1
|
Rougée LRA, Hegde PV, Shin K, Abraham TL, Bell A, Hall SD. Heterotropic allosteric modulation of CYP3A4 in vitro by progesterone: Evidence for improvement in prediction of time-dependent inhibition for macrolides. Drug Metab Dispos 2025; 53:100006. [PMID: 39884818 DOI: 10.1124/dmd.124.001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated. The presence of PGS resulted in varied responses across the inhibitors tested. The TDI signal was eliminated for 5 inhibitors, and unaltered in the case of 1, fidaxomicin. The remaining molecules erythromycin, clarithromycin, and troleandomycin were observed to have a decrease in both potency and maximum inactivation rate ranging from 1.7- to 6.7-fold. These changes in TDI kinetics led to a >90% decrease in inactivation efficiency. To determine in vitro conditions that could reproduce in vivo inhibition, varied concentrations of PGS were incubated with clarithromycin and erythromycin. The resulting in vitro TDI kinetics were incorporated into dynamic physiologically based pharmacokinetic models to predict clinically observed interactions. The results suggested that a concentration of ∼45 μM PGS would result in TDI kinetic values that could reproduce in vivo observations and could potentially improve predictions for CYP3A4 TDI. SIGNIFICANCE STATEMENT: The impact of the allosteric heterotropic modulator progesterone on the CYP3A4 time-dependent inhibition kinetics was quantified for a set of metabolic-intermediate complex forming mechanism-based inhibitors. We identify the in vitro conditions that optimally predict time-dependent inhibition for in vivo drug-drug interactions through dynamic physiologically based pharmacokinetic modeling. The optimized assay conditions improve in vitro to in vivo translation and prediction of time-dependent inhibition.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| | - Pooja V Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Kaitlin Shin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Alec Bell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
2
|
Hirai T, Aoyama T, Tsuji Y, Ino K, Ikejiri M, Tawara I, Iwamoto T. Pharmacokinetic Model of Drug Interaction of Tacrolimus with Combined Administration of CYP3A4 Inhibitors Voriconazole and Clarithromycin After Bone Marrow Transplantation. Eur J Drug Metab Pharmacokinet 2024; 49:763-771. [PMID: 39313741 DOI: 10.1007/s13318-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES A pharmacokinetic model has been developed to quantify the drug-drug interactions of tacrolimus with concentration-dependent inhibition of cytochrome P450 (CYP) 3A4 from voriconazole and clarithromycin based on the CYP3A5 and CYP2C19 genotypes. METHODS This retrospective study recruited unrelated bone marrow transplant recipients receiving oral tacrolimus concomitantly with voriconazole and clarithromycin. The published population pharmacokinetic model that implemented genotypes of CYP3A5 (tacrolimus) and CYP2C19 (voriconazole) was integrated. The tested CYP3A4 inhibition models (Sigmoid efficacy maximum [Emax], Emax, log-linear, and linear) were a function of competitive inhibition of voriconazole and mechanism-based inhibition of clarithromycin in a virtual enzyme compartment. RESULTS The total tacrolimus trough concentrations were 119 points, with a median of 4.3 (range: 2.0-9.9) ng/mL (n = 3). The final model comprised the Sigmoid Emax model for voriconazole and clarithromycin, which depicted time-course alterations in tacrolimus concentration and clearance when given voriconazole and clarithromycin. CONCLUSIONS These findings could facilitate the model-informed precision dosing of tacrolimus after unrelated bone marrow transplant.
Collapse
Affiliation(s)
- Toshinori Hirai
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Pharmacy, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiko Aoyama
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Kazuko Ino
- Department of Hematology and Oncology, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
Bu F, Cho YS, He Q, Wang X, Howlader S, Kim DH, Zhu M, Shin JG, Xiang X. Prediction of Pharmacokinetic Drug-Drug Interactions Involving Anlotinib as a Victim by Using Physiologically Based Pharmacokinetic Modeling. Drug Des Devel Ther 2024; 18:4585-4600. [PMID: 39429896 PMCID: PMC11490238 DOI: 10.2147/dddt.s480402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anlotinib was approved as a third line therapy for advanced non-small cell lung cancer in China. However, the impact of concurrent administration of various clinical drugs on the drug-drug interaction (DDI) potential of anlotinib remains undetermined. As such, this study aims to evaluate the DDI of anlotinib as a victim by establishing a physiologically based pharmacokinetic (PBPK) model. Methods The PBPK model of anlotinib as a victim drug was constructed and validated in the Simcyp® incorporating parameters derived from in vitro studies, pre-clinical investigations, and clinical research encompassing patients with cancer. Subsequently, plasma exposure of anlotinib in cancer patients was predicted for single- and multi-dose co-administration with typical perpetrators mentioned in Food and Drug Administration (FDA) industrial guidance. Results Based on predictions, the CYP3A potent inhibitor ketoconazole demonstrated the most significant DDI with anlotinib, regardless of whether anlotinib is administered as a single dose or multiple doses. Ketoconazole increased the area under the concentration-time curve (AUC) and maximum concentration (Cmax) of single-dose anlotinib to 1.41-fold and 1.08-fold, respectively. In contrast, rifampicin, a potent inducer of CYP3A enzymes, exhibited a relatively higher level of DDI, with AUCR and CmaxR values of 0.44 and 0.79, respectively. Conclusion Based on the PBPK modeling, there is a low risk of DDI between anlotinib and potent CYP3A/1A2 inhibitors, but caution and enhanced monitoring for adverse reactions are advised. To mitigate the risk of anti-tumor treatment failure, it is recommended to avoid concurrent use of strong CYP3A inducers. In conclusion, our study enhances understanding of anlotinib's interaction with medications, aiding scientists, prescribers, and drug labels in gauging the expected impact of CYP3A/1A2 modulators on anlotinib's pharmacokinetics.
Collapse
Affiliation(s)
- Fengjiao Bu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
- Department of Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yong-Soon Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Xiaowen Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Saurav Howlader
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Mingshe Zhu
- Department of DMPK, MassDefect Technologies, Princeton, NJ, USA
| | - Jae Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
- Department of Preclinical Evaluation, Quzhou Fudan Institute, Quzhou, Zhejiang Province, 324002, People’s Republic of China
| |
Collapse
|
4
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Sun P, Cao Y, Qiu J, Kong J, Zhang S, Cao X. Inhibitory Mechanisms of Lekethromycin in Dog Liver Cytochrome P450 Enzymes Based on UPLC-MS/MS Cocktail Method. Molecules 2023; 28:7193. [PMID: 37894672 PMCID: PMC10609143 DOI: 10.3390/molecules28207193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug-drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS on CYP450 enzymes is still unclear. Thus, this study aimed to evaluate the inhibitory effects of LKMS on dog CYP450 enzymes. A cocktail approach using ultra-performance liquid chromatography-tandem mass spectrometry was conducted to investigate the inhibitory effect of LKMS on canine CYP450 enzymes. Typical probe substrates of phenacetin, coumarin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and testosterone were used for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. This study showed that LKMS might not be a time-dependent inhibitor. LKMS inhibited CYP2A6, CYP2B6, and CYP2D6 via mixed inhibition. LKMS exhibited mixed-type inhibition against the activity of CYP2A6 with an inhibition constant (Ki) value of 135.6 μΜ. LKMS inhibited CYP2B6 in a mixed way, with Ki values of 59.44 μM. A phenotyping study based on an inhibition assay indicated that CYP2D6 contributes to the biotransformation of LKMS. A mixed inhibition of CYP2D6 with Ki values of 64.87 μM was also observed. Given that this study was performed in vitro, further in vivo studies should be conducted to identify the interaction between LKMS and canine CYP450 enzymes to provide data support for the clinical application of LKMS and the avoidance of adverse interactions between other drugs.
Collapse
Affiliation(s)
- Pan Sun
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Yuying Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Jicheng Qiu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Jingyuan Kong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Suxia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (P.S.); (Y.C.); (J.Q.); (J.K.); (S.Z.)
