormone (TH) signaling in the pathological aging of SAMP8 using the senescence-resistant SAMR1 as control. Although plasma TH levels were similar in both strains, a significant decrease in type 2 deiodinase (D2) gene expression was observed in the SAMP8 hippocampus from 1 to 8 months of age, which led to a 35–50% reductions at the protein level and 20% reduction of its enzyme activity at 1, 3, and 5 months. D2 is responsible for local conversion of thyroxine into transcriptionally active 3,5,3′-triiodothyronine (T3), so the results suggest a reduction in T3 level in the SAMP8 hippocampus. Attenuation of local TH signaling was confirmed by downregulation of TH-dependent genes and by immunohistochemical demonstration of delayed and reduced accumulation of myelin basic protein, the expression of which is highly dependent on TH. Furthermore, we found that hyperactivity and reduced anxiety were not age-associated but were characteristic of young SAMP8 before they start showing impairments in learning and memory. Early alterations in local TH signaling may thus underlie behavioral abnormalities as well as the pathological aging of SAMP8. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erika Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
18
|
Dhanushkodi A, Akano EO, Roguski EE, Xue Y, Rao SK, Matta SG, Rex TS, McDonald MP. A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism. GENES BRAIN AND BEHAVIOR 2012. [PMID: 23190369 DOI: 10.1111/gbb.12001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erythropoietin (Epo) is neuroprotective in a number of preparations, but can lead to unacceptably high and even lethal hematocrit levels. Recent reports show that modified Epo variants confer neuroprotection in models of glaucoma and retinal degeneration without raising hematocrit. In this study, neuroprotective effects of two Epo variants (EpoR76E and EpoS71E) were assessed in a model of Parkinson's disease. The constructs were packaged in recombinant adeno-associated viral (rAAV) vectors and injected intramuscularly. After 3 weeks, mice received five daily injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were killed 5 weeks later. The MPTP-lesioned mice pretreated with rAAV.eGFP (negative control) exhibited a 7- to 9-Hz tremor and slower latencies to move on a grid test (akinesia). Both of these symptomatic features were absent in mice pretreated with either modified Epo construct. The rAAV.eGFP-treated mice lesioned with MPTP exhibited a 41% reduction in tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rAAV.EpoS71E construct did not protect nigral neurons, but neuronal loss in mice pretreated with rAAV.EpoR76E was only half that of rAAV.eGFP controls. Although dopamine levels were normal in all groups, 3,4-dihydroxyphenylacetic acid (DOPAC) was significantly reduced only in MPTP-lesioned mice pretreated with rAAV.eGFP, indicating reduced dopamine turnover. Analysis of TH-positive fibers in the striatum showed normalized density in MPTP-lesioned mice pretreated with rAAV.EpoS71E, suggesting that enhanced sprouting induced by EpoS71E may have been responsible for normal behavior and dopaminergic tone in these mice. These results show that systemically administered rAAV-generated non-erythropoietic Epo may protect against MPTP-induced parkinsonism by a combination of neuroprotection and enhanced axonal sprouting.
