1
|
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int J Mol Sci 2024; 25:10430. [PMID: 39408761 PMCID: PMC11476764 DOI: 10.3390/ijms251910430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China;
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
2
|
Zhang L, Yang H, Feng T, Xu Y, Tang X, Yang X, Wang-Pruski G, Zhang Z. Root suberization in the response mechanism of melon to autotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108787. [PMID: 38850731 DOI: 10.1016/j.plaphy.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Continuous cropping obstacles poses significant challenges for melon cultivation, with autotoxicity being a primary inducer. Suberization of cells or tissues is a vital mechanism for plant stress response. Our study aimed to elucidate the potential mechanism of root suberization in melon's response to autotoxicity. Cinnamic acid was used to simulate autotoxicity. Results showed that autotoxicity worsened the root morphology and activity of seedlings. Significant reductions were observed in root length, diameter, surface area, volume and fork number compared to the control in the later stage of treatment, with a decrease ranging from 20% to 50%. The decrease in root activity ranged from 16.74% to 29.31%. Root suberization intensified, and peripheral suberin deposition became more prominent. Autotoxicity inhibited phenylalanineammonia-lyase activity, the decrease was 50% at 16 h. The effect of autotoxicity on cinnamylalcohol dehydrogenase and cinnamate 4-hydroxylase activity showed an initial increase followed by inhibition, resulting in reductions of 34.23% and 44.84% at 24 h, respectively. The peroxidase activity only significantly increased at 24 h, with an increase of 372%. Sixty-three differentially expressed genes (DEGs) associated with root suberization were identified, with KCS, HCT, and CYP family showing the highest gene abundance. GO annotated DEGs into nine categories, mainly related to binding and catalytic activity. DEGs were enriched in 27 KEGG pathways, particularly those involved in keratin, corkene, and wax biosynthesis. Seven proteins, including C4H, were centrally positioned within the protein interaction network. These findings provide insights for improving stress resistance in melons and breeding stress-tolerant varieties.
Collapse
Affiliation(s)
- Lizhen Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hao Yang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Taojie Feng
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Yuxuan Xu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Xianhuan Tang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Xinyue Yang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | - Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Korek M, Uhrig RG, Marzec M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J Appl Genet 2024:10.1007/s13353-024-00885-w. [PMID: 38877382 DOI: 10.1007/s13353-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.
Collapse
Affiliation(s)
- Magdalena Korek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
4
|
Keyl A, Kwas V, Lewandowska M, Herrfurth C, Kunst L, Feussner I. AtMYB41 acts as a dual-function transcription factor that regulates the formation of lipids in an organ- and development-dependent manner. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:568-582. [PMID: 38634447 DOI: 10.1111/plb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The plant cuticle controls non-stomatal water loss and can serve as a barrier against biotic agents, whereas the heteropolymer suberin and its associated waxes are deposited constitutively at specific cell wall locations. While several transcription factors controlling cuticle formation have been identified, those involved in the transcriptional regulation of suberin biosynthesis remain poorly characterized. The major goal of this study was to further analyse the function of the R2R3-Myeloblastosis (MYB) transcription factor AtMYB41 in formation of the cuticle, suberin, and suberin-associated waxes throughout plant development. For functional analysis, the organ-specific expression pattern of AtMYB41 was analysed and Atmyb41ge alleles were generated using the CRISPR/Cas9 system. These were investigated for root growth and water permeability upon stress. In addition, the fatty acid, wax, cutin, and suberin monomer composition of different organs was evaluated by gas chromatography. The characterization of Atmyb41ge mutants revealed that AtMYB41 negatively regulates the production of cuticular lipids and fatty acid biosynthesis in leaves and seeds, respectively. Remarkably, biochemical analyses indicate that AtMYB41 also positively regulates the formation of cuticular waxes in stems of Arabidopsis thaliana. Overall, these results suggest that the AtMYB41 acts as a negative regulator of cuticle and fatty acid biosynthesis in leaves and seeds, respectively, but also as a positive regulator of wax production in A. thaliana stems.