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Chemical Hazards (Beijing), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
- Key Laboratory of Detection for Veterinary Drug Residues and Illegal Additives, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100193, China
| |
Collapse
|
6
|
Carr TF, Fajt ML, Kraft M, Phipatanakul W, Szefler SJ, Zeki AA, Peden DB, White SR. Treating asthma in the time of COVID. J Allergy Clin Immunol 2023; 151:809-817. [PMID: 36528110 PMCID: PMC9749385 DOI: 10.1016/j.jaci.2022.12.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The Precision Interventions for Severe and/or Exacerbation-Prone Asthma clinical trials network is actively assessing novel treatments for severe asthma during the coronavirus disease (COVID-19) pandemic and has needed to adapt to various clinical dilemmas posed by the COVID-19 pandemic. Pharmacologic interactions between established asthma therapies and novel drug interventions for COVID-19 infection, including antivirals, biologics, and vaccines, have emerged as a critical and unanticipated issue in the clinical care of asthma. In particular, impaired metabolism of some long-acting beta-2 agonists by the cytochrome P4503A4 enzyme in the setting of antiviral treatment using ritonavir-boosted nirmatrelvir (NVM/r, brand name Paxlovid) may increase risk for adverse cardiovascular events. Although available data have documented the potential for such interactions, these issues are largely unappreciated by clinicians who treat asthma, or those dispensing COVID-19 interventions in patients who happen to have asthma. Because these drug-drug interactions have not previously been relevant to patient care, clinicians have had no guidance on management strategies to reduce potentially serious interactions between treatments for asthma and COVID-19. The Precision Interventions for Severe and/or Exacerbation-Prone Asthma network considered the available literature and product information, and herein share our considerations and plans for treating asthma within the context of these novel COVID-19-related therapies.
Collapse
Affiliation(s)
- Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson
| | - Merritt L Fajt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Department of Pediatrics, Boston Children's Hospital, Boston
| | - Stanley J Szefler
- The University of Colorado School of Medicine and Children's Hospital Colorado, Department of Pediatrics, The Breathing Institute, Aurora
| | - Amir A Zeki
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis School of Medicine, UC Davis Lung Center, Sacramento
| | - David B Peden
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina, Chapel Hill
| | - Steven R White
- Department of Medicine, the University of Chicago, Chicago.
| |
Collapse
|
7
|
Pihlaja TLM, Niemissalo SM, Sikanen TM. Cytochrome P450 Inhibition by Antimicrobials and Their Mixtures in Rainbow Trout Liver Microsomes In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:663-676. [PMID: 34255900 DOI: 10.1002/etc.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobials are ubiquitous in the environment and can bioaccumulate in fish. In the present study, we determined the half-maximal inhibitory concentrations (IC50) of 7 environmentally abundant antimicrobials (ciprofloxacin, clarithromycin, clotrimazole, erythromycin, ketoconazole, miconazole, and sulfamethoxazole) on the cytochrome P450 (CYP) system in rainbow trout (Oncorhynchus mykiss) liver microsomes, using 7-ethoxyresorufin O-deethylation (EROD, CYP1A) and 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD, CYP3A) as model reactions. Apart from ciprofloxacin and sulfamethoxazole, all antimicrobials inhibited either EROD or BFCOD activities or both at concentrations <500 µM. Erythromycin was the only selective and time-dependent inhibitor of BFCOD. Compared with environmental concentrations, the IC50s of individual compounds were generally high (greater than milligrams per liter); but as mixtures, the antimicrobials resulted in strong, indicatively synergistic inhibitions of both EROD and BFCOD at submicromolar (~micrograms per liter) mixture concentrations. The cumulative inhibition of the BFCOD activity was detectable even at picomolar (~nanograms per liter) mixture concentrations and potentiated over time, likely because of the strong inhibition of CYP3A by ketoconazole (IC50 = 1.7 ± 0.3 µM) and clotrimazole (IC50 = 1.2 ± 0.2 µM). The results suggest that if taken up by fish, the mixtures of these antimicrobials may result in broad CYP inactivation and increase the bioaccumulation risk of any other xenobiotic normally cleared by the hepatic CYPs even at biologically relevant concentrations. Environ Toxicol Chem 2022;41:663-676. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Tea L M Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Sanna M Niemissalo
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Tang LWT, Teng JW, Verma RK, Koh SK, Zhou L, Go ML, Fan H, Chan ECY. Infigratinib Is a Reversible Inhibitor and Mechanism-Based Inactivator of Cytochrome P450 3A4. Drug Metab Dispos 2021; 49:856-868. [PMID: 34326139 DOI: 10.1124/dmd.121.000508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the US Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation of cytochrome P450 enzymes. In this study, we investigated the interactions between INF and the most abundant hepatic CYP3A. Our findings revealed that, apart from being a potent noncompetitive reversible inhibitor of CYP3A4, INF inactivated CYP3A4 in a time-, concentration- and NADPH-dependent manner with inactivator concentration at half-maximum inactivation rate constant, maximum inactivation rate constant, and partition ratio of 4.17 µM, 0.068 minute-1, and 41, respectively, when rivaroxaban was employed as the probe substrate. Coincubation with testosterone (alternative CYP3A substrate) or ketoconazole (direct CYP3A inhibitor) attenuated the rate of inactivation, whereas the inclusion of glutathione and catalase did not confer such protection. The lack of enzyme activity recovery after dialysis for 4 hours and oxidation with potassium ferricyanide, coupled with the absence of the characteristic Soret peak signature collectively substantiated that inactivation of CYP3A4 by INF was not mediated by the formation of quasi-irreversible metabolite-intermediate complexes but rather through irreversible covalent adduction to the prosthetic heme and/or apoprotein. Finally, glutathione trapping and high-resolution mass spectrometry experimental results unraveled two plausible bioactivation mechanisms of INF arising from the generation of a p-benzoquinonediimine and epoxide reactive intermediate. SIGNIFICANCE STATEMENT: The potential of INF to cause MBI of CYP3A4 was unknown. This study reports the reversible noncompetitive inhibition and irreversible covalent MBI of CYP3A4 by INF and proposes two potential bioactivation pathways implicating p-benzoquinonediimine and epoxide reactive intermediates, following which a unique covalent docking methodology was harnessed to elucidate the structural and molecular determinants underscoring its inactivation. Findings from this study lay the groundwork for future investigation of clinically relevant drug-drug interactions between INF and concomitant substrates of CYP3A4.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Jian Wei Teng
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Ravi Kumar Verma
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Siew Kwan Koh
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Lei Zhou
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Mei Lin Go
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science (L.W.T.T., J.W.T, M.L.G., E.C.Y.C.) and Department of Ophthalmology, Yong Loo Lin School of Medicine (L.Z.), National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore (R.K.V., H.F.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, Singapore (L.Z.)
| |
Collapse
|
9
|
Baburaj G, Thomas L, Rao M. Potential Drug Interactions of Repurposed COVID-19 Drugs with Lung Cancer Pharmacotherapies. Arch Med Res 2021; 52:261-269. [PMID: 33257051 PMCID: PMC7670900 DOI: 10.1016/j.arcmed.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer patients are at heightened risk for developing COVID-19 infection as well as complications due to multiple risk factors such as underlying malignancy, anti-cancer treatment induced immunosuppression, additional comorbidities and history of smoking. Recent literatures have reported a significant proportion of lung cancer patients coinfected with COVID-19. Chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, oseltamivir, remdesivir, favipiravir, and umifenovir represent the major repurposed drugs used as potential experimental agents for COVID-19 whereas azithromycin, dexamethasone, tocilizumab, sarilumab, famotidine and ceftriaxone are some of the supporting agents that are under investigation for COVID-19 management. The rationale of this review is to identify potential drug-drug interactions (DDIs) occurring in lung cancer patients receiving lung cancer medications and repurposed COVID-19 drugs using Micromedex and additional literatures. This review has identified several potential DDIs that could occur with the concomitant treatments of COVID-19 repurposed drugs and lung cancer medications. This information may be utilized by the healthcare professionals for screening and identifying potential DDIs with adverse outcomes, based on their severity and documentation levels and consequently design prophylactic and management strategies for their prevention. Identification, reporting and management of DDIs and dissemination of related information should be a major consideration in the delivery of lung cancer care during this ongoing COVID-19 pandemic for better patient outcomes and updating guidelines for safer prescribing practices in this coinfected condition.
