1
|
Wang Q, Guo Z. Durability improvement strategies for wettable fog harvesting devices inspired by spider silk fibers: a review. NANOSCALE 2024. [PMID: 39434597 DOI: 10.1039/d4nr02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Water scarcity is a persistent challenge, and in this case, the freshwater content in the air and water collection phenomena observed in nature provide ideas for fog harvesting. The fog-harvesting capabilities of natural spider silk have long attracted attention. Thus, researchers have undertaken significant efforts for the preparation of wettable biomimetic knotted fibers. However, the fragility of their chemical coating and the susceptibility of spun fibers to damage often present substantial challenges in the durability of fog harvesting equipment. Herein, from a bioengineering perspective, we review the improvement strategies for enhancing the mechanical properties of wettable biomimetic spider silk fibers based on the dense nanoconfined hydrogen-bond array crystalline regions and uniformly embedded amorphous regions of natural wettable spider silk fibers. These strategies aim to achieve high tensile strength, good fracture toughness, and corrosion resistance. Additionally, by incorporating UV inhibitors during spinning, the effects of sunlight can be mitigated or shielded, thereby greatly enhancing the mechanical durability of fog-harvesting devices under harsh realistic conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Karahisar Turan S, Kılıç Süloğlu A, İde S, Türkeş T, Barlas N. In vitro and in vivo investigation of Argiope bruennichi spider silk-based novel biomaterial for medical use. Biopolymers 2024; 115:e23572. [PMID: 38491802 DOI: 10.1002/bip.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of Argiope bruennichi spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without Aloe vera coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. A. bruennichi silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. A. bruennichi spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of A. bruennichi spider silk and A. vera coated commercial suture groups have comparable structural results with control group. In conclusion, A. bruennichi spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.
Collapse
Affiliation(s)
| | - Aysun Kılıç Süloğlu
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Semra İde
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Tuncay Türkeş
- Department of Biology, Faculty of Arts and Sciences, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Nurhayat Barlas
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Bitar L, Isella B, Bertella F, Bettker Vasconcelos C, Harings J, Kopp A, van der Meer Y, Vaughan TJ, Bortesi L. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review. Int J Biol Macromol 2024; 264:130374. [PMID: 38408575 DOI: 10.1016/j.ijbiomac.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.
Collapse
Affiliation(s)
- Lara Bitar
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Benedetta Isella
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany; Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Francesca Bertella
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; B4Plastics, IQ Parklaan 2A, 3650 Dilsen-Stokkem, Belgium
| | - Carolina Bettker Vasconcelos
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Umlaut GmbH, Am Kraftversorgungsturm 3, 52070 Aachen, Germany
| | - Jules Harings
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Alexander Kopp
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Yvonne van der Meer
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Luisa Bortesi
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
4
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Kumari N, Pullaguri N, Sahu V, Ealla KKR. Research and therapeutic applications of silk proteins in cancer. J Biomater Appl 2023:8853282231184572. [PMID: 37343291 DOI: 10.1177/08853282231184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Despite the availability of advanced treatments, cancer remains the second leading cause of death worldwide. This is due to the many challenges prevailing in the research field and cancer therapy. Resistance to therapy and side effects provide major hindrances to recovery from cancer. As a result, in addition to the aim of killing cancer cells, the focus should also be on reducing or preventing side effects of the treatment. To enhance the effectiveness of cancer treatment, many researchers are studying drug delivery systems based on silk proteins: fibroin and sericin. These proteins have high biocompatibility, biodegradability, and ease of modification. Consequently, many researchers have developed several formulations of silk proteins such as scaffolds, nanoparticles, and hydrogels by combining them with other materials or drugs. This review summarizes the use of silk proteins in various forms in cancer research and therapy. The use of silk proteins to study cancer cells, to deliver cancer drugs to a target site, in cancer thermal therapy, and as an anti-cancer agent is described here.
