1
|
Hao L, Khan MSH, Zu Y, Liu J, Wang S. Thermoneutrality Inhibits Thermogenic Markers and Exacerbates Nonalcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2024; 25:8482. [PMID: 39126051 PMCID: PMC11312964 DOI: 10.3390/ijms25158482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects over a third of the US population and 25% globally, with current treatments proving ineffective. This study investigates whether manipulating brown adipose tissue (BAT) and beige fat activity by housing C57BL/6J mice at thermoneutral (27 °C) or standard temperatures (22 °C) impacts NAFLD development. Male mice were fed either a chow diet (CHD) or a "fast food" diet (FFD) for 10 weeks. Mice at 27 °C had reduced food intake but increased body weight and plasma leptin levels. FFD-fed mice at 27 °C had greater liver weight (2.6 vs. 1.8 g), triglyceride content (7.6 vs. 3.9 mg/g), and hepatic steatosis compared to those at 22 °C. Gene expression of fatty acid synthase, sterol regulatory element-binding protein 1, and fatty acid translocase CD36 was elevated in FFD-fed mice at 27 °C, but not in CHD-fed mice. Thermoneutral housing also reduced expression of thermogenic markers in BAT and inguinal white adipose tissue (WAT) and caused BAT whitening. In conclusion, thermoneutrality inhibits thermogenic markers and exacerbates NAFLD. Activating BAT or promoting WAT browning via cold exposure or other stimuli may offer a strategy for managing NAFLD.
Collapse
Affiliation(s)
- Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
- Department of Allied and Public Health, Indiana University of Pennsylvania, Indian, PA 15705, USA
| | - Md Shahjalal Hossain Khan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Jie Liu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.H.K.); (Y.Z.); (J.L.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
2
|
Niclou A, Vesi L, Arorae M, Naseri NC, Savusa KF, Naseri T, Young J, Rivara AC, Ocobock C. Indication of mixed glucose and fatty acid use by inferred brown adipose tissue activity in Samoans. Am J Hum Biol 2024; 36:e23998. [PMID: 37823535 PMCID: PMC10939975 DOI: 10.1002/ajhb.23998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Despite the growing rates of global obesity and the known positive associations between brown adipose tissue (BAT) and cardiovascular health, little is known about the metabolic effects of BAT activity in Samoans, a population at high risk of obesity and type II diabetes. Here we assessed the potential effects of inferred BAT activity on metabolic health markers in Samoan adults exposed to mild cold. METHODS Using point-of-care finger prick technology we measured fasting glucose, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels before and after 30 min of cold exposure among 61 individuals (38 females, 23 males, ages 31-54) from 'Upolu Island, Samoa. Respiratory quotient was measured by indirect calorimetry to determine substrate metabolism at room temperature and cold exposure. RESULTS Fasting glucose levels decreased significantly (p < .001) after cold exposure while neither total cholesterol (p = .88), HDL (p = .312), nor LDL (p = .089) changed. Respiratory quotient decreased significantly (p = .009) between exposures, suggesting an increased preference for lipid metabolism as a response to cold. CONCLUSIONS The observed effects of inferred BAT activity on biomarkers suggest BAT activity utilizes both glucose and lipid-derived fatty acids as fuel for thermogenesis. Our work provides evidence for the beneficial metabolic effects of BAT and emphasizes the need for the population-specific development of metabolic treatments involving BAT to ensure the successful and equitable minimization of extreme consequences of obesity and metabolic health.
Collapse
Affiliation(s)
- Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, LA
- Department of Anthropology, University of Notre Dame, Notre Dame, IN
| | - Lupesina Vesi
- Obesity, Lifestyle and Genetic Adaptations (OLaGA) Study Group, Apia, Samoa
| | - Maria Arorae
- Obesity, Lifestyle and Genetic Adaptations (OLaGA) Study Group, Apia, Samoa
| | | | | | | | - Jessica Young
- Center for Social Science Research, University of Notre Dame, Notre Dame, IN
| | - Anna C. Rivara
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Cara Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
3
|
The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. Int J Mol Sci 2022; 23:ijms23169448. [PMID: 36012714 PMCID: PMC9408971 DOI: 10.3390/ijms23169448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans.
