1
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Freels TG, Westbrook SR, Zamberletti E, Kuyat JR, Wright HR, Malena AN, Melville MW, Brown AM, Glodosky NC, Ginder DE, Klappenbach CM, Delevich KM, Rubino T, McLaughlin RJ. Sex Differences in Response-Contingent Cannabis Vapor Administration During Adolescence Mediate Enduring Effects on Behavioral Flexibility and Prefrontal Microglia Activation in Rats. Cannabis Cannabinoid Res 2024; 9:e1184-e1196. [PMID: 38190273 PMCID: PMC11392456 DOI: 10.1089/can.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Introduction: Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. Materials and Methods: We used a response-contingent vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Results: Adolescent (35- to 55-day-old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared with adolescent males. In adulthood (70-110 days old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared with vehicle rats, thereby indicating sex differences in behavioral flexibility impairments. Notably, sex-treatment interactions were not observed when rats of each sex were exposed to a noncontingent CANTHC vapor dosing regimen that approximated CANTHC vapor deliveries earned by females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no changes in myelin basic protein expression or dendritic spine density. Conclusion: Altogether, these data reveal important sex differences in rates of responding for CANTHC vapor in adolescence that may confer enduring alterations to mPFC structure and function and suggest that there may be subtle differences in the effects of response-contingent versus noncontingent cannabis exposure that should be systematically examined in future studies.
Collapse
Affiliation(s)
- Timothy G. Freels
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Sara R. Westbrook
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Jacqulyn R. Kuyat
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Hayden R. Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Alexandra N. Malena
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Max W. Melville
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Amanda M. Brown
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | | | - Darren E. Ginder
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Courtney M. Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Kristen M. Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Ryan J. McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Department of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Zhu Y, Ye Y, Greenfield TK, Kerr WC. Associations between simultaneous use of alcohol and cannabis and cannabis-related problems in 2014-2016: evidence from the Washington panel survey. J Cannabis Res 2024; 6:8. [PMID: 38396047 PMCID: PMC10893643 DOI: 10.1186/s42238-024-00217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND To address the research question of how simultaneous users of alcohol and cannabis differ from concurrent users in risk of cannabis use problems after the recreational marijuana legalization in Washington State. METHODS We used generalized estimating equations with a Poisson distribution to analyze the association between simultaneous use of alcohol and marijuana (SAM) and cannabis-related problems compared to concurrent use. The data is a longitudinal sample of drinkers and cannabis users (n = 257, 47% female) aged 18 years and older from Washington State in 2014-2016. We adjusted for survey weights to account for differential probability of selection and response rates. The primary outcome is the past-six-month CUDIT problem subscale (ranging from 0 to 28), which is the total score for seven CUDIT problem items, after excluding the three items that covered marijuana use frequency. Covariates include marijuana use frequency (daily/near daily use, regular use, or infrequent use), marijuana daily quantity, alcohol daily volume, panel survey cycle, medical marijuana recommendation, driving time to nearest marijuana outlet, age of marijuana use onset, and other demographics. RESULTS After adjusting for covariates, we found that compared to concurrent use, SAM was significantly positively associated with CUDIT problem subscale (IRR = 1.68, 95% CI: 1.25-2.27, p < 0.001); daily/near daily use of marijuana was strongly significantly associated with CUDIT problem subscale compared with infrequent use (IRR = 5.1, 2.71-9.57, p < 0.001) or regular use (IRR = 3.05, 1.91-4.85, p < 0.001). Secondary analyses using CUDIT total score as the outcome also showed a significant positive association with SAM compared to concurrent use (IRR = 1.17, 1.02-1.34, p < 0.05). CONCLUSIONS This study highlighted the importance of SAM, in addition to cannabis use frequency for predicting cannabis-related problems.
Collapse
Affiliation(s)
- Yachen Zhu
- Alcohol Research Group, Public Health Institute, Emeryville, CA, 94608, USA.
| | - Yu Ye
- Alcohol Research Group, Public Health Institute, Emeryville, CA, 94608, USA
| | | | - William C Kerr
- Alcohol Research Group, Public Health Institute, Emeryville, CA, 94608, USA
| |
Collapse
|
4
|
Cajiao-Manrique MDM, Casadó-Anguera V, García-Blanco A, Maldonado R, Martín-García E. THC exposure during adolescence increases impulsivity-like behavior in adulthood in a WIN 55,212-2 self-administration mouse model. Front Psychiatry 2023; 14:1148993. [PMID: 37304451 PMCID: PMC10248087 DOI: 10.3389/fpsyt.2023.1148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cannabis addiction is a chronically relapsing disorder lacking effective treatment. Regular cannabis consumption typically begins during adolescence, and this early cannabinoid exposure may increase the risk for drug addiction in adulthood. Objective This study investigates the development of cannabis addiction-like behavior in adult mice after adolescent exposure to the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC). Methods Adolescent male mice were exposed to 5 mg/kg of THC from postnatal days 37 to 57. Operant self-administration sessions of WIN 55,212-2 (12.5 μg/kg/infusion) were conducted for 10 days. Mice were tested for three addiction-like criteria (persistence of response, motivation, and compulsivity), two parameters related to craving (resistance to extinction and drug-seeking behavior), and two phenotypic vulnerability traits related to substance use disorders (impulsivity and reward sensitivity). Additionally, qPCR assays were performed to detect differentially expressed genes in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HPC) of "addicted" and "non-addicted" mice. Results Adolescent THC exposure did not modify WIN 55,212-2 reinforcement nor the development of cannabis addiction-like behavior. Inversely, THC pre-exposed mice displayed impulsive-like behavior in adulthood, which was more pronounced in mice that developed the addiction-like criteria. Moreover, downregulated drd2 and adora2a gene expression in NAc and HPC was revealed in THC pre-exposed mice, as well as a downregulation of drd2 expression in mPFC of vehicle pre-treated mice that developed addiction-like behaviors. Discussion These findings suggest that adolescent THC exposure may promote impulsivity-like behavior in adulthood, associated with downregulated drd2 and adora2a expression in NAc and HPC.
Collapse
Affiliation(s)
- María del Mar Cajiao-Manrique
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Verònica Casadó-Anguera
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
5
|
Halbout B, Hutson C, Hua L, Inshishian V, Mahler SV, Ostlund SB. Long-term effects of THC exposure on reward learning and motivated behavior in adolescent and adult male rats. Psychopharmacology (Berl) 2023; 240:1151-1167. [PMID: 36933028 PMCID: PMC10102061 DOI: 10.1007/s00213-023-06352-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
RATIONALE The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. OBJECTIVE AND METHODS We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats' capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. RESULTS THC exposure had no effect on rats' ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats' willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1 receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. CONCLUSIONS Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Leann Hua
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Abdelmoneim WM, Bakr MH, Ghandour NM, Mohammed MK, Fawzy M, Ramadan AG, Abdellah NZ. Cytotoxicity associated with acute and chronic administration of synthetic cannabinoids “Strox” in the brain, liver, heart, and testes of male albino rats: histological and immunohistochemical study. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2023. [DOI: 10.1186/s41935-023-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
Background
Synthetic cannabinoids are one of the largest groups of new psychoactive substances that invaded Egypt’s drug abuse market over the past few years.
Aim
Randomized controlled trial study to demonstrate the effects of acute and chronic toxicity by synthetic cannabinoid (Strox) on the brain, liver, heart, and testes in adult male albino rats through histopathological examination by light microscope and immunohistochemistry.
Methods
Total number of fifty male albino rats were divided into five different groups, two control and three treated groups. Negative and positive control groups received distilled water and dimethyl sulfoxide, respectively, acute group received LD50 (lethal dose 50) once and observed for 14 days, chronic group received 1/10 LD50 for 3 months, and finally chronic withdrawal groups received 1/10 LD50 for 3 months and then left 2 weeks without the substance to observe the withdrawal manifestations.
Results
The current study revealed various histopathological changes in all organs with increased expression of cannabinoid receptor 1. The most important findings observed by light microscope examination were shrinkage and degenerative changes in Purkinje cells in brain sections, abnormalities in blood sinusoids and architecture in liver section, disruption in cardiac muscle fiber in heart sections, and finally testes showed irregularities in seminiferous tubules and germinal cells. Immunohistochemical staining for caspase-3 in the brain, liver, and heart showed weak-positive reaction in acute group and a strong reaction with chronic groups. Additionally, increase in collagen fiber was observed in sections of the liver and heart of chronic group.
Conclusions
Synthetic cannabinoid sample (Strox) toxicity caused adverse effects on the brain, liver, heart, and testes as shown by increasing cannabinoid receptor 1 and caspase-3 expression.