Collapse
Affiliation(s)
- A Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - V Kwas
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - M Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - C Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - L Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
5
|
Gully K, Berhin A, De Bellis D, Herrfurth C, Feussner I, Nawrath C. The GPAT4/ 6/ 8 clade functions in Arabidopsis root suberization nonredundantly with the GPAT5/7 clade required for suberin lamellae. Proc Natl Acad Sci U S A 2024; 121:e2314570121. [PMID: 38739804 PMCID: PMC11127019 DOI: 10.1073/pnas.2314570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.
Collapse
Affiliation(s)
- Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Alice Berhin
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
- Electron Microscopy Facility, University of Lausanne, LausanneCH-1015, Switzerland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
6
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Li X, Xu Y, Zhang J, Xu K, Zheng X, Luo J, Lu J. Integrative physiology and transcriptome reveal salt-tolerance differences between two licorice species: Ion transport, Casparian strip formation and flavonoids biosynthesis. BMC PLANT BIOLOGY 2024; 24:272. [PMID: 38605293 PMCID: PMC11007891 DOI: 10.1186/s12870-024-04911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ying Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiade Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ke Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xuerong Zheng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiafen Luo
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiahui Lu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
8
|
Grünhofer P, Heimerich I, Pohl S, Oertel M, Meng H, Zi L, Lucignano K, Bokhari SNH, Guo Y, Li R, Lin J, Fladung M, Kreszies T, Stöcker T, Schoof H, Schreiber L. Suberin deficiency and its effect on the transport physiology of young poplar roots. THE NEW PHYTOLOGIST 2024; 242:137-153. [PMID: 38366280 DOI: 10.1111/nph.19588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Oertel
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Hongjun Meng
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lin Zi
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Kevin Lucignano
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Syed Nadeem Hussain Bokhari
- Department Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Czech Academy of Sciences, Biology Centre, Branišovská 31/1160, CZ-37005, České Budějovice, Czech Republic
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Tino Kreszies
- Department of Crop Sciences, Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
9
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Kim RJ, Han S, Kim HJ, Hur JH, Suh MC. Tetracosanoic acids produced by 3-ketoacyl-CoA synthase 17 are required for synthesizing seed coat suberin in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1767-1780. [PMID: 37769208 DOI: 10.1093/jxb/erad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin. Histochemical analysis of Arabidopsis plants expressing GUS (β-glucuronidase) under the control of the KCS17 promoter revealed predominant GUS expression in seed coats, petals, stigma, and developing pollen. The expression of KCS17:eYFP (enhanced yellow fluorescent protein) driven by the KCS17 promoter was observed in the outer integument1 of Arabidopsis seed coats. The KCS17:eYFP signal was detected in the endoplasmic reticulum of tobacco epidermal cells. The levels of C22 VLCFAs and their derivatives, primary alcohols, α,ω-alkane diols, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids increased by ~2-fold, but those of C24 VLCFAs, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids were reduced by half in kcs17-1 and kcs17-2 seed coats relative to the wild type (WT). The seed coat of kcs17 displayed decreased autofluorescence under UV and increased permeability to tetrazolium salt compared with the WT. Seed germination and seedling establishment of kcs17 were more delayed by salt and osmotic stress treatments than the WT. KCS17 formed homo- and hetero-interactions with KCR1, PAS2, and ECR, but not with PAS1. Therefore, KCS17-mediated VLCFA synthesis is required for suberin layer formation in Arabidopsis seed coats.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Sol Han
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hyeon Jun Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hyun Hur
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
11
|
Zhang Y, Song Z, Zhao H, Chen H, Zhao B. Integrative physiological, transcriptomic and metabolomic analysis reveals how the roots of two ornamental Hydrangea macrophylla cultivars cope with lead (Pb) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168615. [PMID: 37984650 DOI: 10.1016/j.scitotenv.2023.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Lead (Pb) soil contamination has caused serious ecological and environmental issues. Hydrangea macrophylla is a potential Pb-contaminated soil remediation plant, however, their Pb stress defense mechanism is largely unknown. Here, the physiology, transcriptomic and metabolome of two H. macrophylla cultivars (ML, Pb-sensitive cultivar; JC, Pb-resistant cultivar) under Pb stress were investigated. The results demonstrated that JC performed superiorly, with activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were 1.25, 2.84, and 1.67 times higher than those of ML after Pb treatment, respectively, and the amount of soluble sugar in JC increased by 231.34 % compared with that in ML. The electrical conductivity (EC) value of the root exudates of JC was 43.71 % lower than that of ML under Pb stress. The non-targeted metabolomics analysis revealed 193 metabolites grouped into nine categories. Pb stress-induced differential expression of the 37 metabolites, among which the major metabolites up-regulated in ML were organic acids, while in JC, these were carbohydrates, fatty acids, organic acids and lipids. The transcriptomic analysis revealed that Pb exposure induced 1075 and 1314 differentially expressed genes (DEGs) in JC and ML, respectively. According to the functional annotation results, hub genes were primarily enriched in carbohydrate metabolism, root growth, and plant resistance to external stresses. A conjoint analysis of the two omics indicated that the cutin, suberine and wax biosynthesis pathway in JC played an essential role in Pb detoxification. These findings clarify the resistance mechanism of H. macrophylla to Pb stress and open up a new avenue for breeding H. macrophylla Pb-resistant cultivars.