Collapse
|
4
|
Li J, Chen Q, Zhai X, Wang D, Hou Y, Tang M. Green tea aqueous extract (GTAE) prevents high-fat diet-induced obesity by activating fat browning. Food Sci Nutr 2021; 9:6548-6558. [PMID: 34925784 PMCID: PMC8645728 DOI: 10.1002/fsn3.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022] Open
Abstract
Adipose browning leads to increased energy expenditure and reduced adiposity and has, therefore, become an attractive therapeutic strategy for obesity. In this study, we elucidated the effect of green tea aqueous extract (GTAE) on the browning of inguinal white adipose tissue (Ing-WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-fed mice. The main phytochemical components identified in GTAE through high-performance liquid chromatography (HPLC) included (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin, (-)-epigallocatechin-3-gallate, caffeine, (-)-epicatechin, (-)-gallocatechin gallate, and (-)-epicatechin-3-gallate. Daily supplementation with 1% GTAE for 12 weeks markedly reduced bodyweight gain, systemic inflammation, oxidative stress, and improved insulin resistance. Additionally, histological analysis revealed that dietary supplementation with 1% GTAE reversed HFD-induced adipocyte size and hepatic steatosis. These effects were associated with activation of browning in the Ing-WAT and BAT, which mediate systemic metabolic dysfunction in HFD-fed mice. Taken together, our data support the use of GTAE, a natural product, for the attenuation of obesity through the activation of fat browning.
Collapse
Affiliation(s)
- Jie Li
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Qiyang Chen
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Xiuming Zhai
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Dan Wang
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Yujia Hou
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Min Tang
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| |
Collapse
|
5
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
6
|
Ahmed BA, Ong FJ, Barra NG, Blondin DP, Gunn E, Oreskovich SM, Szamosi JC, Syed SA, Hutchings EK, Konyer NB, Singh NP, Yabut JM, Desjardins EM, Anhê FF, Foley KP, Holloway AC, Noseworthy MD, Haman F, Carpentier AC, Surette MG, Schertzer JD, Punthakee Z, Steinberg GR, Morrison KM. Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota. Cell Rep Med 2021; 2:100397. [PMID: 34622234 PMCID: PMC8484690 DOI: 10.1016/j.xcrm.2021.100397] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
In rodents, lower brown adipose tissue (BAT) activity is associated with greater liver steatosis and changes in the gut microbiome. However, little is known about these relationships in humans. In adults (n = 60), we assessed hepatic fat and cold-stimulated BAT activity using magnetic resonance imaging and the gut microbiota with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity through the microbiota. Individuals with NAFLD (n = 29) have lower BAT activity than those without, and BAT activity is inversely related to hepatic fat content. BAT activity is not related to the characteristics of the fecal microbiota and is not transmissible through fecal transplantation to mice. Thus, low BAT activity is associated with higher hepatic fat accumulation in human adults, but this does not appear to have been mediated through the gut microbiota.