Collapse
|
7
|
Freels TG, Westbrook SR, Wright HR, Kuyat JR, Zamberletti E, Malena AM, Melville MW, Brown AM, Glodosky NC, Ginder DE, Klappenbach CM, Delevich KM, Rubino T, McLaughlin RJ. Sex differences in adolescent cannabis vapor self-administration mediate enduring effects on behavioral flexibility and prefrontal microglia activation in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.524468. [PMID: 36711651 PMCID: PMC9882275 DOI: 10.1101/2023.01.21.524468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. To this end, we used a novel volitional vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Adolescent (35-55 day old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared to adolescent males. In adulthood (70-110 day old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared to vehicle rats. Similar set-shifting deficits were observed in males when they were exposed to a non-contingent CANTHC vapor dosing regimen that approximated CANTHC self-administration rates in females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no significant changes in myelin basic protein expression or dendritic spine density. Together, these data reveal important sex differences in rates of cannabis vapor self-administration in adolescence that confer enduring alterations to mPFC structure and function. Importantly, female-specific deficits in behavioral flexibility appear to be driven by elevated rates of CANTHC self-administration as opposed to a sex difference in the effects of CANTHC vapor per se.
Collapse
Affiliation(s)
- Timothy G. Freels
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Sara R. Westbrook
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Hayden R. Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Jacqulyn R. Kuyat
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Alexandra M. Malena
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Max W. Melville
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Amanda M. Brown
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | | | - Darren E. Ginder
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Courtney M. Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Kristen M. Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Ryan J. McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
- Department of Psychology, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Warren WG, Papagianni EP, Hale E, Brociek RA, Cassaday HJ, Stevenson CW. Endocannabinoid metabolism inhibition has no effect on spontaneous fear recovery or extinction resistance in Lister hooded rats. Front Pharmacol 2022; 13:1082760. [PMID: 36588687 PMCID: PMC9798003 DOI: 10.3389/fphar.2022.1082760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Endocannabinoid transmission is emerging as a target for treating anxiety-related disorders, given its regulation of fear extinction. Boosting anandamide levels via inhibition of its metabolism by fatty acid amide hydrolase (FAAH) can enhance extinction, whereas inhibiting monoacylglycerol lipase (MAGL) to elevate 2-arachidonoylglycerol levels can impair extinction. However, whether endocannabinoids regulate fear relapse over time or extinction resistance remains unclear. In two experiments using auditory fear conditioned rats, we examined the effects of the FAAH inhibitor URB597 and the MAGL inhibitor JZL184 administered systemically on 1) spontaneous fear recovery after delayed extinction, and 2) extinction resistance resulting from immediate extinction [the immediate extinction deficit (IED)]. In Experiment 1, URB597 or JZL184 was given immediately after delayed extinction occurring 24 h after conditioning. Extinction recall and spontaneous fear recovery were tested drug-free 1 and 21 days later, respectively. We found no effects of either drug on extinction recall or spontaneous fear recovery. In Experiment 2, URB597 or JZL184 was given before immediate extinction occurring 30 min after conditioning and extinction recall was tested drug-free the next day. We also examined the effects of propranolol, a beta-adrenoceptor antagonist that can rescue the IED, as a positive control. JZL184 enhanced fear expression and impaired extinction learning but we found no lasting effects of URB597 or JZL184 on cued extinction recall. Propranolol reduced fear expression but, unexpectedly, had no enduring effect on extinction recall. The results are discussed in relation to various methodological differences between previous studies examining endocannabinoid and adrenergic regulation of fear extinction.
Collapse
Affiliation(s)
- William G. Warren
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Eleni P. Papagianni
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Ed Hale
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Rebecca A. Brociek
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Helen J. Cassaday
- School of Psychology, University Park, University of Nottingham, Nottingham, United Kingdom
| | - Carl W. Stevenson
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom,*Correspondence: Carl W. Stevenson,
| |
Collapse
|
9
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
10
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
11
|
Rogers CJ, Steinberg JK, Vos RO, Soto DW, Unger JB. Associations between Local Jurisdiction Ordinances and Current Use of Cannabis Products in California Adolescents. Subst Use Misuse 2022; 57:373-379. [PMID: 34903134 DOI: 10.1080/10826084.2021.2012693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Cannabis use among adolescents may have detrimental effects and use among this age group is increasing. It is important to understand how expansion of laws permitting cannabis sales may impact adolescent use. Much of the current research has explored how state-level policy decisions may impact adolescents' use behaviors; however, there is a gap in the understanding of how differences in local jurisdictional policies may also influence underage cannabis use.Procedures: The present study cross-sectionally assesses local variation in cannabis policies to explore the potential effects of local policy on underage use behaviors. Data were collected from (N = 1,573) adolescents representing 120 different localities across California, collected as a part of Project Cal Teens. Linear regression models were used to assess associations between local jurisdiction's allowance of retail sale of cannabis for adult-use and past 30-day use of non-medical (adult use) cannabis and perceived access to cannabis products. FINDINGS Local policy allowing cannabis retail was associated with adolescents' significantly higher past 30-day use of cannabis (β = 0.25 95% CI = 0.08, 0.42) and perceived access (β = 0.60 95% CI = 0.27, 0.94). CONCLUSIONS Results highlight the impact of local cannabis policies on adolescent cannabis use and perception. Considering the effects of cannabis use on adolescent development, this is an important public health concern because 14 states have already legalized recreational retail sales and growing numbers of local jurisdictions are allowing the retail sale of recreational cannabis.
Collapse
Affiliation(s)
- Christopher J Rogers
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jane K Steinberg
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Robert O Vos
- Department of Spatial Sciences, University of Southern California, Los Angeles, California, USA
| | - Daniel W Soto
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jennifer B Unger
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
12
|
Warren WG, Hale E, Papagianni EP, Cassaday HJ, Stevenson CW, Stubbendorff C. URB597 induces subtle changes to aggression in adult Lister Hooded rats. Front Psychiatry 2022; 13:885146. [PMID: 36032247 PMCID: PMC9412954 DOI: 10.3389/fpsyt.2022.885146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system has been implicated in both social and cognitive processing. The endocannabinoid metabolism inhibitor, URB597, dose-dependently improves non-social memory in adult Wistar and Sprague Dawley rats, whereas its effect on social interaction (SI) is affected by both rat strain and drug dose. Lister Hooded rats consistently respond differently to drug treatment in general compared with albino strains. This study sought to investigate the effects of different doses of URB597 on social and non-social memory in Lister Hooded rats, as well as analyzing the behavioral composition of the SI. Males were tested for novel object recognition (NOR), social preference (between an object and an unfamiliar rat), social novelty recognition (for a familiar vs. unfamiliar rat) and SI with an unfamiliar rat. URB597 (0.1 or 0.3 mg/kg) or vehicle was given 30 min before testing. During SI testing, total interaction time was assessed along with time spent on aggressive and explorative behaviors. Lister Hooded rats displayed expected non-social and social memory and social preference, which was not affected by URB597. During SI, URB597 did not affect total interaction time. However, the high dose increased aggression, compared to vehicle, and decreased anogenital sniffing, compared to the low dose of URB597. In summary, URB597 did not affect NOR, social preference or social recognition memory but did have subtle behavioral effects during SI in Lister hooded rats. Based on our findings we argue for the importance of considering strain as well as the detailed composition of behavior when investigating drug effects on social behavior.
Collapse
Affiliation(s)
- William G Warren
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Eleni P Papagianni
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom
| | - Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
13
|
Sabran-Cohen T, Bright U, Mizrachi Zer-Aviv T, Akirav I. Rapamycin prevents the long-term impairing effects of adolescence Δ-9-tetrahydrocannabinol on memory and plasticity in male rats. Eur J Neurosci 2021; 54:6104-6122. [PMID: 34405459 DOI: 10.1111/ejn.15425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
Long-lasting cognitive impairment is one of the most central negative consequences related to the exposure to cannabis during adolescence and particularly of Δ-9-tetrahydrocannabinol (THC). The aim of this study was to compare the protracted effects of adolescent versus late-adolescent chronic exposure to THC on short-term memory and plasticity and to examine whether rapamycin, a blocker of the mammalian target of rapamycin (mTOR) pathway, can restore THC-induced deficits in memory and plasticity. Male rats were injected with ascending doses of THC [2.5, 5, 10 mg/kg; intraperitoneally (i.p.)] during adolescence and late-adolescence (post-natal days 30-41 and 45-56, respectively), followed by daily injections of rapamycin (1 mg/kg, i.p.) during the first 10 days of cessation from THC. Thirty days after the last injection, rats were tested for short-term and working memory, anxiety-like behaviour, and plasticity in the pathways projecting from the ventral subiculum (vSub) of the hippocampus to the prefrontal cortex (PFC) and nucleus accumbens (NAc). THC exposure in adolescence, but not late-adolescence, was found to induce long-term deficits in object recognition short-term memory and synaptic plasticity in the hippocampal-accumbens pathway. Importantly, rapamycin rescued these persistent effects of THC administered during adolescence. Our findings show that some forms of memory and plasticity are sensitive to chronic THC administration during adolescence and that rapamycin administered during THC cessation may restore cognitive function and plasticity, thus potentially protecting against the possible long-term harmful effects of THC.