Collapse
Affiliation(s)
- Yuyu Zhang
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Ziyi Song
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huiqi Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Huan Chen
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Bing Zhao
- The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
13
|
Liu T, Kreszies T. The exodermis: A forgotten but promising apoplastic barrier. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154118. [PMID: 37871477 DOI: 10.1016/j.jplph.2023.154118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The endodermis and exodermis are widely recognized as two important barriers in plant roots that play a role in regulating the movement of water and ions. While the endodermis is present in nearly all plant roots, the exodermis, characterized by Casparian strips and suberin lamellae is absent in certain plant species. The exodermis can be classified into three types: uniform, dimorphic, and inducible exodermis. Apart from its role in water and ion transport, the exodermis acts as a protective barrier against harmful substances present in the external environment. Furthermore, the exodermis is a complex barrier influenced by various environmental factors, and its resistance to water and ions varies depending on the type of exodermis and the maturity of the root. Therefore, investigations concerning the exodermis necessitate a plant-specific approach. However, our current understanding of the exodermal physiological functions and molecular mechanisms governing its development is limited due to the absence of an exodermis in the model plant Arabidopsis. Due to that, unfortunately, the exodermis has been largely overlooked until now. In this review, we aim to summarize the current fundamental knowledge regarding the exodermis in common research used crop species and propose suggestions for future research endeavors.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of Applied Plant Nutrition, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tino Kreszies
- Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| |
Collapse
|
14
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
15
|
Liu L, Geng P, Jin X, Wei X, Xue J, Wei X, Zhang L, Liu M, Zhang L, Zong W, Mao L. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam ( Dioscorea opposita) tubers. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:691-700. [PMID: 37437564 DOI: 10.1071/fp22280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Wounds on Chinese yam (Dioscorea opposita ) tubers can ocurr during harvest and handling, and rapid suberisation of the wound is required to prevent pathogenic infection and desiccation. However, little is known about the causal relationship among suberin deposition, relevant gene expressions and endogenous phytohormones levels in response to wounding. In this study, the effect of wounding on phytohormones levels and the expression profiles of specific genes involved in wound-induced suberisation were determined. Wounding rapidly increased the expression levels of genes, including PAL , C4H , 4CL , POD , KCSs , FARs , CYP86A1 , CYP86B1 , GPATs , ABCGs and GELPs , which likely involved in the biosynthesis, transport and polymerisation of suberin monomers, ultimately leading to suberin deposition. Wounding induced phenolics biosynthesis and being polymerised into suberin poly(phenolics) (SPP) in advance of suberin poly(aliphatics) (SPA) accumulation. Specifically, rapid expression of genes (e.g. PAL , C4H , 4CL , POD ) associated with the biosynthesis and polymerisation of phenolics, in consistent with SPP accumulation 3days after wounding, followed by the massive accumulation of SPA and relevant gene expressions (e.g. KCSs , FARs , CYP86A1 /B1 , GPATs , ABCGs , GELPs ). Additionally, wound-induced abscisic acid (ABA) and jasmonic acid (JA) consistently correlated with suberin deposition and relevant gene expressions indicating that they might play a central role in regulating wound suberisation in yam tubers.