Collapse
Affiliation(s)
- Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Abstract
Inhibition of a drug-metabolizing enzyme by the reversible interaction of a drug with the enzyme, thus decreasing the metabolism of another drug, is a major cause of clinically significant drug-drug interactions. This chapter defines the four reversible mechanisms of inhibition exhibited by drugs: competitive, noncompetitive, uncompetitive, and mixed competitive/noncompetitive. An in vitro procedure to determine the potential of a drug to be a reversible inhibitor is also provided. Finally, a number of examples of clinically significant drug-drug interactions resulting from reversible inhibition are described.
Collapse
|
11
|
Bleyzac N, Goutelle S, Bourguignon L, Tod M. Azithromycin for COVID-19: More Than Just an Antimicrobial? Clin Drug Investig 2020; 40:683-686. [PMID: 32533455 PMCID: PMC7290142 DOI: 10.1007/s40261-020-00933-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nathalie Bleyzac
- Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 rue du Commandant Charcot, 69005, Lyon, France
| | - Sylvain Goutelle
- Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 rue du Commandant Charcot, 69005, Lyon, France.
- Univ Lyon, Université Lyon 1, ISPB, Faculté de Pharmacie de Lyon & UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France.
| | - Laurent Bourguignon
- Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 rue du Commandant Charcot, 69005, Lyon, France
- Univ Lyon, Université Lyon 1, ISPB, Faculté de Pharmacie de Lyon & UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Michel Tod
- Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 rue du Commandant Charcot, 69005, Lyon, France
- Univ Lyon, Université Lyon 1, ISPB, Faculté de Pharmacie de Lyon & UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| |
Collapse
|
12
|
Xie Y, Tummala P, Oakley AJ, Deora GS, Nakano Y, Rooke M, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Casarotto MG, Board PG, Baell JB. Development of Benzenesulfonamide Derivatives as Potent Glutathione Transferase Omega-1 Inhibitors. J Med Chem 2020; 63:2894-2914. [PMID: 32105470 DOI: 10.1021/acs.jmedchem.9b01391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1β and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Padmaja Tummala
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuji Nakano
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Melissa Rooke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Lu C, Di L. In vitro
and
in vivo
methods to assess pharmacokinetic drug– drug interactions in drug discovery and development. Biopharm Drug Dispos 2020; 41:3-31. [DOI: 10.1002/bdd.2212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Chuang Lu
- Department of DMPKSanofi Company Waltham MA 02451
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismPfizer Worldwide Research & Development Groton CT 06340
| |
Collapse
|
14
|
Abu Mellal A, Hussain N, Said AS. The clinical significance of statins-macrolides interaction: comprehensive review of in vivo studies, case reports, and population studies. Ther Clin Risk Manag 2019; 15:921-936. [PMID: 31413581 PMCID: PMC6661989 DOI: 10.2147/tcrm.s214938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
The objectives of this article were to review the mechanism and clinical significance of statins-macrolides interaction, determine which combination has the highest risk for the interaction, and identify key patients' risk factors for the interaction in relation to the development of muscle toxicity. A literature review was conducted in PubMed and Embase (1946 to December 2018) using combined terms: statins - as group and individual agents, macrolides - as group and individual agents, drug interaction, muscle toxicity, rhabdomyolysis, CYP3A4 inhibitors, and OAT1B inhibitors, with forward and backward citation tracking. Relevant English language in vivo studies in healthy volunteers, case reports, and population studies were included. The interaction between statins and macrolides depends on the type of statin and macrolide used. The mechanism of the interaction is due to macrolides' inhibition of CYP3A4 isoenzyme and OAT1B transporter causing increased exposure to statins. The correlation of this increased statin's exposure to the development of muscle toxicity could not be established, unless the patient had other risk factors such as advanced age, cardiovascular diseases, renal impairment, diabetes, and the concomitant use of other CYP3A4 inhibitors. Simvastatin, lovastatin, and to lesser extent atorvastatin are the statins most affected by this interaction. Rosuvastatin, fluvastatin, and pravastatin are not significantly affected by this interaction. Telithromycin, clarithromycin, and erythromycin are the most "offending" macrolides, while azithromycin appears to be safe to use with statins. This review presented a clear description of the clinical significance of this interaction in real practice. Also, it provided health care professionals with clear suggestions and recommendations on how to overcome this interaction. In conclusion, understanding the different characteristics of each statin and macrolide, as well as key patients' risk factors, will enable health care providers to utilize both groups effectively without compromising patient safety.
Collapse
Affiliation(s)
- Abdallah Abu Mellal
- College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Nadia Hussain
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Amira Sa Said
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| |
Collapse
|
15
|
Shumyantseva VV, Makhova AA, Shikh EV, Bulko TV, Kuzikov AV, Masamrekh RA, Shkel T, Usanov S, Gilep A, Archakov AI. Bioelectrochemical Systems as Technologies for Studying Drug Interactions Related to Cytochrome P450. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0567-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Li G, Simmler C, Chen L, Nikolic D, Chen SN, Pauli GF, van Breemen RB. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci 2017; 109:182-190. [PMID: 28774812 DOI: 10.1016/j.ejps.2017.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 07/30/2017] [Indexed: 02/04/2023]
Abstract
The potential of licorice dietary supplements to interact with drug metabolism was evaluated by testing extracts of three botanically identified licorice species (Glycyrrhiza glabra L., Glycyrrhiza uralensis Fish. ex DC. and Glycyrrhiza inflata Batalin) and 14 isolated licorice compounds for inhibition of 9 cytochrome P450 enzymes using a UHPLC-MS/MS cocktail assay. G. glabra showed moderate inhibitory effects against CYP2B6, CYP2C8, CYP2C9, and CYP2C19, and weak inhibition against CYP3A4 (testosterone). In contrast, G. uralensis strongly inhibited CYP2B6 and moderately inhibited CYP2C8, CYP2C9 and CYP2C19, and G. inflata strongly inhibited CYP2C enzymes and moderately inhibited CYP1A2, CYP2B6, CYP2D6, and CYP3A4 (midazolam). The licorice compounds isoliquiritigenin, licoricidin, licochalcone A, 18β-glycyrrhetinic acid, and glycycoumarin inhibited one or more members of the CYP2C family of enzymes. Glycycoumarin and licochalcone A inhibited CYP1A2, but only glycycoumarin inhibited CYP2B6. Isoliquiritigenin, glabridin and licoricidin competitively inhibited CYP3A4, while licochalcone A (specific to G. inflata roots) was a mechanism-based inhibitor. The three licorice species commonly used in botanical dietary supplements have varying potential for drug-botanical interactions as inhibitors of cytochrome P450 isoforms. Each species of licorice displays a unique profile of constituents with potential for drug interactions.
Collapse
Affiliation(s)
- Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Luying Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States.
| |
Collapse
|
17
|
Inactivation kinetics and residual activity of CYP3A4 after treatment with erythromycin. Biopharm Drug Dispos 2017; 38:420-425. [DOI: 10.1002/bdd.2078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/19/2017] [Accepted: 04/11/2017] [Indexed: 11/07/2022]
|
18
|
Sohlenius-Sternbeck AK, Meyerson G, Hagbjörk AL, Juric S, Terelius Y. A strategy for early-risk predictions of clinical drug-drug interactions involving the GastroPlus TM DDI module for time-dependent CYP inhibitors. Xenobiotica 2017; 48:348-356. [PMID: 28443803 DOI: 10.1080/00498254.2017.1323136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. A set of reference compounds for time-dependent inhibition (TDI) of cytochrome P450 with available literature data for kinact and KI was used to predict clinical implications using the GastroPlusTM software. Comparisons were made to in vivo literature interaction data. 2. The predicted AUC ratios (AUC+inhibitor/AUCcontrol) could be compared with the observed ratios from literature for all compounds with detailed information about in vivo administration, pharmacokinetics and in vivo interactions (N = 21). For this dataset, the difference between predicted and observed AUC ratios for interactions with midazolam was within twofold for all compounds except one (telaprevir, for which non-CYP-mediated metabolism likely plays a role after multiple dosing). 3. The sensitivity, specificity and accuracy of the GastroPlusTM predictions using a binary classification as no-to-weak interaction versus moderate-to-strong interaction for all compounds with available in vivo interaction data, were 80%, 82% and 81%, respectively (N = 31). 4. As a result of our evaluations of the DDI module in GastroPlusTM, we have implemented an early TDI risk assessment decision tree for our drug discovery projects involving in vitro screening and early GastroPlusTM predictions. Shifted IC50 values are determined and kinact/KI estimated (by using a regression line established with in house-shifted IC50 values and literature kinact/KI ratios), followed by GastroPlusTM predictions.