Collapse
Affiliation(s)
- Basma A. Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Frank J. Ong
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole G. Barra
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Denis P. Blondin
- Faculty of Medicine and Health Sciences, Department of Medicine, Division of Neurology, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Elizabeth Gunn
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Stephan M. Oreskovich
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jake C. Szamosi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Metagenomics Facility, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Saad A. Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Emily K. Hutchings
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Norman B. Konyer
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada
| | - Nina P. Singh
- Department of Radiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Julian M. Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric M. Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Fernando F. Anhê
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kevin P. Foley
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alison C. Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael D. Noseworthy
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada
- Department of Radiology, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Francois Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Andre C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael G. Surette
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jonathan D. Schertzer
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zubin Punthakee
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine M. Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
7
|
Conceptual Relationship Between Traditional Persian Medicine and Modern Nutrition in Obesity in Middle Age. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Over the last decades, the prevalence of overweight (BMI > 25) and obesity (BMI > 30) is being the most important health challenge in urban populations. The relationship between obesity and the individual’s temperament has not been studied yet. Evidence Acquisition: This review aimed to study the causes of obesity, especially in middle-aged people, according to the new evidence of conventional medicine and findings of Traditional Persian Medicine (TPM) physicians cited in their books. Databases including PubMed, Scopus, and Iran Medex were also searched with keywords obesity and overweight for recent evidence in conventional medicine. Results: Based on the traditional medicine findings, dystemprament or disequilibrium in Mizaj may promote obesity in middle-aged and elderly people. The attenuation of innate heat and intrinsic moisture in middle age could increase the chance of overweight and obesity. Recent studies in modern nutrition reveal a linear relationship between diminishing the basal metabolic rate and increasing age, especially in middle age. Accordingly, cold/wet-tempered people have more efficient energy homeostasis than hot/dry-tempered people that is similar to individuals with Firmicutes gut microbiota predominance. People living in high altitudes and cold-dry climates maintain their innate heat better than people living in wet climates, which is in accordance with the increasing brown adipose tissue thermogenesis in cold exposure, which decreases the chance of obesity. Conclusions: Based on traditional Persian medicine school, it is hypothesized that increasing age and diminishing innate heat besides the accumulation of phlegm (moisture) in the gastrointestinal tract of middle-aged individuals may be influential in altering gut microbiota and consequently obesity. It seems that there may be a correlation between cold/wet Mizaj and risk factors of obesity.
Collapse
|
8
|
Hollstein T, Vinales K, Chen KY, Cypess AM, Basolo A, Schlögl M, Krakoff J, Piaggi P. Reduced brown adipose tissue activity during cold exposure is a metabolic feature of the human thrifty phenotype. Metabolism 2021; 117:154709. [PMID: 33476636 PMCID: PMC7956243 DOI: 10.1016/j.metabol.2021.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND We recently demonstrated that thrifty subjects, characterized by a greater decrease in 24 h energy expenditure (24hEE) during short-term fasting, have less capacity for cold-induced thermogenesis (CIT) during 24 h of mild cold exposure. OBJECTIVE As cold-induced brown adipose tissue activation (CIBA) is a determinant of CIT, we sought to investigate whether thrifty individuals also have reduced CIBA. METHODS Twenty-four healthy subjects (age: 29.8 ± 9.5y, body fat: 27.3 ± 12.4%, 63% male) were admitted to our clinical research unit and underwent two 24hEE assessments in a whole-room indirect calorimeter during energy balance and fasting conditions at thermoneutrality to quantify their degree of thriftiness. Positron emission tomography/computed tomography scans were performed after exposure to 16 °C for 2 h to quantify peak CIBA. RESULTS A greater decrease in 24hEE during fasting was associated with lower peak CIBA (r = 0.50, p = 0.01), such that a 100 kcal/day greater reduction in 24hEE related to an average 3.2 g/mL lower peak CIBA. CONCLUSION Our results indicate that reduced CIBA is a metabolic trait of the thrifty phenotype which might explain reduced CIT capacity and greater predisposition towards weight gain in individuals with a thrifty metabolism.
