1
|
Firoozi D, Masoumi SJ, Mohammad-Kazem Hosseini Asl S, Fararouei M, Jamshidi S. Effects of Short Chain Fatty Acid-Butyrate Supplementation on the Disease Severity, Inflammation, and Psychological Factors in Patients With Active Ulcerative Colitis: A Double-Blind Randomized Controlled Trial. J Nutr Metab 2025; 2025:3165876. [PMID: 40123849 PMCID: PMC11930386 DOI: 10.1155/jnme/3165876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Background: Depression and anxiety are common in UC patients due to gut microbiota dysbiosis and increased proinflammatory markers. Butyrate, a short-chain fatty acid, participates in the regulation of gut microbiota and inflammation and has neuroprotective effects in neurodegenerative disease. Therefore, we assessed the effects of sodium butyrate supplementation on the disease severity, inflammation, and psychological factors in active UC patients. Methods: This study was a randomized, parallel, double-blind controlled trial. Participants in the intervention (n = 18) and control (n = 18) groups received 600 mg/kg of sodium butyrate or rice starch as a placebo with their main meal, respectively, for 12 weeks. The partial Mayo score was used to evaluate disease severity, while the Westergren method was employed to assess the erythrocyte sedimentation rate (ESR). NLR and PLR were determined using an automated analyzer (XS-500i, Sysmex). Moreover, the psychological factors were assessed by the hospital anxiety depression scale (HADS) and the general health questionnaire (GHQ). Results: In comparison with placebo, sodium-butyrate supplementation significantly decreased the ESR level (-6.66 ± 1.56 vs. 3.00 ± 2.11, p=0.01), NLR (-0.24 ± 0.1 vs. 0.33 ± 0.23, p=0.02), Mayo score (-2.33 ± 0.41 vs. 0.22 ± 0.40, p < 0.001), HADS anxiety score (-2.77 ± 0.64 vs. 0.94 ± 0.63, p=0.001), HADS depression score (-2.38 ± 0.47 vs. 0.61 ± 0.33, p < 0.001), and GHQ total score (-12.11 ± 1.48 vs. 3.55 ± 1.39, p < 0.001). Conclusion: Butyrate could serve as an effective adjuvant treatment for reducing disease severity and alleviating psychological symptoms. This trial was registered on the Research Ethics Committee of Shiraz University of Medical Sciences, with the reference number IR.SUMS.SCHEANUT.REC.1400.037. Trial Registration: Iranian Registry of Clinical Trials: IRCT20211214053401N1.
Collapse
Affiliation(s)
- Donya Firoozi
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Fararouei
- Department of Epidemiology, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jamshidi
- Center for Cohort Study of Shiraz University of Medical Sciences Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Li W, Xu M, Liu Y, Zhang S, Wang J, Zhang Z, Xiao G, Wang R, Zhang J, Xue H. Lactiplantibacillus plantarum GOLDGUT-HNU082 Alleviates CUMS-Induced Depressive-like Behaviors in Mice by Modulating the Gut Microbiota and Neurotransmitter Levels. Foods 2025; 14:813. [PMID: 40077516 PMCID: PMC11898433 DOI: 10.3390/foods14050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Emerging evidence links depressive disorders to the gut microbiota via the gut-brain axis. Probiotics, which are microorganisms that modulate the gut microbiota, have shown promising results in alleviating depression and are increasingly recognized as functional food components with potential health benefits. This study examines the effects of Lactiplantibacillus plantarum GOLDGUT-HNU082 (Lp082), a probiotic strain with potential applications in functional foods, on chronic unpredictable mild stress (CUMS)-induced depression in mice. Behavioral tests, measurements of the neurotransmitters and inflammatory cytokines in the serum and colon tissue, and the metagenomic sequencing of the gut microbiota were used to investigate potential mechanisms. The results demonstrated that Lp082 significantly alleviated depressive-like behaviors in CUMS mice, restored the balance of key neurotransmitters like serotonin (5-HT), reduced the levels of inflammatory cytokines like TNF-α, and enhanced brain neuroplasticity by promoting hippocampal neurogenesis. Additionally, Lp082 altered the composition of the gut microbiota in CUMS mice and promoted the growth of Bifidobacterium, improving metabolic pathways related to neurotransmitter synthesis. These findings indicate that Lp082, as a potential functional food ingredient, alleviates depressive-like behaviors in mice by reshaping the gut microbiota, offering new insights into the use of probiotics in functional foods for mental health management.
Collapse
Affiliation(s)
- Wanggao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Meng Xu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yaning Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Jun Wang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Zhizhu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China; (S.Z.); (J.W.); (Z.Z.); (G.X.)
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.L.); (M.X.); (Y.L.); (R.W.); (J.Z.)