Collapse
Affiliation(s)
- Neema Kumari
- Center for Research Development and Sustenance, Malla Reddy Institute of Medical Sciences, Hyderabad, India
| | - Narasimha Pullaguri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
| | - Kranti Kiran Reddy Ealla
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Saric M, Scheibel T. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers. Biomacromolecules 2023; 24:1744-1750. [PMID: 36913547 DOI: 10.1021/acs.biomac.2c01500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Major ampullate (MA) spider silk reveals outstanding mechanical properties in terms of a unique combination of high tensile strength and extensibility, unmatched by most other known native or synthetic fiber materials. MA silk contains at least two spider silk proteins (spidroins), and here, a novel two-in-one (TIO) spidroin was engineered, resembling amino acid sequences of such two of the European garden spider. The combination of mechanical and chemical features of both underlying proteins facilitated the hierarchical self-assembly into β-sheet-rich superstructures. Due to the presence of native terminal dimerization domains, highly concentrated aqueous spinning dopes could be prepared from recombinant TIO spidroins. Subsequently, fibers were spun in a biomimetic, aqueous wet-spinning process, yielding mechanical properties at least twice as high as fibers spun from individual spidroins or blends. The presented processing route holds great potential for future applications using ecological green high-performance fibers.
Collapse
Affiliation(s)
- Merisa Saric
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Materialzentrum (BayMat), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
8
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
9
|
Bergmann F, Stadlmayr S, Millesi F, Zeitlinger M, Naghilou A, Radtke C. The properties of native Trichonephila dragline silk and its biomedical applications. BIOMATERIALS ADVANCES 2022; 140:213089. [PMID: 36037764 DOI: 10.1016/j.bioadv.2022.213089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Spider silk has fascinated mankind for millennia, but it is only in recent decades that scientific research has begun to unravel all its characteristics and applications. The uniqueness of spider silk resides in its versatility, in which a combination of high strength and extensibility results in extraordinary toughness, superior to almost all natural and man-made fibers. Dragline silk consists of proteins with highly repetitive amino acid sequences, which have been correlated with specific secondary structures responsible for its physical properties. The native fiber also shows high cytocompatibility coupled with low immunogenicity, making it a promising natural biomaterial for numerous biomedical applications. Recently, novel technologies have enabled new insights into the material and biomedical properties of silk. Due to the increasing interest in spider silk, as well as the desire to produce synthetic alternatives, we present an update on the current knowledge of silk fibers produced by the spider genus Trichonephila.
Collapse
Affiliation(s)
- Felix Bergmann
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Aida Naghilou
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Christine Radtke
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
10
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
11
|
Kiseleva A, Nestor G, Östman JR, Kriuchkova A, Savin A, Krivoshapkin P, Krivoshapkina E, Seisenbaeva GA, Kessler VG. Modulating Surface Properties of the Linothele fallax Spider Web by Solvent Treatment. Biomacromolecules 2021; 22:4945-4955. [PMID: 34644050 PMCID: PMC8672351 DOI: 10.1021/acs.biomac.1c00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.