Collapse
Affiliation(s)
- Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Arnold Heller Straße 3, Kiel 24105, Germany
| | - Karyne Vinales
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Endocrinology Division, Medicine Department, Phoenix VA Health Care System, Phoenix, AZ 85012, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Mathias Schlögl
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy.
| |
Collapse
|
9
|
Santhanam P, Rowe SP, Solnes LB, Quainoo B, Ahima RS. A systematic review of imaging studies of human brown adipose tissue. Ann N Y Acad Sci 2021; 1495:5-23. [PMID: 33604891 DOI: 10.1111/nyas.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is involved in energy dissipation and has been linked to weight loss, insulin sensitivity, and reduced risk of atherosclerotic disease. BAT is found most often in the supraclavicular region, as well as mediastinal and paravertebral areas, and it is predominantly seen in young persons. BAT is activated by cold temperature and the sympathetic nervous system. In humans, BAT was initially detected via 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT), a high-resolution molecular imaging modality used to identify and stage malignancies. Recent studies have shown that BAT can be localized using conventional imaging modalities, such as CT or magnetic resonance imaging, as well as radiotracers used for single-photon emission CT. In this systematic review, we have summarized the evidence for BAT detection in humans using various imaging techniques.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| | - Steven P Rowe
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilja B Solnes
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brittany Quainoo
- Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| |
Collapse
|
10
|
Vidović V, Maksimović N, Vidović S, Damnjanović T, Novaković I. Association of PPARG rs3856806 C>T polymorphism with body mass index, glycaemia and lipid parameters in Serbian adolescents. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-29376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background/Aim: Peroxisome proliferator-activated receptor gamma (PPARg) belongs to a family of nuclear hormone receptors and ligand-activated transcription factors. PPARG gene is expressed in many tissues including adipose tissue where it plays a crucial role in differentiation of adipocyte, insulin resistance, blood glucose levels and lipid metabolism. The aim of the study was to examine the association of rs3856806 polymorphism with the body mass index (BMI), fasting glucose levels and lipid parameters in Serbian adolescents. Methods: This research included 287 adolescents of both genders (143 boys and 144 girls), 14-15 years of age. Genotype detection was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP) assay. Results: Results showed statistically significant difference in terms of fasting glucose levels among girls (p = 0.013) depending on their genotype. Female carriers of CC genotype had significantly higher level of fasting glucose levels. Also, results showed that in the group of overweight and obese girls, carriers of CT or TT genotype had statistically significant lower values of HDL cholesterol compared to girls - carriers of CC genotype (p = 0.000). However, this result was not confirmed by multiple regression analysis. Statistically significant association of rs3856806 polymorphism was not observed with BMI nor with other lipid parameters. Conclusion: This polymorphism is associated with fasting glucose level and HDL cholesterol among girls. To draw definite conclusions, further research should be conducted including non-genetic factors and other polymorphisms among this gene.
Collapse
|
11
|
Hu L, Shao X, Qiu C, Shao X, Wang X, Niu R, Wang Y. Hepatic steatosis is associated with abnormal hepatic enzymes, visceral adiposity, altered myocardial glucose uptake measured by 18F-FDG PET/CT. BMC Endocr Disord 2020; 20:75. [PMID: 32460891 PMCID: PMC7254706 DOI: 10.1186/s12902-020-00556-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a multisystem disease that affects the liver and a variety of extra-hepatic organ systems. This study aimed to investigate the relationship between hepatic steatosis and glucose metabolism in liver and extra-hepatic tissues and organs. METHODS The whole body 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) images of 191 asymptomatic tumor screening patients were retrospectively analyzed. Patients with the ratio of spleen/liver CT densities > 1.1 were defined to have NAFLD, and their clinical symptoms, laboratory markers, FDG uptake in a variety of tissues and organs including heart, mediastinal blood pool, liver, spleen, pancreas, and skeletal muscle, as well as abdominal adipose tissue volumes including visceral adipose tissue (VAT) volume and subcutaneous adipose tissue (SAT) volume were compared with those of the non-NAFLD patients and used to analyze the independent correlation factors of NAFLD. RESULTS Among the 191 patients, 33 (17.3%) were NAFLD, and 158 (82.7%) were non-NAFLD. There was no significant correlation between the mean standardized uptake value (SUVmean) and CT density of liver as well as the ratio of spleen/liver CT densities. Hepatic steatosis, but not FDG intake, was more significant in NAFLD patients with abnormal liver function than those with normal liver function. Compared with the non-NAFLD patients, NAFLD patients had significantly reduced myocardial glucose metabolism, but significantly increased mediastinal blood pool, spleen SUVmean and abdominal adipose tissue volumes (including VAT and SAT volumes) (P < 0.05). Multivariate regression analysis showed that elevated serum ALT, increased abdominal VAT volume, and decreased myocardial FDG uptake were independent correlation factors for NAFLD. Further studies showed that hepatic steatosis and myocardial FDG uptake were mildly linearly correlated (r = 0.366 with hepatic CT density and - 0.236 with the ratio of spleen/liver CT densities, P < 0.05). CONCLUSIONS NAFLD is a systemic disease that can lead to the change of glucose metabolism in some extra-hepatic tissues and organs, especially the myocardium.