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2025; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
5
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2025; 566:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
6
|
Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Beyond digestion: Exploring how the gut microbiota modulates human social behaviors. Neuroscience 2025; 565:52-62. [PMID: 39615647 DOI: 10.1016/j.neuroscience.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
For a long time, traditional medicine has acknowledged the gut's impact on general health. Contemporary science substantiates this association through investigations of the gut microbiota, the extensive community of microorganisms inhabiting our gastrointestinal system. These microscopic residents considerably improve digestive processes, nutritional absorption, immunological function, and pathogen defense. Nevertheless, a variety of gastrointestinal and extra-intestinal disorders can result from dysbiosis, an imbalance of the microbial composition of the gut microbiota. A groundbreaking discovery is the gut-brain axis, a complex communication network that links the enteric and central nervous system (CNS). This bidirectional communication allows the brain to influence gut activities and vice versa, impacting mental health and mood disorders like anxiety and depression. The gut microbiota can influence this communication by creating neurotransmitters and short-chain fatty acids, among other biochemical processes. These factors may affect our mental state, our ability to regulate our emotions, and the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to explore the complex interrelationships between the brain and the gut microbiota. We also conducted a thorough examination of the existing understanding in the area of how microbiota affects social behaviors, including emotions, stress responses, and cognitive functions. We also explored the potential of interventions that focus on the connection between the gut and the brain, such as using probiotics to treat diseases of the CNS. This research opens up new possibilities for addressing mental health and neurological conditions in an innovative manner.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| |
Collapse
|
7
|
Winters AD, Francescutti DM, Kracht DJ, Chaudhari DS, Zagorac B, Angoa-Perez M. The Gut Microbiome Regulates the Psychomotor Effects and Context-Dependent Rewarding Responses to Cocaine in Germ-Free and Antibiotic-Treated Animal Models. Microorganisms 2025; 13:77. [PMID: 39858845 PMCID: PMC11767876 DOI: 10.3390/microorganisms13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation (p = 0.013), which was restored after conventionalization. GF mice also showed reduced cocaine-conditioned place preference (CPP) (p = 0.002), which normalized after conventionalization. Dopaminergic function, critical for psychomotor responses and reward, was microbiome-dependent, with increased dopamine levels (p = 0.009) and normalized turnover ratios after conventionalization. In the ABX model, microbiome depletion reduced both cocaine-induced locomotion and CPP responses (p ≤ 0.009), further supporting the role of gut microbes in modulating psychomotor and reward behaviors. ABX-treated mice also showed significant declines in microbial diversity, shifts in bacterial structure, and dysregulation in metabolic, immune, and neurotransmitter pathways (p ≤ 0.0001), including alterations in short-chain fatty acids and gamma-aminobutyric acid metabolism. These findings highlight the gut microbiome's critical role in regulating cocaine's psychomotor and rewarding effects, offering insights into potential therapeutic strategies for cocaine use disorder.
Collapse
Affiliation(s)
- Andrew D. Winters
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Dina M. Francescutti
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - David J. Kracht
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Diptaraj S. Chaudhari
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Branislava Zagorac
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Mariana Angoa-Perez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Azarfarin M, Moradikor N, Matin S, Dadkhah M. Association Between Stress, Neuroinflammation, and Irritable Bowel Syndrome: The Positive Effects of Probiotic Therapy. Cell Biochem Funct 2024; 42:e70009. [PMID: 39487668 DOI: 10.1002/cbf.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Stress refers to an organism's response to environmental threats in normal condition to maintain homeostasis in the body. In addition, strong inflammatory reactions induced by the hypothalamic-pituitary-adrenal (HPA) axis under stress condition during a long time. Reciprocally, chronic stress can induce the irritable bowel syndrome (IBS) which is a well-known gut disorder thereby play an important role in the promotion and pathophysiology of neuropsychiatric diseases. It has been demonstrated that leaky gut is a hallmark of IBS, leads to the entrance the microbiota into the bloodstream and consequent low-grade systemic inflammation. In the current review, we will discuss the mechanisms by which stress can influence the risk and severity of IBS and its relationship with neuroinflammation. Also, the role of probiotics in IBS co-existing with chronic stress conditions is highlighted.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience, Faculty of Advanced Medical, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Somaieh Matin
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Młynarska E, Jakubowska P, Frąk W, Gajewska A, Sornowska J, Skwira S, Wasiak J, Rysz J, Franczyk B. Associations of Microbiota and Nutrition with Cognitive Impairment in Diseases. Nutrients 2024; 16:3570. [PMID: 39458564 PMCID: PMC11510709 DOI: 10.3390/nu16203570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recent research highlights the growing interest in the impact of nutrition on cognitive health and function in disease, as dietary habits are increasingly recognized as crucial factors in relation to brain function. This focus is especially important given the rising prevalence of neurodegenerative diseases and the cognitive decline associated with poor dietary choices. Links are now being sought between brain function and the microbiota and gut-brain axis. Mechanisms are proposed that include low-grade chronic neuroinflammation, the influence of short-chain fatty acids, or the disruption of glial cells and transmitters in the brain. METHODS We reviewed the articles on pubmed. This is not a systematic review, but of the narrative type. We wanted to outline the issue and summarise the latest information. RESULTS The axis in question has its foundation in nutrition. It has been reported that diet, particularly the components and the timing of food intake, has an impact on cognitive processes. The Mediterranean diet is most often cited in the literature as being beneficial to health. In order to obtain a more complete view, it is worth considering other dietary patterns, even those that impair our health. CONCLUSIONS Determining what is beneficial and what is not will allow us to develop a speronized strategy for the prevention of, and fight against, cognitive impairment. Appropriately selected supplements, the functions of which we have also discussed, may prove supportive.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Sornowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Sylwia Skwira