Collapse
Affiliation(s)
- Aleksandra Kiseleva
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Gustav Nestor
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Johnny R. Östman
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Anastasiia Kriuchkova
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Artemii Savin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Krivoshapkin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Elena Krivoshapkina
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | | | - Vadim G. Kessler
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
12
|
Bakhshandeh B, Nateghi SS, Gazani MM, Dehghani Z, Mohammadzadeh F. A review on advances in the applications of spider silk in biomedical issues. Int J Biol Macromol 2021; 192:258-271. [PMID: 34627845 DOI: 10.1016/j.ijbiomac.2021.09.201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Seyedeh Saba Nateghi
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Maddah Gazani
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, Faculty of Biology, College of Science, Tehran University, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
13
|
Neubauer VJ, Trossmann VT, Jacobi S, Döbl A, Scheibel T. Recombinant Spider Silk Gels Derived from Aqueous-Organic Solvents as Depots for Drugs. Angew Chem Int Ed Engl 2021; 60:11847-11851. [PMID: 33769676 PMCID: PMC8251796 DOI: 10.1002/anie.202103147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/09/2022]
Abstract
Hydrogels are widely used in various biomedical applications, as they cannot only serve as materials for biofabrication but also as depots for the administration of drugs. However, the possibilities of formulation of water-insoluble drugs in hydrogels are rather limited. Herein, we assembled recombinant spider silk gels using a new processing route with aqueous-organic co-solvents, and the properties of these gels could be controlled by the choice of the co-solvent. The presence of the organic co-solvent further enabled the incorporation of hydrophobic drugs as exemplarily shown for 6-mercaptopurine. The developed gels showed shear-thinning behaviour and could be easily injected to serve, for example, as drug depots, and they could even be 3D printed to serve as scaffolds for biofabrication. With this new processing route, the formulation of water-insoluble drugs in spider silk-based depots is possible, circumventing common pharmaceutical solubility issues.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann Strasse 195447BayreuthGermany
| | - Vanessa T. Trossmann
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann Strasse 195447BayreuthGermany
| | - Sofia Jacobi
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann Strasse 195447BayreuthGermany
| | - Annika Döbl
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann Strasse 195447BayreuthGermany
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann Strasse 195447BayreuthGermany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG)Universität BayreuthUniversitätsstrasse 3095440BayreuthGermany
- Bayerisches Polymerinstitut (BPI)Universität BayreuthUniversitätsstrasse 3095440BayreuthGermany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB)Universität BayreuthUniversitätsstrasse 3095440BayreuthGermany
- Bayreuther Materialzentrum (BayMAT)Universität BayreuthUniversitätsstrasse 3095440BayreuthGermany
| |
Collapse
|
14
|
Neubauer VJ, Trossmann VT, Jacobi S, Döbl A, Scheibel T. Rekombinante Spinnenseidengele aus wässrig‐organischen Mischphasen als Wirkstoffdepots. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann Straße 1 95447 Bayreuth Deutschland
| | - Vanessa T. Trossmann
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann Straße 1 95447 Bayreuth Deutschland
| | - Sofia Jacobi
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann Straße 1 95447 Bayreuth Deutschland
| | - Annika Döbl
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann Straße 1 95447 Bayreuth Deutschland
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann Straße 1 95447 Bayreuth Deutschland
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Deutschland
- Bayerisches Polymerinstitut (BPI) Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Deutschland
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB) Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Deutschland
- Bayreuther Materialzentrum (BayMAT) Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Deutschland
| |
Collapse
|
15
|
Belbéoch C, Lejeune J, Vroman P, Salaün F. Silkworm and spider silk electrospinning: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1737-1763. [PMID: 33424525 PMCID: PMC7779161 DOI: 10.1007/s10311-020-01147-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 05/27/2023]
Abstract
Issues of fossil fuel and plastic pollution are shifting public demand toward biopolymer-based textiles. For instance, silk, which has been traditionally used during at least 5 milleniums in China, is re-emerging in research and industry with the development of high-tech spinning methods. Various arthropods, e.g. insects and arachnids, produce silky proteinic fiber of unique properties such as resistance, elasticity, stickiness and toughness, that show huge potential for biomaterial applications. Compared to synthetic analogs, silk presents advantages of low density, degradability and versatility. Electrospinning allows the creation of nonwoven mats whose pore size and structure show unprecedented characteristics at the nanometric scale, versus classical weaving methods or modern techniques such as melt blowing. Electrospinning has recently allowed to produce silk scaffolds, with applications in regenerative medicine, drug delivery, depollution and filtration. Here we review silk production by the spinning apparatus of the silkworm Bombyx mori and the spiders Aranea diadematus and Nephila Clavipes. We present the biotechnological procedures to get silk proteins, and the preparation of a spinning dope for electrospinning. We discuss silk's mechanical properties in mats obtained from pure polymer dope and multi-composites. This review highlights the similarity between two very different yarn spinning techniques: biological and electrospinning processes.