Collapse
Affiliation(s)
- Lijun Hu
- Department of Radiation Oncology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Chun Qiu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Xiaosong Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
12
|
Shen H, Jiang L, Lin JD, Omary MB, Rui L. Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J Clin Invest 2019; 129:2305-2317. [PMID: 30888335 PMCID: PMC6546460 DOI: 10.1172/jci124376] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol consumption causes liver injury, inflammation and fibrosis, thereby increasing morbidity and mortality. Paradoxically, modest drinking is believed to confer metabolic improvement, but the underlying mechanism remains elusive. Here, we have identified a novel hepatoprotective brain/brown adipose tissue (BAT)/liver axis. Alcohol consumption or direct alcohol administration into the brain stimulated hypothalamic neural circuits and sympathetic nerves innervating BAT, and dramatically increased BAT uncoupling protein 1 (Ucp1) expression and activity in a BAT sympathetic nerve-dependent manner. BAT and beige fat oxidized fatty acids to fuel Ucp1-mediated thermogenesis, thereby inhibiting lipid trafficking into the liver. BAT also secreted several adipokines, including adiponectin that suppressed hepatocyte injury and death. Genetic deletion of Ucp1 profoundly augmented alcohol-induced liver steatosis, injury, inflammation and fibrosis in male and female mice. Conversely, activation of BAT and beige fat through cold exposure suppressed alcoholic liver disease development. Our results unravel an unrecognized brain alcohol-sensing/sympathetic nerve/BAT/liver axis that counteracts liver steatosis and injury.
Collapse
Affiliation(s)
- Hong Shen
- Department of Molecular & Integrative Physiology
| | - Lin Jiang
- Department of Molecular & Integrative Physiology
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, and
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Hallmark B, Karafet TM, Hsieh P, Osipova LP, Watkins JC, Hammer MF. Genomic Evidence of Local Adaptation to Climate and Diet in Indigenous Siberians. Mol Biol Evol 2018; 36:315-327. [DOI: 10.1093/molbev/msy211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | | | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Joseph C Watkins
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Hu L, Qiu C, Wang X, Xu M, Shao X, Wang Y. The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18F-FDG PET/CT study. BMC Cardiovasc Disord 2018; 18:203. [PMID: 30373519 PMCID: PMC6206634 DOI: 10.1186/s12872-018-0943-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In diabetes, dysregulated substrate utilization and energy metabolism of myocardium can lead to heart failure. To examine the dynamic changes of myocardium, most of the previous studies conducted dynamic myocardial PET imaging following euglycemic-hyperinsulinemic clamp, which involves complicated procedures. In comparison, the whole-body 18F-FDG PET/CT scan is a simple and widely used method. Therefore, we hope to use this method to observe abnormal myocardial glucose metabolism in diabetes and determine the influencing factors. METHODS We retrospectively analyzed PET/CT images of 191 subjects from our medical examination center. The levels of FDG uptake in myocardium were visually divided into 4 grades (Grade 0-3, from low to high). The differences in clinical and metabolic parameters among diabetes mellitus (DM), impaired fasting glucose (IFG), and normal fasting glucose (NFG) groups were analyzed, as well as their associations with myocardial FDG uptake. RESULTS Compared with NFG and IFG groups, DM group had more cardiovascular-related risk factors. The degree of myocardial FDG uptake was significantly decreased in DM group; when myocardial FDG uptake ≤ Grade 1, the sensitivity of DM prediction was 84.0%, and the specificity was 58.4%. Univariate analysis showed that the myocardial FDG uptake was weakly and negatively correlated with multiple metabolic-related parameters (r = - 0.173~ - 0.365, P < 0.05). Multivariate logistic regression analysis showed that gender (male), HOMA-IR and nonalcoholic fatty liver disease (NAFLD) were independent risk factors for poor myocardial FDG uptake. CONCLUSIONS Diabetes is associated with decreased myocardial glucose metabolism, which is mediated by multiple metabolic abnormalities.