Collapse
Affiliation(s)
- Talia Sabran-Cohen
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Tomer Mizrachi Zer-Aviv
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Ginder DE, Wright HR, McLaughlin RJ. The stoned age: Sex differences in the effects of adolescent cannabinoid exposure on prefrontal cortex structure and function in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:121-145. [PMID: 34801167 PMCID: PMC11290470 DOI: 10.1016/bs.irn.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabis is the most used drug during adolescence, which is a period of enhanced cortical plasticity and synaptic remodeling that supports behavioral, cognitive, and emotional maturity. In this chapter, we review preclinical studies indicating that adolescent exposure to cannabinoids has lasting effects on the morphology and synaptic organization of the prefrontal cortex and associated circuitry, which may lead to cognitive dysfunction later in life. Additionally, we reviewed sex differences in the effects of adolescent cannabinoid exposure with a focus on brain systems that support cognitive functioning. The body of evidence indicates enduring sex-specific effects in behavior and organization of corticolimbic circuitry, which appears to be influenced by species, strain, drug, route of administration, and window/pattern of drug exposure. Caution should be exercised when extrapolating these results to humans. Adopting models that more closely resemble human cannabis use will provide more translationally relevant data concerning the long-term effects of cannabis use on the adolescent brain.
Collapse
Affiliation(s)
- D E Ginder
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - H R Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - R J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, United States; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States.
| |
Collapse
|
15
|
Peters KZ, Zlebnik NE, Cheer JF. Cannabis exposure during adolescence: A uniquely sensitive period for neurobiological effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:95-120. [PMID: 34801175 DOI: 10.1016/bs.irn.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is a crucial developmental period where neural circuits are refined and the brain is especially vulnerable to external insults. The endocannabinoid (eCB) system undergoes changes during adolescence which affect the way in which it modulates the development of other systems, in particular dopamine circuits, which show protracted development into adolescence. Given the rise of cannabis use by adolescents and young people, as well as variants containing increasingly higher concentrations of THC, it is now crucial to understand the unique effects of adolescent exposure to cannabis on the developing brain and it might shape future adult vulnerabilities to conditions such as psychosis, schizophrenia, addiction and more. Here we discuss the development of the eCB system across the lifespan, how CB1 receptors modulate dopamine release and potential neurobiological and behavioral effects of adolescent THC exposure on the developing brain such as alterations in excitatory/inhibitory balance during this developmental period.
Collapse
Affiliation(s)
- K Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom.
| | - N E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
16
|
Albaugh MD, Ottino-Gonzalez J, Sidwell A, Lepage C, Juliano A, Owens MM, Chaarani B, Spechler P, Fontaine N, Rioux P, Lewis L, Jeon S, Evans A, D’Souza D, Radhakrishnan R, Banaschewski T, Bokde ALW, Quinlan EB, Conrod P, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Potter A, Garavan H. Association of Cannabis Use During Adolescence With Neurodevelopment. JAMA Psychiatry 2021; 78:2781289. [PMID: 34132750 PMCID: PMC8209561 DOI: 10.1001/jamapsychiatry.2021.1258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/18/2021] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Animal studies have shown that the adolescent brain is sensitive to disruptions in endocannabinoid signaling, resulting in altered neurodevelopment and lasting behavioral effects. However, few studies have investigated ties between cannabis use and adolescent brain development in humans. OBJECTIVE To examine the degree to which magnetic resonance (MR) imaging-assessed cerebral cortical thickness development is associated with cannabis use in a longitudinal sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS Data were obtained from the community-based IMAGEN cohort study, conducted across 8 European sites. Baseline data used in the present study were acquired from March 1, 2008, to December 31, 2011, and follow-up data were acquired from January 1, 2013, to December 31, 2016. A total of 799 IMAGEN participants were identified who reported being cannabis naive at study baseline and had behavioral and neuroimaging data available at baseline and 5-year follow-up. Statistical analysis was performed from October 1, 2019, to August 31, 2020. MAIN OUTCOMES AND MEASURES Cannabis use was assessed at baseline and 5-year follow-up with the European School Survey Project on Alcohol and Other Drugs. Anatomical MR images were acquired with a 3-dimensional T1-weighted magnetization prepared gradient echo sequence. Quality-controlled native MR images were processed through the CIVET pipeline, version 2.1.0. RESULTS The study evaluated 1598 MR images from 799 participants (450 female participants [56.3%]; mean [SD] age, 14.4 [0.4] years at baseline and 19.0 [0.7] years at follow-up). At 5-year follow-up, cannabis use (from 0 to >40 uses) was negatively associated with thickness in left prefrontal (peak: t785 = -4.87, cluster size = 1558 vertices; P = 1.10 × 10-6, random field theory cluster corrected) and right prefrontal (peak: t785 = -4.27, cluster size = 1551 vertices; P = 2.81 × 10-5, random field theory cluster corrected) cortices. There were no significant associations between lifetime cannabis use at 5-year follow-up and baseline cortical thickness, suggesting that the observed neuroanatomical differences did not precede initiation of cannabis use. Longitudinal analysis revealed that age-related cortical thinning was qualified by cannabis use in a dose-dependent fashion such that greater use, from baseline to follow-up, was associated with increased thinning in left prefrontal (peak: t815.27 = -4.24, cluster size = 3643 vertices; P = 2.28 × 10-8, random field theory cluster corrected) and right prefrontal (peak: t813.30 = -4.71, cluster size = 2675 vertices; P = 3.72 × 10-8, random field theory cluster corrected) cortices. The spatial pattern of cannabis-related thinning was associated with age-related thinning in this sample (r = 0.540; P < .001), and a positron emission tomography-assessed cannabinoid 1 receptor-binding map derived from a separate sample of participants (r = -0.189; P < .001). Analysis revealed that thinning in right prefrontal cortices, from baseline to follow-up, was associated with attentional impulsiveness at follow-up. CONCLUSIONS AND RELEVANCE Results suggest that cannabis use during adolescence is associated with altered neurodevelopment, particularly in cortices rich in cannabinoid 1 receptors and undergoing the greatest age-related thickness change in middle to late adolescence.
Collapse
Affiliation(s)
- Matthew D. Albaugh
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | | | - Amanda Sidwell
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Claude Lepage
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Anthony Juliano
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Max M. Owens
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Philip Spechler
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Nicholas Fontaine
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Pierre Rioux
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Lindsay Lewis
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Seun Jeon
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Alan Evans
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Deepak D’Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Patricia Conrod
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale U A10 “Trajectoires développementales en psychiatrie” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie,” Paris, France
- Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Paris, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology, and Neuroscience, Social, Genetic & Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Centre for Population Neuroscience and Precision Medicine Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, PR China
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
17
|
Onaemo VN, Fawehinmi TO, D'Arcy C. Comorbid Cannabis Use Disorder with Major Depression and Generalized Anxiety Disorder: A Systematic Review with Meta-analysis of Nationally Representative Epidemiological Surveys. J Affect Disord 2021; 281:467-475. [PMID: 33360749 DOI: 10.1016/j.jad.2020.12.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Studies have shown a high degree of comorbidity between cannabis use disorder (CUD) and other mental illnesses. However, there is a paucity of research on the comorbidity between CUD with major depression (MD) and generalized anxiety disorder (GAD). This systematic review with meta-analysis aimed to assess the prevalence and strength of association between co-morbid CUD with MD and GAD. METHODS An extensive search of Medline, CINAHL, PsycINFO, EMBASE, and grey literature were conducted to cover articles published between January 1st, 1980, and July 31st, 2020. Inclusion criteria were publications in English Language, original research, nationally representative samples, and non-clinical randomly selected adult populations. A systematic review and meta-analysis for the prevalence and ORs for comorbid CUD with MD or GAD were done. RESULTS A total of 67 articles were identified by the electronic searches. A full-text review yielded 8 publications on nationally representative epidemiological surveys. 12-month and lifetime comorbidity estimates were extracted and used for the meta-analysis. CUD was strongly associated with MDE (OR 3.22; 2.31 - 4.49) and with GAD (OR 2.99; 2.14 - 4.16). LIMITATIONS Limitations of this study include the heterogeneity observed due to the combination of studies from different geographic regions with different modifications of diagnostic criteria and varied response rates. This was addressed with a random-effects model. CONCLUSION This review confirms the evidence of high prevalence and a 3-fold comorbid association between CUD with MD and CUD with GAD. Implementation of evidence-based policy interventions with effective, integrated management of comorbid CUDs with psychiatric disorders may contribute to positive patient outcomes.