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
10
|
Ito K, Hosoki H, Kasai Y, Sasaki H, Haraguchi A, Shibata S, Nozaki C. A Cellulose-Rich Diet Disrupts Gut Homeostasis and Leads to Anxiety through the Gut-Brain Axis. ACS Pharmacol Transl Sci 2024; 7:3071-3085. [PMID: 39416961 PMCID: PMC11475280 DOI: 10.1021/acsptsci.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
It is widely said that a healthy intestinal environment plays an essential role in better mental condition. One known dietary nutrient that maintains the intestinal environment is dietary fiber. A recent study showed that maintaining the intestinal environment with dietary fiber alleviated symptoms of psychiatric disorders in animals. However, such effects have only been reported with soluble fiber, which is highly fermentable and promotes short-chain fatty acid (SCFA) production, and not with insoluble fiber. Therefore, we aimed to verify whether insoluble fiber, such as cellulose, can alter emotion via changes in the gut. We divided mice into two groups and fed either a standard diet (SD, which contains both insoluble and soluble dietary fibers) or a cellulose-rich diet (CRD, which contains cellulose alone as the dietary fibers). We found that CRD-fed mice display increased anxiety-like behavior. CRD-fed animals also showed decreased intestinal SCFA levels along with increased intestinal permeability, dysmotility, and hypersensitivity. This behavioral and physiological effect of CRD has been completely abolished in vagotomized mice, indicating the direct link between intestinal environment exacerbation to the emotion through the gut-brain axis. Additionally, we found that amygdalar dopamine signaling has been modified in CRD-fed animals, and the opioid antagonist abolished this dopaminergic modification as well as CRD-induced anxiety. Altogether, our findings indicate that consumption of cellulose alone as the dietary fiber may evoke intestinal abnormalities, which fire the vagus nerve, then the opioidergic system, and amygdalar dopamine upregulation, resulting in the enhancement of anxiety.
Collapse
Affiliation(s)
- Kaede Ito
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Haruka Hosoki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Yuya Kasai
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Hiroyuki Sasaki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Atsushi Haraguchi
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Shigenobu Shibata
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
- Graduate
School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chihiro Nozaki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
- Global
Center for Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| |
Collapse
|
11
|
Kodila ZN, Shultz SR, Yamakawa GR, Mychasiuk R. Critical Windows: Exploring the Association Between Perinatal Trauma, Epigenetics, and Chronic Pain. Neuroscientist 2024; 30:574-596. [PMID: 37212380 PMCID: PMC11439237 DOI: 10.1177/10738584231176233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic pain is highly prevalent and burdensome, affecting millions of people worldwide. Although it emerges at any point in life, it often manifests in adolescence. Given that adolescence is a unique developmental period, additional strains associated with persistent and often idiopathic pain lead to significant long-term consequences. While there is no singular cause for the chronification of pain, epigenetic modifications that lead to neural reorganization may underpin central sensitization and subsequent manifestation of pain hypersensitivity. Epigenetic processes are particularly active during the prenatal and early postnatal years. We demonstrate how exposure to various traumas, such as intimate partner violence while in utero or adverse childhood experiences, can significantly influence epigenetic regulation within the brain and in turn modify pain-related processes. We provide compelling evidence that the burden of chronic pain is likely initiated early in life, often being transmitted from mother to offspring. We also highlight two promising prophylactic strategies, oxytocin administration and probiotic use, that have the potential to attenuate the epigenetic consequences of early adversity. Overall, we advance understanding of the causal relationship between trauma and adolescent chronic pain by highlighting epigenetic mechanisms that underlie this transmission of risk, ultimately informing how to prevent this rising epidemic.
Collapse
Affiliation(s)
- Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, Canada
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
13
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
14
|
Masri JE, Afyouni A, Ghazi M, Hamideh K, Moubayed I, Jurjus A, Haidar H, Petrosyan R, Salameh P, Hosseini H. Stem cell transplantation in cerebrovascular accidents: A global bibliometric analysis (2000-2023). World J Stem Cells 2024; 16:832-841. [PMID: 39351261 PMCID: PMC11438731 DOI: 10.4252/wjsc.v16.i9.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/24/2024] Open
Abstract
BACKGROUND Cerebrovascular accident (CVA) is a major global contributor to death and disability. As part of its medical management, researchers have recognized the importance of promising neuroprotective strategies, where stem cell transplantation (SCT) is thought to confer advantages via trophic and neuroprotective effects. AIM To evaluate the current state of research on SCT in patients with CVA, assess key trends and highlight literature gaps. METHODS PubMed was screened for SCT in CVA-related articles in October 2023, for each country during the period between 2000 and 2023. Using the World Bank data, total population and gross domestic product were collected for comparison. VOSviewer_1.6.19 was used to create the VOS figure using the results of the same query. Graphs and tables were obtained using Microsoft Office Excel. RESULTS A total of 6923 studies were identified on SCT in CVA, making 0.03% of all published studies worldwide. Approximately, 68% were conducted in high-income countries, with a significant focus on mesenchymal stem cells. The journal "Stroke" featured the largest share of these articles, with mesenchymal SCT having the highest rate of inclusion, followed by hematopoietic SCT. Over time, there has been a noticeable shift from in vitro studies, which assess stem cell proliferation and neurogenesis, to in vivo studies aimed at evaluating efficacy and safety. Additionally, the number of reviews increased along this approach. CONCLUSION This bibliometric analysis provides a comprehensive guide for physicians and researchers in the field through an objective overview of research activity, and highlights both current trends and gaps. Having a potential therapeutic role in CVA, more research is needed in the future to focus on different aspects of SCT, aiming to reach a better treatment strategy and improve life quality in patients.
