1
|
Singh V, Bhutkar M, Choudhary S, Nehul S, Kumar R, Singla J, Kumar P, Tomar S. Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody. Biochem Biophys Res Commun 2024; 734:150746. [PMID: 39366179 DOI: 10.1016/j.bbrc.2024.150746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC50 values of ∼0.03 μM, as compared to the native nanobody (IC50 ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Ruta S, Popescu CP, Matei L, Grancea C, Paun AM, Oprea C, Sultana C. SARS-CoV-2 Humoral and Cellular Immune Responses in People Living with HIV. Vaccines (Basel) 2024; 12:663. [PMID: 38932392 PMCID: PMC11209143 DOI: 10.3390/vaccines12060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunosuppressed individuals, such as people living with HIV (PLWH), remain vulnerable to severe COVID-19. We analyzed the persistence of specific SARS-CoV-2 humoral and cellular immune responses in a retrospective, cross-sectional study in PLWH on antiretroviral therapy. Among 104 participants, 70.2% had anti-S IgG antibodies, and 55.8% had significant neutralizing activity against the Omicron variant in a surrogate virus neutralization test. Only 38.5% were vaccinated (8.76 ± 4.1 months prior), all displaying anti-S IgG, 75% with neutralizing antibodies and anti-S IgA. Overall, 29.8% of PLWH had no SARS-CoV-2 serologic markers; they displayed significantly lower CD4 counts and higher HIV viral load. Severe immunosuppression (present in 12.5% of participants) was linked to lower levels of detectable anti-S IgG (p = 0.0003), anti-S IgA (p < 0.0001) and lack of neutralizing activity against the Omicron variant (p < 0.0001). T-cell responses were present in 86.7% of tested participants, even in those lacking serological markers. In PLWH without severe immunosuppression, neutralizing antibodies and T-cell responses persisted for up to 9 months post-infection or vaccination. Advanced immunosuppression led to diminished humoral immune responses but retained specific cellular immunity.
Collapse
Affiliation(s)
- Simona Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Camelia Grancea
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Adrian Marius Paun
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Cristiana Oprea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Camelia Sultana
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| |
Collapse
|
3
|
Yadav AJ, Kumar S, Maurya S, Bhagat K, Padhi AK. Interface design of SARS-CoV-2 symmetrical nsp7 dimer and machine learning-guided nsp7 sequence prediction reveals physicochemical properties and hotspots for nsp7 stability, adaptation, and therapeutic design. Phys Chem Chem Phys 2024; 26:14046-14061. [PMID: 38686454 DOI: 10.1039/d4cp01014k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The COVID-19 pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates a profound understanding of the virus and its lifecycle. As an RNA virus with high mutation rates, SARS-CoV-2 exhibits genetic variability leading to the emergence of variants with potential implications. Among its key proteins, the RNA-dependent RNA polymerase (RdRp) is pivotal for viral replication. Notably, RdRp forms dimers via non-structural protein (nsp) subunits, particularly nsp7, crucial for efficient viral RNA copying. Similar to the main protease (Mpro) of SARS-CoV-2, there is a possibility that the nsp7 might also undergo mutational selection events to generate more stable and adaptable versions of nsp7 dimer during virus evolution. However, efforts to obtain such cohesive and comprehensive information are lacking. To address this, we performed this study focused on deciphering the molecular intricacies of nsp7 dimerization using a multifaceted approach. Leveraging computational protein design (CPD), machine learning (ML), AlphaFold v2.0-based structural analysis, and several related computational approaches, we aimed to identify critical residues and mutations influencing nsp7 dimer stability and adaptation. Our methodology involved identifying potential hotspot residues within the dimeric nsp7 interface using an interface-based CPD approach. Through Rosetta-based symmetrical protein design, we designed and modulated nsp7 dimerization, considering selected interface residues. Analysis of physicochemical features revealed acceptable structural changes and several structural and residue-specific insights emphasizing the intricate nature of such protein-protein complexes. Our ML models, particularly the random forest regressor (RFR), accurately predicted binding affinities and ML-guided sequence predictions corroborated CPD findings, elucidating potential nsp7 mutations and their impact on binding affinity. Validation against clinical sequencing data demonstrated the predictive accuracy of our approach. Moreover, AlphaFold v2.0 structural analyses validated optimal dimeric configurations of affinity-enhancing designs, affirming methodological precision. Affinity-enhancing designs exhibited favourable energetics and higher binding affinity as compared to their counterparts. The obtained physicochemical properties, molecular interactions, and sequence predictions advance our understanding of SARS-CoV-2 evolution and inform potential avenues for therapeutic intervention against COVID-19.
Collapse
Affiliation(s)
- Amar Jeet Yadav
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Shivank Kumar
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Khushboo Bhagat
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
5
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
6
|
Islam MA, Marzan AA, Arman MS, Shahi S, Sakif TI, Hossain M, Islam T, Hoque MN. Some common deleterious mutations are shared in SARS-CoV-2 genomes from deceased COVID-19 patients across continents. Sci Rep 2023; 13:18644. [PMID: 37903828 PMCID: PMC10616235 DOI: 10.1038/s41598-023-45517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The identification of deleterious mutations in different variants of SARS-CoV-2 and their roles in the morbidity of COVID-19 patients has yet to be thoroughly investigated. To unravel the spectrum of mutations and their effects within SARS-CoV-2 genomes, we analyzed 5,724 complete genomes from deceased COVID-19 patients sourced from the GISAID database. This analysis was conducted using the Nextstrain platform, applying a generalized time-reversible model for evolutionary phylogeny. These genomes were compared to the reference strain (hCoV-19/Wuhan/WIV04/2019) using MAFFT v7.470. Our findings revealed that SARS-CoV-2 genomes from deceased individuals belonged to 21 Nextstrain clades, with clade 20I (Alpha variant) being the most predominant, followed by clade 20H (Beta variant) and clade 20J (Gamma variant). The majority of SARS-CoV-2 genomes from deceased patients (33.4%) were sequenced in North America, while the lowest percentage (0.98%) came from Africa. The 'G' clade was dominant in the SARS-CoV-2 genomes of Asian, African, and North American regions, while the 'GRY' clade prevailed in Europe. In our analysis, we identified 35,799 nucleotide (NT) mutations throughout the genome, with the highest frequency (11,402 occurrences) found in the spike protein. Notably, we observed 4150 point-specific amino acid (AA) mutations in SARS-CoV-2 genomes, with D614G (20%) and N501Y (14%) identified as the top two deleterious mutations in the spike protein on a global scale. Furthermore, we detected five common deleterious AA mutations, including G18V, W45S, I33T, P30L, and Q418H, which play a key role in defining each clade of SARS-CoV-2. Our novel findings hold potential value for genomic surveillance, enabling the monitoring of the evolving pattern of SARS-CoV-2 infection, its emerging variants, and their impact on the development of effective vaccination and control strategies.
Collapse
Affiliation(s)
- Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh.
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Abdullah Al Marzan
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shatila Shahi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506-6109, USA
| | - Maqsud Hossain
- University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, NG7 2RD, Leicestershire, UK
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
7
|
Khemiri H, Gdoura M, Ben Halima S, Krichen H, Cammà C, Lorusso A, Ancora M, Di Pasquale A, Cherni A, Touzi H, Sadraoui A, Meddeb Z, Hogga N, Ammi R, Triki H, Haddad-Boubaker S. SARS-CoV-2 excretion kinetics in nasopharyngeal and stool samples from the pediatric population. Front Med (Lausanne) 2023; 10:1226207. [PMID: 38020093 PMCID: PMC10643538 DOI: 10.3389/fmed.2023.1226207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for serious respiratory infections in humans. Even in the absence of respiratory symptoms, gastrointestinal (GI) signs were commonly reported in adults and children. Thus, oral-fecal transmission was suspected as a possible route of infection. The objective of this study was to describe RNA shedding in nasopharyngeal and stool samples obtained from asymptomatic and symptomatic children and to investigate virus viability. Methods This study included 179 stool and 191 nasopharyngeal samples obtained from 71 children, which included symptomatic (n = 64) and asymptomatic (n = 7) ones. They were collected every 7 days from the onset of the infection until negativation. Viral RNA was detected by real-time RT-PCR, targeting the N and ORF1 genes. Whole-genome sequencing was performed for positive cases. Viral isolation was assessed on Vero cells, followed by molecular detection confirmation. Results All cases included in this study (n = 71) were positive in their nasopharyngeal samples. SARS-CoV-2 RNA was detected in 36 stool samples obtained from 15 out of 71 (21.1%) children; 13 were symptomatic and two were asymptomatic. Excretion periods varied from 7 to 21 days and 7 to 14 days in nasopharyngeal and fecal samples, respectively. Four variants were detected: Alpha (n = 3), B.1.160 (n = 3), Delta (n = 7), and Omicron (n = 1). Inoculation of stool samples on cell culture showed no specific cytopathic effect. All cell culture supernatants were negative for RT-qPCR. Conclusion Our study demonstrated nasopharyngeal and fecal shedding of SARS-CoV-2 RNA by children up to 21 and 14 days, respectively. Fecal shedding was recorded in symptomatic and asymptomatic children. Nevertheless, SARS-CoV-2 was not isolated from positive stool samples.