Collapse
|
19
|
Pérez-Del Palacio J, Díaz C, Vergara N, Algieri F, Rodríguez-Nogales A, de Pedro N, Rodríguez-Cabezas ME, Genilloud O, Gálvez J, Vicente F. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production. Front Pharmacol 2017; 8:202. [PMID: 28446877 PMCID: PMC5388737 DOI: 10.3389/fphar.2017.00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/28/2017] [Indexed: 11/15/2022] Open
Abstract
Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed.
Collapse
Affiliation(s)
- José Pérez-Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Noemí Vergara
- Calcium Metabolism and Vascular Calcification Unit, Maimonides Institute for Biomedical Research, University Hospital Reina Sofia, Nephrology Service, University of CórdobaCordoba, Spain
| | - Francesca Algieri
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - M Elena Rodríguez-Cabezas
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| | - Julio Gálvez
- Department of Pharmacology, ibs, CIBER-EHD, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de AndalucíaGranada, Spain
| |
Collapse
|
20
|
Lee E, Shon JC, Liu KH. Simultaneous evaluation of substrate-dependent CYP3A inhibition using a CYP3A probe substrates cocktail. Biopharm Drug Dispos 2017; 37:366-72. [PMID: 27323294 DOI: 10.1002/bdd.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
Cytochrome P450 (P450) 3A (CYP3A) is an enzyme responsible for the metabolism of therapeutic drugs such as midazolam, nifedipine, testosterone and triazolam. It is involved in 40% of all cases of P450-mediated metabolism of marketed drugs. Therefore, it is important to evaluate the CYP3A-mediated drug interaction potential of new chemical entities (NCEs). In the past, one P450 isoform-specific probe substrate has been used at a time to evaluate the degree of inhibition of P450 isoforms by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, CYP3A enzymes have been shown to have a multi-substrate binding site. Therefore, multiple CYP3A substrates should be used to evaluate precisely the drug interaction potential of NCEs with the enzyme CYP3A. In this study, a method of screening NCEs for their potential to inhibit by CYP3A enzyme activity was developed. It involves the employment of a CYP3A substrate cocktail (including midazolam, testosterone and nifedipine). The concentration of each CYP3A probe substrate in vitro was optimized (0.1 μm for midazolam, 2 μm for testosterone and 2 μm for nifedipine) to minimize mutual drug interactions among probe substrates. The method was validated by comparing inhibition data obtained from the incubation of CYP3A with each individual substrate with data from incubation with a cocktail of all three substrates. The CYP3A inhibition profiles from the substrate cocktail approach were similar to those from the individual substrates approach. This new method could be an effective tool for the robust and accurate screening of the CYP3A inhibition potential of NCEs in drug discovery. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eunyoung Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
21
|
Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacol Res 2017; 116:7-19. [DOI: 10.1016/j.phrs.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023]
|
22
|
Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, Haefeli WE, Lehr T. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug–Drug Interactions and Co-medication Regimens. AAPS JOURNAL 2016; 19:298-312. [DOI: 10.1208/s12248-016-0009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022]
|
23
|
Hong Y, Chia YMF, Yeo RH, Venkatesan G, Koh SK, Chai CLL, Zhou L, Kojodjojo P, Chan ECY. Inactivation of Human Cytochrome P450 3A4 and 3A5 by Dronedarone and N-Desbutyl Dronedarone. Mol Pharmacol 2016; 89:1-13. [PMID: 26490246 DOI: 10.1124/mol.115.100891] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/20/2015] [Indexed: 02/14/2025] Open
Abstract
Dronedarone is an antiarrhythmic agent approved in 2009 for the treatment of atrial fibrillation. An in-house preliminary study demonstrated that dronedarone inhibits cytochrome P450 (CYP) 3A4 and 3A5 in a time-dependent manner. This study aimed to investigate the inactivation of CYP450 by dronedarone. We demonstrated for the first time that both dronedarone and its main metabolite N-desbutyl dronedarone (NDBD) inactivate CYP3A4 and CYP3A5 in a time-, concentration-, and NADPH-dependent manner. For the inactivation of CYP3A4, the inactivator concentration at the half-maximum rate of inactivation and inactivation rate constant at an infinite inactivator concentration are 0.87 µM and 0.039 minute(-1), respectively, for dronedarone, and 6.24 µM and 0.099 minute(-1), respectively, for NDBD. For CYP3A5 inactivation, the inactivator concentration at the half-maximum rate of inactivation and inactivation rate constant at an infinite inactivator concentration are 2.19 µM and 0.0056 minute(-1) for dronedarone and 5.45 µM and 0.056 minute(-1) for NDBD. The partition ratios for the inactivation of CYP3A4 and CYP3A5 by dronedarone are 51.1 and 32.2, and the partition ratios for the inactivation of CYP3A4 and CYP3A5 by NDBD are 35.3 and 36.6. Testosterone protected both CYP3A4 and CYP3A5 from inactivation by dronedarone and NDBD. Although the presence of Soret peak confirmed the formation of a quasi-irreversible metabolite-intermediate complex between dronedarone/NDBD and CYP3A4/CYP3A5, partial recovery of enzyme activity by potassium ferricyanide illuminated an alternative irreversible mechanism-based inactivation (MBI). MBI of CYP3A4 and CYP3A5 was further supported by the discovery of glutathione adducts derived from the quinone oxime intermediates of dronedarone and NDBD. In conclusion, dronedarone and NDBD inactivate CYP3A4 and CYP3A5 via unique dual mechanisms of MBI and formation of the metabolite-intermediate complex. Our novel findings contribute new knowledge for future investigation of the underlying mechanisms associated with dronedarone-induced hepatotoxicity and clinical drug-drug interactions.
Collapse
Affiliation(s)
- Yanjun Hong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Yvonne Mei Fen Chia
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Ray Hng Yeo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Siew Kwan Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Christina Li Lin Chai
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Lei Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Pipin Kojodjojo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (Y.H., Y.M.F.C., R.H.Y., G.V., C.L.L.C., E.C.Y.C.); Singapore Eye Research Institute, Singapore (S.K.K., L.Z.); and Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, Singapore (P.K.)
| |
Collapse
|
24
|
Greenblatt DJ, Harmatz JS. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug-drug interaction studies. Br J Clin Pharmacol 2015; 80:342-50. [PMID: 25923589 DOI: 10.1111/bcp.12668] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/16/2022] Open
Abstract
AIMS The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors. METHODS The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. RESULTS Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ. CONCLUSIONS Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
Collapse
Affiliation(s)
- David J Greenblatt
- From the Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Jerold S Harmatz
- From the Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
25
|
Kiselev AB, Chaukina VA. [The clinical effectiveness of azithromycin antimicrobial therapy used for the treatment of acute bacterial sinusitis in the patients presenting with concomitant pathology]. Vestn Otorinolaringol 2015; 80:51-54. [PMID: 26978753 DOI: 10.17116/otorino201580651-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the present publication was to report the result of the evaluation of the clinical effectiveness of azithromycin (Sumamed) antimicrobial therapy used for the treatment of bacterial acute rhinsinusitis (ARS) in the patients presenting with concomitant pathology of the respiratory and cardiovascular systems. Dynamics of the reversal of the clinical symptoms of bacterial ARS in the patients of the study group is described. Neither adverse side effects nor complications in response to the treatment were documented. 98.6% of the patients recovered from the disease within 7 days after the onset of the treatment. It is concluded that antimicrobial therapy with the use of azithromycin (Sumamed) based at the outpatient settings provides a highly efficient tool for the treatment of the patients presenting with concomitant pathology of the respiratory and cardiovascular systems.