Collapse
Affiliation(s)
- Vivian N Onaemo
- Government of Saskatchewan, Ministry of Health, 3475 Albert Street, Regina, Canada, S4S 6X6; School of Public Health, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada.
| | - Timothy O Fawehinmi
- Government of Nunavut, Department of Health, Iqaluit, Nunavut. X0A 0H0, Nunavut, Canada
| | - Carl D'Arcy
- School of Public Health, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada; Department of Psychiatry, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 2Z4, Canada
| |
Collapse
|
18
|
De Felice M, Renard J, Hudson R, Szkudlarek HJ, Pereira BJ, Schmid S, Rushlow WJ, Laviolette SR. l-Theanine Prevents Long-Term Affective and Cognitive Side Effects of Adolescent Δ-9-Tetrahydrocannabinol Exposure and Blocks Associated Molecular and Neuronal Abnormalities in the Mesocorticolimbic Circuitry. J Neurosci 2021; 41:739-750. [PMID: 33268546 PMCID: PMC7842745 DOI: 10.1523/jneurosci.1050-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC) is linked to elevated neuropsychiatric risk and induces neuronal, molecular and behavioral abnormalities resembling neuropsychiatric endophenotypes. Previous evidence has revealed that the mesocorticolimbic circuitry, including the prefrontal cortex (PFC) and mesolimbic dopamine (DA) pathway are particularly susceptible to THC-induced pathologic alterations, including dysregulation of DAergic activity states, loss of PFC GABAergic inhibitory control and affective and cognitive abnormalities. There are currently limited pharmacological intervention strategies capable of preventing THC-induced neuropathological adaptations. l-Theanine is an amino acid analog of l-glutamate and l-glutamine derived from various plant sources, including green tea leaves. l-Theanine has previously been shown to modulate levels of GABA, DA, and glutamate in various neural regions and to possess neuroprotective properties. Using a preclinical model of adolescent THC exposure in male rats, we report that l-theanine pretreatment before adolescent THC exposure is capable of preventing long-term, THC-induced dysregulation of both PFC and VTA DAergic activity states, a neuroprotective effect that persists into adulthood. In addition, pretreatment with l-theanine blocked THC-induced downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways directly in the PFC, two biomarkers previously associated with cannabis-related psychiatric risk and subcortical DAergic dysregulation. Finally, l-theanine powerfully blocked the development of both affective and cognitive abnormalities commonly associated with adolescent THC exposure, further demonstrating functional and long-term neuroprotective effects of l-theanine in the mesocorticolimbic system.SIGNIFICANCE STATEMENT With the increasing trend of cannabis legalization and consumption during adolescence, it is essential to expand knowledge on the potential effects of adolescent cannabis exposure on brain development and identify potential pharmacological strategies to minimize Δ-9-tetrahydrocannabinol (THC)-induced neuropathology. Previous evidence demonstrates that adolescent THC exposure induces long-lasting affective and cognitive abnormalities, mesocorticolimbic dysregulation, and schizophrenia-like molecular biomarkers that persist into adulthood. We demonstrate for the first time that l-theanine, an amino acid analog of l-glutamate and l-glutamine, is capable of preventing long-term THC side effects. l-Theanine prevented the development of THC-induced behavioral aberrations, blocked cortical downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways, and normalized dysregulation of both PFC and VTA DAergic activity, demonstrating powerful and functional neuroprotective effects against THC-induced developmental neuropathology.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Justine Renard
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Brian J Pereira
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Susanne Schmid
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
19
|
Stringfield SJ, Torregrossa MM. Disentangling the lasting effects of adolescent cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110067. [PMID: 32791165 DOI: 10.1016/j.pnpbp.2020.110067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Cannabis is the most widely used illicit substance among adolescents, and adolescent cannabis use is associated with various neurocognitive deficits that can extend into adulthood. A growing body of evidence supports the hypothesis that adolescence encompasses a vulnerable period of development where exposure to exogenous cannabinoids can alter the normative trajectory of brain maturation. In this review, we present an overview of studies of human and rodent models that examine lasting effects of adolescent exposure. We include evidence from meta-analyses, longitudinal, or cross-sectional studies in humans that consider age of onset as a factor that contributes to the behavioral dysregulation and altered structural or functional development in cannabis users. We also discuss evidence from preclinical rodent models utilizing well-characterized or innovative routes of exposure, investigating the effects of dose and timing to produce behavioral deficits or alterations on a neuronal and behavioral level. Multiple studies from both humans and animals provide contrasting results regarding the magnitude of residual effects. Combined evidence suggests that exposure to psychoactive cannabinoids during adolescence has the potential to produce subtle, but lasting, alterations in neurobiology and behavior.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Dhein S. Different Effects of Cannabis Abuse on Adolescent and Adult Brain. Pharmacology 2020; 105:609-617. [PMID: 32629444 DOI: 10.1159/000509377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
Cannabis abuse is a common phenomenon among adolescents. The dominant psychoactive substance in Cannabis sativa is tetrahydrocannabinol (THC). However, in the past 40 years the content of the psychoactive ingredient THC in most of the preparations is not constant but has increased due to other breeding and culturing conditions. THC acts as the endocannabinoids at CB1 and CB2 receptors but pharmacologically can be described as a partial (not a pure) agonist. Recent evidence shows that activation of the CB1 receptor by THC can diminish the production of neuronal growth factor in neurons and affect other signalling cascades involved in synapsis formation. Since these factors play an important role in the brain development and in the neuronal conversion processes during puberty, it seems reasonable that THC can affect the adolescent brain in another manner than the adult brain. Accordingly, in adolescent cannabis users structural changes were observed with loss of grey matter in certain brain areas. Moreover, recent studies show different effects of THC on adolescent and adult brains and on behaviour. These studies indicate that early THC abuse can result in neuropsychological deficits. This review gives an overview over the present knowledge in this field.
Collapse
Affiliation(s)
- Stefan Dhein
- Institute f. Pharmacology, University Leipzig, Leipzig, Germany, .,Fachdienst Gesundheit, Altenburg, Germany,
| |
Collapse
|
21
|
Berthoux C, Hamieh AM, Rogliardo A, Doucet EL, Coudert C, Ango F, Grychowska K, Chaumont‐Dubel S, Zajdel P, Maldonado R, Bockaert J, Marin P, Bécamel C. Early 5-HT 6 receptor blockade prevents symptom onset in a model of adolescent cannabis abuse. EMBO Mol Med 2020; 12:e10605. [PMID: 32329240 PMCID: PMC7207164 DOI: 10.15252/emmm.201910605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Cannabis abuse during adolescence confers an increased risk for developing later in life cognitive deficits reminiscent of those observed in schizophrenia, suggesting common pathological mechanisms that remain poorly characterized. In line with previous findings that revealed a role of 5-HT6 receptor-operated mTOR activation in cognitive deficits of rodent developmental models of schizophrenia, we show that chronic administration of ∆9-tetrahydrocannabinol (THC) to mice during adolescence induces a long-lasting activation of mTOR in prefrontal cortex (PFC), alterations of excitatory/inhibitory balance, intrinsic properties of layer V pyramidal neurons, and long-term depression, as well as cognitive deficits in adulthood. All are prevented by administrating a 5-HT6 receptor antagonist or rapamycin, during adolescence. In contrast, they are still present 2 weeks after the same treatments delivered at the adult stage. Collectively, these findings suggest a role of 5-HT6 receptor-operated mTOR signaling in abnormalities of cortical network wiring elicited by THC at a critical period of PFC maturation and highlight the potential of 5-HT6 receptor antagonists as early therapy to prevent cognitive symptom onset in adolescent cannabis abusers.
Collapse
Affiliation(s)
| | | | | | | | - Camille Coudert
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
- Department of Adult PsychiatryMontpellier University HospitalMontpellierFrance
| | - Fabrice Ango
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Katarzyna Grychowska
- Department of Medicinal ChemistryJagiellonian University Medical CollegeKrakówPoland
| | | | - Pawel Zajdel
- Department of Medicinal ChemistryJagiellonian University Medical CollegeKrakówPoland
| | - Rafael Maldonado
- Neuropharmacology LaboratoryDepartment of Experimental and Health SciencesPompeu Fabra UniversityBarcelonaSpain
| | - Joël Bockaert
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Philippe Marin
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| | - Carine Bécamel
- IGF, University of MontpellierCNRS, INSERMMontpellierFrance
| |
Collapse
|
22
|
A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci 2020; 10:brainsci10020102. [PMID: 32069958 PMCID: PMC7071506 DOI: 10.3390/brainsci10020102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabis has been associated with deficits in memory performance. However, the neural correlates that may underpin impairments remain unclear. We carried out a systematic review of functional magnetic resonance imaging (fMRI) studies investigating brain functional alterations in cannabis users (CU) compared to nonusing controls while performing memory tasks, complemented with focused narrative reviews of relevant preclinical and human studies. Twelve studies employing fMRI were identified finding functional brain activation during memory tasks altered in CU. Memory performance studies showed CU performed worse particularly during verbal memory tasks. Longitudinal studies suggest that cannabis use may have a causal role in memory deficits. Preclinical studies have not provided conclusive evidence of memory deficits following cannabinoid exposure, although they have shown evidence of cannabinoid-induced structural and histological alteration. Memory performance deficits may be related to cannabis use, with lower performance possibly underpinned by altered functional activation. Memory impairments may be associated with the level of cannabis exposure and use of cannabis during developmentally sensitive periods, with possible improvement following cessation of cannabis use.