Collapse
Affiliation(s)
- A Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dhanushkodi A, McDonald MP. Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration. PLoS One 2011; 6:e29285. [PMID: 22195039 PMCID: PMC3240658 DOI: 10.1371/journal.pone.0029285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/24/2011] [Indexed: 01/12/2023] Open
Abstract
Converging evidence shows that GD3 ganglioside is a critical effector in a number of apoptotic pathways, and GM1 ganglioside has neuroprotective and noötropic properties. Targeted deletion of GD3 synthase (GD3S) eliminates GD3 and increases GM1 levels. Primary neurons from GD3S−/− mice are resistant to neurotoxicity induced by amyloid-β or hyperhomocysteinemia, and when GD3S is eliminated in the APP/PSEN1 double-transgenic model of Alzheimer's disease the plaque-associated oxidative stress and inflammatory response are absent. To date, no small-molecule inhibitor of GD3S exists. In the present study we used sialidase from Vibrio cholerae (VCS) to produce a brain ganglioside profile that approximates that of GD3S deletion. VCS hydrolyzes GD1a and complex b-series gangliosides to GM1, and the apoptogenic GD3 is degraded. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. Sensorimotor behaviors, anxiety, and cognition were unaffected in VCS-treated mice. To determine whether VCS was neuroprotective in vivo, we injected kainic acid on the 25th day of infusion to induce status epilepticus. Kainic acid induced a robust lesion of the CA3 hippocampal subfield in aCSF-treated controls. In contrast, all hippocampal regions in VCS-treated mice were largely intact. VCS did not protect against seizures. These results demonstrate that strategic degradation of complex gangliosides and GD3 can be used to achieve neuroprotection without adversely affecting behavior.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michael P. McDonald
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutr Res Rev 2011; 24:132-54. [DOI: 10.1017/s0954422411000035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Controlling energy homeostasis involves modulating the desire to eat and regulating energy expenditure. The controlling machinery includes a complex interplay of hormones secreted at various peripheral endocrine endpoints, such as the gastrointestinal tract, the adipose tissue, thyroid gland and thyroid hormone-exporting organs, the ovary and the pancreas, and, last but not least, the brain itself. The peripheral hormones that are the focus of the present review (ghrelin, leptin, thyroid hormones, oestrogen and insulin) play integrated regulatory roles in and provide feedback information on the nutritional and energetic status of the body. As peripheral signals, these hormones modulate central pathways in the brain, including the hypothalamus, to influence food intake, energy expenditure and to maintain energy homeostasis. Since the growth of the literature on the role of various hormones in the regulation of energy homeostasis shows a remarkable and dynamic expansion, it is now becoming increasingly difficult to understand the individual and interactive roles of hormonal mechanisms in their true complexity. Therefore, our goal is to review, in the context of general physiology, the roles of the five best-known peripheral trophic hormones (ghrelin, leptin, thyroid hormones, oestrogen and insulin, respectively) and discuss their interactions in the hypothalamic regulation of food intake.
Collapse
|
21
|
Heimeier RA, Shi YB. Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol A on thyroid hormone action. Gen Comp Endocrinol 2010; 168:181-9. [PMID: 20178801 DOI: 10.1016/j.ygcen.2010.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Thyroid hormone (TH) is essential for proper development in vertebrates. TH deficiency during gestation and early postnatal development produces severe neurological, skeletal, metabolism and growth abnormalities. It is therefore important to consider environmental chemicals that may interfere with TH signaling. Exposure to environmental contaminants that disrupt TH action may underlie the increasing incidence of human developmental disorders worldwide. One contaminant of concern is the xenoestrogen bisphenol A (BPA), a chemical widely used to manufacture polycarbonate plastics and epoxy resins. The difficulty in studying uterus-enclosed mammalian embryos has hampered the analysis on the direct effects of BPA during vertebrate development. As TH action at the cellular level is highly conserved across vertebrate species, amphibian metamorphosis serves as an important TH-dependent in vivo vertebrate model for studying potential contributions of BPA toward human developmental disorders. Using Xenopus laevis as a model, we and others have demonstrated the inhibitory effects of BPA exposure on metamorphosis. Genome-wide gene expression analysis revealed that surprisingly, BPA primarily targets the TH-signaling pathway essential for metamorphosis in Xenopus laevis. Given the importance of the genomic effects of TH during metamorphosis and the conservation in its regulation in higher vertebrates, these observations suggest that the effect of BPA in human embryogenesis is through the inhibition of the TH pathway and warrants further investigation. Our findings further argue for the critical need to use in vivo animal models coupled with systematic molecular analysis to determine the developmental effects of endocrine disrupting compounds.