Collapse
Affiliation(s)
- Haifa Khemiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samar Ben Halima
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Krichen
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Asma Cherni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amel Sadraoui
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Radhia Ammi
- Service of External Consultants, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Varisco B, Bai F, De Benedittis S, Tavelli A, Cozzi-Lepri A, Sala M, Miraglia FG, Santoro MM, Ceccherini-Silberstein F, Shimoni Y, Ravid S, Kozlovski T, König F, Pfeifer N, Shamsara E, Parczewski M, Monforte AD, Incardona F, Mommo C, Marchetti G. EuCARE-POSTCOVID Study: a multicentre cohort study on long-term post-COVID-19 manifestations. BMC Infect Dis 2023; 23:684. [PMID: 37833640 PMCID: PMC10576381 DOI: 10.1186/s12879-023-08595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Post-COVID-19 condition refers to persistent or new onset symptoms occurring three months after acute COVID-19, which are unrelated to alternative diagnoses. Symptoms include fatigue, breathlessness, palpitations, pain, concentration difficulties ("brain fog"), sleep disorders, and anxiety/depression. The prevalence of post-COVID-19 condition ranges widely across studies, affecting 10-20% of patients and reaching 50-60% in certain cohorts, while the associated risk factors remain poorly understood. METHODS This multicentre cohort study, both retrospective and prospective, aims to assess the incidence and risk factors of post-COVID-19 condition in a cohort of recovered patients. Secondary objectives include evaluating the association between circulating SARS-CoV-2 variants and the risk of post-COVID-19 condition, as well as assessing long-term residual organ damage (lung, heart, central nervous system, peripheral nervous system) in relation to patient characteristics and virology (variant and viral load during the acute phase). Participants will include hospitalised and outpatient COVID-19 patients diagnosed between 01/03/2020 and 01/02/2025 from 8 participating centres. A control group will consist of hospitalised patients with respiratory infections other than COVID-19 during the same period. Patients will be followed up at the post-COVID-19 clinic of each centre at 2-3, 6-9, and 12-15 months after clinical recovery. Routine blood exams will be conducted, and patients will complete questionnaires to assess persisting symptoms, fatigue, dyspnoea, quality of life, disability, anxiety and depression, and post-traumatic stress disorders. DISCUSSION This study aims to understand post-COVID-19 syndrome's incidence and predictors by comparing pandemic waves, utilising retrospective and prospective data. Gender association, especially the potential higher prevalence in females, will be investigated. Symptom tracking via questionnaires and scales will monitor duration and evolution. Questionnaires will also collect data on vaccination, reinfections, and new health issues. Biological samples will enable future studies on post-COVID-19 sequelae mechanisms, including inflammation, immune dysregulation, and viral reservoirs. TRIAL REGISTRATION This study has been registered with ClinicalTrials.gov under the identifier NCT05531773.
Collapse
Affiliation(s)
- Benedetta Varisco
- Department of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo E Carlo, Via A Di Rudinì 8, 20142, Milan, Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo E Carlo, Via A Di Rudinì 8, 20142, Milan, Italy
| | | | | | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK
| | - Matteo Sala
- Department of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo E Carlo, Via A Di Rudinì 8, 20142, Milan, Italy
| | | | | | | | - Yishai Shimoni
- Healthcare Informatics, IBM Research-Haifa, Mount Carmel Haifa, Israel
| | - Sivan Ravid
- Healthcare Informatics, IBM Research-Haifa, Mount Carmel Haifa, Israel
| | - Tal Kozlovski
- Healthcare Informatics, IBM Research-Haifa, Mount Carmel Haifa, Israel
| | - Florian König
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Nico Pfeifer
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Elham Shamsara
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Milosz Parczewski
- Department of Infectious Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | | | | | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, University of Milan, ASST Santi Paolo E Carlo, Via A Di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
9
|
Pochtovyi AA, Kustova DD, Siniavin AE, Dolzhikova IV, Shidlovskaya EV, Shpakova OG, Vasilchenko LA, Glavatskaya AA, Kuznetsova NA, Iliukhina AA, Shelkov AY, Grinkevich OM, Komarov AG, Logunov DY, Gushchin VA, Gintsburg AL. In Vitro Efficacy of Antivirals and Monoclonal Antibodies against SARS-CoV-2 Omicron Lineages XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1. Vaccines (Basel) 2023; 11:1533. [PMID: 37896937 PMCID: PMC10611309 DOI: 10.3390/vaccines11101533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The spread of COVID-19 continues, expressed by periodic wave-like increases in morbidity and mortality. The reason for the periodic increases in morbidity is the emergence and spread of novel genetic variants of SARS-CoV-2. A decrease in the efficacy of monoclonal antibodies (mAbs) has been reported, especially against Omicron subvariants. There have been reports of a decrease in the efficacy of specific antiviral drugs as a result of mutations in the genes of non-structural proteins. This indicates the urgent need for practical healthcare to constantly monitor pathogen variability and its effect on the efficacy of preventive and therapeutic drugs. As part of this study, we report the results of the continuous monitoring of COVID-19 in Moscow using genetic and virological methods. As a result of this monitoring, we determined the dominant genetic variants and identified the variants that are most widespread, not only in Moscow, but also in other countries. A collection of viruses from more than 500 SARS-CoV-2 isolates has been obtained and characterized. The genetic lines XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1, representing the greatest concern, were identified among the dominant variants. We studied the in vitro efficacy of mAbs Tixagevimab + Cilgavimab (Evusheld), Sotrovimab, Regdanvimab, Casirivimab + Imdevimab (Ronapreve), and Bebtelovimab, as well as the specific antiviral drugs Remdesivir, Molnupiravir, and Nirmatrelvir, against these genetic lines. At the current stage of the COVID-19 pandemic, the use of mAbs developed against early SARS-CoV-2 variants has little prospect. Specific antiviral drugs retain their activity, but further monitoring is needed to assess the risk of their efficacy being reduced and adjust recommendations for their use.
Collapse
Affiliation(s)
- Andrei A. Pochtovyi
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria D. Kustova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrei E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Inna V. Dolzhikova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Elena V. Shidlovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | | | - Lyudmila A. Vasilchenko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Arina A. Glavatskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Nadezhda A. Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Anna A. Iliukhina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Artem Y. Shelkov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Olesia M. Grinkevich
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | | | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (D.D.K.)
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
10
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
11
|
Burgos G, Ambuludí A, Morales-Jadán D, Garcia-Bereguiain MA, Muslin C, Armijos-Jaramillo V. A tool for the cheap and rapid screening of SARS-CoV-2 variants of concern (VoCs) by Sanger sequencing. Microbiol Spectr 2023; 11:e0506422. [PMID: 37676038 PMCID: PMC10586709 DOI: 10.1128/spectrum.05064-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 09/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that, since March 2020, has been responsible for a global and ongoing pandemic. Its rapid spread over the past nearly 3 years has caused novel variants to arise. To monitor the circulation and emergence of SARS-CoV-2 variants, surveillance systems based on nucleotide mutations are required. In this regard, we searched in the spike, ORF8, and nucleocapsid genes to detect variable sites among SARS-CoV-2 variants. We describe polymorphic genetic regions that enable us to differentiate between the Alpha, Beta, Gamma, Delta, and Omicron variants of concern (VoCs). We found 21 relevant mutations, 13 of which are unique for Omicron lineages BA.1/BA.1.1, BA.2, BA.3, BA.4, and BA.5. This genetic profile enables the discrimination between VoCs using only four reverse transcription PCR fragments and Sanger sequencing, offering a cheaper and faster alternative to whole-genome sequencing for SARS-CoV-2 surveillance. IMPORTANCE Our work describes a new (Sanger sequencing-based) screening methodology for SARS-CoV-2, performing PCR amplifications of a few target regions to detect diagnostic mutations between virus variants. Using the methodology developed in this work, we were able to discriminate between the following VoCs: Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.1.1, BA.2, BA.3, BA.4, and BA.5). This becomes important, especially in low-income countries where current methodologies like next-generation sequencing have prohibitive costs. Furthermore, rapid detection would allow sanitary authorities to take rapid measures to limit the spread of the virus and therefore reduce the probability of new virus dispersion. With this methodological approach, 13 previously unreported diagnostic mutations among several Omicron lineages were found.