Collapse
Affiliation(s)
- Clémence Belbéoch
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Joseph Lejeune
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Philippe Vroman
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Fabien Salaün
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| |
Collapse
|
16
|
Strassburg S, Mayer K, Scheibel T. Functionalization of biopolymer fibers with magnetic nanoparticles. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Hybrid fibers consisting of biopolymers and inorganic nanoparticles are receiving increasing attention due to their unique properties. Commonly, the nanoparticles are chosen for their intrinsic properties such as magnetic, thermal, or electrical conductivity. The biopolymer component of the hybrid fiber is chosen for its mechanical properties and ability to act as a scaffold or matrix for the nanoparticles. While there are many fiber-forming synthetic polymers, there has been a recent interest in replacing these systems with biopolymers due to their sustainability, biocompatibility, nontoxicity, and biodegradability. Fibers made from biopolymers have one additional benefit over synthetic polymers as they make good scaffolds for embedding nanoparticles without the need of any additional bonding agents. In particular, naturally occurring biopolymers such as proteins exhibit a myriad of interactions with nanoparticles, including ionic, H-bonding, covalent, Van der Waals, and electrostatic interactions. The diverse range of interactions between magnetic nanoparticles and biopolymers makes resulting hybrid fibers of particular interest as magnetic-responsive materials. Magnetically responsive hybrid biopolymer fibers have many features, including enhanced thermal stabilities, strong mechanical toughness, and perhaps most interestingly multifunctionality, allowing for a wide range of applications. These applications range from biosensing, filtration, UV shielding, antimicrobial, and medical applications, to name a few. Here, we review established hybrid fibers consisting of biopolymers and nanoparticles with a primary focus on biopolymers doped with magnetic nanoparticles and their various putative applications.
Collapse
Affiliation(s)
- Stephen Strassburg
- Department of Biomaterials , Universität Bayreuth , Prof.–Rüdiger-Bormann-Straße 1 , 95447 Bayreuth , Germany
| | - Kai Mayer
- Department of Biomaterials , Universität Bayreuth , Prof.–Rüdiger-Bormann-Straße 1 , 95447 Bayreuth , Germany
| | - Thomas Scheibel
- Department of Biomaterials , Universität Bayreuth , Prof.–Rüdiger-Bormann-Straße 1 , 95447 Bayreuth , Germany
- Bayreuth Center for Colloids and Interfaces (BZKG) , Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuth Center for Molecular Biosciences (BZMB) , Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuth Center for Material Science (BayMAT) , Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bavarian Polymer Institute (BPI) , Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| |
Collapse
|
17
|
Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111219. [DOI: 10.1016/j.msec.2020.111219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
|
18
|
Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent Advances in Development of Functional Spider Silk-Based Hybrid Materials. Front Chem 2020; 8:554. [PMID: 32695749 PMCID: PMC7338834 DOI: 10.3389/fchem.2020.00554] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023] Open
Abstract
Silkworm silk is mainly known as a luxurious textile. Spider silk is an alternative to silkworm silk fibers and has much more outstanding properties. Silk diversity ensures variation in its application in nature and industry. This review aims to provide a critical summary of up-to-date fabrication methods of spider silk-based organic-inorganic hybrid materials. This paper focuses on the relationship between the molecular structure of spider silk and its mechanical properties. Such knowledge is essential for understanding the innate properties of spider silk as it provides insight into the sophisticated assembly processes of silk proteins into the distinct polymers as a basis for novel products. In this context, we describe the development of spider silk-based hybrids using both natural and bioengineered spider silk proteins blended with inorganic nanoparticles. The following topics are also covered: the diversity of spider silk, its composition and architecture, the differences between silkworm silk and spider silk, and the biosynthesis of natural silk. Referencing biochemical data and processes, this paper outlines the existing challenges and future outcomes.