Collapse
Affiliation(s)
- Linyao Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Ping Geng
- College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xueyuan Jin
- College of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Jing Xue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xiaobo Wei
- School of Food and Wine, Ningxia University, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, 750021, China
| | - Lihua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare Industry, Wenzhou 325300, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Zhang J, Zhang C, Li X, Liu ZY, Liu X, Wang CL. Comprehensive analysis of KCS gene family in pear reveals the involvement of PbrKCSs in cuticular wax and suberin synthesis and pear fruit skin formation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01371-3. [PMID: 37523053 DOI: 10.1007/s11103-023-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. β-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
17
|
Grünhofer P, Heimerich I, Herzig L, Pohl S, Schreiber L. Apoplastic barriers of Populus × canescens roots in reaction to different cultivation conditions and abiotic stress treatments. STRESS BIOLOGY 2023; 3:24. [PMID: 37676401 PMCID: PMC10441858 DOI: 10.1007/s44154-023-00103-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 09/08/2023]
Abstract
Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus × canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lena Herzig
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
18
|
The combination treatment of chlorogenic acid and sodium alginate coating could accelerate the wound healing of pear fruit by promoting the metabolic pathway of phenylpropane. Food Chem 2023; 414:135689. [PMID: 36809727 DOI: 10.1016/j.foodchem.2023.135689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Water loss and microbial infection induced by mechanical injury are the main sources of harvested loss of fruits and vegetables. Plenty studies have shown that regulating phenylpropane-related metabolic pathways can effectively accelerate wound healing. The combination treatment of chlorogenic acid and sodium alginate coating on postharvest wound healing of pear fruit were investigated in this work. The result shows combination treatment reduced weight loss and disease index of the pears, enhanced texture of healing tissues, maintained the integrity of cell membrane system. Moreover, chlorogenic acid increased the content of total phenols and flavonoids, and ultimately leads to the accumulation of suberin poly phenolic (SPP) and lignin around wound cell wall. Activities of phenylalanine metabolism-related enzymes (PAL, C4H, 4CL, CAD, POD and PPO) in wound-healing tissue were enhanced. The contents of major substrates such as trans-cinnamic, p-coumaric, caffeic, and ferulic acids also increased. The presented results suggested that the combination treatment of chlorogenic acid and sodium alginate coating stimulated wound healing in pears by elevating the phenylpropanoid metabolism pathway, so that maintain high postharvest fruit quality.
Collapse
|
19
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
20
|
Li J, Wang Q, Wang Y, Wu X, Liu Y, Wan M, Wang L, Wang X, Zhang C, Wang X, Tang X, Heng W. Identification of nsLTP family in Chinese white pear (Pyrus bretschneideri) reveals its potential roles in russet skin formation. PLANTA 2023; 257:113. [PMID: 37165276 DOI: 10.1007/s00425-023-04153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Identification of PbLTP genes in pear and functional characterization of PbLTP4 in the transport of suberin monomers of russet skin formation. Non-specific lipid-transfer protein (nsLTP) is an abundant and diverse alkaline small molecule protein in the plant kingdom with complex and diverse biophysiological functions, such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. Up to now, only a tiny fraction of nsLTPs have been functionally identified, and the distribution of nsLTPs in pear (Pyrus bretschneideri) (PbLTPs) has not been fully characterized. In this study, the genome-wide analysis of the nsLTP gene family in the pear genome identified 67 PbLTP proteins, which could be divided into six types (1, 2, C, D, E, and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. In addition, PbLTP4 was highly expressed in russet pear skin compared with green skin, which was located in the plasma membrane. Coexpression network analysis showed that PbLTP4 closely related to suberin biosynthetic genes. The biological function of PbLTP4 in promoting suberification has been demonstrated by overexpression in Arabidopsis. Identification of suberin monomers showed that PbLTP4 promotes suberification by regulating 9,12-octadecadienoic acid and hexadecanoic acid transport. These results provide helpful insights into the characteristics of PbLTP genes and their biological function in the transport of suberin monomers of russet skin formation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yajing Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiexuan Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xueqian Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