Collapse
Affiliation(s)
- A B Kiselev
- State Educational Institution of Higher Professional Education 'Novosibirsk State Medical University', Russian Ministry of Health, Novosibirsk, 630091
| | - V A Chaukina
- State Educational Institution of Higher Professional Education 'Novosibirsk State Medical University', Russian Ministry of Health, Novosibirsk, 630091
| |
Collapse
|
26
|
Li DQ, Kim R, McArthur E, Fleet JL, Bailey DG, Juurlink D, Shariff SZ, Gomes T, Mamdani M, Gandhi S, Dixon S, Garg AX. Risk of adverse events among older adults following co-prescription of clarithromycin and statins not metabolized by cytochrome P450 3A4. CMAJ 2014; 187:174-180. [PMID: 25534598 DOI: 10.1503/cmaj.140950] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cytochrome P450 3A4 (CYP3A4) inhibitor clarithromycin may also inhibit liver-specific organic anion-transporting polypeptides (OATP1B1 and OATP1B3). We studied whether concurrent use of clarithromycin and a statin not metabolized by CYP3A4 was associated with an increased frequency of serious adverse events. METHODS Using large health care databases, we studied a population-based cohort of older adults (mean age 74 years) who were taking a statin not metabolized by CYP3A4 (rosuvastatin [76% of prescriptions], pravastatin [21%] or fluvastatin [3%]) between 2002 and 2013 and were newly prescribed clarithromycin (n=51,523) or azithromycin (n=52,518), the latter an antibiotic that inhibits neither CYP3A4 nor OATP1B1 and OATP1B3. Outcomes were hospital admission with a diagnostic code for rhabdomyolysis, acute kidney injury or hyperkalemia, and all-cause mortality. All outcomes were assessed within 30 days after co-prescription. RESULTS Compared with the control group, patients co-prescribed clarithromycin and a statin not metabolized by CYP3A4 were at increased risk of hospital admission with acute kidney injury (adjusted relative risk [RR] 1.65, 95% confidence interval [CI] 1.31 to 2.09), admission with hyperkalemia (adjusted RR 2.17, 95% CI 1.22 to 3.86) and all-cause mortality (adjusted RR 1.43, 95% CI 1.15 to 1.76). The adjusted RR for admission with rhabdomyolysis was 2.27 (95% CI 0.86 to 5.96). The absolute increase in risk for each outcome was small and likely below 1%, even after we considered the insensitivity of some hospital database codes. INTERPRETATION Among older adults taking a statin not metabolized by CYP3A4, co-prescription of clarithromycin versus azithromycin was associated with a modest but statistically significant increase in the 30-day absolute risk of adverse outcomes.
Collapse
Affiliation(s)
- Daniel Q Li
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Richard Kim
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Eric McArthur
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Jamie L Fleet
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - David G Bailey
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - David Juurlink
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Salimah Z Shariff
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Tara Gomes
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Muhammad Mamdani
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Sonja Gandhi
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Stephanie Dixon
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont
| | - Amit X Garg
- Divisions of Nephrology (Li, McArthur, Fleet, Shariff, Gandhi, Dixon, Garg) and Clinical Pharmacology (Kim), Department of Medicine, Western University, London, Ont.; Institute for Clinical Evaluative Sciences (ICES) Western (McArthur, Juurlink, Shariff, Gomes, Dixon, Garg), London, Ont.; Lawson Health Research Institute (Bailey), London Health Sciences Centre, London, Ont.; Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.; Li Ka Shing Knowledge Institute (Gomes, Mamdani), St. Michael's Hospital, Toronto, Ont.; Institute of Health Policy, Management and Evaluation (Mamdani), University of Toronto, Toronto, Ont.; Department of Epidemiology and Biostatistics (Gandhi), Western University, London, Ont.
| |
Collapse
|
27
|
Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev 2014; 46:475-93. [PMID: 25270219 DOI: 10.3109/03602532.2014.967866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute , Lucknow , India
| | | | | | | | | | | |
Collapse
|
28
|
Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur J Clin Pharmacol 2014; 70:1097-106. [PMID: 24954688 DOI: 10.1007/s00228-014-1709-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/11/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the potential inhibitory effects of uremic toxins on the major human hepatic drug-metabolising cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes in vitro. METHODS Benzyl alcohol, p-cresol, indoxyl sulfate, hippuric acid and a combination of the four uremic toxins were co-incubated with human liver microsomes and selective probe substrates for the major human drug-metabolising CYP and UGT enzymes. The percentage of enzyme inhibition was calculated by measuring the rates of probe metabolite formation in the absence and presence of the uremic toxins. Kinetics studies were conducted to evaluate the K i values and mechanism(s) of the inhibition of CYP2E1, CYP3A4, UGT1A1 and UGT1A9 by p-cresol. RESULTS The individual uremic toxins inhibited CYP and UGT enzymes to a variable extent. p-Cresol was the most potent individual inhibitor, producing >50% inhibition of CYP2E1, CYP3A4, UGT1A1, UGT1A9 and UGT2B7 at a concentration of 100 μM. The greatest inhibition was observed with UGT1A9. p-Cresol was shown to be an uncompetitive inhibitor of UGT1A9, with unbound K i values of 9.1 and 2.5 μM in the absence and presence of bovine serum albumin (BSA), respectively. K i values for p-cresol inhibition of human liver microsomal CYP2E1, CYP3A4 and UGT1A1 ranged from 43 to 89 μM. A combination of the four uremic toxins produced >50% decreases in the activities of CYP1A2, CYP2C9, CYP2E1, CYP3A4, UGT1A1, UGT1A9 and UGT2B7. CONCLUSIONS Uremic toxins may contribute to decreases in drug hepatic clearance in individuals with kidney disease by inhibition of hepatic drug-metabolising enzymes.
Collapse
|
29
|
Al-Mohizea AM, Ahad A, El-Maghraby GM, Al-Jenoobi FI, AlKharfy KM, Al-Suwayeh SA. Effects of Nigella sativa, Lepidium sativum and Trigonella foenum-graecum on sildenafil disposition in beagle dogs. Eur J Drug Metab Pharmacokinet 2014; 40:219-24. [PMID: 24719213 DOI: 10.1007/s13318-014-0199-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
The present study was conducted to investigate the effects of some commonly used herbs namely Nigella sativa, Lepidium sativum and Trigonella foenum-graecum on the pharmacokinetics of sildenafil in beagle dogs. The study design involved four treatments in a non-balanced crossover design. Sildenafil was given one tablet 100 mg orally to each dog and blood samples were obtained. After a suitable washout period, animals were commenced on a specific herb treatment for 1 week. Blood samples were withdrawn at different time intervals and sildenafil was analyzed by HPLC method. Oral administration of Nigella sativa resulted in reduction of AUC0-∞, C max and t 1/2 as compared to the control. Treatment of Lepidium sativum resulted in a significant reduction in the C max and AUC. There were no significant differences between the rests of the pharmacokinetic parameters relative to those of the control. For Trigonella foenum-graecum, the effects were similar to those obtained in case of Lepidium sativum. It was concluded that concurrent use of investigated herbs alters the pharmacokinetics of sildenafil. Co-administration of investigated herbs should be cautious since their concomitant use might result in decrease in sildenafil bioavailability.