Collapse
Affiliation(s)
- Germán Burgos
- Facultad de Medicina, Universidad de Las Américas (UDLA), Quito, Ecuador
- One Health Research Group, Faculty of Health Sciences, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Andrés Ambuludí
- Carrera de Ingeniería en Biotecnología, Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - USFQ SARS-CoV-2 Consortium
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Cumbaya, Ecuador
| | - Diana Morales-Jadán
- One Health Research Group, Faculty of Health Sciences, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
12
|
Bhargavan B, Kanmogne GD. SARS-CoV-2 Spike Proteins and Cell-Cell Communication Induce P-Selectin and Markers of Endothelial Injury, NETosis, and Inflammation in Human Lung Microvascular Endothelial Cells and Neutrophils: Implications for the Pathogenesis of COVID-19 Coagulopathy. Int J Mol Sci 2023; 24:12585. [PMID: 37628764 PMCID: PMC10454213 DOI: 10.3390/ijms241612585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19 progression often involves severe lung injury, inflammation, coagulopathy, and leukocyte infiltration into pulmonary tissues. The pathogenesis of these complications is unknown. Because vascular endothelium and neutrophils express angiotensin-converting enzyme-2 and spike (S)-proteins, which are present in bodily fluids and tissues of SARS-CoV-2-infected patients, we investigated the effect of S-proteins and cell-cell communication on human lung microvascular endothelial cells and neutrophils expression of P-selectin, markers of coagulopathy, NETosis, and inflammation. Exposure of endothelial cells or neutrophils to S-proteins and endothelial-neutrophils co-culture induced P-selectin transcription and expression, significantly increased expression/secretion of IL-6, von Willebrand factor (vWF, pro-coagulant), and citrullinated histone H3 (cit-H3, NETosis marker). Compared to the SARS-CoV-2 Wuhan variant, Delta variant S-proteins induced 1.4-15-fold higher P-selectin and higher IL-6 and vWF. Recombinant tissue factor pathway inhibitor (rTFPI), 5,5'-dithio-bis-(2-nitrobenzoic acid) (thiol blocker), and thrombomodulin (anticoagulant) blocked S-protein-induced vWF, IL-6, and cit-H3. This suggests that following SARS-CoV-2 contact with the pulmonary endothelium or neutrophils and endothelial-neutrophil interactions, S-proteins increase adhesion molecules, induce endothelial injury, inflammation, NETosis and coagulopathy via the tissue factor pathway, mechanisms involving functional thiol groups, and/or the fibrinolysis system. Using rTFPI, effectors of the fibrinolysis system and/or thiol-based drugs could be viable therapeutic strategies against SARS-CoV-2-induced endothelial injury, inflammation, NETosis, and coagulopathy.
Collapse
Affiliation(s)
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA;
| |
Collapse
|
13
|
Nunes SLP, de França CA, Rocha GD, Oliveira SADS, Freitas MR, da Silva EO, Coutinho KS, Jerônimo AS, de Lima GB, de Lima RE, Bezerra MF, Dezordi FZ, Paiva MHS, Wallau GDL, de Souza CDF, Armstrong ADC, do Carmo RF. Assessment of clinical characteristics and viral load in individuals infected by Delta and Omicron variants of SARS-CoV-2. Heliyon 2023; 9:e18994. [PMID: 37600420 PMCID: PMC10432967 DOI: 10.1016/j.heliyon.2023.e18994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
In late 2021, a new variant of SARS-CoV-2 called Omicron emerged, replacing Delta worldwide. Although it has been associated with a lower risk of hospitalization and severe forms of COVID-19, there is little evidence of its relationship with specific symptoms and viral load. The aim of this study was to verify the relationship between Delta and Omicron variants of concern, viral load, and the occurrence of symptoms in individuals with COVID-19. Nasopharyngeal swab samples were collected and sequenced from patients with COVID-19 from the Northeast Region of Brazil between August 2021 and March 2022. The results showed a gradual replacement of the Delta variant by the Omicron variant during the study period. A total of 316 samples (157 Delta and 159 Omicron) were included. There was a higher prevalence of symptoms in Delta-infected individuals, such as coryza, olfactory and taste disturbances, headache, and myalgia. There was no association between viral load and the variants analyzed. The results reported here contribute to the understanding of the symptoms associated with the Delta and Omicron variants in individuals affected by COVID-19.
Collapse
Affiliation(s)
- Sávio Luiz Pereira Nunes
- Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Chirles Araújo de França
- Multi-User Research Laboratory (LAMUPE), Dr. Washington Antônio de Barros Hospital – EBSERH/UNIVASF, Petrolina, Pernambuco, Brazil
| | - Gabriela Dias Rocha
- Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Multi-User Research Laboratory (LAMUPE), Dr. Washington Antônio de Barros Hospital – EBSERH/UNIVASF, Petrolina, Pernambuco, Brazil
| | - Samily Aquino de Sá Oliveira
- Multi-User Research Laboratory (LAMUPE), Dr. Washington Antônio de Barros Hospital – EBSERH/UNIVASF, Petrolina, Pernambuco, Brazil
| | - Mariana Ramos Freitas
- Multi-User Research Laboratory (LAMUPE), Dr. Washington Antônio de Barros Hospital – EBSERH/UNIVASF, Petrolina, Pernambuco, Brazil
| | - Eliane Oliveira da Silva
- VIII Regional Health Management, State Health Secretariat of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Katia Sampaio Coutinho
- VIII Regional Health Management, State Health Secretariat of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Aline Silva Jerônimo
- VIII Regional Health Management, State Health Secretariat of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Gustavo Barbosa de Lima
- Technology Platforms Center (NPT), Aggeu Magalhães Institute (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Emídio de Lima
- Technology Platforms Center (NPT), Aggeu Magalhães Institute (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Matheus Filgueira Bezerra
- Departament of Microbiology, Aggeu Magalhães Institute (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Filipe Zimmer Dezordi
- Departament of Entomology, Aggeu Magalhães Institute (IAM)- FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Bioinformatics Center (NBI), Aggeu Magalhães Institute (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Henrique Santos Paiva
- Departament of Entomology, Aggeu Magalhães Institute (IAM)- FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Life Sciences Center, Federal University of Pernambuco (UFPE), Caruaru, Pernambuco, Brazil
| | - Gabriel da Luz Wallau
- Departament of Entomology, Aggeu Magalhães Institute (IAM)- FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Bioinformatics Center (NBI), Aggeu Magalhães Institute (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | | | - Anderson da Costa Armstrong
- Collegiate of Medicine, Federal University of the São Francisco Valley – UNIVASF, Petrolina, Pernambuco, Brazil
| | - Rodrigo Feliciano do Carmo
- Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Collegiate of Pharmaceutical Sciences, Federal University of the São Francisco Valley – UNIVASF, Petrolina, Pernambuco, Brazil
| |
Collapse
|
14
|
Mondol SM, Hasib M, Limon MBH, Alam ASMRU. Insights into Omicron's Low Fusogenicity through In Silico Molecular Studies on Spike-Furin Interactions. Bioinform Biol Insights 2023; 17:11779322231189371. [PMID: 37529484 PMCID: PMC10387760 DOI: 10.1177/11779322231189371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant and its subvariants have a unique set of mutations. Two of those mutations (N679 K and P681 H) reside close to the S1 /S2 furin cleavage site (FCS; 685-686). When these mutations reside together, they exert less-efficient membrane fusion than wild type and most other variants of concern such as the Delta variant. Here, we in silico targeted these mutations to find out which of the amino acids and interactions change plays the key role in fusion. To comprehend the epistatic effect of N679 K and P681 H mutations on the spike protein, we in silico constructed three types of spike protein sequences by changing the respective amino acids on 679 and 681 positions (P681 H, N679 K, K679 N-H681 P variants). We then analyzed the binding affinity of furin and spike (Furin-Wild, Furin-Omicron, Furin-P681 H, Furin-N679 K, and Furin-K679 N/H681 P) complexes. Omicron and P681 H variants showed a similar higher binding energy trend compared to the wild type and N679 K. The variation in hydrogen, hydrophobic, and salt bridge bonds between spike protein and furin provided an explanation for the observed low fusogenicity of Omicron. The fate of the epistasis in furin binding and possible cleavage depends on the efficient interaction between FCS in spike and furin catalytic triad, and in addition, the loss of the hydrogen bond between Arg 681 (spike) and Asn 295 (furin) along with inhibitor-like ineffective higher affinity plays an important role in the enzymatic activity.