Collapse
Affiliation(s)
- Rachel A Heimeier
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
22
|
Abstract
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Strengths and limitations of genetic models of ADHD. ACTA ACUST UNITED AC 2010; 2:21-30. [DOI: 10.1007/s12402-010-0021-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/09/2010] [Indexed: 12/15/2022]
|
24
|
Harrison FE, Allard J, Bixler R, Usoh C, Li L, May JM, McDonald MP. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice. Nutr Neurosci 2009; 12:203-18. [PMID: 19761651 DOI: 10.1179/147683009x423364] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The present study investigated the relationships among oxidative stress, beta-amyloid and cognitive abilities in the APP/PSEN1 double-transgenic mouse model of Alzheimer's disease. In two experiments, long-term dietary supplements were given to aged APP/PSEN1 mice containing vitamin C alone (1 g/kg diet; Experiment 1) or in combination with a high (750 IU/kg diet, Experiments 1 and 2) or lower (400 IU/kg diet, Experiment 2) dose of vitamin E. Oxidative stress, measured by F(4)-neuroprostanes or malondialdehyde, was elevated in cortex of control-fed APP/PSEN1 mice and reduced to wild-type levels by vitamin supplementation. High-dose vitamin E with C was less effective at reducing oxidative stress than vitamin C alone or the low vitamin E+C diet combination. The high-dose combination also impaired water maze performance in mice of both genotypes. In Experiment 2, the lower vitamin E+C treatment attenuated spatial memory deficits in APP/PSEN1 mice and improved performance in wild-type mice in the water maze. Amyloid deposition was not reduced by antioxidant supplementation in either experiment.
Collapse
Affiliation(s)
- F E Harrison
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0475, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Guigon CJ, Cheng SY. Novel non-genomic signaling of thyroid hormone receptors in thyroid carcinogenesis. Mol Cell Endocrinol 2009; 308:63-9. [PMID: 19549593 PMCID: PMC2744088 DOI: 10.1016/j.mce.2009.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/16/2008] [Accepted: 01/06/2009] [Indexed: 11/28/2022]
Abstract
The thyroid hormone receptors (TRs) are transcription factors that mediate the pleiotropic activities of the thyroid hormone, T3. Four T3-binding isoforms, TRalpha1, TRbeta1, TRbeta2, and TRbeta3, are encoded by two genes, THRA and THRB. Mutations and altered expression of TRs have been reported in human cancers. A targeted germ-line mutation of the Thrbeta gene in the mouse leads to spontaneous development of follicular thyroid carcinoma (TRbeta(PV/PV) mouse). The TRbetaPV mutant has lost T3-binding activity and displays potent dominant negative activity. The striking phenotype of thyroid cancer exhibited by TRbeta(PV/PV) mice has recently led to the discovery of novel non-genomic actions of TRbetaPV that contribute to thyroid carcinogenesis. These actions involve direct physical interaction of TRbetaPV with cellular proteins, namely the regulatory subunit of the phosphatidylinositol 3-kinase (p85alpha), the pituitary tumor transforming gene (PTTG) and beta-catenin, that are critically involved in cell proliferation, motility, migration, and metastasis. Thus, a TRbeta mutant (TRbetaPV), via a novel mode of non-genomic action, acts as an oncogene in thyroid carcinogenesis.
Collapse
Affiliation(s)
| | - Sheue-yann Cheng
- To whom correspondence should be addressed at: Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Room 5128, Bethesda, MD 20892-4264, Tel: (301) 496-4280; Fax: (301) 402-1344; E-mail:
| |
Collapse
|
26
|
Carreón-Rodríguez A, Charli JL, Pérez-Martínez L. T3 differentially regulates TRH expression in developing hypothalamic neurons in vitro. Brain Res 2009; 1305:20-30. [PMID: 19766610 DOI: 10.1016/j.brainres.2009.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023]
Abstract
Triiodothyronine (T3) plays an important role during development of the central nervous system. T3 effects on gene expression are determined in part by the type of thyroid hormone receptors (TRs) expressed in a given cell type. Previous studies have demonstrated that thyrotropin releasing hormone (TRH) transcription in the adult hypothalamus is subjected to negative regulation by thyroid hormones. However, the role of T3 on the development of TRH expression is unknown. In this study we used primary cultures derived from 17-day-old fetal rat hypothalamus to analyze the effects of T3 on TRH gene expression during development. T3 increased TRH mRNA expression in immature cultures, but decreased it in mature cultures. In addition, T3 up-regulated TRalpha1 and TRbeta2 mRNA expression. TRalpha1 expression coincided chronologically with that of TRH in the rat hypothalamus in vivo. Maturation of TRH expression in the hypothalamus may involve T3 acting through TRalpha1.