Collapse
Affiliation(s)
- Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
30
|
Schmitz A, Zielinski J, Dick B, Mevissen M. In vitro
metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95. J Vet Pharmacol Ther 2014; 37:338-47. [DOI: 10.1111/jvp.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/24/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. Schmitz
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| | - J. Zielinski
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| | - B. Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology; Inselspital; Bern Switzerland
| | - M. Mevissen
- Division of Veterinary Pharmacology and Toxicology; Vetsuisse Faculty; University Bern; Bern Switzerland
| |
Collapse
|
31
|
Ring B, Wrighton SA, Mohutsky M. Reversible mechanisms of enzyme inhibition and resulting clinical significance. Methods Mol Biol 2014; 1113:37-56. [PMID: 24523108 DOI: 10.1007/978-1-62703-758-7_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Inhibition of a drug-metabolizing enzyme by the reversible interaction of a drug with the enzyme, thus decreasing the metabolism of another drug, is a major cause of clinically significant drug-drug interactions. This chapter defines the four reversible mechanisms of inhibition exhibited by drugs: competitive, noncompetitive, uncompetitive, and mixed competitive/noncompetitive. An in vitro procedure to determine the potential of a drug to be a reversible inhibitor is also provided. Finally, a number of examples of clinically significant drug-drug interactions resulting from reversible inhibition are described.
Collapse
Affiliation(s)
- Barbara Ring
- Quintiles, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | | | | |
Collapse
|
32
|
Abstract
This chapter describes the types of irreversible inhibition of drug-metabolizing enzymes and the methods commonly employed to quantify the irreversible inhibition and subsequently predict the extent and time course of clinically important drug-drug interactions.
Collapse
Affiliation(s)
- Michael Mohutsky
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
33
|
Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet 2013; 28:411-5. [PMID: 23514827 DOI: 10.2133/dmpk.dmpk-12-rg-134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of cytochrome P450 (CYP) 3A4 is the major cause of drug-drug interactions (DDI). We have previously reported that the genetic variation of CYP3A4 significantly affected the inhibitory profiles of typical competitive inhibitors. In addition to competitive inhibition, some clinically significant DDI are attributable to mechanism-based inhibition (MBI). However, the differences in the MBI kinetics among CYP3A4 genetic variants remain to be characterized. In this study, we quantitatively investigated the inhibition kinetics of MBI inhibitors, erythromycin and clarithromycin, on the CYP3A4 variants CYP3A4.1, 4.2, 4.7, 4.16, and 4.18. The activity of CYP3A4 was assessed using testosterone 6β-hydroxylation with recombinant CYP3A4. Both erythromycin and clarithromycin decreased the activity of CYP3A4 in a time-dependent manner. The maximum inactivation rate constants, k(inact,max), of erythromycin for CYP3A4.2 and CYP3A4.7 were 0.5-fold that for CYP3A4.1, while that for CYP3A4.16 and CYP3A4.18 were similar to that for CYP3A4.1. The K(I) values of erythromycin for CYP3A4.2, 4.7, 4.16, and 4.18 were 1.2-, 0.4-, 2.2- and 0.72-fold those of CYP3A4.1, respectively. Similar results were obtained for clarithromycin. In conclusion, the inhibitory profiles of MBI inhibitors, as well as competitive inhibitors, may possibly differ among CYP3A4 variants. This difference may contribute to interindividual differences in the extent of DDI based on MBI.
Collapse
|
34
|
Varma MVS, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide. Pharm Res 2013; 30:1188-99. [PMID: 23307347 DOI: 10.1007/s11095-012-0956-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. METHODS In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. RESULTS In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. CONCLUSIONS This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Fleet JL, Shariff SZ, Bailey DG, Gandhi S, Juurlink DN, Nash DM, Mamdani M, Gomes T, Patel AM, Garg AX. Comparing two types of macrolide antibiotics for the purpose of assessing population-based drug interactions. BMJ Open 2013; 3:bmjopen-2013-002857. [PMID: 23847265 PMCID: PMC3710981 DOI: 10.1136/bmjopen-2013-002857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Clarithromycin strongly inhibits enzyme cytochrome P450 3A4, preventing the metabolism of some other drugs, while azithromycin is a weak inhibitor. Accordingly, blood concentrations of other drugs increase with clarithromycin coprescription leading to adverse events. These macrolide antibiotics also differ on other properties that may impact outcomes. In this study, we compared outcomes in two groups of macrolide antibiotic users in the absence of potentially interacting drugs. DESIGN Population-based retrospective cohort study. SETTING Ontario, Canada, from 2003 to 2010. PATIENTS Patients (mean 74 years) prescribed clarithromycin (n=52 251) or azithromycin (referent group, n=46 618). MAIN OUTCOMES The primary outcomes were hospital admission within 30 days of a new antibiotic prescription with any of the 12 conditions examined separately (acute kidney injury, acute myocardial infarction, neuroimaging (proxy for delirium), hypotension, syncope, hyperkalaemia, hyponatraemia, hyperglycaemia, arrhythmia, ischaemic stroke, gastrointestinal bleeding and sepsis). The secondary outcome was mortality. RESULTS The baseline characteristics of the two groups, including patient demographics, comorbid conditions, infection type and prescribing physician specialty, were nearly identical. The median daily dose was 1000 mg for clarithromycin and 300 mg for azithromycin and the median duration of dispensing antibiotics was 10 and 5 days, respectively. There was no difference between the groups in the risk of hospitalisation for any condition studied (relative risk ranged from 0.67 to 1.23). Compared with azithromycin, clarithromycin was associated with a slightly higher risk of all-cause mortality (0.46% vs 0.37%, relative risk 1.25, 95% CI 1.03 to 1.52). CONCLUSIONS Clarithromycin can be used to assess drug interactions in population-based studies with azithromycin serving as a control group. However, any differences in mortality observed between the two antibiotic groups in the setting of other drug use may be partially attributable to factors beyond the inhibition of drug metabolising enzymes and transporters, as the difference for this outcome was significant.
Collapse
Affiliation(s)
- Jamie L Fleet
- Division of Nephrology, Department of Medicine, Western University, London, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Elsby R, Hilgendorf C, Fenner K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther 2012; 92:584-98. [PMID: 23047648 DOI: 10.1038/clpt.2012.163] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of statins is widespread across disease areas because many patients have comorbidities. Given that these drugs have become common as comedications, it is essential to have an understanding of the potential risks of drug-drug interactions (DDIs) between statins and candidate drugs in development. Although the hepatic uptake transporter organic anion-transporting polypeptide 1B1 (OATP1B1) is known to play a substantial role in statin-related DDI risk, other transporters and metabolizing enzymes can also be involved. Consequently, a holistic approach to risk assessment is required, tailored to each statin. Using evidence from pharmacogenetics, DDIs, and literature on absorption, distribution, metabolism, and elimination (ADME) in humans, this review identifies pathways that contribute the most to, and are therefore the most critical to, the disposition of each statin. It also provides an understanding of the expected theoretical maximum increase in systemic exposure if the disposition of a statin is inhibited. Finally, on a statin-by-statin basis, we propose in vitro inhibition studies that should be routinely conducted during drug development so as to better assess DDI risk.
Collapse
Affiliation(s)
- R Elsby
- Global DMPK-In Vitro/In Silico ADME, AstraZeneca R&D Alderley Park, Cheshire, UK.
| | | | | |
Collapse
|
37
|
Primary hepatocytes as an useful bioassay to characterize metabolism and bioactivity of illicit steroids in cattle. Toxicol In Vitro 2012; 26:1224-32. [DOI: 10.1016/j.tiv.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 12/28/2022]
|
38
|
Burt HJ, Pertinez H, Säll C, Collins C, Hyland R, Houston JB, Galetin A. Progress curve mechanistic modeling approach for assessing time-dependent inhibition of CYP3A4. Drug Metab Dispos 2012; 40:1658-67. [PMID: 22621802 DOI: 10.1124/dmd.112.046078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A progress curve method for assessing time-dependent inhibition of CYP3A4 is based on simultaneous quantification of probe substrate metabolite and inhibitor concentrations during the experiment. Therefore, it may overcome some of the issues associated with the traditional two-step method and estimation of inactivation rate (k(inact)) and irreversible inhibition (K(I)) constants. In the current study, seven time-dependent inhibitors were investigated using a progress curve method and recombinant CYP3A4. A novel mechanistic modeling approach was applied to determine inhibition parameters using both inhibitor and probe metabolite data. Progress curves generated for clarithromycin, erythromycin, diltiazem, and N-desmethyldiltiazem were described well by the mechanistic mechanism-based inhibition (MBI) model. In contrast, mibefradil, ritonavir, and verapamil required extension of the model and inclusion of competitive inhibition term for the metabolite. In addition, this analysis indicated that verapamil itself causes minimal MBI, and the formation of inhibitory metabolites was responsible for the irreversible loss of CYP3A4 activity. The k(inact) and K(I) estimates determined in the current study were compared with literature data generated using the conventional two-step method. In the current study, the inactivation efficiency (k(inact)/K(I)) for clarithromycin, ritonavir, and erythromycin were up to 7-fold higher, whereas k(inact)/K(I) for mibefradil, N-desmethyldiltiazem, and diltiazem were, on average, 2- to 4.8-fold lower than previously reported estimates. Use of human liver microsomes instead of recombinant CYP3A4 resulted in 5-fold lower k(inact)/K(I) for erythromycin. In conclusion, the progress curve method has shown a greater mechanistic insight when determining kinetic parameters for MBI in addition to providing a more comprehensive experimental protocol.