Collapse
|
23
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
24
|
El-Shamarka MES, Sayed RH, Assaf N, Zeidan HM, Hashish AF. Combined neurotoxic effects of cannabis and nandrolone decanoate in adolescent male rats. Neurotoxicology 2020; 76:114-125. [PMID: 31704101 DOI: 10.1016/j.neuro.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Polydrug use among adolescence is a widespread phenomenon and has increased in the last few years. In particular, most nandrolone decanoate (Nan) abusers combine its use with cannabis (Can); thus, studying the consequences of this combination in adolescent subjects is important because potentiation of their effects may increase their neurotoxicity. The present study was designed to study the neurotoxic effects of Nan and Can, alone and in combination, in adolescent male rats by studying the behavioural, biochemical, and histopathological effects. Nan (15 mg/kg, s.c.) and Can (20 mg/kg, s.c.) were given alone or in combination to rats once daily for one month. The combined administration of Can and Nan induced learning and spatial memory deficits, hypo-locomotion, anxiety and aggression in adolescent rats as evidenced by the Morris water maze, open field, elevated plus maze, and defensive aggression tests. In parallel, rats treated with the combination showed severe deleterious effects in the hippocampal and prefrontal cortex (PFC) neural architecture along with a decrease in brain-derived neurotropic factor. Furthermore, combined administration of Can and Nan increased oxidative stress (significantly increased malondialdehyde and nitric oxide levels and reduced glutathione content), elevated brain pro-inflammatory cytokines (tumour necrosis factor alpha and interleukin 1 beta), and upregulated caspase-3, caspase-8, and caspase-9 mRNA expression and cytochrome c levels. In conclusion, abuse of both Can and Nan conferred greater neurotoxic effects than either drug alone that were at least partially attributed to oxidative stress, inflammation, and intrinsic and extrinsic apoptosis in the hippocampus and PFC of rats.
Collapse
|
25
|
Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Front Psychiatry 2020; 11:859. [PMID: 33005157 PMCID: PMC7479242 DOI: 10.3389/fpsyt.2020.00859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
26
|
Abela AR, Rahbarnia A, Wood S, Lê AD, Fletcher PJ. Adolescent exposure to Δ9-tetrahydrocannabinol delays acquisition of paired-associates learning in adulthood. Psychopharmacology (Berl) 2019; 236:1875-1886. [PMID: 30694374 DOI: 10.1007/s00213-019-5171-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE AND OBJECTIVES Adolescence is a sensitive period of brain development, during which there may be a heightened vulnerability to the effects of drug use. Despite this, the long-term effects of cannabis use during this developmental period on cognition are poorly understood. METHODS We exposed adolescent rats to escalating doses of Δ9-tetrahydrocannabinol (THC)-the primary psychoactive component of cannabis-or vehicle solution during postnatal days (PND) 35-45, a period of development that is analogous to human adolescence (THC doses: PND 35-37, 2.5 mg/kg; PND 38-41, 5 mg/kg; PND 42-45, 10 mg/kg). After a period of abstinence, in adulthood, rats were tested on an automated touchscreen version of a paired-associates learning (PAL) task to assess their ability to learn and recall object-location associations. Prepulse inhibition (PPI) of the startle response was also measured at three time points (5 days, 4 months, and 6 months after exposure) to assess sensorimotor gating, the ability to filter out insignificant sensory information from the environment. RESULTS Compared to rats exposed to vehicle alone, rats exposed to THC during adolescence took longer to learn the PAL task when tested in adulthood, even when trials contained visually identical stimuli that differed only in location. Despite this, no differences were observed later in testing, when trials contained visually distinct stimuli in different locations. Rats exposed to THC also displayed impairments in sensorimotor gating, as measured by prepulse inhibition of the startle response, though this deficit did appear to decrease over time. CONCLUSION Taken together, THC exposure during adolescence produces long-term deficits in associative learning and sensorimotor gating, though the impact of these deficits seems to diminish with time. Thus, adolescence may represent a period of neurocognitive development that is vulnerable to the harms of cannabis use, though the stability of such harms is uncertain.
Collapse
Affiliation(s)
- Andrew R Abela
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Neuroscience, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5T 1R8, Canada.
| | - Arya Rahbarnia
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Suzanne Wood
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Dong C, Tian Z, Zhang K, Chang L, Qu Y, Pu Y, Ren Q, Fujita Y, Ohgi Y, Futamura T, Hashimoto K. Increased BDNF-TrkB signaling in the nucleus accumbens plays a role in the risk for psychosis after cannabis exposure during adolescence. Pharmacol Biochem Behav 2019; 177:61-68. [DOI: 10.1016/j.pbb.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
|
28
|
Leishman E, Murphy MN, Murphy MI, Mackie K, Bradshaw HB. Broad and Region-Specific Impacts of the Synthetic Cannabinoid CP 55,940 in Adolescent and Adult Female Mouse Brains. Front Mol Neurosci 2018; 11:436. [PMID: 30542263 PMCID: PMC6277767 DOI: 10.3389/fnmol.2018.00436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Relative to Δ9-tetrahydrocannabinol (THC), the synthetic cannabinoid CP 55,940 (CP) is significantly more potent and efficacious at cannabinoid receptors, the primary targets for endogenous cannabinoids (eCBs). eCBs belong to a large, interconnected lipidome of bioactive signaling molecules with a myriad of effects in optimal and pathological function. Recreational use of highly potent and efficacious synthetic cannabinoids is common amongst adolescents, potentially impacting brain development. Knowledge of the molecular outcomes of synthetic cannabinoid use will be important to develop more targeted therapies for synthetic cannabinoid intoxication and to prevent long-term disruption to the CNS. Here, we test the hypothesis that CP has age and region-dependent effects on the brain lipidome. Adolescent [post-natal day (PND) 35 and PND 50] and young adult female mice were given either an acute dose of CP or vehicle and brains were collected 2 h later. Eight brain regions were dissected and levels of ∼80 lipids were screened from each region using HPLC/MS/MS. CP had widespread effects on the brain lipidome in all age groups. Interestingly, more changes were observed in the PND 35 mice and more were reductions in a lipid’s concentration, including region-dependent lowering of eCB levels. CP levels were highest in the cortex at PND 35, the hippocampus at PND 50, and in the cerebellum in the adult. These data provide novel insights into how high-potency, synthetic cannabinoids drive different, age-dependent, cellular signaling effects in the brain.
Collapse
Affiliation(s)
- Emma Leishman
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Michelle N Murphy
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Michelle I Murphy
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.,Department of Counseling and Educational Psychology, Indiana University, Bloomington, IN, United States
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Heather B Bradshaw
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
29
|
Augustin SM, Lovinger DM. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem Neurosci 2018; 9:2146-2161. [PMID: 29400439 DOI: 10.1021/acschemneuro.7b00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.
Collapse
Affiliation(s)
- Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
30
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
31
|
Cohen K, Weinstein AM. Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects-A Review From Public Health Prospective. Front Public Health 2018; 6:162. [PMID: 29930934 PMCID: PMC5999798 DOI: 10.3389/fpubh.2018.00162] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
There is a growing use of novel psychoactive substances containing synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis, yet, these drugs are more potent and dangerous, and have been associated with dangerous adverse effects. Here, we review current literature on the epidemiology, acute, and chronic effects of synthetic and natural cannabinoid-based drugs. Synthetic drugs contain a mixture of psychoactive compounds that mostly bind cannabinoid receptors with high potency. These synthetic drugs replicate the effects of natural cannabis and Δ9-tetrahydrocannabinol but they induce more severe adverse effects including respiratory difficulties, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Chronic use of synthetic cannabinoids has been associated with serious psychiatric and medical conditions and even death. Given the growing popularity in the use of cannabinoid-based drugs and their harmful potential, there is a need for further research in this field.