Collapse
Affiliation(s)
| | - Md Hasib
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | | | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
15
|
Groza C, Totschnig D, Wenisch C, Atamaniuk J, Zoufaly A. A retrospective analysis of clinical features of patients hospitalized with SARS-CoV-2 Omicron variants BA.1 and BA.2. Sci Rep 2023; 13:7896. [PMID: 37193727 DOI: 10.1038/s41598-023-34712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
The causative agent of the ongoing Corona virus disease 2019 (COVID-19) pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has acquired a considerable amount of mutations, leading to changes in clinical manifestations and increased transmission. Recent studies based on animal disease models and data from the general population were reporting a higher pathogenicity of the BA.2 sublineage compared to BA.1. The aim of this study was to provide real world data on patients with the SARS-CoV-2 Omicron BA.1 and BA.2 subvariants treated at our center, highlighting similarities and differences in the clinical disease course. We retrospectively collected and analyzed the data of adult patients admitted with confirmed SARS-CoV-2 infection at the Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria. Patient characteristics including age, underlying diseases, vaccination status and outcome were compared between patients with the BA.1 and BA.2 subvariants. Between January 2022 and May 2022 we included 168 patients infected with Omicron BA.1 and 100 patients with BA.2. Patients admitted with BA.2 were significantly older, more often fully immunized and required less dexamethasone than patients with BA.1. No substantial differences were identified between patients infected with BA.1 and BA.2 regarding BMI, laboratory findings, need for supplemental oxygen, mortality and other evaluated comorbidities excepting active malignancies. The significantly larger percentage of fully immunized patients admitted with BA.2 is pointing to an increased transmissibility of this subvariant, while the comparable outcome of a somewhat older and sicker patient population might be indicative of reduced virulence.
Collapse
Affiliation(s)
- Cristina Groza
- Department of Medicine IV, Klinik Favoriten, Vienna Healthcare Group, Kundratstraße 3, 1100, Vienna, Austria.
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria.
| | - David Totschnig
- Department of Medicine IV, Klinik Favoriten, Vienna Healthcare Group, Kundratstraße 3, 1100, Vienna, Austria
| | - Christoph Wenisch
- Department of Medicine IV, Klinik Favoriten, Vienna Healthcare Group, Kundratstraße 3, 1100, Vienna, Austria
| | - Johanna Atamaniuk
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
- Department of Laboratory Medicine, Klinik Favoriten, Vienna Healthcare Group, Kundratstraße 3, 1100, Vienna, Austria
| | - Alexander Zoufaly
- Department of Medicine IV, Klinik Favoriten, Vienna Healthcare Group, Kundratstraße 3, 1100, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
16
|
Molecular Epidemiology and Diversity of SARS-CoV-2 in Ethiopia, 2020–2022. Genes (Basel) 2023; 14:genes14030705. [PMID: 36980977 PMCID: PMC10047986 DOI: 10.3390/genes14030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Ethiopia is the second most populous country in Africa and the sixth most affected by COVID-19 on the continent. Despite having experienced five infection waves, >499,000 cases, and ~7500 COVID-19-related deaths as of January 2023, there is still no detailed genomic epidemiological report on the introduction and spread of SARS-CoV-2 in Ethiopia. In this study, we reconstructed and elucidated the COVID-19 epidemic dynamics. Specifically, we investigated the introduction, local transmission, ongoing evolution, and spread of SARS-CoV-2 during the first four infection waves using 353 high-quality near-whole genomes sampled in Ethiopia. Our results show that whereas viral introductions seeded the first wave, subsequent waves were seeded by local transmission. The B.1.480 lineage emerged in the first wave and notably remained in circulation even after the emergence of the Alpha variant. The B.1.480 was outcompeted by the Delta variant. Notably, Ethiopia’s lack of local sequencing capacity was further limited by sporadic, uneven, and insufficient sampling that limited the incorporation of genomic epidemiology in the epidemic public health response in Ethiopia. These results highlight Ethiopia’s role in SARS-CoV-2 dissemination and the urgent need for balanced, near-real-time genomic sequencing.
Collapse
|
17
|
Pal S, Mehta P, Pandey A, Ara A, Ghoshal U, Ghoshal UC, Pandey R, Tripathi RK, Yadav PN, Ravishankar R, Kundu TK, Rajender S. Molecular determinants associated with temporal succession of SARS-CoV-2 variants in Uttar Pradesh, India. Front Microbiol 2023; 14:986729. [PMID: 36819024 PMCID: PMC9929466 DOI: 10.3389/fmicb.2023.986729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
The emergence and rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a global crisis that required a detailed characterization of the dynamics of mutational pattern of the viral genome for comprehending its epidemiology, pathogenesis and containment. We investigated the molecular evolution of the SASR-CoV-2 genome during the first, second and third waves of COVID-19 in Uttar Pradesh, India. Nanopore sequencing of the SARS-CoV-2 genome was undertaken in 544 confirmed cases of COVID-19, which included vaccinated and unvaccinated individuals. In the first wave (unvaccinated population), the 20A clade (56.32%) was superior that was replaced by 21A Delta in the second wave, which was more often seen in vaccinated individuals in comparison to unvaccinated (75.84% versus 16.17%, respectively). Subsequently, 21A delta got outcompeted by Omicron (71.8%), especially the 21L variant, in the third wave. We noticed that Q677H appeared in 20A Alpha and stayed up to Delta, D614G appeared in 20A Alpha and stayed in Delta and Omicron variants (got fixed), and several other mutations appeared in Delta and stayed in Omicron. A cross-sectional analysis of the vaccinated and unvaccinated individuals during the second wave revealed signature combinations of E156G, F157Del, L452R, T478K, D614G mutations in the Spike protein that might have facilitated vaccination breach in India. Interestingly, some of these mutation combinations were carried forward from Delta to Omicron. In silico protein docking showed that Omicron had a higher binding affinity with the host ACE2 receptor, resulting in enhanced infectivity of Omicron over the Delta variant. This work has identified the combinations of key mutations causing vaccination breach in India and provided insights into the change of [virus's] binding affinity with evolution, resulting in more virulence in Delta and more infectivity in Omicron variants of SARS-CoV-2. Our findings will help in understanding the COVID-19 disease biology and guide further surveillance of the SARS-CoV-2 genome to facilitate the development of vaccines with better efficacies.