Collapse
Affiliation(s)
- Howard J Burt
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 2011; 36:1-16. [PMID: 21336516 DOI: 10.1007/s13318-011-0024-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
The majority of marketed small-molecule drugs undergo metabolism by hepatic Cytochrome P450 (CYP) enzymes (Rendic 2002). Since these enzymes metabolize a structurally diverse number of drugs, metabolism-based drug-drug interactions (DDIs) can potentially occur when multiple drugs are coadministered to patients. Thus, a careful in vitro assessment of the contribution of various CYP isoforms to the total metabolism is important for predicting whether such DDIs might take place. One method of CYP phenotyping involves the use of potent and selective chemical inhibitors in human liver microsomal incubations in the presence of a test compound. The selectivity of such inhibitors plays a critical role in deciphering the involvement of specific CYP isoforms. Here, we review published data on the potency and selectivity of chemical inhibitors of the major human hepatic CYP isoforms. The most selective inhibitors available are furafylline (in co-incubation and pre-incubation conditions) for CYP1A2, 2-phenyl-2-(1-piperidinyl)propane (PPP) for CYP2B6, montelukast for CYP2C8, sulfaphenazole for CYP2C9, (-)-N-3-benzyl-phenobarbital for CYP2C19 and quinidine for CYP2D6. As for CYP2A6, tranylcypromine is the most widely used inhibitor, but on the basis of initial studies, either 3-(pyridin-3-yl)-1H-pyrazol-5-yl)methanamine (PPM) and 3-(2-methyl-1H-imidazol-1-yl)pyridine (MIP) can replace tranylcypromine as the most selective CYP2A6 inhibitor. For CYP3A4, ketoconazole is widely used in phenotyping studies, although azamulin is a far more selective CYP3A inhibitor. Most of the phenotyping studies do not include CYP2E1, mostly because of the limited number of new drug candidates that are metabolized by this enzyme. Among the inhibitors for this enzyme, 4-methylpyrazole appears to be selective.
Collapse
|
40
|
König J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011:1-28. [PMID: 21103967 DOI: 10.1007/978-3-642-14541-4_1] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organic anion transporting polypeptides (OATPs, gene family: SLC21/SLCO) mediate the uptake of a broad range of substrates including several widely prescribed drugs into cells. Drug substrates for members of the human OATP family include HMG-CoA-reductase inhibitors (statins), antibiotics, anticancer agents, and cardiac glycosides. OATPs are expressed in a variety of different tissues including brain, intestine, liver, and kidney, suggesting that these uptake transporters are important for drug absorption, distribution, and excretion. Because of their wide tissue distribution and broad substrate spectrum, altered transport kinetics, for example, due to drug-drug interactions or due to the functional consequences of genetic variations (polymorphisms), can contribute to the interindividual variability of drug effects. Therefore, the molecular characteristics of human OATP family members, the role of human OATPs in drug-drug interactions, and the in vitro analysis of the functional consequences of genetic variations in SLCO genes encoding OATP proteins are the focus of this chapter.
Collapse
Affiliation(s)
- Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
41
|
Fahrmayr C, Fromm MF, König J. Hepatic OATP and OCT uptake transporters: their role for drug-drug interactions and pharmacogenetic aspects. Drug Metab Rev 2010; 42:380-401. [PMID: 20100011 DOI: 10.3109/03602530903491683] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uptake transporters in the basolateral membrane of hepatocytes are important for the hepatobiliary elimination of drugs. Further, since drug-metabolizing enzymes are located intracellularly, uptake into hepatocytes is a prerequisite for their subsequent metabolism. Therefore, alteration of uptake transporter function (e.g., by concomitantly administered drugs or due to functional consequences of genetic variations, leading to reduced transport function) may result in a change in drug pharmacokinetics. In this review, we focus on the hepatocellularly expressed members of the OATP and OCT family, their impact on transport-mediated drug-drug interactions, and on the functional consequences of variations in genes encoding these transporters.
Collapse
Affiliation(s)
- Christina Fahrmayr
- Department of Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | | | | |
Collapse
|
42
|
Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan ECY. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol 2010; 78:693-703. [PMID: 20624855 DOI: 10.1124/mol.110.065839] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Fatalities stemming from hepatotoxicity associated with the clinical use of lapatinib (Tykerb), an oral dual tyrosine kinase inhibitor (ErbB-1 and ErbB-2) used in the treatment of metastatic breast cancer, have been reported. We investigated the inhibition of CYP3A4 by lapatinib as a possible cause of its idiosyncratic toxicity. Inhibition of CYP3A4 was time-, concentration-, and NADPH-dependent, with k(inact) = 0.0202 min(-1) and K(i) = 1.709 μM. The partition ratio was approximately 50.9. Addition of GSH did not affect the rate of inactivation. Testosterone protected CYP3A4 from inactivation by lapatinib. The characteristic Soret peak associated with a metabolite-intermediate complex was not observed for lapatinib during spectral difference scanning. However, reduced carbon monoxide (CO)-difference spectroscopy did reveal a 43% loss of the spectrally detectable CYP3A4-CO complex in the presence of lapatinib. Incubation of either lapatinib or its dealkylated metabolite with human liver microsomes in the presence of GSH resulted in the formation of a reactive metabolite (RM)-GSH adduct derived from the O-dealkylated metabolite of lapatinib. In addition, coincubation of lapatinib with ketoconazole inhibited the formation of the RM-GSH adduct. In conclusion, we demonstrated for the first time that lapatinib is a mechanism-based inactivator of CYP3A4, most likely via the formation and further oxidation of its O-dealkylated metabolite to a quinoneimine that covalently modifies the CYP3A4 apoprotein and/or heme moiety.
Collapse
Affiliation(s)
- Woon Chien Teng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
43
|
Quinney SK, Zhang X, Lucksiri A, Gorski JC, Li L, Hall SD. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin. Drug Metab Dispos 2010; 38:241-8. [PMID: 19884323 PMCID: PMC2812061 DOI: 10.1124/dmd.109.028746] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. K(I) and k(inact) values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 microM for K(i) and 0.4 and 4 h(-1) for k(inact) in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in K(I), k(inact), and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.
Collapse
Affiliation(s)
- Sara K. Quinney
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana (S.K.Q., J.C.G., L.L., S.D.H.); Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana (S.K.Q., L.L.); and Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Purdue University, Indianapolis, Indiana (X.Z., A.L.)
| | | | | | | | - Lang Li
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana (S.K.Q., J.C.G., L.L., S.D.H.); Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana (S.K.Q., L.L.); and Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Purdue University, Indianapolis, Indiana (X.Z., A.L.)
| | | |
Collapse
|
44
|
Ung D, Parkman HP, Nagar S. Metabolic interactions between prokinetic agents domperidone and erythromycin: an in vitro analysis. Xenobiotica 2010; 39:749-56. [PMID: 19575604 DOI: 10.1080/00498250903096121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study examined in vitro interaction between domperidone and erythromycin. Both are prescribed for refractory gastroparesis. Domperidone is metabolized via human cytochrome P4503A4. Erythromycin is a CYP3A4 inhibitor. Incubations evaluated domperidone metabolite formation in human liver microsomes and recombinant CYP3A4. Concentration- and time-dependent inhibition of 500 microM domperidone was studied with 2.5-200 microM erythromycin over 10-40 min. Domperidone metabolite (5-hydroxy domperidone, M3) formation was inhibited by erythromycin in a concentration- and time-dependent manner. The K(I) estimate was 18.4 microM in human liver microsomes and 4.1 microM in CYP3A4. Using a model incorporating CYP3A4 hepatic and gut inhibition, in vitro estimates from human liver microsomes and CYP3A4 were used to predict in vivo AUCi/AUC ratios of 2.54 and 4.95, respectively. Significant inhibition of domperidone metabolism by erythromycin occurs. This predicts greater domperidone drug exposure when used with erythromycin. This important drug-drug interaction will be evaluated in future human studies.