Collapse
Affiliation(s)
- Jad El Masri
- École Doctorale Sciences de la Vie et de la Santé, Université Paris-Est Créteil, Créteil 94010, France
- INSERM U955-E01, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Créteil 94000, France
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
- Department of Neurology, Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
| | - Karim Hamideh
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Israe Moubayed
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon.
| | - Hanine Haidar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Ruzanna Petrosyan
- Department of Pathology, Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
| | - Pascale Salameh
- Faculty of Pharmacy, Lebanese University, Beirut 1102, Lebanon
- Faculty of Medicine, Lebanese American University, Beirut 1102, Lebanon
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
- Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut 1103, Lebanon
| | - Hassan Hosseini
- INSERM U955-E01, Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Créteil 94000, France
- Department of Neurology, Henri Mondor Hospital, AP-HP, Créteil 94000, France
| |
Collapse
|
15
|
Zheng LM, Li Y. Modifications in the Composition of the Gut Microbiota in Rats Induced by Chronic Sleep Deprivation: Potential Relation to Mental Disorders. Nat Sci Sleep 2024; 16:1313-1325. [PMID: 39247907 PMCID: PMC11380879 DOI: 10.2147/nss.s476691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Sleep deprivation(SD) has numerous negative effects on mental health. A growing body of research has confirmed the implication of gut microbiota in mental disorders. However, the specific modifications in mammalian gut microbiota following SD exhibit variations across different studies. Methods Male specific-pathogen-free Wistar rats were given a modified multiple-platform exposure for 7 days of SD. Fecal samples were obtained from the control and SD groups both at baseline and after 7 days of SD. We utilized 16S rDNA gene sequencing to investigate the gut microbial composition and functional pathways in rats. Results Analysis of the microbiota composition revealed a significant change in gut microbial composition after chronic SD, especially at the phylum level. The relative abundances of p_Firmicutes, g_Romboutsia, and g_Enterococcus increased, whereas those of p_Bacteroidetes, p_Verrucomicrobia, p_Fusobacteria, g_Akkermansia, and g_Cetobacterium decreased in animals after chronic SD compared with controls or animals before SD. The ratio of Firmicutes to Bacteroidetes exhibited an increase following SD. The relative abundance of gut microbiota related to the functional pathways of GABAergic and glutamatergic synapses was observed to be diminished in rats following SD compared to pre-SD. Conclusion Collectively, these findings suggest that chronic SD causes significant alterations in both the structural composition and functional pathways of the gut microbiome. Further researches are necessary to investigate the chronological and causal connections among SD, the gut microbiota and mental disorders.
Collapse
Affiliation(s)
- Li-Ming Zheng
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Yan Li
- Department of Psychology and Sleep Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
16
|
Sproten R, Nohr D, Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutr Neurosci 2024; 27:1042-1057. [PMID: 38165747 DOI: 10.1080/1028415x.2023.2296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
CONTEXT The proportion of the elderly population is on the rise across the globe, and with it the prevalence of age-related neurodegenerative diseases. The gut microbiota, whose composition is highly regulated by dietary intake, has emerged as an exciting research field in neurology due to its pivotal role in modulating brain functions via the gut-brain axis. OBJECTIVES We aimed at conducting a systematic review of preclinical and clinical studies investigating the effects of dietary interventions on cognitive ageing in conjunction with changes in gut microbiota composition and functionality. METHODS PubMed and Scopus were searched using terms related to ageing, cognition, gut microbiota and dietary interventions. Studies were screened, selected based on previously determined inclusion and exclusion criteria, and evaluated for methodological quality using recommended risk of bias assessment tools. RESULTS A total of 32 studies (18 preclinical and 14 clinical) were selected for inclusion. We found that most of the animal studies showed significant positive intervention effects on cognitive behavior, while outcomes on cognition, microbiome features, and health parameters in humans were less pronounced. The effectiveness of dietary interventions depended markedly on the age, gender, degree of cognitive decline and baseline microbiome composition of participants. CONCLUSION To harness the full potential of microbiome-inspired nutrition for cognitive health, one of the main challenges remains to better understand the interplay between host, his microbiome, dietary exposures, whilst also taking into account environmental influences. Future research should aim toward making use of host-specific microbiome data to guide the development of personalized therapies.