Collapse
Affiliation(s)
- Smita Pal
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankita Pandey
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anam Ara
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Uday C. Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Raj Kamal Tripathi
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prem N. Yadav
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramachandran Ravishankar
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tapas K. Kundu
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow (CSIR-CDRI), Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Singh Rajender, ✉
| |
Collapse
|
18
|
Lovell JF, Baik YO, Choi SK, Lee C, Lee JY, Miura K, Huang WC, Park YS, Woo SJ, Seo SH, Kim JO, Song M, Kim CJ, Choi JK, Kim J, Choo EJ, Choi JH. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med 2022; 20:462. [PMID: 36447243 PMCID: PMC9708508 DOI: 10.1186/s12916-022-02661-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Numerous vaccine strategies are being advanced to control SARS-CoV-2, the cause of the COVID-19 pandemic. EuCorVac-19 (ECV19) is a recombinant protein nanoparticle vaccine that displays the SARS-CoV-2 receptor-binding domain (RBD) on immunogenic nanoliposomes. METHODS Initial study of a phase 2 randomized, observer-blind, placebo-controlled trial to assess the immunogenicity, safety, and tolerance of ECV19 was carried out between July and October 2021. Two hundred twenty-nine participants were enrolled at 5 hospital sites in South Korea. Healthy adults aged 19-75 without prior known exposure to COVID-19 were vaccinated intramuscularly on day 0 and day 21. Of the participants who received two vaccine doses according to protocol, 100 received high-dose ECV19 (20 μg RBD), 96 received low-dose ECV19 (10 μg RBD), and 27 received placebo. Local and systemic adverse events were monitored. Serum was assessed on days 0, 21, and 42 for immunogenicity analysis by ELISA and neutralizing antibody response by focus reduction neutralization test (FRNT). RESULTS Low-grade injection site tenderness and pain were observed in most participants. Solicited systemic adverse events were less frequent, and mostly involved low-grade fatigue/malaise, myalgia, and headache. No clinical laboratory abnormalities were observed. Adverse events did not increase with the second injection and no serious adverse events were solicited by ECV19. On day 42, Spike IgG geometric mean ELISA titers were 0.8, 211, and 590 Spike binding antibody units (BAU/mL) for placebo, low-dose and high-dose ECV19, respectively (p < 0.001 between groups). Neutralizing antibodies levels of the low-dose and high-dose ECV19 groups had FRNT50 geometric mean values of 129 and 316, respectively. Boosting responses and dose responses were observed. Antibodies against the RBD correlated with antibodies against the Spike and with virus neutralization. CONCLUSIONS ECV19 was generally well-tolerated and induced antibodies in a dose-dependent manner that neutralized SARS-CoV-2. The unique liposome display approach of ECV19, which lacks any immunogenic protein components besides the antigen itself, coupled with the lack of increased adverse events during boosting suggest the vaccine platform may be amenable to multiple boosting regimes in the future. Taken together, these findings motivate further investigation of ECV19 in larger scale clinical testing that is underway. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov as # NCT04783311.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Yeong Ok Baik
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Seuk Keun Choi
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Chankyu Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Jeong-Yoon Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Kazutoyo Miura
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.,POP Biotechnologies, Buffalo, NY, USA
| | - Young-Shin Park
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Sun-Je Woo
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Sang Hwan Seo
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Manki Song
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jae-Ki Choi
- Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon, South Korea
| | - Jieun Kim
- Hanyang University College of Medicine, Seoul, South Korea
| | - Eun Ju Choo
- Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Jung-Hyun Choi
- Department of Infectious Diseases, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
19
|
Sarkar MS, Madabhavi I. SARS-CoV-2 variants of concern: a review. Monaldi Arch Chest Dis 2022. [DOI: 10.4081/monaldi.2022.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
The virus that causes severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the genus Beta coronavirus and the family Coronaviridae. The SARS-CoV-2 virus is a positive sense, non-segmented single-strand RNA virus that causes coronavirus disease 2019 (COVID-19), which was first reported in December 2019 in Wuhan, China. COVID-19 is now a worldwide pandemic. Globally, several newer variants have been identified; however, only a few of them are of concern (VOCs). VOCs differ in terms of infectivity, transmissibility, disease severity, drug efficacy, and neutralization efficacy by monoclonal antibodies, convalescent sera, or vaccines. VOCs reported from various parts of the world include B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron). These VOCs are the result of mutations, with some based on spike proteins. Mutations may also cause molecular diagnostic tests to fail to detect the few VOCs, leading to a delayed diagnosis, increased community spread, and delayed treatment. We searched PubMed, EMBASE, Covariant, Stanford variants database, and CINAHL from December 2019 to February 2022 using the following search terms: Variant of Concern, SARS-CoV-2, Omicron, etc. All types of research were chosen. All research methods were considered. This review discusses the various VOCs, as well as their mutations, infectivity, transmissibility, and neutralization efficacy.
Collapse
|
20
|
Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, Wilairatana P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed Pharmacother 2022; 154:113522. [PMID: 36030585 PMCID: PMC9376347 DOI: 10.1016/j.biopha.2022.113522] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Since the start of the COVID-19 pandemic, numerous variants of SARS-CoV-2 have been reported worldwide. The advent of variants of concern (VOCs) raises severe concerns amid the serious containment efforts against COVID-19 that include physical measures, pharmacological repurposing, immunization, and genomic/community surveillance. Omicron variant (B.1.1.529) has been identified as a highly modified, contagious, and crucial variant among the five VOCs of SARS-CoV-2. The increased affinity of the spike protein (S-protein), and host receptor, angiotensin converting enzyme-2 (ACE-2), due to a higher number of mutations in the receptor-binding domain (RBD) of the S-protein has been proposed as the primary reason for the decreased efficacy of majorly available vaccines against the Omicron variant and the increased transmissible nature of the Omicron variant. Because of its significant competitive advantage, the Omicron variant and its sublineages swiftly surpassed other variants to become the dominant circulating lineages in a number of nations. The Omicron variant has been identified as a prevalent strain in the United Kingdom and South Africa. Furthermore, the emergence of recombinant variants through the conjunction of the Omicron variant with other variants or by the mixing of the Omicron variant's sublineages/subvariants poses a major threat to humanity. This raises various issues and hazards regarding the Omicron variant and its sublineages, such as an Omicron variant breakout in susceptible populations among fully vaccinated persons. As a result, understanding the features and genetic implications of this variant is crucial. Hence, we explained in depth the evolution and features of the Omicron variant and analyzed the repercussions of spike mutations on infectiousness, dissemination ability, viral entry mechanism, and immune evasion. We also presented a viewpoint on feasible strategies for precluding and counteracting any future catastrophic emergence and spread of the omicron variant and its sublineages that could result in a detrimental wave of COVID-19 cases.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan 81511, Egypt; Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
21
|
Bhargavan B, Kanmogne GD. SARS-CoV-2 Spike Proteins and Cell-Cell Communication Inhibits TFPI and Induces Thrombogenic Factors in Human Lung Microvascular Endothelial Cells and Neutrophils: Implications for COVID-19 Coagulopathy Pathogenesis. Int J Mol Sci 2022; 23:10436. [PMID: 36142345 PMCID: PMC9499475 DOI: 10.3390/ijms231810436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
In SARS-CoV-2-infected humans, disease progression is often associated with acute respiratory distress syndrome involving severe lung injury, coagulopathy, and thrombosis of the alveolar capillaries. The pathogenesis of these pulmonary complications in COVID-19 patients has not been elucidated. Autopsy study of these patients showed SARS-CoV-2 virions in pulmonary vessels and sequestrated leukocytes infiltrates associated with endotheliopathy and microvascular thrombosis. Since SARS-CoV-2 enters and infects target cells by binding its spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2), and there is evidence that vascular endothelial cells and neutrophils express ACE2, we investigated the effect of S-proteins and cell-cell communication on primary human lung microvascular endothelial cells (HLMEC) and neutrophils expression of thrombogenic factors and the potential mechanisms. Using S-proteins of two different SARS-CoV-2 variants (Wuhan and Delta), we demonstrate that exposure of HLMEC or neutrophils to S-proteins, co-culture of HLMEC exposed to S-proteins with non-exposed neutrophils, or co-culture of neutrophils exposed to S-proteins with non-exposed HLMEC induced transcriptional upregulation of tissue factor (TF), significantly increased the expression and secretion of factor (F)-V, thrombin, and fibrinogen and inhibited tissue factor pathway inhibitor (TFPI), the primary regulator of the extrinsic pathway of blood coagulation, in both cell types. Recombinant (r)TFPI and a thiol blocker (5,5'-dithio-bis-(2-nitrobenzoic acid)) prevented S-protein-induced expression and secretion of Factor-V, thrombin, and fibrinogen. Thrombomodulin blocked S-protein-induced expression and secretion of fibrinogen but had no effect on S-protein-induced expression of Factor-V or thrombin. These results suggests that following SARS-CoV-2 contact with the pulmonary endothelium or neutrophils and endothelial-neutrophil interactions, viral S-proteins induce coagulopathy via the TF pathway and mechanisms involving functional thiol groups. These findings suggest that using rTFPI and/or thiol-based drugs could be a viable therapeutic strategy against SARS-CoV-2-induced coagulopathy and thrombosis.