Collapse
Affiliation(s)
| | | | - Elena F. Krivoshapkina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg, Russia
| |
Collapse
|
19
|
Kramer JPM, Aigner TB, Petzold J, Roshanbinfar K, Scheibel T, Engel FB. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Sci Rep 2020; 10:8789. [PMID: 32472031 PMCID: PMC7260369 DOI: 10.1038/s41598-020-65786-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
Cardiac tissue engineering is a promising approach to treat cardiovascular diseases, which are a major socio-economic burden worldwide. An optimal material for cardiac tissue engineering, allowing cardiomyocyte attachment and exhibiting proper immunocompatibility, biocompatibility and mechanical characteristics, has not yet emerged. An additional challenge is to develop a fabrication method that enables the generation of proper hierarchical structures and constructs with a high density of cardiomyocytes for optimal contractility. Thus, there is a focus on identifying suitable materials for cardiac tissue engineering. Here, we investigated the interaction of neonatal rat heart cells with engineered spider silk protein (eADF4(C16)) tagged with the tripeptide arginyl-glycyl-aspartic acid cell adhesion motif RGD, which can be used as coating, but can also be 3D printed. Cardiomyocytes, fibroblasts, and endothelial cells attached well to eADF4(C16)-RGD coatings, which did not induce hypertrophy in cardiomyocytes, but allowed response to hypertrophic as well as proliferative stimuli. Furthermore, Kymograph and MUSCLEMOTION analyses showed proper cardiomyocyte beating characteristics on spider silk coatings, and cardiomyocytes formed compact cell aggregates, exhibiting markedly higher speed of contraction than cardiomyocyte mono-layers on fibronectin. The results suggest that eADF4(C16)-RGD is a promising material for cardiac tissue engineering.
Collapse
Affiliation(s)
- Johannes P M Kramer
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Tamara B Aigner
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany.
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universitätsstraße 30, Universität Bayreuth, Bayreuth, D-95447, Germany.
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany.
- MURCE, Muscle Research Center Erlangen, Erlangen, Germany.
| |
Collapse
|
20
|
Lu T, Hu H, Li Y, Jiang Q, Su J, Lin H, Xiao Y, Zhu X, Zhang X. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features. SOFT MATTER 2020; 16:4540-4548. [PMID: 32356540 DOI: 10.1039/d0sm00233j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Native tissues such as nerve bundles, blood vessels and tendons have extracellular matrices with a characteristic linear orientation, which cannot be fully achieved with the current technology for the development of regenerative biomaterials. In this study, bioactive and oriented collagen filaments have been fabricated using a combination of wet-spinning and carbodiimide-based crosslinking. The wet-spinning techniques, including extrusion and collection rates, and their influences on collagen filaments were studied and optimized. The diameter of the attained collagen filaments can be adjusted ranging from 30 μm to 650 μm. Further characterizations, such as circular dichroism, scanning electron microscopy, small-angle X-ray scattering and Fourier transform infrared spectra analysis, showed that the native structure of the collagen was greatly preserved after the filament preparation process. The measurements of weight swelling ratio and degradation rate indicate that the crosslinking method can efficiently regulate the physico-chemical properties of collagen filaments, including water absorption and degradation behaviors. In particular, the mechanical strength of collagen filaments can be greatly improved via crosslinking. In addition, cells can adhere and spread on collagen filaments in well-aligned patterns, showing appropriate biological features. It can be concluded that the bioactive collagen filaments with tunable properties are preferable for developing tissue engineering scaffolds with characteristic orientation features. With further study of the interactions between collagen filaments and cells, this work may shed light on the development of collagen based biomaterials that would be beneficial in the field of tissue engineering.
Collapse
Affiliation(s)
- Ting Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Hong Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yuanqi Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Qingsong Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Jinlei Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| |
Collapse
|
21
|
Salehi S, Koeck K, Scheibel T. Spider Silk for Tissue Engineering Applications. Molecules 2020; 25:E737. [PMID: 32046280 PMCID: PMC7037138 DOI: 10.3390/molecules25030737] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its properties, such as biodegradability, low density, excellent biocompatibility and unique mechanics, spider silk has been used as a natural biomaterial for a myriad of applications. First clinical applications of spider silk as suture material go back to the 18th century. Nowadays, since natural production using spiders is limited due to problems with farming spiders, recombinant production of spider silk proteins seems to be the best way to produce material in sufficient quantities. The availability of recombinantly produced spider silk proteins, as well as their good processability has opened the path towards modern biomedical applications. Here, we highlight the research on spider silk-based materials in the field of tissue engineering and summarize various two-dimensional (2D) and three-dimensional (3D) scaffolds made of spider silk. Finally, different applications of spider silk-based materials are reviewed in the field of tissue engineering in vitro and in vivo.