Collapse
Affiliation(s)
- Koby Cohen
- Behavioral Science, Ariel University, Science Park, Ariel, Israel
| | - Aviv M Weinstein
- Behavioral Science, Ariel University, Science Park, Ariel, Israel
| |
Collapse
|
32
|
Cohen K, Weinstein A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids-A Systematic Review. Brain Sci 2018; 8:brainsci8030040. [PMID: 29495540 PMCID: PMC5870358 DOI: 10.3390/brainsci8030040] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background—Cannabis is the most popular illicit drug in the Western world. Repeated cannabis use has been associated with short and long-term range of adverse effects. Recently, new types of designer-drugs containing synthetic cannabinoids have been widespread. These synthetic cannabinoid drugs are associated with undesired adverse effects similar to those seen with cannabis use, yet, in more severe and long-lasting forms. Method—A literature search was conducted using electronic bibliographic databases up to 31 December 2017. Specific search strategies were employed using multiple keywords (e.g., “synthetic cannabinoids AND cognition,” “cannabis AND cognition” and “cannabinoids AND cognition”). Results—The search has yielded 160 eligible studies including 37 preclinical studies (5 attention, 25 short-term memory, 7 cognitive flexibility) and 44 human studies (16 attention, 15 working memory, 13 cognitive flexibility). Both pre-clinical and clinical studies demonstrated an association between synthetic cannabinoids and executive-function impairment either after acute or repeated consumptions. These deficits differ in severity depending on several factors including the type of drug, dose of use, quantity, age of onset and duration of use. Conclusions—Understanding the nature of the impaired executive function following consumption of synthetic cannabinoids is crucial in view of the increasing use of these drugs.
Collapse
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| | - Aviv Weinstein
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
33
|
Kerridge BT, Pickering R, Chou P, Saha TD, Hasin DS. DSM-5 cannabis use disorder in the National Epidemiologic Survey on Alcohol and Related Conditions-III: Gender-specific profiles. Addict Behav 2018; 76:52-60. [PMID: 28755613 DOI: 10.1016/j.addbeh.2017.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The objective of this study was to present current information on the prevalence, correlates, comorbidity and quality of life among men and women with cannabis use disorder (CUD). METHODS In 2012-2013, 36,309 respondents ≥18years old participated in face-to-face interviews in the National Epidemiologic Survey on Alcohol and Related Conditions-III. RESULTS Prevalence of 12-month CUD was greater among men (3.5%) than women (1.7%). Women experienced shorter duration from onset of cannabis use to onset of CUD than men (mean=5.8years, men; mean=4.7years, women). In both men and women, prevalences of CUD were greater among young adults, Blacks, and those with lower income and greater among Native American women relative to White women. CUD was highly comorbid with other substance use disorders, PTSD, ASPD and borderline and schizotypal PDs for men and women. Quality of life for individuals with CUD was low regardless of gender. CONCLUSIONS DSM-5 CUD among men and women is highly prevalent, comorbid and characterized by low quality of life. Results highlighted the need for integrated treatment of CUD and comorbid disorders and the urgency of identifying and implementing effective prevention and intervention approaches, especially for those sociodemographic subgroups for which both men and women are at greater risk for the disorder.
Collapse
|
34
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
35
|
Cannabinoid Modulation of Object Recognition and Location Memory—A Preclinical Assessment. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Tomas-Roig J, Benito E, Agis-Balboa RC, Piscitelli F, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Chronic exposure to cannabinoids during adolescence causes long-lasting behavioral deficits in adult mice. Addict Biol 2017; 22:1778-1789. [PMID: 27578457 PMCID: PMC5697667 DOI: 10.1111/adb.12446] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023]
Abstract
Regular use of marijuana during adolescence enhances the risk of long-lasting neurobiological changes in adulthood. The present study was aimed at assessing the effect of long-term administration of the synthetic cannabinoid WIN55212.2 during adolescence in young adult mice. Adolescent mice aged 5 weeks were subjected daily to the pharmacological action of WIN55212.2 for 3 weeks and were then left undisturbed in their home cage for a 5-week period and finally evaluated by behavioral testing. Mice that received the drug during adolescence showed memory impairment in the Morris water maze, as well as a dose-dependent memory impairment in fear conditioning. In addition, the administration of 3 mg/kg WIN55212.2 in adolescence increased adult hippocampal AEA levels and promoted DNA hypermethylation at the intragenic region of the intracellular signaling modulator Rgs7, which was accompanied by a lower rate of mRNA transcription of this gene, suggesting a potential causal relation. Although the concrete mechanisms underlying the behavioral observations remain to be elucidated, we demonstrate that long-term administration of 3 mg/kg of WIN during adolescence leads to increased endocannabinoid levels and altered Rgs7 expression in adulthood and establish a potential link to epigenetic changes.
Collapse
Affiliation(s)
- J Tomas-Roig
- Department of Psychiatry and Psychotherapy; University of Göttingen; Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Germany
| | - E Benito
- Research Group for Epigenetic Mechanisms in Dementia; German Center for Neurodegenerative Diseases (DZNE); Germany
| | - RC Agis-Balboa
- Department of Psychiatry and Psychotherapy; University Medical Center Göttingen; Germany
- Instituto de Investigación Sanitaria Galicia Sur; Spain
| | - F Piscitelli
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; Italy
| | - S Hoyer-Fender
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology; Developmental Biology; Germany
| | - V Di Marzo
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; Italy
| | - U Havemann-Reinecke
- Department of Psychiatry and Psychotherapy; University of Göttingen; Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Germany
| |
Collapse
|
37
|
Chesworth R, Karl T. Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0120-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Mizrahi R, Watts JJ, Tseng KY. Mechanisms contributing to cognitive deficits in cannabis users. Neuropharmacology 2017; 124:84-88. [PMID: 28414051 DOI: 10.1016/j.neuropharm.2017.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Studies from preclinical animal models indicate that sustained activation of CB1 receptor signaling is a major contributing factor for the onset of cognitive deficits associated to chronic cannabis use, in particular within the working memory and decision-making domains. Yet, very few studies have been designed to directly assess the role of CB1 receptors in mediating the effects of cannabis on human brain function. This perspective review article provides an overview of current state of knowledge on possible neurobiological mechanisms accounting for the detrimental effects of chronic cannabis use on cognition and related changes in brain structure and functional connectivity. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Romina Mizrahi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, ON, Canada; Research Imaging Center, CAMH, PET Centre, Toronto, ON, Canada
| | - Jeremy J Watts
- Department of Pharmacology & Toxicology, University of Toronto, ON, Canada; Research Imaging Center, CAMH, PET Centre, Toronto, ON, Canada
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA.
| |
Collapse
|
39
|
Cerdá M, Wall M, Feng T, Keyes KM, Sarvet A, Schulenberg J, O’Malley PM, Pacula RL, Galea S, Hasin DS. Association of State Recreational Marijuana Laws With Adolescent Marijuana Use. JAMA Pediatr 2017; 171:142-149. [PMID: 28027345 PMCID: PMC5365078 DOI: 10.1001/jamapediatrics.2016.3624] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Historical shifts are occurring in marijuana policy. The effect of legalizing marijuana for recreational use on rates of adolescent marijuana use is a topic of considerable debate. OBJECTIVE To examine the association between the legalization of recreational marijuana use in Washington and Colorado in 2012 and the subsequent perceived harmfulness and use of marijuana by adolescents. DESIGN, SETTING, AND PARTICIPANTS We used data of 253 902 students in eighth, 10th, and 12th grades from 2010 to 2015 from Monitoring the Future, a national, annual, cross-sectional survey of students in secondary schools in the contiguous United States. Difference-in-difference estimates compared changes in perceived harmfulness of marijuana use and in past-month marijuana use in Washington and Colorado prior to recreational marijuana legalization (2010-2012) with postlegalization (2013-2015) vs the contemporaneous trends in other states that did not legalize recreational marijuana use in this period. MAIN OUTCOMES AND MEASURES Perceived harmfulness of marijuana use (great or moderate risk to health from smoking marijuana occasionally) and marijuana use (past 30 days). RESULTS Of the 253 902 participants, 120 590 of 245 065(49.2%) were male, and the mean (SD) age was 15.6 (1.7) years. In Washington, perceived harmfulness declined 14.2% and 16.1% among eighth and 10th graders, respectively, while marijuana use increased 2.0% and 4.1% from 2010-2012 to 2013-2015. In contrast, among states that did not legalize recreational marijuana use, perceived harmfulness decreased by 4.9% and 7.2% among eighth and 10th graders, respectively, and marijuana use decreased by 1.3% and 0.9% over the same period. Difference-in-difference estimates comparing Washington vs states that did not legalize recreational drug use indicated that these differences were significant for perceived harmfulness (eighth graders: % [SD], -9.3 [3.5]; P = .01; 10th graders: % [SD], -9.0 [3.8]; P = .02) and marijuana use (eighth graders: % [SD], 5.0 [1.9]; P = .03; 10th graders: % [SD], 3.2 [1.5]; P = .007). No significant differences were found in perceived harmfulness or marijuana use among 12th graders in Washington or for any of the 3 grades in Colorado. CONCLUSIONS AND RELEVANCE Among eighth and 10th graders in Washington, perceived harmfulness of marijuana use decreased and marijuana use increased following legalization of recreational marijuana use. In contrast, Colorado did not exhibit any differential change in perceived harmfulness or past-month adolescent marijuana use following legalization. A cautious interpretation of the findings suggests investment in evidence-based adolescent substance use prevention programs in any additional states that may legalize recreational marijuana use.