Collapse
Affiliation(s)
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
22
|
Collins E, Galipeau Y, Arnold C, Bosveld C, Heiskanen A, Keeshan A, Nakka K, Shir-Mohammadi K, St-Denis-Bissonnette F, Tamblyn L, Vranjkovic A, Wood LC, Booth R, Buchan CA, Crawley AM, Little J, McGuinty M, Saginur R, Langlois MA, Cooper CL. Cohort profile: Stop the Spread Ottawa (SSO) -a community-based prospective cohort study on antibody responses, antibody neutralisation efficiency and cellular immunity to SARS-CoV-2 infection and vaccination. BMJ Open 2022; 12:e062187. [PMID: 36691221 PMCID: PMC9461086 DOI: 10.1136/bmjopen-2022-062187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To investigate the robustness and longevity of SARS-CoV-2 immune responses conferred by natural infection and vaccination among priority populations such as immunocompromised individuals and people with post-acute sequelae of COVID-19 in a prospective cohort study (Stop the Spread Ottawa-SSO) in adults living in the Ottawa region. In this paper, we describe the study design, ongoing data collection and baseline characteristics of participants. PARTICIPANTS Since October 2020, participants who tested positive for COVID-19 (convalescents) or at high risk of exposure to the virus (under surveillance) have provided monthly blood and saliva samples over a 10-month period. As of 2 November 2021, 1026 adults had completed the baseline survey and 976 had attended baseline bloodwork. 300 participants will continue to provide bimonthly blood samples for 24 additional months (ie, total follow-up of 34 months). FINDINGS TO DATE The median age of the baseline sample was 44 (IQR 23, range: 18-79) and just over two-thirds (n=688; 67.1%) were female. 255 participants (24.9%) had a history of COVID-19 infection confirmed by PCR and/or serology. Over 600 participants (60.0%) work in high-risk occupations (eg, healthcare, teaching and transportation). 108 participants (10.5%) reported immunocompromising conditions or treatments at baseline (eg, cancer, HIV, other immune deficiency, and/or use of immunosuppressants). FUTURE PLANS SSO continues to yield rich research potential, given the collection of pre-vaccine baseline data and samples from the majority of participants, recruitment of diverse subgroups of interest, and a high level of participant retention and compliance with monthly sampling. The 24-month study extension will maximise opportunities to track SARS-CoV-2 immunity and vaccine efficacy, detect and characterise emerging variants, and compare subgroup humoral and cellular response robustness and persistence.
Collapse
Affiliation(s)
- Erin Collins
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cameron Bosveld
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Aliisa Heiskanen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kiran Nakka
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Khatereh Shir-Mohammadi
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laura Tamblyn
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Leah C Wood
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronald Booth
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Immunology Section, Eastern Ontario Regional Laboratory Association (EORLA), Ottawa, Ontario, Canada
| | - C Arianne Buchan
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Knowledge Synthesis and Application Unit (KSAU), University of Ottawa, Ottawa, Ontario, Canada
| | - Michaeline McGuinty
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Raphael Saginur
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Science Network Research Ethics Board (OHSN-REB), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Coronavirus Variants Rapid Response Network (CoVaRR-Net), Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Abstract
The World Health Organisation has reported that the viral disease known as COVID-19, caused by SARS-CoV-2, is the leading cause of death by a single infectious agent. This narrative review examines certain components of the pandemic: its origins, early clinical data, global and UK-focussed epidemiology, vaccination, variants, and long COVID.
Collapse
Affiliation(s)
- A. D. Blann
- School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, United Kingdom
| | | |
Collapse
|
24
|
Vakil MK, Mansoori Y, Al‐Awsi GRL, Hosseinipour A, Ahsant S, Ahmadi S, Ekrahi M, Montaseri Z, Pezeshki B, Mohaghegh P, Sohrabpour M, Bahmanyar M, Daraei A, Dadkhah Jouybari T, Tavassoli A, Ghasemian A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J Med Virol 2022; 94:4088-4096. [PMID: 35538614 PMCID: PMC9348290 DOI: 10.1002/jmv.27849] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.
Collapse
Affiliation(s)
- Mohammad Kazem Vakil
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Yaser Mansoori
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Ghaidaa Raheem Lateef Al‐Awsi
- University of Al‐QadisiyahCollege of ScienceAl DiwaniyahIraq
- Department of Radiological TechniquesAl‐Mustaqbal University CollegeBabylonIraq
| | - Ali Hosseinipour
- Department of Internal MedicineFasa University of Medical SciencesFasaIran
| | - Samaneh Ahsant
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Sedigheh Ahmadi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Mohammad Ekrahi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Zahra Montaseri
- Department of Infectious DiseasesFasa University of Medical SciencesFasaIran
| | - Babak Pezeshki
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Poopak Mohaghegh
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Mojtaba Sohrabpour
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Maryam Bahmanyar
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of MedicineBabol University of Medical SciencesBabolIran
| | | | | | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
25
|
Ashoor D, Marzouq M, Trabelsi K, Chlif S, Abotalib N, Khalaf NB, Ramadan AR, Fathallah MD. How concerning is a SARS-CoV-2 variant of concern? Computational predictions and the variants labeling system. Front Cell Infect Microbiol 2022; 12:868205. [PMID: 36034694 PMCID: PMC9399656 DOI: 10.3389/fcimb.2022.868205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we evaluated the use of a predictive computational approach for SARS-CoV-2 genetic variations analysis in improving the current variant labeling system. First, we reviewed the basis of the system developed by the World Health Organization (WHO) for the labeling of SARS-CoV-2 genetic variants and the derivative adapted by the United States Centers for Disease Control and Prevention (CDC). Both labeling systems are based on the virus’ major attributes. However, we found that the labeling criteria of the SARS-CoV-2 variants derived from these attributes are not accurately defined and are used differently by the two agencies. Consequently, discrepancies exist between the labels given by WHO and the CDC to the same variants. Our observations suggest that giving the variant of concern (VOC) label to a new variant is premature and might not be appropriate. Therefore, we used a comparative computational approach to predict the effects of the mutations on the virus structure and functions of five VOCs. By linking these data to the criteria used by WHO/CDC for variant labeling, we ascertained that a predictive computational comparative approach of the genetic variations is a good way for rapid and more accurate labeling of SARS-CoV-2 variants. We propose to label all emergent variants, variant under monitoring or variant being monitored (VUM/VBM), and to carry out computational predictive studies with thorough comparison to existing variants, upon which more appropriate and informative labels can be attributed. Furthermore, harmonization of the variant labeling system would be globally beneficial to communicate about and fight the COVID-19 pandemic.
Collapse
Affiliation(s)
- Dana Ashoor
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Maryam Marzouq
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Khaled Trabelsi
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Sadok Chlif
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nasser Abotalib
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ahmed R. Ramadan
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - M-Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
- *Correspondence: M-Dahmani Fathallah,
| |
Collapse
|
26
|
Zahmatkesh S, Sillanpaa M, Rezakhani Y, Wang C. Review of concerned SARS-CoV-2 variants like Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100140. [PMID: 37520798 PMCID: PMC9349052 DOI: 10.1016/j.hazadv.2022.100140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
The coronavirus known as COVID-19, which causes pandemics, is causing a global epidemic at a critical stage today. Furthermore, novel mutations in the SARS-CoV-2 spike protein have been discovered in an entirely new strain, impacting the clinical and epidemiological features of COVID-19. Variants of these viruses can increase the transmission in wastewater, lead to reinfection, and reduce immunity provided by monoclonal antibodies and vaccinations. According to the research, a large quantity of viral RNA was discovered in wastewater, suggesting that wastewater can be a crucial source of epidemiological data and health hazards. The purpose of this paper is to introduce a few basic concepts regarding wastewater surveillance as a starting point for comprehending COVID-19's epidemiological aspects. Next, the observation of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in wastewater is discussed in detail. Secondly, the essential information for the initial, primary, and final treating sewage in SARS-CoV-2 is introduced. Following that, a thorough examination is provided to highlight the newly developed methods for eradicating SARS-CoV-2 using a combination of solar water disinfection (SODIS) and ultraviolet radiation A (UVA (315-400 nm)), ultraviolet radiation B (UVB (280-315 nm)), and ultraviolet radiation C (UVC (100-280 nm)) processes. SARS-CoV-2 eradication requires high temperatures (above 56°C) and UVC. However, SODIS technologies are based on UVA and operate at cooler temperatures (less than 45°C). Hence, it is not appropriate for sewage treatment (or water consumption) to be conducted using SODIS methods in the current pandemic. Finally, SARS-CoV-2 may be discovered in sewage utilizing the wastewater-based epidemiology (WBE) monitoring method.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| | - Yousof Rezakhani
- Department of Civil Engineer in g, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
27
|
Modemann F, Ghandili S, Schmiedel S, Weisel K, Bokemeyer C, Fiedler W. COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress. Cancers (Basel) 2022; 14:3711. [PMID: 35954374 PMCID: PMC9367547 DOI: 10.3390/cancers14153711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
The majority of publications regarding SARS-CoV-2 infections in adult patients with acute leukemia (AL) refer to hematological patients in general and are not focused on acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL). We herein report a review of the current literature on adult AL patients infected with SARS-CoV-2. Overall, SARS-CoV-2-associated mortality ranges from 20-52% in patients with adult AL. AML patients have a particularly high COVID-19-related mortality. Of note, most of the available data relate to the pre-vaccination era and to variants before Omicron. The impact of COVID-19 infections on AL treatment is rarely reported. Based on the few studies available, treatment delay does not appear to be associated with an increased risk of relapse, whereas therapy discontinuation was associated with worse outcomes in AML patients. Therefore, the current recommendations suggest delaying systemic AL treatment in SARS-CoV-2-positive patients until SARS-CoV-2 negativity, if immediate AL treatment is not required. It is recommended to offer vaccination to all AL patients; the reported antibody responses are around 80-96%. Seronegative patients should additionally receive prophylactic administration of anti-SARS-CoV-2 monoclonal antibodies. Patients with AL infected with SARS-CoV-2 should be treated early with antiviral therapy to prevent disease progression and enable the rapid elimination of the virus.