Collapse
Affiliation(s)
- Rieke Sproten
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Donatus Nohr
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
17
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
18
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
20
|
Chi ZC. Recent studies on gut-brain axis and irritable bowel syndrome. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:468-483. [DOI: 10.11569/wcjd.v32.i7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
21
|
Soni D, Upadhayay S, Dhureja M, Arthur R, Kumar P. Crosstalk between gut-brain axis: unveiling the mysteries of gut ROS in progression of Parkinson's disease. Inflammopharmacology 2024:10.1007/s10787-024-01510-2. [PMID: 38992324 DOI: 10.1007/s10787-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
22
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
Badrfam R, Zandifar A, Hajialigol A, Rashidian M, Schmidt NB, Morabito D, Qorbani M, Shahrestanaki E, Mehrabani Natanzi M. Efficacy of probiotic supplements in improving the symptoms of psychosis, anxiety, insomnia, and anorexia due to amphetamine and methamphetamine use: a randomized clinical trial. Psychopharmacology (Berl) 2024; 241:1463-1476. [PMID: 38512593 DOI: 10.1007/s00213-024-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
RATIONALE Changes in the density and diversity of gut microbiota in chronic use of methamphetamine have been mentioned as contributors to psychotic and anxiety symptoms, sleep problems, and loss of appetite. OBJECTIVE In this placebo-controlled clinical trial, we investigated the effect of the probiotic Lactobacillus Acidophilus in improving psychiatric symptoms among hospitalized patients with chronic methamphetamine use along with psychotic symptoms. METHODS 60 inpatients with a history of more than 3 years of methamphetamine use, were randomly assigned to one of two groups receiving either a probiotic capsule or placebo along with risperidone for 8 weeks based on a simple randomization method. In weeks 0, 4, and 8, patients were evaluated using the Brief Psychiatric Rating Scale (BPRS), Beck Anxiety Inventory (BAI), Pittsburgh Sleep Quality Index (PSQI), Simple Appetite Nutritional Questionnaire (SANQ), and Body Mass Index (BMI). RESULTS Compared to the control group, patients receiving probiotics had better sleep quality, greater appetite, and higher body mass index (there were significant interaction effects of group and time at Week 8 in these variables (t = -3.32, B = -1.83, p = .001, d = 0.89), (t = 10.50, B = 2.65, p <.001, d = 1.25) and (t = 3.40, B = 0.76, p <.001, d = 0.30), respectively. In terms of the improvement of psychotic and anxiety symptoms, there was no statistically significant difference between the two groups. CONCLUSIONS The use of probiotics was associated with improved sleep quality, increased appetite, and increased body mass index in patients with chronic methamphetamine use. Conducting more definitive clinical trials with larger sample sizes and longer-term follow-up of cases is recommended.
Collapse
Affiliation(s)
- Rahim Badrfam
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefeh Zandifar
- Department of Psychiatry, Imam Hossein Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Amirhossein Hajialigol
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Rashidian
- Alborz Office of Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Norman Brad Schmidt
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Danielle Morabito
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahboobeh Mehrabani Natanzi
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Lin S, Zhou Z, Qi Y, Chen J, Xu G, Shi Y, Yu Z, Li M, Chai K. Depression promotes breast cancer progression by regulating amino acid neurotransmitter metabolism and gut microbial disturbance. Clin Transl Oncol 2024; 26:1407-1418. [PMID: 38194019 DOI: 10.1007/s12094-023-03367-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most prevalent type of cancer and has the highest mortality among women worldwide. BC patients have a high risk of depression, which has been recognized as an independent factor in the progression of BC. However, the potential mechanism has not been clearly demonstrated. METHODS To explore the correlation and mechanism between depression and BC progression, we induced depression and tumor in BC mouse models. Depression was induced via chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS). Amino acid (AA) neurotransmitter-targeted metabonomics and gut microbiota 16S rDNA gene sequencing were employed in the mouse model after evaluation with behavioral tests and pathological analysis. RESULTS The tumors in cancer-depression (CD) mice grew faster than those in cancer (CA) mice, and lung metastasis was observed in CD mice. Metabonomics revealed that the neurotransmitters and plasma AAs in CD mice were dysregulated, namely the tyrosine and tryptophan pathways and monoamine neurotransmitters in the brain. Gut microbiota analysis displayed an increased ratio of Firmicutes/Bacteroides. In detail, the abundance of f_Lachnospiraceae and s_Lachnospiraceae increased, whereas the abundance of o_Bacteroidales and s_Bacteroides_caecimuris decreased. Moreover, the gut microbiota was more closely associated with AA neurotransmitters than with plasma AA. CONCLUSION Depression promoted the progression of BC by modulating the abundance of s_Lachnospiraceae and s_Bacteroides_caecimuris, which affected the metabolism of monoamine neurotransmitters in the brain and AA in the blood.
Collapse
Affiliation(s)
- Sisi Lin
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhe Zhou
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yiming Qi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jiabing Chen
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Guoshu Xu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yunfu Shi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Zhihong Yu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Kequn Chai
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
25
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
26
|
Qu L, Li Y, Liu F, Fang Y, He J, Ma J, Xu T, Wang L, Lei P, Dong H, Jin L, Yang Q, Wu W, Sun D. Microbiota-Gut-Brain Axis Dysregulation in Alzheimer's Disease: Multi-Pathway Effects and Therapeutic Potential. Aging Dis 2024; 15:1108-1131. [PMID: 37728579 PMCID: PMC11081173 DOI: 10.14336/ad.2023.0823-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
An essential regulator of neurodegenerative conditions like Alzheimer's disease (AD) is the gut microbiota. Alterations in intestinal permeability brought on by gut microbiota dysregulation encourage neuroinflammation, central immune dysregulation, and peripheral immunological dysregulation in AD, as well as hasten aberrant protein aggregation and neuronal death in the brain. However, it is unclear how the gut microbiota transmits information to the brain and how it influences brain cognition and function. In this review, we summarized the multiple pathways involved in the gut microbiome in AD and provided detailed treatment strategies based on the gut microbiome. Based on these observations, this review also discusses the problems, challenges, and strategies to address current therapeutic strategies.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
- College of Veterinary Medicine, Jilin University, Changchun 130118, China.