Collapse
Affiliation(s)
- Alfonso Carreón-Rodríguez
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, UNAM, A.P. 510-3, Cuernavaca, Morelos 62271, Mexico
| | | | | |
Collapse
|
27
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2766] [Impact Index Per Article: 184.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- Endocrine Section of First Department of Medicine, Laiko Hospital, Medical School University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zoeller RT, Tyl RW, Tan SW. Current and Potential Rodent Screens and Tests for Thyroid Toxicants. Crit Rev Toxicol 2008; 37:55-95. [PMID: 17364705 DOI: 10.1080/10408440601123461] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article reviews current rodent screens and tests to detect thyroid toxicants. Many points of disruption for thyroid toxicants are outlined and include: (a) changes in serum hormone level; (b) thyroperoxidase inhibitors; (c) the perchlorate discharge test; (d) inhibitors of iodide uptake; (e) effects on iodothyronine deiodinases; (f) effects on thyroid hormone action; and (g) role of binding proteins (e.g., rodent transthyretin). The major thyroid endpoints currently utilized in existing in vivo assay protocols of the Organization for Economic Cooperation and Development (OECD), Japanese researchers, and U.S. Environmental Protection Agency (EPA) include thyroid gland weight, histopathology, circulating thyroid hormone measurements, and circulating thyroid-stimulating hormone (TSH). These endpoints can be added into the existing in vivo assays for reproduction, development, and neurodevelopment that are outlined in this chapter. Strategic endpoints for possible addition to existing protocols to detect effects on developmental and adult thyroid endpoints are discussed. Many of these endpoints for detecting thyroid system disruption require development and additional research before they can be considered in existing assays. Examples of these endpoints under development include computer-assisted morphometry of the brain and evaluation of treatment-related changes in gene expression, thyrotropin-releasing hormone (TRH) and TSH challenge tests, and tests to evaluate thyroid hormone (TH)-dependent developmental events, especially in the rodent brain (e.g., measures of cerebellar and cortical proliferation, differentiation, migration, apoptosis, planimetric measures and gene expression, and oligodendrocyte differentiation). Finally, TH-responsive genes and proteins as well as enzyme activities are being explored. Existing in vitro tests are also reviewed, for example, thyroid hormone (TH) metabolism, receptor binding, and receptor activation assays, and their restrictions are described. The in vivo assays are currently the most appropriate for understanding the potential effects of a thyroid toxicant on the thyroid system. The benefits and potential limitations of the current in vivo assays are listed, and a discussion of the rodent thyroid system in the context of human health is touched upon. Finally, the importance of understanding the relationship between timing of exposure, duration of dose, and time of acquisition of the endpoints in interpreting the results of the in vivo assays is emphasized.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
29
|
Viggiano D. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav Brain Res 2008; 194:1-14. [PMID: 18656502 DOI: 10.1016/j.bbr.2008.06.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/26/2008] [Accepted: 06/29/2008] [Indexed: 01/01/2023]
Abstract
The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine synthesis usually results in hypoactive behaviour. However, a chronic increase in norepinephrine may result in hypoactivity too. Similarly, changes in both directions of serotonin levels may reduce locomotor activity, whereas alterations in specific serotonin receptors can induce hyperactivity. The lesion of at least 12 different brain regions can increase locomotor activity too. Comparatively, few focal lesions decrease locomotor activity. Finally, a large number of toxic events can increase locomotor activity, particularly if delivered during the prepuberal time window. These data show that there is a net imbalance in the number of altered genes/brain lesions/toxics that induce hyperactivity versus hypoactive behaviour. Although some of these data may be explained in terms of the activating role of subcortical systems (such as catecholamines), the larger number of alterations that induce hyperactivity suggests a different scenario. Specifically, we hypothesize (i) the existence of a control system that continuously inhibit a basally hyperactive locomotor tone and (ii) that this control system is highly vulnerable (intrinsic fragility) to any change in the genetic asset or to any toxic/drug delivered during prepuberal stages. Brain lesion studies suggest that the putative control system is located along an axis that connects the olfactory bulb and the enthorhinal cortex (enthorhinal-hippocampal-septal-prefrontal cortex-olfactory bulb axis). We suggest that the increased locomotor activity in many psychiatric diseases may derive from the interference with the development of this brain axis during a specific postnatal time window.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Health Sciences, Faculty of Scienze del Benessere, University of Molise, Via De Sanctis III Edificio Polifunzionale, 86100 Campobasso, Italy.