21
|
Kashyap A, Jiménez-Jiménez Á, Figueras M, Serra O, Valls M, Coll NS. The Tomato Feruloyl Transferase FHT Promoter Is an Accurate Identifier of Early Development and Stress-Induced Suberization. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091890. [PMID: 37176949 PMCID: PMC10181283 DOI: 10.3390/plants12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
As a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (β-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| |
Collapse
|
22
|
Xu X, Guerriero G, Domergue F, Beine-Golovchuk O, Cocco E, Berni R, Sergeant K, Hausman JF, Legay S. Characterization of MdMYB68, a suberin master regulator in russeted apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1143961. [PMID: 37021306 PMCID: PMC10067606 DOI: 10.3389/fpls.2023.1143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. METHOD To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. RESULTS MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. DISCUSSION Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Frederic Domergue
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) – Unité Mixte de Recherche (UMR) 5200, Laboratoire de biogenèse Membranaire, Bâtiment A3 ‐ Institut Natitonal de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave d’Ornon, France
| | - Olga Beine-Golovchuk
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Roberto Berni
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
23
|
Murgia I, Midali A, Cimini S, De Gara L, Manasherova E, Cohen H, Paucelle A, Morandini P. The Arabidopsis thaliana Gulono-1,4 γ-lactone oxidase 2 (GULLO2) facilitates iron transport from endosperm into developing embryos and affects seed coat suberization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:712-723. [PMID: 36809732 DOI: 10.1016/j.plaphy.2023.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants synthesize ascorbate (ASC) via the D-mannose/L-galactose pathway whereas animals produce ASC and H2O2via the UDP-glucose pathway, with Gulono-1,4 γ-lactone oxidases (GULLO) as the last step. A. thaliana has seven isoforms, GULLO1-7; previous in silico analysis suggested that GULLO2, mostly expressed in developing seeds, might be involved in iron (Fe) nutrition. We isolated atgullo2-1 and atgullo2-2 mutants, quantified ASC and H2O2 in developing siliques, Fe(III) reduction in immature embryos and seed coats. Surfaces of mature seed coats were analysed via atomic force and electron microscopies; suberin monomer and elemental compositions of mature seeds, including Fe, were profiled via chromatography and inductively coupled plasma-mass spectrometry. Lower levels of ASC and H2O2 in atgullo2 immature siliques are accompanied by an impaired Fe(III) reduction in seed coats and lower Fe content in embryos and seeds; atgullo2 seeds displayed reduced permeability and higher levels of C18:2 and C18:3 ω-hydroxyacids, the two predominant suberin monomers in A. thaliana seeds. We propose that GULLO2 contributes to ASC synthesis, for Fe(III) reduction into Fe(II). This step is critical for Fe transport from endosperm into developing embryos. We also show that alterations in GULLO2 activity affect suberin biosynthesis and accumulation in the seed coat.
Collapse
Affiliation(s)
- Irene Murgia
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Alessia Midali
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Alexis Paucelle
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026, Versailles, Route de Saint-Cyr Cedex, France
| | - Piero Morandini
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
24
|
Zhang J, Liu ZY, Zhang YF, Zhang C, Li X, Liu X, Wang CL. PpyMYB144 transcriptionally regulates pear fruit skin russeting by activating the cytochrome P450 gene PpyCYP86B1. PLANTA 2023; 257:69. [PMID: 36854938 DOI: 10.1007/s00425-023-04102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
PpyMYB144 directly activates the promoter of PpyCYP86B1, promotes the synthesis of α, ω-diacids, and involves in pear fruit skin russeting. Russeting is an economically important surface disorder in pear (Pyrus pyrifolia) fruit. Previous research has demonstrated that suberin is the pivotal chemical component contributing to pear fruit skin russeting, and fruit bagging treatment effectively reduces the amount of suberin of fruits, and thereby reduces the russeting phenotype. However, the mechanisms of pear fruit skin russeting remain largely unclear, particularly the transcriptional regulation. Here, we dissected suberin concentration and composition of pear fruits along fruit development and confirmed that α, ω-diacids are the predominant constituents in russeted pear fruit skins. Two cytochrome P450 monooxygenase (CYP) family genes (PpyCYP86A1 and PpyCYP86B1) and nine MYB genes were isolated from pear fruit. Expressions of PpyCYP86A1, PpyCYP86B1, and five MYB genes (PpyMYB34, PpyMYB138, PpyMYB138-like, PpyMYB139, and PpyMYB144) were up-regulated during fruit russeting and showed significant correlations with the changes of α, ω-diacids. In addition, dual-luciferase assays indicated that PpyMYB144 could trans-activate the promoter of PpyCYP86B1, and the activation was abolished by motif mutagenesis of AC element on the PpyCYP86B1 promoter. Further, Agrobacterium-mediated transient expression of PpyCYP86B1 and PpyMYB144 in pear fruits induced the deposition of aliphatic suberin. Thus, PpyMYB144 is a novel direct activator of PpyCYP86B1 and contributes to pear fruit skin russeting.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Yi-Fan Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