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
27
|
Barakat GM, Ramadan W, Assi G, Khoury NBE. Satiety: a gut-brain-relationship. J Physiol Sci 2024; 74:11. [PMID: 38368346 PMCID: PMC10874559 DOI: 10.1186/s12576-024-00904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well as neurotransmitters and their interconnected relation in the regulation of body's satiety homeostasis.
Collapse
Affiliation(s)
- Ghinwa M Barakat
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon.
| | - Wiam Ramadan
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Nutrition and Food Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Noura B El Khoury
- Psychology department, Faculty of Arts and Sciences, University of Balamand, Balamand, Lebanon
| |
Collapse
|
28
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
29
|
Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull 2024; 207:110883. [PMID: 38244807 DOI: 10.1016/j.brainresbull.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.
Collapse
Affiliation(s)
- Kirti Garg
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Hasan Mohajeri
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Bellot M, Carrillo MP, Bedrossiantz J, Zheng J, Mandal R, Wishart DS, Gómez-Canela C, Vila-Costa M, Prats E, Piña B, Raldúa D. From dysbiosis to neuropathologies: Toxic effects of glyphosate in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115888. [PMID: 38150752 DOI: 10.1016/j.ecoenv.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Paula Carrillo
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Vila-Costa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Benjamí Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
31
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
32
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
33
|
Rashnaei N, Akhavan Sepahi A, Siadat SD, Shahsavand-Ananloo E, Bahramali G. Characterization of gut microbiota profile in Iranian patients with bipolar disorder compared to healthy controls. Front Cell Infect Microbiol 2023; 13:1233687. [PMID: 37808915 PMCID: PMC10552146 DOI: 10.3389/fcimb.2023.1233687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The human gut microbiota plays a crucial role in mental health through the gut-brain axis, impacting central nervous system functions, behavior, mood, and anxiety. Consequently, it is implicated in the development of neuropsychiatric disorders. This study aimed to assess and compare the gut microbiota profiles and populations of individuals with bipolar disorder and healthy individuals in Iran. Methods Fecal samples were collected from 60 participants, including 30 bipolar patients (BPs) and 30 healthy controls (HCs), following rigorous entry criteria. Real-time quantitative PCR was utilized to evaluate the abundance of 10 bacterial genera/species and five bacterial phyla. Results Notably, Actinobacteria and Lactobacillus exhibited the greatest fold change in BPs compared to HCs at the phylum and genus level, respectively, among the bacteria with significant population differences. Ruminococcus emerged as the most abundant genus in both groups, while Proteobacteria and Bacteroidetes showed the highest abundance in BPs and HCs, respectively, at the phylum level. Importantly, our investigation revealed a lower Firmicutes/Bacteroidetes ratio, potentially serving as a health indicator, in HCs compared to BPs. Conclusion This study marks the first examination of an Iranian population and provides compelling evidence of significant differences in gut microbiota composition between BPs and HCs, suggesting a potential link between brain functions and the gut microbial profile and population.
Collapse
Affiliation(s)
- Nassir Rashnaei
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Esmaeil Shahsavand-Ananloo
- Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Golnaz Bahramali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Mohamed RI, Daoud IM, Suliman AG, Kaddam L. Effect of Prebiotic Dietary Supplement Acacia senegal on Hormonal and Metabolic Markers in Polycystic Ovary Syndrome Patients: A Pilot Study. Cureus 2023; 15:e45480. [PMID: 37859871 PMCID: PMC10584032 DOI: 10.7759/cureus.45480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background The most prevalent endocrine condition affecting women of reproductive age is polycystic ovarian syndrome (PCOS), which is linked to a variety of metabolic abnormalities. Although the pathogenesis of PCOS is not fully understood, it is known that oxidative stress, altered gut microbiome, and increased gonadotrophin-releasing hormone play a significant role. Gum arabic (GA) is an edible, dried, gummy exudate from the Acacia senegal tree, well-known for its prebiotic and antioxidant effects. The main objective of the study was to assess the changes in hormonal and metabolic profiles in PCOS patients after the ingestion of gum arabic. Method This was a clinical trial conducted on fifteen patients suffering from PCOS, with a mean age of 27.8 years (20-39 years). All patients experienced irregular cycles. Hormonal and metabolic markers (follicular stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), fasting insulin, total cholesterol (TC), and glycosylated hemoglobin (HBA1c) were measured before and after the ingestion of gum arabic (30 g/day of GA dissolved in 250 ml water for eight weeks) on the second day of the menstrual cycle after granting ethical approval from the National Medicine and Poisons Board and from the participants of the study. Results The study demonstrated a significant decrease in the luteinizing hormone level, FSH/LH ratio, and cholesterol pre- and post-gum arabic ingestion (p-values 0.001, 0.013, and 0.007, respectively). Follicular stimulating hormone slightly reduced post-ingestion with no significant difference (p-value 0.414). No significant changes were seen in the testosterone, insulin, or HBA1c levels. Conclusion The study concluded that gum arabic ingestion for eight weeks decreases the luteinizing hormone and LH/FSH ratio and improves the metabolic profile by reducing the cholesterol level in PCOS patients.