| |
Collapse
|
30
|
Nunez J, Celi FS, Ng L, Forrest D. Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 2008; 287:1-12. [PMID: 18448240 PMCID: PMC2486256 DOI: 10.1016/j.mce.2008.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 12/16/2022]
Abstract
Thyroid hormone (TH) has a remarkable range of actions in the development and function of the nervous system. A multigenic picture is emerging of the mechanisms that specify these diverse functions in target tissues. Distinct responses are mediated by alpha and beta isoforms of TH receptor which act as ligand-regulated transcription factors. Receptor activity can be regulated at several levels including that of uptake of TH ligand and the activation or inactivation of ligand by deiodinase enzymes in target tissues. Processes under the control of TH range from learning and anxiety-like behaviour to sensory function. At the cellular level, TH controls events as diverse as axonal outgrowth, hippocampal synaptic activity and the patterning of opsin photopigments necessary for colour vision. Overall, TH coordinates this variety of events in both central and sensory systems to promote the function of the nervous system as a complete entity.
Collapse
|
31
|
Harrison FE, Yu SS, Van Den Bossche KL, Li L, May JM, McDonald MP. Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid. J Neurochem 2008; 106:1198-208. [PMID: 18466336 DOI: 10.1111/j.1471-4159.2008.05469.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidative stress is implicated in the cognitive deterioration associated with normal aging as well as neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. We investigated the effect of ascorbic acid (vitamin C) on oxidative stress, cognition, and motor abilities in mice null for gulono-gamma-lactone oxidase (Gulo). Gulo-/- mice are unable to synthesize ascorbic acid and depend on dietary ascorbic acid for survival. Gulo-/- mice were given supplements that provided them either with ascorbic acid levels equal to- or slightly higher than wild-type mice (Gulo-sufficient), or lower than physiological levels (Gulo-low) that were just enough to prevent scurvy. Ascorbic acid is a major anti-oxidant in mice and any reduction in ascorbic acid level is therefore likely to result in increased oxidative stress. Ascorbic acid levels in the brain and liver were higher in Gulo-sufficient mice than in Gulo-low mice. F(4)-neuroprostanes were elevated in cortex and cerebellum in Gulo-low mice and in the cortex of Gulo-sufficient mice. All Gulo-/- mice were cognitively normal but had a strength and agility deficit that was worse in Gulo-low mice. This suggests that low levels of ascorbic acid and elevated oxidative stress as measured by F(4)-neuroprostanes alone are insufficient to impair memory in the knockouts but may be responsible for the exacerbated motor deficits in Gulo-low mice, and ascorbic acid may have a vital role in maintaining motor abilities.