Collapse
Affiliation(s)
- D Ung
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
45
|
Aueviriyavit S, Kobayashi K, Chiba K. Species Differences in Mechanism-Based Inactivation of CYP3A in Humans, Rats and Mice. Drug Metab Pharmacokinet 2010; 25:93-100. [DOI: 10.2133/dmpk.25.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Polasek TM, Sadagopal JS, Elliot DJ, Miners JO. In vitro-in vivo extrapolation of zolpidem as a perpetrator of metabolic interactions involving CYP3A. Eur J Clin Pharmacol 2009; 66:275-83. [DOI: 10.1007/s00228-009-0760-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
|
47
|
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 2009; 125:230-48. [PMID: 19951720 DOI: 10.1016/j.pharmthera.2009.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023]
Abstract
The aim of the present paper was to present an overview of the current status of the methods used to predict the magnitude of pharmacokinetic drug-drug interactions (DDIs) which are caused by apparent changes in cytochrome P450 (CYP) activity with an emphasis on a method using in vivo information. In addition, more than a hundred representative CYP substrates, inhibitor and inducer drugs involved in significant pharmacokinetic DDIs were selected from the literature and are listed. Although the magnitude of DDIs has been conventionally predicted based on in vitro experiments, their predictability is restricted occasionally due to several difficulties, including a precise determination of the unbound inhibitor concentrations at the enzyme site and a reliable in vitro measurement of the inhibition constant (K(i)). Alternatively, a simple method has been recently proposed for the prediction of the magnitude of DDIs based on information fully available from in vivo clinical studies. The new in vivo-based method would be applicable to the adjustment of dose regimens in actual pharmacotherapy situations although it requires a prior clinical study for the prediction. In this review, theoretical and quantitative relationships between the in vivo- and the in vitro-based prediction methods are considered. One of the interesting outcomes of the consideration is that the K(i)-normalized dose (dose/in vitro K(i)) of larger than approximately 20L (2-200L, when variability is considered) may be a pragmatic index which predicts significant in vivo DDIs. In the last part of the article, the relevance of the inclusion of the in vivo-based method into the process of new drug development is discussed for good prediction of in vivo DDIs.
Collapse
Affiliation(s)
- Akihiro Hisaka
- Pharmacology and Pharmacokinetics, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
48
|
Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, Dawson PA. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos 2009; 37:2375-82. [PMID: 19741038 PMCID: PMC2784704 DOI: 10.1124/dmd.109.028522] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/03/2009] [Indexed: 01/11/2023] Open
Abstract
The macrolide antibiotics azithromycin and clarithromycin are large molecular weight compounds that exhibit moderate to excellent oral bioavailability in preclinical species and humans. Previous concomitant dosing studies in rats using rifamycin SV, a general organic anion-transporting polypeptide (OATP) inhibitor, suggested that the high oral absorption of azithromycin and clarithromycin may be caused by facilitative uptake by intestinal Oatps. In this study, we used OATP/Oatp-expressing cells to investigate the interaction of macrolides with rat Oatp1a5, human OATP1A2, and human/rat OATP2B1/Oatp2b1. These experiments showed that azithromycin and clarithromycin were potent inhibitors of rat Oatp1a5-mediated taurocholate uptake with apparent inhibitor constant (K(i)) values of 3.3 and 2.4 microM, respectively. The macrolides functioned as noncompetitive inhibitors but were not transport substrates for rat Oatp1a5, as assessed by direct uptake measurements of radiolabeled azithromycin and clarithromycin. cis-Inhibition and direct uptake studies further showed that azithromycin and clarithromycin were only very weak inhibitors and not substrates for human OATP1A2 and human/rat OATP2B1/Oatp2b1. In summary, these results indicate that the macrolides azithromycin and clarithromycin potently inhibit rat Oatp1a5 but do not significantly interact with OATP1A2 and OATP2B1/Oatp2b1. These intestinally expressed OATP/Oatp(s) are not responsible for the postulated facilitative uptake of azithromycin and clarithromycin, and alternative facilitative pathways must exist for their intestinal absorption.
Collapse
Affiliation(s)
- Tian Lan
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Anuradha Rao
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Jamie Haywood
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Charles B. Davis
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Chao Han
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Eric Garver
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| | - Paul A. Dawson
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (T.L., A.R., J.H., P.A.D.); and Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania (C.B.D., C.H., E.G.)
| |
Collapse
|
49
|
Ogasawara A, Negishi I, Kozakai K, Kume T. In vivo evaluation of drug-drug interaction via mechanism-based inhibition by macrolide antibiotics in cynomolgus monkeys. Drug Metab Dispos 2009; 37:2127-36. [PMID: 19704026 DOI: 10.1124/dmd.109.028969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Irreversible inhibition, characterized as mechanism-based inhibition (MBI), of cytochrome P450 in drugs has to be avoided for their safe use. A comprehensive assessment of drug-drug interaction (DDI) potential is important during the drug discovery process. In the present study, we evaluated the effects of macrolide antibiotics, erythromycin (ERM), clarithromycin (CAM), and azithromycin (AZM), which are mechanism-based inhibitors of CYP3A, on biotransformation of midazolam (MDZ) in monkeys. These macrolides inhibited the formation of 1'-hydroxymidazolam in monkey microsomes as functions of incubation time and macrolide concentration. Furthermore, the inactivation potentials of macrolides (k(inact)/K(I): CAM congruent with ERM > AZM) were as effective as that observed in human samples. In in vivo studies, MDZ was administered orally (1 mg/kg) without or with multiple oral dosing of macrolides (15 mg/kg, twice a day on days 1-3). On day 3, the area under the plasma concentration-time curve (AUC) of MDZ increased 7.0-, 9.9-, and 2.0-fold with ERM, CAM, and AZM, respectively, compared with MDZ alone. Furthermore, the effects of ERM and CAM on the pharmacokinetics of MDZ were also observed on the day (day 4) after completion of macrolide treatments (AUC changes: 7.3- and 7.3-fold, respectively). Because the plasma concentrations of macrolides immediately before MDZ administration on day 4 were much lower than the IC(50) values for reversible CYP3A inhibition, the persistent effects may be predominantly caused by CYP3A inactivation. These results suggest that the monkey might be a suitable animal model to predict DDIs caused by MBI of CYP3A.
Collapse
Affiliation(s)
- Akihito Ogasawara
- Drug Metabolism and Pharmacokinetics Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan.
| | | | | | | |
Collapse
|
50
|
Albarellos GA, Montoya L, Landoni MF. Pharmacokinetics of erythromycin after intravenous, intramuscular and oral administration to cats. Vet J 2009; 187:129-32. [PMID: 19854664 DOI: 10.1016/j.tvjl.2009.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/13/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)((0-∞)) 2.61 ± 1.52 microgh/mL; volume of distribution (V(z)) 2.34 ± 1.76L/kg; total body clearance (Cl(t)) 2.1 0 ± 1.37 L/hkg; elimination half-life (t(½)(λ)) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (C(max)), 3.54 ± 2.16 microg/mL; time of peak (T(max)), 1.22 ± 0.67 h; t(½)(λ), 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)(90)=0.5 microg/mL for 7 and 1.5h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.
Collapse
Affiliation(s)
- G A Albarellos
- Cátedra de Farmacología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín 280 (1427), Buenos Aires, Argentina.
| | | | | |
Collapse
|