25
|
Grünhofer P, Schreiber L. Cutinized and suberized barriers in leaves and roots: Similarities and differences. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153921. [PMID: 36780757 DOI: 10.1016/j.jplph.2023.153921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Anatomical, histochemical, chemical, and biosynthetic similarities and differences of cutinized and suberized plant cell walls are presented and reviewed in brief. Based on this, the functional properties of cutinized and suberized plant cell walls acting as transport barriers are compared and discussed in more detail. This is of general importance because fundamental misconceptions about relationships in plant-environment water relations are commonly encountered in the scientific literature. It will be shown here, that cuticles represent highly efficient apoplastic transport barriers significantly reducing the diffusion of water and dissolved compounds. The transport barrier of cuticles is mainly established by the deposition of cuticular waxes. Upon wax extraction, with the cutin polymer remaining, cuticular permeability for water and dissolved non-ionized and lipophilic solutes are increasing by 2-3 orders of magnitude, whereas polar and charged substances (e.g., nutrient ions) are only weakly affected (2- to 3-fold increases in permeability). Suberized apoplastic barriers without the deposition of wax are at least as permeable as the cutin polymer matrix without waxes and hardly offer any resistance to the free movement of water. Only upon the deposition of significant amounts of wax, as it is the case with suberized periderms exposed to the atmosphere, an efficient transport barrier for water can be established by suberized cell walls. Comparing the driving forces (gradients between water potentials inside leaves and roots and the surrounding environment) for water loss acting on leaves and roots, it is shown that leaves must have a genetically pre-defined highly efficient transpiration barrier fairly independent from rapidly changing environmental influences. Roots, in most conditions facing a soil environment with relative humidities very close to 100%, are orders of magnitude more permeable to water than leaf cuticles. Upon desiccation, the permanent wilting point of plants is defined as -1.5 MPa, which still corresponds to nearly 99% relative humidity in soil. Thus, the main reason for plant water stress leading to dehydration is the inability of root tissues to decrease their internal water potential to values more negative than -1.5 MPa and not the lack of a transport barrier for water in roots and leaves. Taken together, the commonly mentioned concepts that a drought-induced increase of cuticular wax or root suberin considerably strengthens the apoplastic leaf or root transport barriers and thus aids in water conservation appears highly questionable.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
26
|
Woolfson KN, Zhurov V, Wu T, Kaberi KM, Wu S, Bernards MA. Transcriptomic analysis of wound-healing in Solanum tuberosum (potato) tubers: Evidence for a stepwise induction of suberin-associated genes. PHYTOCHEMISTRY 2023; 206:113529. [PMID: 36473515 DOI: 10.1016/j.phytochem.2022.113529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/25/2023]
Abstract
Suberin deposition involves both phenolic and aliphatic polymer biosynthesis and deposition in the same tissue. Therefore, any consideration of exploiting suberin for crop enhancement (e.g., enhanced storage, soil borne disease resistance) requires knowledge of both phenolic and aliphatic component biosynthesis and their coordinated, temporal deposition. In the present study, we use a wound-healing potato tuber system to explore global transcriptome changes during the early stages of wound-healing. Wounding leads to initial and substantial transcriptional changes that follow distinctive temporal patterns - primary metabolic pathways were already functional, or up-regulated immediately, and maintained at levels that would allow for precursor carbon skeletons and energy to feed into downstream metabolic processes. Genes involved in pathways for phenolic production (i.e., the shikimate pathway and phenylpropanoid metabolism) were up-regulated early while those involved in aliphatic suberin production (i.e., fatty acid biosynthesis and modification) were transcribed later into the time course. The pattern of accumulation of genes associated with ABA biosynthesis and degradation steps support a role for ABA in regulating aliphatic suberin production. Evaluation of putative Casparian strip membrane-like genes pinpointed wound-responsive candidates that may mediate the suberin deposition process.