Collapse
Affiliation(s)
- Fiona E Harrison
- Division of Diabetes, Endocrinology & Metabolism, Vanderbilt University, 7465 MRB IV, 2213 Garland Avenue, Nashville, TN 37232-0475, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Asúa T, Bilbao A, Gorriti MA, Lopez-Moreno JA, Del Mar Alvarez M, Navarro M, Rodríguez de Fonseca F, Perez-Castillo A, Santos A. Implication of the endocannabinoid system in the locomotor hyperactivity associated with congenital hypothyroidism. Endocrinology 2008; 149:2657-66. [PMID: 18218697 DOI: 10.1210/en.2007-1586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Behavior, Animal/drug effects
- Cannabinoid Receptor Modulators/agonists
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/physiology
- Cerebellum/drug effects
- Cerebellum/metabolism
- Congenital Hypothyroidism/complications
- Congenital Hypothyroidism/physiopathology
- Drug Evaluation, Preclinical
- Endocannabinoids
- Female
- Hyperkinesis/drug therapy
- Hyperkinesis/etiology
- Hyperkinesis/genetics
- Motor Activity/drug effects
- Motor Activity/physiology
- Pregnancy
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Triiodothyronine/pharmacology
- Triiodothyronine/therapeutic use
Collapse
Affiliation(s)
- Teresa Asúa
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
34
|
Abstract
Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across developmental time and brain region. These actions of TH are mediated largely by a combination of thyroid hormone receptor (TR) isoforms that exhibit specific temporal and spatial patterns of expression during animal and human brain development. In addition, TR action is influenced by different cofactors, proteins that directly link the TR protein to functional changes in gene expression. Considering the importance of TH signaling in development, it is important to consider environmental chemicals that may interfere with this signaling. Recent research indicates that environmental chemicals can interfere with thyroid function and with TH signaling. The key issues are to understand the mechanism by which these chemicals act and the dose at which they act, and whether adaptive responses intrinsic to the thyroid system can ameliorate potential adverse consequences (i.e., compensate). In addition, several recent studies show that TRs may be unintended targets of chemicals manufactured for industrial purposes to which humans and wildlife are routinely exposed. Polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol-A, and specific halogenated derivatives and metabolites of these compounds have been shown to bind to TRs and perhaps have selective effects on TR functions. A number of common chemicals, including polybrominated biphenyls and phthalates, may also exert such effects. When we consider the importance of TH in brain development, it will be important to pursue the possibilities that these chemicals-or interactions among chemical classes-are affecting children's health by influencing TH signaling in the developing brain.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Program in Molecular and Cellular Biology, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
35
|
Abstract
Thyroid hormones (THs), T3 and T4, have many physiological actions and are essential for normal behavioral, intellectual and neurological development. THs have a broad spectrum of effects on the developing brain and mediate important effects within the CNS throughout life. Insufficient maternal iodine intake during gestation and TH deficiency during human development are associated to pathological alterations such as cretinism and mental retardation. In adulthood, thyroid dysfunction is related to neurological and behavioral abnormalities, including memory impairment. Analysis of different experimental models suggests that most of the effects on cognition as a result of thyroid dysfunction rely on hippocampal modifications. Insufficiency of THs during development thus alters hippocampal synaptic function and impairs behavioral performance of hippocampal-dependent learning and memory tasks that persist in euthyroid adult animals. In the present review, we summarize the current knowledge obtained by clinical observations and experimental models that shows the importance of THs in learning and mnemonic processes.