Collapse
Affiliation(s)
- Sahar Salehi
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Kim Koeck
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
| | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany (K.K.)
- The Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- The Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
22
|
Steiner D, Lang G, Fischer L, Winkler S, Fey T, Greil P, Scheibel T, Horch RE, Arkudas A. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Eng Part A 2019; 25:1504-1513. [DOI: 10.1089/ten.tea.2018.0360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Laura Fischer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Scheibel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces, University of Bayreuth, Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), University of Bayreuth, Bayreuth, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
23
|
Pawar K, Welzel G, Haynl C, Schuster S, Scheibel T. Recombinant Spider Silk and Collagen-Based Nerve Guidance Conduits Support Neuronal Cell Differentiation and Functionality in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:4872-4880. [DOI: 10.1021/acsabm.9b00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kiran Pawar
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Christian Haynl
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| | | | - Thomas Scheibel
- Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany
| |
Collapse
|
24
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
25
|
Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E. Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater Sci Eng 2019; 5:4023-4036. [PMID: 33448804 DOI: 10.1021/acsbiomaterials.9b00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Collapse
|
27
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
28
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
29
|
Laity PR, Baldwin E, Holland C. Changes in Silk Feedstock Rheology during Cocoon Construction: The Role of Calcium and Potassium Ions. Macromol Biosci 2018; 19:e1800188. [PMID: 30040173 DOI: 10.1002/mabi.201800188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/25/2018] [Indexed: 11/06/2022]
Abstract
Variation in silk feedstocks is a barrier both to our understanding of natural spinning and biomimetic endeavors. To address this, compositional changes are investigated in feedstock specimens from the domesticated silkworm (Bombyx mori). It is found that the feedstock viscosity decreased systematically by over two orders of magnitude during cocoon construction. Potential factors such as protein concentration, molecular weight, pH, or the presence of trehalose are excluded, whereas a clear correlation appear between viscosity and the relative concentrations of Ca2+ and K+ ions. It is expected that Ca2+ ions would favor "salt bridges" between acidic (Asp and Glu) amino acids, leading to an increased viscosity, whereas K+ ions would compete for these sites, thereby reducing viscosity. Thus, these findings suggest a simple, systematic yet sophisticated control of feedstock viscosity in the silkworm, which in turn can be applied to future industrial silk production.
Collapse
Affiliation(s)
- Peter R Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Elizabeth Baldwin
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
30
|
Hoffmann B, Gruat-Henry C, Mulinti P, Jiang L, Brooks BD, Brooks AE. Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers. PLoS One 2018; 13:e0195522. [PMID: 29649239 PMCID: PMC5896967 DOI: 10.1371/journal.pone.0195522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Spiders and silkworms provide a model of superior processing for multifunctional and highly versatile high-performance fibers. Mimicking the spider's complex control system for chemical and mechanical gradients has remained an ongoing obstacle for synthetic silk production. In this study, the use of hydrodynamic fluid focusing within a 3D printed biomimetic spinning system to recapitulate the biological spinneret is explored and shown to produce predictable, small diameter fibers. Mirroring in silico fluid flow simulations using a hydrodynamic microfluidic spinning technique, we have developed a model correlating spinning rates, solution viscosity and fiber diameter outputs that will significantly advance the field of synthetic silk fiber production. The use of hydrodynamic focusing to produce controlled output fiber diameter simulates the natural silk spinning process and continues to build upon a 3D printed biomimetic spinning platform.