Collapse
Affiliation(s)
- Reem I Mohamed
- Department of Physiology, Faculty of Medicine, Alneelain University, Khartoum, SDN
| | - Ibrahim M Daoud
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Alneelain University, Khartoum, SDN
| | - Awadia G Suliman
- Faculty of Radiological Sciences and Medical Imaging, Alzaiem Alazhari University, Khartoum, SDN
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, SAU
| | - Lamis Kaddam
- Department of Physiology, Faculty of Medicine, Alneelain University, Khartoum, Sudan, SDN
- Department of Physiology, King Abdulaziz University Faculty of Medicine, Rabigh, SAU
| |
Collapse
|
35
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
36
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
37
|
Lewin-Epstein O, Jaques Y, Feldman MW, Kaufer D, Hadany L. Evolutionary modeling suggests that addictions may be driven by competition-induced microbiome dysbiosis. Commun Biol 2023; 6:782. [PMID: 37495841 PMCID: PMC10372008 DOI: 10.1038/s42003-023-05099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yanabah Jaques
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
38
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
39
|
Baião R, Capitão LP, Higgins C, Browning M, Harmer CJ, Burnet PWJ. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychol Med 2023; 53:3437-3447. [PMID: 35129111 PMCID: PMC10277723 DOI: 10.1017/s003329172100550x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The potential antidepressant properties of probiotics have been suggested, but their influence on the emotional processes that may underlie this effect is unclear. METHODS Depressed volunteers (n = 71) were recruited into a randomised double-blind, placebo-controlled study to explore the effects of a daily, 4-week intake of a multispecies probiotic or placebo on emotional processing and cognition. Mood, anxiety, positive and negative affect, sleep, salivary cortisol and serum C-reactive peptide (CRP) were assessed before and after supplementation. RESULTS Compared with placebo, probiotic intake increased accuracy at identifying faces expressing all emotions (+12%, p < 0.05, total n = 51) and vigilance to neutral faces (mean difference between groups = 12.28 ms ± 6.1, p < 0.05, total n = 51). Probiotic supplementation also reduced reward learning (-9%, p < 0.05, total n = 51), and interference word recall on the auditory verbal learning task (-18%, p < 0.05, total n = 50), but did not affect other aspects of cognitive performance. Although actigraphy revealed a significant group × night-time activity interaction, follow up analysis was not significant (p = 0.094). Supplementation did not alter salivary cortisol or circulating CRP concentrations. Probiotic intake significantly reduced (-50% from baseline, p < 0.05, n = 35) depression scores on the Patient Health Questionnaire-9, but these did not correlate with the changes in emotional processing. CONCLUSIONS The impartiality to positive and negative emotional stimuli or reward after probiotic supplementation have not been observed with conventional antidepressant therapies. Further studies are required to elucidate the significance of these changes with regard to the mood-improving action of the current probiotic.
Collapse
Affiliation(s)
- Rita Baião
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Liliana P. Capitão
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Cameron Higgins
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip W. J. Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
40
|
Wang W, Chen F, Zhang L, Wen F, Yu Q, Li P, Zhang A. Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162358. [PMID: 36822423 DOI: 10.1016/j.scitotenv.2023.162358] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The fetal and early postnatal stages are periods of rapid brain development, during which, methylmercury (MeHg) exposure can cause lasting cognitive impairments. MeHg exposure disrupts neurotransmitter metabolites, which increased susceptibility to neurological responses. However, the neurotoxic mechanism underlying the MeHg-induced disruption of neurotransmitter metabolism requires further exploration. To this end, female Sprague-Dawley (SD) rats were administered NaCl (control group) or MeHg (0.6 mg/kg, 1.2 mg/kg and 2.4 mg/ kg body weight (bw), where the body weight refers to the dams) during the perinatal period, and then changes in neurotransmitter profiles and the gut microbiota of offspring were detected. The results showed that tryptophan (Trp) and tyrosine (Tyr) pathway neurotransmitter metabolites, including serotonin (5-HT), 5-hydroxy indole acetic acid (5-HIAA), N-acetyl-5-hydroxytryptamin (NAS), Tyr, dopamine (DA) and epinephrine (E), were significantly changed, and the Kynurenine/Tryptophan (Kyn/Trp) ratio was increased in the MeHg-treated groups. Meanwhile, acetylcholine (ACh) and neurotransmitters involved in the amino acid pathway were significantly reduced. Notably, MeHg treatment induced a significant reduction in tight junctions in the colon and hippocampal tissue. Furthermore, fecal microbiota analysis indicated that the diversity and composition characteristics were significantly altered by MeHg exposure. Mediation analysis showed that the gut microbiota mediated the effect of MeHg treatment on the neurotransmitter expression profiles. The present findings shed light on the regulatory role of the gut microbiota in MeHg-disrupted neurotransmitter metabolic pathways and the potential impact of perinatal MeHg treatment on the "cross-talk" between the gut and brain.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Fang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Li Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Fuli Wen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qing Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
41
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
42
|
Salomon JD, Qiu H, Feng D, Owens J, Khailova L, Osorio Lujan S, Iguidbashian J, Chhonker YS, Murry DJ, Riethoven JJ, Lindsey ML, Singh AB, Davidson JA. Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis Model Mech 2023; 16:dmm049742. [PMID: 36426663 PMCID: PMC9844230 DOI: 10.1242/dmm.049742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