Collapse
Affiliation(s)
- Franziska Modemann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (S.G.); (K.W.); (C.B.); (W.F.)
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Susanne Ghandili
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (S.G.); (K.W.); (C.B.); (W.F.)
| | - Stefan Schmiedel
- The I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (S.G.); (K.W.); (C.B.); (W.F.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (S.G.); (K.W.); (C.B.); (W.F.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (S.G.); (K.W.); (C.B.); (W.F.)
| |
Collapse
|
28
|
De Marco C, Veneziano C, Massacci A, Pallocca M, Marascio N, Quirino A, Barreca GS, Giancotti A, Gallo L, Lamberti AG, Quaresima B, Santamaria G, Biamonte F, Scicchitano S, Trecarichi EM, Russo A, Torella D, Quattrone A, Torti C, Matera G, De Filippo C, Costanzo FS, Viglietto G. Dynamics of Viral Infection and Evolution of SARS-CoV-2 Variants in the Calabria Area of Southern Italy. Front Microbiol 2022; 13:934993. [PMID: 35966675 PMCID: PMC9366435 DOI: 10.3389/fmicb.2022.934993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report on the results of SARS-CoV-2 surveillance performed in an area of Southern Italy for 12 months (from March 2021 to February 2022). To this study, we have sequenced RNA from 609 isolates. We have identified circulating VOCs by Sanger sequencing of the S gene and defined their genotypes by whole-genome NGS sequencing of 157 representative isolates. Our results indicated that B.1 and Alpha were the only circulating lineages in Calabria in March 2021; while Alpha remained the most common variant between April 2021 and May 2021 (90 and 73%, respectively), we observed a concomitant decrease in B.1 cases and appearance of Gamma cases (6 and 21%, respectively); C.36.3 and Delta appeared in June 2021 (6 and 3%, respectively); Delta became dominant in July 2021 while Alpha continued to reduce (46 and 48%, respectively). In August 2021, Delta became the only circulating variant until the end of December 2021. As of January 2022, Omicron emerged and took over Delta (72 and 28%, respectively). No patient carrying Beta, Iota, Mu, or Eta variants was identified in this survey. Among the genomes identified in this study, some were distributed all over Europe (B1_S477N, Alpha_L5F, Delta_T95, Delta_G181V, and Delta_A222V), some were distributed in the majority of Italian regions (B1_S477N, B1_Q675H, Delta_T95I and Delta_A222V), and some were present mainly in Calabria (B1_S477N_T29I, B1_S477N_T29I_E484Q, Alpha_A67S, Alpha_A701S, and Alpha_T724I). Prediction analysis of the effects of mutations on the immune response (i.e., binding to class I MHC and/or recognition of T cells) indicated that T29I in B.1 variant; A701S in Alpha variant; and T19R in Delta variant were predicted to impair binding to class I MHC whereas the mutations A67S identified in Alpha; E484K identified in Gamma; and E156G and ΔF157/R158 identified in Delta were predicted to impair recognition by T cells. In conclusion, we report on the results of SARS-CoV-2 surveillance in Regione Calabria in the period between March 2021 and February 2022, identified variants that were enriched mainly in Calabria, and predicted the effects of identified mutations on host immune response.
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- Carmela De Marco
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Alice Massacci
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- UOSD Biostatistics, Bioinformatics, and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | | | - Luigia Gallo
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- “Mater Domini” University Hospital, Catanzaro, Italy
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- Interdepartmental Center of Services, Molecular Genomics and Pathology, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
- “Mater Domini” University Hospital, Catanzaro, Italy
- *Correspondence: Giuseppe Viglietto
| |
Collapse
|
29
|
Nour D, Rafei R, Lamarca AP, de Almeida LGP, Osman M, Ismail MB, Mallat H, Berry A, Burfin G, Semanas Q, Josset L, Hassan H, Dabboussi F, Lina B, Colson P, Vasconcelos ATR, Hamze M. The Role of Lebanon in the COVID-19 Butterfly Effect: The B.1.398 Example. Viruses 2022; 14:1640. [PMID: 36016262 PMCID: PMC9412248 DOI: 10.3390/v14081640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.
Collapse
Affiliation(s)
- Dalal Nour
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
| | - Alessandra P. Lamarca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, RJ 25651-075, Brazil; (A.P.L.); (L.G.P.d.A.)
| | - Luiz G. P. de Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, RJ 25651-075, Brazil; (A.P.L.); (L.G.P.d.A.)
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
- Faculty of Sciences, Lebanese University, Tripoli 1300, Lebanon
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
| | - Atika Berry
- Head of the Preventive Medicine Department, Ministry of Public Health, Beirut 1001, Lebanon;
| | - Gwendolyne Burfin
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, F-69004 Lyon, France; (G.B.); (Q.S.); (L.J.); (B.L.)
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ. Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Quentin Semanas
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, F-69004 Lyon, France; (G.B.); (Q.S.); (L.J.); (B.L.)
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ. Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Laurence Josset
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, F-69004 Lyon, France; (G.B.); (Q.S.); (L.J.); (B.L.)
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ. Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Hamad Hassan
- Faculty of Public Health, Lebanese University, Beirut 1001, Lebanon;
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, F-69004 Lyon, France; (G.B.); (Q.S.); (L.J.); (B.L.)
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ. Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France;
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Ana Tereza R. Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, RJ 25651-075, Brazil; (A.P.L.); (L.G.P.d.A.)
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (D.N.); (R.R.); (M.O.); (M.B.I.); (H.M.); (F.D.)
| |
Collapse
|
30
|
Smallman-Raynor MR, Cliff AD. Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021. Epidemiol Infect 2022; 150:e145. [PMID: 35855577 PMCID: PMC9353238 DOI: 10.1017/s0950268822001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022] Open
Abstract
This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020-December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population.
Collapse
Affiliation(s)
| | - A. D. Cliff
- Department of Geography, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
31
|
Kamle S, Ma B, Lee CM, Schor G, Zhou Y, Lee CG, Elias JA. Host chitinase 3-like-1 is a universal therapeutic target for SARS-CoV-2 viral variants in COVID-19. eLife 2022; 11:e78273. [PMID: 35735790 PMCID: PMC9273216 DOI: 10.7554/elife.78273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/19/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2), which has caused a worldwide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability, and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics, and/or the ability to induce severe disease. Currently, the delta (δ) and omicron (ο) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause breakthrough infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here, we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta, or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID-19.
Collapse
Affiliation(s)
- Suchitra Kamle
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Bing Ma
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Chang Min Lee
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Gail Schor
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | | |
Collapse
|
32
|
Cardiovascular Tropism and Sequelae of SARS-CoV-2 Infection. Viruses 2022; 14:v14061137. [PMID: 35746609 PMCID: PMC9228192 DOI: 10.3390/v14061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
The extrapulmonary manifestation of coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), became apparent early in the ongoing pandemic. It is now recognized that cells of the cardiovascular system are targets of SARS-CoV-2 infection and associated disease pathogenesis. While some details are emerging, much remains to be understood pertaining to the mechanistic basis by which SARS-CoV-2 contributes to acute and chronic manifestations of COVID-19. This knowledge has the potential to improve clinical management for the growing populations of patients impacted by COVID-19. Here, we review the epidemiology and pathophysiology of cardiovascular sequelae of COVID-19 and outline proposed disease mechanisms, including direct SARS-CoV-2 infection of major cardiovascular cell types and pathogenic effects of non-infectious viral particles and elicited inflammatory mediators. Finally, we identify the major outstanding questions in cardiovascular COVID-19 research.