Collapse
Affiliation(s)
- Bradley Hoffmann
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Catherine Gruat-Henry
- Department of Electrical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Benjamin D. Brooks
- Department of Electrical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
31
|
Anton AM, Heidebrecht A, Mahmood N, Beiner M, Scheibel T, Kremer F. Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk. Biomacromolecules 2017; 18:3954-3962. [DOI: 10.1021/acs.biomac.7b00990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arthur Markus Anton
- Peter
Debye Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany
| | - Aniela Heidebrecht
- Department
for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| | - Nasir Mahmood
- Institute
of Chemistry, Martin Luther University Halle Wittenberg, Heinrich-Damerow-Str.
4, D-06120 Halle
(Saale), Germany
| | - Mario Beiner
- Institute
of Chemistry, Martin Luther University Halle Wittenberg, Heinrich-Damerow-Str.
4, D-06120 Halle
(Saale), Germany
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter Hülse Str. 1, D-06120 Halle (Saale), Germany
| | - Thomas Scheibel
- Department
for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
- Research
Center for Bio Macromolecules (BIOmac), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
- Bayreuth
Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
- Bayreuth
Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
- Bayreuth
Center for Material Science and Engineering (BayMAT), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| | - Friedrich Kremer
- Peter
Debye Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
32
|
Agostini E, Winter G, Engert J. Scale-up of water-based spider silk film casting using a film applicator. Int J Pharm 2017; 532:13-20. [PMID: 28844898 DOI: 10.1016/j.ijpharm.2017.08.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer.
Collapse
Affiliation(s)
- Elisa Agostini
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany
| | - Julia Engert
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Butenandtstr. 5, D-81377, Munich, Germany.
| |
Collapse
|
33
|
Herold HM, Scheibel T. Applicability of biotechnologically produced insect silks. ACTA ACUST UNITED AC 2017; 72:365-385. [DOI: 10.1515/znc-2017-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.
Collapse
Affiliation(s)
- Heike M. Herold
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Institut für Bio-Makromoleküle (bio-mac), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth , Universitätsstraße 30 , 95440 Bayreuth , Germany
| |
Collapse
|
34
|
Zhang S, Huang J, Chen Z, Lai Y. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602992. [PMID: 27935211 DOI: 10.1002/smll.201602992] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Indexed: 05/21/2023]
Abstract
Nowadays, the pollution of water has become worse in many parts of the world, which causes a severe shortage of clean water and attracts widespread attention worldwide. Bioinspired from nature, i.e. spider silk, cactus, Namib desert beetle, Nepenthes alata, special wettability surfaces have attracted great interest from fundamental research to water-harvesting applications. Here, recently published literature about creatures possessing water-harvesting ability are reviewed, with a focus on the corresponding water-harvesting mechanisms of creatures in dry or arid regions, consisting of the theory of wetting and transporting. Then a detailed account of the innovative fabrication technologies and bionic water-harvesting materials with special wetting are summarized, i.e. bio-inspired artificial spider silk, bio-inspired artificial cactus-like structures, and bio-inspired artificial Namib desert beetle-like surfaces. Special attentions are paid to the discussion of the advantages and disadvantages of the technologies, as well as factors that affect the amount of water-harvesting. Finally, conclusions, future outlooks and the current challenges for future development of the water-harvesting technology are presented and discussed.
Collapse
Affiliation(s)
- Songnan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jianying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
35
|
Jones JA, Harris TI, Oliveira PF, Bell BE, Alhabib A, Lewis RV. Importance of Heat and Pressure for Solubilization of Recombinant Spider Silk Proteins in Aqueous Solution. Int J Mol Sci 2016; 17:ijms17111955. [PMID: 27886066 PMCID: PMC5133949 DOI: 10.3390/ijms17111955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 01/23/2023] Open
Abstract
The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution.