Collapse
Affiliation(s)
- Lijun Hu
- Department of Radiation Oncology, The Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003 Jiangsu China
| | - Chun Qiu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Xiaosong Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Mei Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
15
|
Correlation of Brown Adipose Tissue with Other Body Fat Compartments and Patient Characteristics: A Retrospective Analysis in a Large Patient Cohort Using PET/CT. Acad Radiol 2018; 25:102-110. [PMID: 29108812 DOI: 10.1016/j.acra.2017.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to assess the relationship of brown adipose tissue (BAT) activity with different fat compartments of the body, body mass index (BMI), outdoor temperature, thyroid-stimulating hormone (TSH) levels, blood glucose, age, and sex in a large patient population using F-18-fluordesoxyglucose positron emission tomography-computer tomography (FDG-PET/CT) scans obtained under thermoneutral conditions. MATERIALS AND METHODS FDG-PET/CT scans of 4852 patients were retrospectively analyzed for BAT activity. The volumes of the different fat compartments visceral adipose tissue (VAT), subcutaneous adipose tissue (SCAT), and liver fat, were assessed by computed tomography. Age, sex, TSH levels, blood glucose levels, BMI, primary disease, and the outdoor temperature were determined. Multiple linear regression analyses were performed to identify independent relationships between the parameters. RESULTS The VAT, SCAT, and liver fat content were lower in BAT-positive patients than in BAT-negative patients (each P < 0.0001). BAT-positive patients had a lower BMI (P < 0.0001) and were more often female (P < 0.0001), younger (P < 0.0001), and had higher TSH levels (P = 0.0002), whereas the outdoor temperature and the blood glucose level were not different compared to BAT-negative patients. Age, sex, VAT, and SCAT were independent factors related to BAT. CONCLUSIONS Age, sex, and VAT are the most important determinants of BAT activity under thermoneutral conditions. VAT reflects the association between BAT activity and body fat mass more clearly than BMI. The strength of the association between VAT and BAT decreases during aging in men, but increases in women. This may indicate a different importance of BAT activity for obesity in men and in women.