Collapse
Affiliation(s)
- M Rivas
- Dpto. Biología Molecular y Celular, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | |
Collapse
|
36
|
Helbing CC, Bailey CM, Ji L, Gunderson MP, Zhang F, Veldhoen N, Skirrow RC, Mu R, Lesperance M, Holcombe GW, Kosian PA, Tietge J, Korte JJ, Degitz SJ. Identification of gene expression indicators for thyroid axis disruption in a Xenopus laevis metamorphosis screening assay. Part 1. Effects on the brain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:227-41. [PMID: 17403546 DOI: 10.1016/j.aquatox.2007.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 05/14/2023]
Abstract
Thyroid hormones (TH), thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)), play crucial roles in regulation of growth, development and metabolism in vertebrates and their actions are targets for endocrine disruptive agents. Perturbations in TH action can contribute to the development of disease states and the US Environmental Protection Agency is developing a high throughput screen using TH-dependent amphibian metamorphosis as an assay platform. Currently this methodology relies on external morphological endpoints and changes in central thyroid axis parameters. However, exposure-related changes in gene expression in TH-sensitive tissue types that occur over shorter time frames have the potential to augment this screen. This study aims to characterize and identify molecular markers in the tadpole brain. Using a combination of cDNA array analysis and real time quantitative polymerase chain reaction (QPCR), we examine the brain of tadpoles following 96 h of continuous exposure to T(3), T(4), methimazole, propylthiouracil, or perchlorate. This tissue was more sensitive to T(4) rather than T(3), even when differences in biological activity were taken into account. This implies that a simple conversion of T(4) to T(3) cannot fully account for T(4) effects on the brain and suggests distinctive mechanisms of action for the two THs. While the brain shows gene expression alterations for methimazole and propylthiouracil, the environmental contaminant, perchlorate, had the greatest effect on the levels of mRNAs encoding proteins important in neural development and function. Our data identify gene expression profiles that can serve as exposure indicators of these chemicals.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry and Microbiology, PO Box 3055, Stn. CSC, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Furuya F, Ying H, Zhao L, Cheng SY. Novel functions of thyroid hormone receptor mutants: beyond nucleus-initiated transcription. Steroids 2007; 72:171-9. [PMID: 17169389 PMCID: PMC2794798 DOI: 10.1016/j.steroids.2006.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/11/2006] [Indexed: 01/27/2023]
Abstract
Study of molecular actions of thyroid hormone receptor beta (TRbeta) mutants in vivo has been facilitated by creation of a mouse model (TRbetaPV mouse) that harbors a knockin mutant of TRbeta (denoted PV). PV, which was identified in a patient with resistance to thyroid hormone, has lost T3 binding activity and transcription capacity. The striking phenotype of thyroid cancer exhibited by TRbeta(PV/PV) mice has allowed the elucidation of novel oncogenic activity of a TRbeta mutant (PV) [PAS1] beyond nucleus-initiated transcription. PV was found to physically interact with the regulatory p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) in both the nuclear and cytoplasmic compartments. This protein-protein interaction activates the PI3K signaling by increasing phosphorylation of AKT, mammalian target of rapamycin (mTOR), and p70(S6K). PV, via interaction with p85alpha, also activates the PI3K-integrin-linked kinase-matrix metalloproteinase-2 signaling pathway in the extra-nuclear compartment. The PV-mediated PI3K activation results in increased cell proliferation, motility, migration, and metastasis. In addition to affecting these membrane-initiated signaling events, PV affects the stability of the pituitary tumor-transforming gene (PTTG) product. PTTG (also known as securin), a critical mitotic checkpoint protein, is physically associated with TRbeta or PV in vivo. Concomitant with T3-induced degradation of TRbeta, PTTG is degraded by the proteasome machinery, but no such degradation occurs when PTTG is associated with PV. The degradation of PTTG/TRbeta is activated by the direct interaction of the T3-bound TRbeta with the steroid receptor coactivator-3 (SRC-3) that recruits a proteasome activator (PA28gamma). PV that does not bind T3 cannot interact directly with SRC-3/PA28gamma to activate proteasome degradation, and the absence of degradation results in an aberrant accumulation of PTTG. The PV-induced failure of timely degradation of PTTG results in mitotic abnormalities. PV, via novel protein-protein interaction and transcription regulation, acts to antagonize the functions of wild-type TRs and contributes to the oncogenic functions of this mutation.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
38
|
van der Kooij MA, Glennon JC. Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 2007; 31:597-618. [PMID: 17316796 DOI: 10.1016/j.neubiorev.2006.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 10/22/2006] [Accepted: 12/30/2006] [Indexed: 11/29/2022]
Abstract
Several models of attention-deficit hyperactivity disorder (ADHD) have been proposed, ranging from administration of neurotoxins to genetically manipulated models. These models are used to gain insight into ADHD as a disorder and assist in the discovery of new therapeutic strategies. However, the information gained from these models differs, depending to a large extent on the validity (or otherwise) of the model. Thus the insights gained from these models with respect to the pathophysiology and aetiology of ADHD remains inconclusive. No animal model resembles the clinical situation of ADHD perfectly but good animal models of ADHD should mimic its characteristics, confirm to an underlying theory of ADHD and ultimately make predictions of future therapies. While the involvement of dopamine (DA) in ADHD has been established, the evaluation of rodent models of ADHD particularly with respect to dopaminergic systems is attempted here. It is concluded that the neonatal 6-hydroxy-dopamine lesioned rat and DA transporter knockout/knockdown mice have the highest degree of validity for ADHD.