Collapse
Affiliation(s)
- Justin A Jones
- Department of Biology, Utah State University, Logan, UT 84341, USA.
| | - Thomas I Harris
- Department of Biological Engineering, Utah State University, Logan, UT 84341, USA.
| | - Paula F Oliveira
- Department of Biology, Utah State University, Logan, UT 84341, USA.
| | - Brianne E Bell
- Department of Biology, Utah State University, Logan, UT 84341, USA.
| | | | - Randolph V Lewis
- Department of Biology, Utah State University, Logan, UT 84341, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Isabelle Su
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T. Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties. NANO LETTERS 2016; 16:5917-22. [PMID: 27513098 DOI: 10.1021/acs.nanolett.6b02828] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Collagens are widely used as biomaterials in drug-delivery and tissue engineering applications due to their biodegradability, biocompatibility and hypoallergenicity. Besides gelatin-based materials, collagen microfibers are in the focus of biomedical research. Commonly, man-made fibers are produced by wet-spinning yielding fiber diameters higher than 8 μm. Here, assembly and continuous production of single collagen type I microfibers were established using a microfluidic chip. Microfluidics-produced microfibers exhibited tensile strength and Young's modulus exceeding that of fibers produced in classical wet-spinning devices and even that of natural tendon and they showed lower diameters. Their structural orientation was examined by polarized Fourier transform infrared spectroscopy (FTIR) showing fibril alignment within the microfiber. Cell culture tests using the neuronal cell line NG108-15 showed cell alignment and axon growth along the microfiber axes inaugurating potential applications in, for example, peripheral nerve repair.
Collapse
Affiliation(s)
| | | | | | - Stephan Förster
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
38
|
Wu H, Quan DN, Tsao C, Liu Y, Terrell JL, Luo X, Yang J, Payne GF, Bentley WE. Conferring biological activity to native spider silk: A biofunctionalized protein‐based microfiber. Biotechnol Bioeng 2016; 114:83-95. [DOI: 10.1002/bit.26065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Hsuan‐Chen Wu
- Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipei CityTaiwan
| | - David N. Quan
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege Park 20742Maryland
| | - Chen‐Yu Tsao
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - Yi Liu
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege Park 20742Maryland
| | | | - Xiaolong Luo
- Department of Mechanical EngineeringCatholic University of AmericaWashingtonDistrict of Columbia
| | - Jen‐Chang Yang
- School of Dental TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege Park 20742Maryland
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - William E. Bentley
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege Park 20742Maryland
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
39
|
Su I, Buehler MJ. Nanomechanics of silk: the fundamentals of a strong, tough and versatile material. NANOTECHNOLOGY 2016; 27:302001. [PMID: 27305929 DOI: 10.1088/0957-4484/27/30/302001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spider silk is a remarkable material that provides a template for upscaling molecular properties to the macroscale. In this article we review fundamental aspects of the mechanisms behind these behaviors, discuss the molecular makeup, chemical designs, and how these integrate in a complex arrangement to form webs, cocoons and other material architectures. Moreover, this review paper explores the unique ability of silk to tolerate various kinds of defects, in a way enabling this material platform to serve as one of the most resilient materials in nature. We conclude the discussion with a summary of key scaling laws, an attempt model and define hierarchical length-scales, and the translation to synthetic materials.
Collapse
Affiliation(s)
- Isabelle Su
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Weatherbee-Martin N, Xu L, Hupe A, Kreplak L, Fudge DS, Liu XQ, Rainey JK. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Biomacromolecules 2016; 17:2737-46. [PMID: 27387592 DOI: 10.1021/acs.biomac.6b00857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 200 amino acid repeat units was solubilized in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/water mixture, forming a viscous α-helix-enriched spinning dope, and wet-spun into an ethanol/water coagulation bath allowing continuous fiber production. Post-spin stretching of the resulting wet-spun fibers in water significantly improved fiber strength, enriched β-sheet conformation without complete α-helix depletion, and enhanced birefringence. These methods allow reproducible aciniform silk fiber formation, albeit with lower extensibility than native silk, requiring conditions and methods distinct from those previously reported for other silk proteins. This provides an essential starting point for tailoring wet-spinning of aciniform silk to achieve desired properties.
Collapse
Affiliation(s)
| | | | - Andre Hupe
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | - Douglas S Fudge
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|