Collapse
Affiliation(s)
- Magdalena Cerdá
- Department of Emergency Medicine, University of California Davis School of Medicine, Sacramento
| | - Melanie Wall
- Department of Psychiatry, Columbia University Medical Center, New York, New York3New York State Psychiatric Institute, New York4Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Tianshu Feng
- Department of Psychiatry, Columbia University Medical Center, New York, New York5Research Foundation of Mental Hygiene, New York, New York
| | - Katherine M. Keyes
- Department of Psychiatry, Columbia University Medical Center, New York, New York6Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Aaron Sarvet
- Department of Psychiatry, Columbia University Medical Center, New York, New York3New York State Psychiatric Institute, New York6Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - John Schulenberg
- Department of Psychology, University of Michigan, Ann Arbor8Institute for Social Research, University of Michigan, Ann Arbor
| | | | | | - Sandro Galea
- Boston School of Public Health, Boston University, Boston, Massachusetts
| | - Deborah S. Hasin
- Department of Psychiatry, Columbia University Medical Center, New York, New York3New York State Psychiatric Institute, New York6Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
40
|
Zamberletti E, Gabaglio M, Grilli M, Prini P, Catanese A, Pittaluga A, Marchi M, Rubino T, Parolaro D. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res 2016; 111:459-470. [DOI: 10.1016/j.phrs.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
|
41
|
Cannabinoid Transmission in the Hippocampus Activates Nucleus Accumbens Neurons and Modulates Reward and Aversion-Related Emotional Salience. Biol Psychiatry 2016; 80:216-25. [PMID: 26681496 DOI: 10.1016/j.biopsych.2015.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cannabinoid receptor transmission strongly influences emotional processing, and disturbances in cannabinoid signaling are associated with various neuropsychiatric disorders. The mammalian ventral hippocampus (vHipp) is a critical neural region controlling mesolimbic activity via glutamatergic projections to the nucleus accumbens. Furthermore, vHipp abnormalities are linked to schizophrenia-related psychopathology. Nevertheless, the mechanisms by which intra-vHipp cannabinoid signaling may modulate mesolimbic activity states and emotional processing are not currently understood. METHODS Using an integrative combination of in vivo electrophysiological recordings and behavioral pharmacologic assays in rats, we tested whether activation of cannabinoid type 1 receptors (CB1R) in the vHipp may modulate neuronal activity in the shell subregion of the nucleus accumbens (NASh). We next examined how vHipp CB1R signaling may control the salience of rewarding or aversive emotional memory formation and social interaction/recognition behaviors via intra-NASh glutamatergic transmission. RESULTS We demonstrate for the first time that vHipp CB1R transmission can potently modulate NASh neuronal activity and can differentially control the formation of context-dependent and context-independent forms of rewarding or aversion-related emotional associative memories. In addition, we found that activation of vHipp CB1R transmission strongly disrupts normal social behavior and cognition. Finally, we report that these behavioral effects are dependent upon intra-NASh alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate receptor transmission. CONCLUSIONS Together, these findings demonstrate a critical role for hippocampal cannabinoid signaling in the modulation of mesolimbic neuronal activity states and suggest that dysregulation of CB1R transmission in the vHipp→NASh circuit may underlie hippocampal-mediated affective and social behavioral disturbances present in neuropsychiatric disorders.
Collapse
|
42
|
Renard J, Rushlow WJ, Laviolette SR. What Can Rats Tell Us about Adolescent Cannabis Exposure? Insights from Preclinical Research. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:328-34. [PMID: 27254841 PMCID: PMC4872245 DOI: 10.1177/0706743716645288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Marijuana is the most widely used drug of abuse among adolescents. Adolescence is a vulnerable period for brain development, during which time various neurotransmitter systems such as the glutamatergic, GABAergic, dopaminergic, and endocannabinoid systems undergo extensive reorganization to support the maturation of the central nervous system (CNS). ▵-9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, acts as a partial agonist of CB1 cannabinoid receptors (CB1Rs). CB1Rs are abundant in the CNS and are central components of the neurodevelopmental changes that occur during adolescence. Thus, overactivation of CB1Rs by cannabinoid exposure during adolescence has the ability to dramatically alter brain maturation, leading to persistent and enduring changes in adult cerebral function. Increasing preclinical evidence lends support to clinical evidence suggesting that chronic adolescent marijuana exposure may be associated with a higher risk for neuropsychiatric diseases, including schizophrenia. In this review, we present a broad overview of current neurobiological evidence regarding the long-term consequences of adolescent cannabinoid exposure on adult neuropsychiatric-like disorders.
Collapse
Affiliation(s)
- Justine Renard
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Walter J Rushlow
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Steven R Laviolette
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
43
|
Hasin DS, Kerridge BT, Saha TD, Huang B, Pickering R, Smith SM, Jung J, Zhang H, Grant BF. Prevalence and Correlates of DSM-5 Cannabis Use Disorder, 2012-2013: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Am J Psychiatry 2016; 173:588-99. [PMID: 26940807 PMCID: PMC5026387 DOI: 10.1176/appi.ajp.2015.15070907] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Attitudes toward marijuana are changing, the prevalence of DSM-IV cannabis use disorder has increased, and DSM-5 modified the cannabis use disorder criteria. Therefore, updated information is needed on the prevalence, demographic characteristics, psychiatric comorbidity, disability, and treatment for DSM-5 cannabis use disorder. METHOD In 2012-2013, 36,309 participants ≥18 years old were interviewed in the National Epidemiologic Survey on Alcohol and Related Conditions-III. Psychiatric and substance use disorders were assessed with the Alcohol Use Disorders and Associated Disabilities Interview Schedule-5. RESULTS The prevalences of 12-month and lifetime cannabis use disorder were 2.5% and 6.3%. Among those with 12-month and lifetime diagnoses, the mean days of marijuana use per year were 225.3 (SE=5.7) and 274.2 (SE=3.8). The odds of 12-month and lifetime cannabis use disorder were higher for men, Native Americans, unmarried individuals, those with low incomes, and young adults (e.g., among those age 18-24 years versus ≥45: odds ratio for 12-month disorder, 7.2; 95% confidence interval, 5.5-9.5). Cannabis use disorder was associated with other substance use disorders, affective disorders, anxiety, and personality disorders. Twelve-month cannabis use disorder was associated with disability. As disorder severity increased, virtually all associations became stronger. Only 13.2% with lifetime cannabis use disorder participated in 12-step programs or professional treatment. CONCLUSIONS DSM-5 cannabis use disorder is prevalent, associated with comorbidity and disability, and largely untreated. Findings suggest the need to improve prevention and educate the public, professionals, and policy makers about possible harms associated with cannabis use disorders and available interventions.
Collapse
Affiliation(s)
- Deborah S Hasin
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Bradley T Kerridge
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Tulshi D Saha
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Boji Huang
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Roger Pickering
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Sharon M Smith
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Jeesun Jung
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Haitao Zhang
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| | - Bridget F Grant
- From the Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Rockville, Md.; the Department of Epidemiology, Mailman School of Public Health, and the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York; and the New York State Psychiatric Institute, New York
| |
Collapse
|
44
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
45
|
Rubino T, Parolaro D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol Psychiatry 2016; 79:578-85. [PMID: 26344755 DOI: 10.1016/j.biopsych.2015.07.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/16/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023]
Abstract
The regular use of cannabis during adolescence is of particular concern because use by this age group seems to be associated with an increased likelihood of deleterious consequences, as reported by several epidemiologic studies. However, despite their unquestionable value, epidemiologic data are inconclusive. Modeling the adolescent phase in animals appears to be a useful approach to investigate the impact of cannabis use on the adolescent brain. In these models, adolescent cannabinoid exposure has been reported to cause long-term impairment in specific components of learning and memory and to have differential effects on anxiety, social behavior, and depressive-like signs. These findings suggest that it may represent, per se or in association with other hits, a risk factor for developing psychotic-like symptoms in adulthood. The neurobiological bases of this association include the induction of alterations in the maturational events of the endocannabinoid system occurring in the adolescent brain. Alterations in the endocannabinoid system may profoundly dysregulate developmental processes in some neurotransmitter systems, such as gamma-aminobutyric acid and glutamate, mainly in the cortex. The resulting picture strongly resembles the one present in schizophrenic patients, highlighting the translational value of this experimental approach.