Collapse
Affiliation(s)
- Michael A van der Kooij
- Laboratory for Psychoneuroimmunology & Department of Neonatology, University Medical Center Utrecht, Lundlaan 6, 3584EA Utrecht, The Netherlands.
| | | |
Collapse
|
39
|
Cheng SY. Thyroid hormone receptor mutations and disease: insights from knock-in mouse models. Expert Rev Endocrinol Metab 2007; 2:47-57. [PMID: 30743748 DOI: 10.1586/17446651.2.1.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormone nuclear receptors (TRs) mediate thyroid hormone's activities in growth, differentiation, and development. Two TR genes (α and β ) encode four thyroid hormone-binding receptors that regulate target gene expression. Mutations of the TRβ gene cause the genetic syndrome of resistance to thyroid hormone. Studies indicate a close association between TRβ mutations and several human cancers, suggesting their oncogenic role. A TRβ gene knock-in mutant mouse (TRβPV/PV mouse) that spontaneously develops thyroid cancer allows elucidation of the oncogenic functions in vivo. TRβPV is a potent dominant negative mutant identified in a resistance to thyroid hormone patient. Molecular studies indicate that the PV mutant mediates its oncogenic activities via nucleus-initiated transcription and novel extranuclear actions. Thus, the deleterious effects of the gene mutations go beyond resistance to thyroid hormone and are more severe and extensive than previously envisioned. This newly identified oncogene exerts its tumorigenic effects via multiple signaling mechanisms.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- a National Cancer Institute, Laboratory of Molecular Biology, 37 Convent Dr., Room 5128, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
40
|
Helbing CC, Ovaska K, Ji L. Evaluation of the effect of acetochlor on thyroid hormone receptor gene expression in the brain and behavior of Rana catesbeiana tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:42-51. [PMID: 16949162 DOI: 10.1016/j.aquatox.2006.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/12/2006] [Accepted: 07/12/2006] [Indexed: 05/11/2023]
Abstract
The thyroid hormones (THs) including 3,5,3'-triiodothyronine (T3), are important regulators of growth and development of the brain in vertebrates. Previous studies showed that acetochlor, a widely used herbicide, accelerates T3 -induced frog tadpole metamorphosis and elevates the T3 -dependent accumulation of the mRNAs encoding the TH receptors, TRalpha and beta, in the tail. Here we show that acetochlor affects the expression of these TR isoforms in the brain of Rana catesbeiana tadpoles. Premetamorphic tadpoles exposed to 10 nM acetochlor with and without 100 nM T(3) for 4 days showed substantial increases in TRalpha and TRbeta transcript levels and significant decreases in the TRalpha/TRbeta ratios in their brains. This change in TR ratios is recapitulated with 10 nM acetochlor in R. catesbeiana tadpole brains during prometamorphosis, a period in which THs are endogenously produced. Tail fin biopsies revealed an elevation in TRalpha and beta mRNA levels compared to control animals when exposed to 1 and 10 nM acetochlor for 6 days. When subsequently reared in clean water for 59 days, no alterations in metamorphic hallmarks (forelimb emergence, mouth development, tail regression) were noted compared to the controls. Since alterations in TR ratios/levels may impact brain development, we tested the escape behavior in premetamorphic tadpoles exposed to 10 nM acetochlor for 4 days. We did not detect any statistically significant differences that would indicate that acetochlor affects escape behavior. However, since the gene expression data suggest that brain function may be affected, additional studies examining different behaviors upon acetochlor exposure at environmentally-relevant concentrations are warranted.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | | | | |
Collapse
|