Collapse
|
33
|
Lupașcu (Moisi) RE, Ilie MI, Velescu BȘ, Udeanu DI, Sultana C, Ruță S, Arsene AL. COVID-19-Current Therapeutical Approaches and Future Perspectives. Processes (Basel) 2022; 10:1053. [DOI: 10.3390/pr10061053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ongoing pandemic of coronavirus disease (COVID-19) stimulated an unprecedented international collaborative effort for rapid diagnosis, epidemiologic surveillance, clinical management, prevention, and treatment. This review focuses on the current and new therapeutical approaches, summarizing the viral structure and life cycle, with an emphasis on the specific steps that can be interfered by antivirals: (a) inhibition of viral entry with anti-spike monoclonal antibodies; (b) inhibition of the RNA genome replication with nucleosidic analogs blocking the viral RNA polymerase; (c) inhibition of the main viral protease (Mpro), which directs the formation of the nonstructural proteins. An overview of the immunomodulatory drugs currently used for severe COVID-19 treatment and future therapeutical options are also discussed.
Collapse
Affiliation(s)
- Raluca Elisabeta Lupașcu (Moisi)
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Marina Ionela Ilie
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Sultana
- Department of Virology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 sos Mihai Bravu, 030304 Bucharest, Romania
| | - Simona Ruță
- Department of Virology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 sos Mihai Bravu, 030304 Bucharest, Romania
| | - Andreea Letiția Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
34
|
Zuo F, Abolhassani H, Du L, Piralla A, Bertoglio F, de Campos-Mata L, Wan H, Schubert M, Cassaniti I, Wang Y, Sammartino JC, Sun R, Vlachiotis S, Bergami F, Kumagai-Braesch M, Andréll J, Zhang Z, Xue Y, Wenzel EV, Calzolai L, Varani L, Rezaei N, Chavoshzadeh Z, Baldanti F, Hust M, Hammarström L, Marcotte H, Pan-Hammarström Q. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat Commun 2022; 13:2670. [PMID: 35562366 PMCID: PMC9106736 DOI: 10.1038/s41467-022-30340-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.
Collapse
Affiliation(s)
- Fanglei Zuo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federico Bertoglio
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leire de Campos-Mata
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Maren Schubert
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Yating Wang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Josè Camilla Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rui Sun
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Federica Bergami
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Juni Andréll
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Zhaoxia Zhang
- Department of Aging Neurology orthopedics, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Esther Veronika Wenzel
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Abcalis GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra, Italy
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
35
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|
36
|
Amodio E, Vella G, Restivo V, Casuccio A, Vitale F. Effectiveness of mRNA COVID-19 Vaccination on SARS-CoV-2 Infection and COVID-19 in Sicily over an Eight-Month Period. Vaccines (Basel) 2022; 10:426. [PMID: 35335058 PMCID: PMC8949048 DOI: 10.3390/vaccines10030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
In order to reduce the spread of SARS-CoV-2 infection and the burden of disease, since 27 December 2020, Sicily has introduced a regional COVID-19 vaccination campaign. This study aimed at estimating the effectiveness of mRNA COVID-19 vaccines on SARS-CoV-2 infections and COVID-19. A retrospective cohort study was carried out on 3,966,976 Sicilian adults aged 18 years or more, who were followed-up from 1 January 2021 to 30 September 2021. The risk of SARS-CoV-2 infection, severe COVID-19, and COVID-19 death or intubation during the study period was compared among vaccinated with two mRNA doses and unvaccinated individuals. Cox regression, adjusted for age and sex, and a joint-point analysis on rate trends were performed. Overall, 2,469,320 (62.2%) subjects have been vaccinated and a total of 103,078 (2.6% of the entire population) SARS-CoV-2-positive subjects have been observed including 4693 (0.12%) severe COVID-19, 277 (0.01%) intubated, and 2649 (0.07%) deaths. After two months from vaccination, adjusted vaccine effectiveness was 81.3% against SARS-CoV-2 infection, 96.1% against severe COVID-19, and 93.4% against intubation/death. During the eight-month follow-up, statistically significant decreasing effectiveness trends were observed for all the evaluated outcomes (-4.76% per month against SARS-CoV-2 infection; -2.27% per month against severe COVID-19 and -2.26% per month against COVID-19 intubation/death). The study results confirm that mRNA COVID-19 vaccines have high real-world effectiveness, especially in the first months after vaccination. The vaccine effectiveness decreases over time and, even if the decrease is relatively small against severe outcomes, the increasing protection wane suggests the need for booster vaccination campaigns.
Collapse
Affiliation(s)
- Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Piazza, Italy; (G.V.); (V.R.); (A.C.); (F.V.)
| | | | | | | | | | | |
Collapse
|
37
|
Kamle S, Ma B, Lee CM, Schor G, Zhou Y, Lee CG, Elias JA. Host Chitinase 3-like-1 is a Universal Therapeutic Target for SARS-CoV-2 Viral Variants in COVID 19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.21.477274. [PMID: 35118470 PMCID: PMC8811903 DOI: 10.1101/2022.01.21.477274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
COVID 19 is the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; SC2) which has caused a world-wide pandemic with striking morbidity and mortality. Evaluation of SC2 strains demonstrated impressive genetic variability and many of these viral variants are now defined as variants of concern (VOC) that cause enhanced transmissibility, decreased susceptibility to antibody neutralization or therapeutics and or the ability to induce severe disease. Currently, the delta (δ) and omicron (o) variants are particularly problematic based on their impressive and unprecedented transmissibility and ability to cause break through infections. The delta variant also accumulates at high concentrations in host tissues and has caused waves of lethal disease. Because studies from our laboratory have demonstrated that chitinase 3-like-1 (CHI3L1) stimulates ACE2 and Spike (S) priming proteases that mediate SC2 infection, studies were undertaken to determine if interventions that target CHI3L1 are effective inhibitors of SC2 viral variant infection. Here we demonstrate that CHI3L1 augments epithelial cell infection by pseudoviruses that express the alpha, beta, gamma, delta or omicron S proteins and that the CHI3L1 inhibitors anti-CHI3L1 and kasugamycin inhibit epithelial cell infection by these VOC pseudovirus moieties. Thus, CHI3L1 is a universal, VOC-independent therapeutic target in COVID 19.
Collapse
|
38
|
Li Y, Chen Y, Wei M, Wei C. Preclinical In Silico Evidence Indicates the Pharmacological Targets and Mechanisms of Mogroside V in Patients With Ovarian Cancer and Coronavirus Disease 2019. Front Endocrinol (Lausanne) 2022; 13:845404. [PMID: 35464051 PMCID: PMC9019927 DOI: 10.3389/fendo.2022.845404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The borderless transmission of coronavirus remains uncontrolled globally. The uncharted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant reduces the therapeutic efficacy of vaccines against coronavirus disease 2019 (COVID-19). Clinical observations suggest that tumour cases are highly infected with coronavirus, possibly due to immunologic injury, causing a higher COVID-19-related death toll. Presently, screening of candidate medication against coronavirus is in progress. Mogroside V, a bioactive ingredient of Siraitia grosvenorii, has been reported in China to have lung-protective and anticancer effects. The current study used network pharmacology and molecular docking to unlock the potential drug targets and remedial mechanisms of mogroside V against patients with ovarian cancer with COVID-19. We identified 24 related targets of mogroside V in patients with ovarian cancer and COVID-19 and characterised another 10 core targets of mogroside V against COVID-19 ovarian cancer, including Jun, IL2, HSP90AA1, AR, PRKCB, VEGFA, TLR9, TLR7, STAT3, and PRKCA. The core targets' biological processes and signalling pathways were revealed by enrichment analysis. Molecular docking suggested favourable docking between core target protein and mogroside V, including vascular endothelial growth factor A (VEGFA). These findings indicated that mogroside V might be a potential therapeutic agent in the mitigation of COVID-19 ovarian cancer.
Collapse
Affiliation(s)
- Yongming Li
- Department of Gynecology, Guigang Maternal and Child Health Care Hospital, Guigang, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Mulan Wei
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chaohe Wei
- Department of Pharmacy, Guigang City People’s Hospital, the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
- *Correspondence: Chaohe Wei,
| |
Collapse
|