The intestinal microbiome is essential to human health and homeostasis, and is implicated in the pathophysiology of disease, including congenital heart disease and cardiac surgery. Improving the microbiome and reducing inflammatory metabolites may reduce systemic inflammation following cardiac surgery with cardiopulmonary bypass (CPB) to expedite recovery post-operatively. Limited research exists in this area and identifying animal models that can replicate changes in the human intestinal microbiome after CPB is necessary. We used a piglet model of CPB with two groups, CPB (n=5) and a control group with mechanical ventilation (n=7), to evaluate changes to the microbiome, intestinal barrier dysfunction and intestinal metabolites with inflammation after CPB. We identified significant changes to the microbiome, barrier dysfunction, intestinal short-chain fatty acids and eicosanoids, and elevated cytokines in the CPB/deep hypothermic circulatory arrest group compared to the control group at just 4 h after intervention. This piglet model of CPB replicates known human changes to intestinal flora and metabolite profiles, and can be used to evaluate gut interventions aimed at reducing downstream inflammation after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68102, USA
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Dan Feng
- Department of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Jacob Owens
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | | | - John Iguidbashian
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68102, USA
| | - Daryl J. Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68102, USA
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Merry L. Lindsey
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Amar B. Singh
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Jesse A. Davidson
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
44
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Bastings JJAJ, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab 2023; 34:243-255. [PMID: 36870872 DOI: 10.1016/j.tem.2023.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Recent studies show a link between the gut microbiota and the regulation of satiety and energy intake, processes that contribute to the development and pathophysiology of metabolic diseases. However, this link is predominantly established in animal and in vitro studies, whereas human intervention studies are scarce. In this review we focus on recent evidence linking satiety and the gut microbiome, with specific emphasis on gut microbial short-chain fatty acids (SCFAs). Based on a systematic search we provide an overview of human studies linking the intake of prebiotics with gut microbial alterations and satiety signaling. Our outcomes highlight the importance of in-depth examination of the gut microbiota in relation to satiety and provide insights into recent and future studies in this field.
Collapse
Affiliation(s)
- Jacco J A J Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Centre for Healthy Eating and Food Innovation, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
47
|
Understanding the Connection between Gut Homeostasis and Psychological Stress. J Nutr 2023; 153:924-939. [PMID: 36806451 DOI: 10.1016/j.tjnut.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Long-term exposure to adverse life events that provoke acute or chronic psychological stress (hereinafter "stress") can negatively affect physical health and even increase susceptibility to psychological illnesses, such as anxiety and depression. As a part of the hypothalamic-pituitary-adrenal axis, corticotropin-releasing factor (CRF) released from the hypothalamus is primarily responsible for the stress response. Typically, CRF disrupts the gastrointestinal system and leads to gut microbiota dysbiosis, thereby increasing risk of functional gastrointestinal diseases, such as irritable bowel syndrome. Furthermore, CRF increases oxidative damage to the colon and triggers immune responses involving mast cells, neutrophils, and monocytes. CRF even affects the differentiation of intestinal stem cells (ISCs), causing enterochromaffin cells to secrete excessive amounts of 5-hydroxytryptamine (5-HT). Therefore, stress is often accompanied by damage to the intestinal epithelial barrier function, followed by increased intestinal permeability and bacterial translocation. There are multi-network interactions between the gut microbiota and stress, and gut microbiota may relieve the effects of stress on the body. Dietary intake of probiotics can provide energy for ISCs through glycolysis, thereby alleviating the disruption to homeostasis caused by stress, and it significantly bolsters the intestinal barrier, alleviates intestinal inflammation, and maintains endocrine homeostasis. Gut microbiota also directly affect the synthesis of hormones and neurotransmitters, such as CRF, 5-HT, dopamine, and norepinephrine. Moreover, the Mediterranean diet enhances the stress resistance to some extent by regulating the intestinal flora. This article reviews recent research on how stress damages the gut and microbiota, how the gut microbiota can improve gut health by modulating injury due to stress, and how the diet relieves stress injury by interfering with intestinal microflora. This review gives insight into the potential role of the gut and its microbiota in relieving the effects of stress via the gut-brain axis.
Collapse
|
48
|
Serio R, Zizzo MG. The multiple roles of dopamine receptor activation in the modulation of gastrointestinal motility and mucosal function. Auton Neurosci 2023; 244:103041. [PMID: 36372052 DOI: 10.1016/j.autneu.2022.103041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/22/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Dopamine (DA) is a catecholamine regulatory molecule with potential role in physiology and physiopathology of the intestinal tract. Various cellular sources of DA have been indicated as enteric neurons, immune cells, intestinal flora and gastrointestinal epithelium. Moreover, DA is produced by nutritional tyrosine. All the five DA receptors, actually described, are present throughout the gut. Current knowledge of DA in this area is reviewed, focusing on gastrointestinal function in health and during inflammation. Research on animal models and humans are reported. A major obstacle to understanding the physiologic and/or pharmacological roles of enteric DA is represented by the multiplicity of receptors involved in the responses together with many signalling pathways related to each receptor subtype. It is mandatory to map precisely the distributions of DA receptors, to determine the relevance of a receptor in a specific location in order to explore novel therapies directed to dopaminergic targets that may be useful in the control of intestinal inflammation.
Collapse
Affiliation(s)
- Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; ATeN (Advanced Technologies Network) Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
49
|
Gut microbiota alterations promote traumatic stress susceptibility associated with p-cresol-induced dopaminergic dysfunctions. Brain Behav Immun 2023; 107:385-396. [PMID: 36400332 DOI: 10.1016/j.bbi.2022.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.
Collapse
|
50
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|