Collapse
Affiliation(s)
- Tiziana Rubino
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy..
| | - Daniela Parolaro
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy
| |
Collapse
|
46
|
Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. Eur Neuropsychopharmacol 2016; 26:55-64. [PMID: 26689328 DOI: 10.1016/j.euroneuro.2015.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/16/2015] [Accepted: 11/08/2015] [Indexed: 01/09/2023]
Abstract
In many species, adolescence is a critical phase in which the endocannabinoid system can regulate the maturation of important neuronal networks that underlie cognitive function. Therefore, adolescents may be more susceptible to the neural consequences of chronic cannabis abuse. We reported previously that chronically exposing adolescent rats to the synthetic cannabinoid agonist CP55,940 leads to impaired performances in adulthood i.e. long-lasting deficits in both visual and spatial short-term working memories. Here, we examined the synaptic structure and function in the prefrontal cortex (PFC) of adult rats that were chronically treated with CP55,940 during adolescence. We found that chronic cannabinoid exposure during adolescence induces long-lasting changes, including (1) significantly altered dendritic arborization of pyramidal neurons in layer II/III in the medial PFC (2) impaired hippocampal input-induced synaptic plasticity in the PFC and (3) significant changes in the expression of PSD95 (but not synaptophysin or VGLUT3) in the medial PFC. These changes in synaptic structure and function in the PFC provide key insight into the structural, functional and molecular underpinnings of long-term cognitive deficits induced by adolescent cannabinoid exposure. They suggest that cannabinoids may impede the structural maturation of neuronal circuits in the PFC, thus leading to impaired cognitive function in adulthood.
Collapse
|
47
|
Hasin DS, Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, Pickering RP, Ruan WJ, Smith SM, Huang B, Grant BF. Prevalence of Marijuana Use Disorders in the United States Between 2001-2002 and 2012-2013. JAMA Psychiatry 2015; 72:1235-42. [PMID: 26502112 PMCID: PMC5037576 DOI: 10.1001/jamapsychiatry.2015.1858] [Citation(s) in RCA: 729] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE Laws and attitudes toward marijuana in the United States are becoming more permissive but little is known about whether the prevalence rates of marijuana use and marijuana use disorders have changed in the 21st century. OBJECTIVE To present nationally representative information on the past-year prevalence rates of marijuana use, marijuana use disorder, and marijuana use disorder among marijuana users in the US adult general population and whether this has changed between 2001-2002 and 2012-2013. DESIGN, SETTING, AND PARTICIPANTS Face-to-face interviews conducted in surveys of 2 nationally representative samples of US adults: the National Epidemiologic Survey on Alcohol and Related Conditions (data collected April 2001-April 2002; N = 43,093) and the National Epidemiologic Survey on Alcohol and Related Conditions-III (data collected April 2012-June 2013; N = 36,309). Data were analyzed March through May 2015. MAIN OUTCOMES AND MEASURES Past-year marijuana use and DSM-IV marijuana use disorder (abuse or dependence). RESULTS The past-year prevalence of marijuana use was 4.1% (SE, 0.15) in 2001-2002 and 9.5% (SE, 0.27) in 2012-2013, a significant increase (P < .05). Significant increases were also found across demographic subgroups (sex, age, race/ethnicity, education, marital status, income, urban/rural, and region). The past-year prevalence of DSM-IV marijuana use disorder was 1.5% (0.08) in 2001-2002 and 2.9% (SE, 0.13) in 2012-2013 (P < .05). With few exceptions, increases in the prevalence of marijuana use disorder between 2001-2002 and 2012-2013 were also statistically significant (P < .05) across demographic subgroups. However, the prevalence of marijuana use disorder among marijuana users decreased significantly from 2001-2002 (35.6%; SE, 1.37) to 2012-2013 (30.6%; SE, 1.04). CONCLUSIONS AND RELEVANCE The prevalence of marijuana use more than doubled between 2001-2002 and 2012-2013, and there was a large increase in marijuana use disorders during that time. While not all marijuana users experience problems, nearly 3 of 10 marijuana users manifested a marijuana use disorder in 2012-2013. Because the risk for marijuana use disorder did not increase among users, the increase in prevalence of marijuana use disorder is owing to an increase in prevalence of users in the US adult population. Given changing laws and attitudes toward marijuana, a balanced presentation of the likelihood of adverse consequences of marijuana use to policy makers, professionals, and the public is needed.
Collapse
Affiliation(s)
- Deborah S Hasin
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York2Mailman School of Public Health, Columbia University, New York, New York3New York State Psychiatric Institute, New York
| | - Tulshi D Saha
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Bradley T Kerridge
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Risë B Goldstein
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - S Patricia Chou
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Haitao Zhang
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeesun Jung
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Roger P Pickering
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - W June Ruan
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Sharon M Smith
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Boji Huang
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Bridget F Grant
- Laboratory of Epidemiology and Biometry, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
48
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Medical marijuana laws and adolescent marijuana use in the USA from 1991 to 2014: results from annual, repeated cross-sectional surveys. Lancet Psychiatry 2015; 2:601-8. [PMID: 26303557 PMCID: PMC4630811 DOI: 10.1016/s2215-0366(15)00217-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/16/2015] [Accepted: 04/27/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Adolescent use of marijuana is associated with adverse later effects, so the identification of factors underlying adolescent use is of substantial public health importance. The relationship between US state laws that permit marijuana for medical purposes and adolescent marijuana use has been controversial. Such laws could convey a message about marijuana acceptability that increases its use soon after passage, even if implementation is delayed or the law narrowly restricts its use. We used 24 years of national data from the USA to examine the relationship between state medical marijuana laws and adolescent use of marijuana. METHODS Using a multistage, random-sampling design with replacement, the Monitoring the Future study conducts annual national surveys of 8th, 10th, and 12th-grade students (modal ages 13-14, 15-16, and 17-18 years, respectively), in around 400 schools per year. Students complete self-administered questionnaires that include questions on marijuana use. We analysed data from 1 098 270 adolescents surveyed between 1991 and 2014. The primary outcome of this analysis was any marijuana use in the previous 30 days. We used multilevel regression modelling with adolescents nested within states to examine two questions. The first was whether marijuana use was higher overall in states that ever passed a medical marijuana law up to 2014. The second was whether the risk of marijuana use changed after passage of medical marijuana laws. Control covariates included individual, school, and state-level characteristics. FINDINGS Marijuana use was more prevalent in states that passed a medical marijuana law any time up to 2014 than in other states (adjusted prevalence 15·87% vs 13·27%; adjusted odds ratio [OR] 1·27, 95% CI 1·07-1·51; p=0·0057). However, the risk of marijuana use in states before passing medical marijuana laws did not differ significantly from the risk after medical marijuana laws were passed (adjusted prevalence 16·25% vs 15·45%; adjusted OR 0·92, 95% CI 0·82-1·04; p=0·185). Results were generally robust across sensitivity analyses, including redefining marijuana use as any use in the previous year or frequency of use, and reanalysing medical marijuana laws for delayed effects or for variation in provisions for dispensaries. INTERPRETATION Our findings, consistent with previous evidence, suggest that passage of state medical marijuana laws does not increase adolescent use of marijuana. However, overall, adolescent use is higher in states that ever passed such a law than in other states. State-level risk factors other than medical marijuana laws could contribute to both marijuana use and the passage of medical marijuana laws, and such factors warrant investigation. FUNDING US National Institute on Drug Abuse, Columbia University Mailman School of Public Health, New York State Psychiatric Institute.
Collapse
|
50
|
Higuera-Matas A, Ucha M, Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev 2015; 55:119-46. [PMID: 25960036 DOI: 10.1016/j.neubiorev.2015.04.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Marihuana is the most widely consumed illicit drug, even among adolescents and pregnant women. Given the critical developmental processes that occur in the adolescent and fetal nervous system, marihuana consumption during these stages may have permanent consequences on several brain functions in later adult life. Here, we review what is currently known about the long-term consequences of perinatal and adolescent cannabinoid exposure. The most consistent findings point to long-term impairments in cognitive function that are associated with structural alterations and disturbed synaptic plasticity. In addition, several neurochemical modifications are also evident after prenatal or adolescent cannabinoid exposure, especially in the endocannabinoid, glutamatergic, dopaminergic and opioidergic systems. Important sexual dimorphisms are also evident in terms of the long-lasting effects of cannabinoid consumption during pregnancy and adolescence, and cannabinoids possibly have a protective effect in adolescents who have suffered traumatic life challenges, such as maternal separation or intense stress. Finally, we suggest some future research directions that may encourage further advances in this exciting field.
Collapse
Affiliation(s)
- Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| |
Collapse
|