Collapse
|
16
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem 2017; 49:15-21. [PMID: 28863365 DOI: 10.1016/j.jnutbio.2017.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Lucie Geurts
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Nirengi S, Homma T, Inoue N, Sato H, Yoneshiro T, Matsushita M, Kameya T, Sugie H, Tsuzaki K, Saito M, Sakane N, Kurosawa Y, Hamaoka T. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091305. [PMID: 27135066 DOI: 10.1117/1.jbo.21.9.091305] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDGPET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIR(TRS)) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P < 0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIR(TRS) every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIR(TRS) successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P < 0.05), and a decrease in the 8-week follow-up period (-12.5%, P = 0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIR(TRS) can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Division of Preventive Medicine, 1-1 Mukaihata-cho, Fukakusa, Kyoto, 612-8555, JapanbRitsumeikan University, Graduate School of Sport and Health Science, 1-1-1 Nojihigashi
| | - Toshiyuki Homma
- Daito Bunka University, Faculty of Sports and Health Science, 1-9-1 Takashimadaira, Itabashi-ku, Tokyo 175-8571, Japan
| | - Naohiko Inoue
- Ajinomoto Co., Inc., Institute of Food Science & Technologies, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Hitoshi Sato
- Ajinomoto Co., Inc., Health & Wellness Business Dept., 15-1, Kyobashi 1-chome, Chuo-ku, Tokyo 104-8315, Japan
| | - Takeshi Yoneshiro
- Hokkaido University, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0808, Japan
| | - Mami Matsushita
- Tenshi College, Department of Nutrition, 1-30, Kita 13, Higashi 3, Higashi-ku, Sapporo 065-0013, Japan
| | - Toshimitsu Kameya
- LSI Sapporo Clinic, 2-50, Kita 13, Higashi 1, Higashi-ku, Sapporo 065-0013, Japan
| | - Hiroki Sugie
- LSI Sapporo Clinic, 2-50, Kita 13, Higashi 1, Higashi-ku, Sapporo 065-0013, Japan
| | - Kokoro Tsuzaki
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Division of Preventive Medicine, 1-1 Mukaihata-cho, Fukakusa, Kyoto, 612-8555, Japan
| | - Masayuki Saito
- Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-0808, Japan
| | - Naoki Sakane
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Division of Preventive Medicine, 1-1 Mukaihata-cho, Fukakusa, Kyoto, 612-8555, Japan
| | - Yuko Kurosawa
- Tokyo Medical University, Department of Sports Medicine for Health Promotion, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takafumi Hamaoka
- Tokyo Medical University, Department of Sports Medicine for Health Promotion, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
19
|
Mulya A, Kirwan JP. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities? Endocrinol Metab Clin North Am 2016; 45:605-21. [PMID: 27519133 PMCID: PMC5206678 DOI: 10.1016/j.ecl.2016.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities.
Collapse
Affiliation(s)
- Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA; Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Shao X, Yang W, Shao X, Qiu C, Wang X, Wang Y. The role of active brown adipose tissue (aBAT) in lipid metabolism in healthy Chinese adults. Lipids Health Dis 2016; 15:138. [PMID: 27566674 PMCID: PMC5000508 DOI: 10.1186/s12944-016-0310-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
Background The prevalence of dyslipidemia in China was increased over the last several years. Studies have shown that the activity of aBAT is related to the lipid metabolism. In this study, we analyzed blood lipid level in tumor-free healthy Chinese adults in order to determine the role of aBAT in lipid metabolism. Methods We retrospectively analyzed the factors that affect the blood lipid level in 717 tumor-free healthy adults who received blood lipid measurement and PET/CT scan by multivariate regression analysis. We also determined the role of aBAT on lipid profile by case–control study. Results (1) Our results showed that 411 (57.3 %) subjects had dyslipidemia. The prevalence of the subjects with hypercholesteremia, hypertriglyceridemia, low high-density lipoprotein cholesterol and high low-density lipoprotein cholesterol was 9.5 %, 44.4 %, 30.8 % and 1.4 %, respectively. Multivariate logistic regression analysis with dyslipidemia as the dependent variable showed that body mass index (BMI) and smoking are independent risk factors for dyslipidemia (OR > 1, P < 0.05), while the presence of aBAT is the independent protective factor for dyslipidemia (OR < 1, P < 0.05). (2) The incidence of aBAT was 1.81 %. Subjects with aBAT had significantly lower serum triglyceride and higher serum high-density lipoprotein cholesterol than the subjects without aBAT. The serum total cholesterol and low-density lipoprotein cholesterol were not significantly different between the subjects with aBAT and those without aBAT. Conclusions Dyslipidemia is caused by multiple factors and the presence of aBAT is a protective factor for dyslipidemia in healthy Chinese adults.
Collapse
Affiliation(s)
- Xiaoliang Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Wei Yang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chun Qiu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xiaosong Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
21
|
Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol 2016; 64:1176-1186. [PMID: 26829204 DOI: 10.1016/j.jhep.2016.01.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|