Collapse
Affiliation(s)
- Kathlyn N Woolfson
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Tian Wu
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Karina M Kaberi
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Stephanie Wu
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B7.
| |
Collapse
|
27
|
Shi H, Liu Y, Ding A, Wang W, Sun Y. Induced defense strategies of plants against Ralstonia solanacearum. Front Microbiol 2023; 14:1059799. [PMID: 36778883 PMCID: PMC9910360 DOI: 10.3389/fmicb.2023.1059799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Plants respond to Ralstonia solanacearum infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation. When R. solanacearum secrete cell wall degrading enzymes, plants also sense the status of cell wall fragments through the cell wall integrity (CWI) system, which activates deep-seated defense responses. In addition, plants also fight against R. solanacearum infestation by regulating the distribution of metabolic networks to increase the production of resistant metabolites and reduce the production of metabolites that are easily exploited by R. solanacearum. We review the strategies used by plants to induce resistance in response to R. solanacearum infestation. In particular, we highlight the importance of plant-induced physical and chemical defenses as well as cell wall defenses in the fight against R. solanacearum.
Collapse
Affiliation(s)
- Haoqi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- The Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Liu
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Weifeng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
28
|
Duan H, Tiika RJ, Tian F, Lu Y, Zhang Q, Hu Y, Cui G, Yang H. Metabolomics analysis unveils important changes involved in the salt tolerance of Salicornia europaea. FRONTIERS IN PLANT SCIENCE 2023; 13:1097076. [PMID: 36743536 PMCID: PMC9896792 DOI: 10.3389/fpls.2022.1097076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Salicornia europaea is one of the world's salt-tolerant plant species and is recognized as a model plant for studying the metabolism and molecular mechanisms of halophytes under salinity. To investigate the metabolic responses to salinity stress in S. europaea, this study performed a widely targeted metabolomic analysis after analyzing the physiological characteristics of plants exposed to various NaCl treatments. S. europaea exhibited excellent salt tolerance and could withstand extremely high NaCl concentrations, while lower NaCl conditions (50 and 100 mM) significantly promoted growth by increasing tissue succulence and maintaining a relatively stable K+ concentration. A total of 552 metabolites were detected, 500 of which were differently accumulated, mainly consisting of lipids, organic acids, saccharides, alcohols, amino acids, flavonoids, phenolic acids, and alkaloids. Sucrose, glucose, p-proline, quercetin and its derivatives, and kaempferol derivatives represented core metabolites that are responsive to salinity stress. Glycolysis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were considered as the most important pathways responsible for salt stress response by increasing the osmotic tolerance and antioxidant activities. The high accumulation of some saccharides, flavonoids, and phenolic acids under 50 mM NaCl compared with 300 mM NaCl might contribute to the improved salt tolerance under the 50 mM NaCl treatment. Furthermore, quercetin, quercetin derivatives, and kaempferol derivatives showed varied change patterns in the roots and shoots, while coumaric, caffeic, and ferulic acids increased significantly in the roots, implying that the coping strategies in the shoots and roots varied under salinity stress. These findings lay the foundation for further analysis of the mechanism underlying the response of S. europaea to salinity.
Collapse
Affiliation(s)
- Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Fuping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu Hu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
29
|
Wang L, Wang W, Shan J, Li C, Suo H, Liu J, An K, Li X, Xiong X. A Genome-Wide View of the Transcriptome Dynamics of Fresh-Cut Potato Tubers. Genes (Basel) 2023; 14:genes14010181. [PMID: 36672922 PMCID: PMC9859442 DOI: 10.3390/genes14010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food. To reveal the physiological changes in fresh-cut potato tubers at the molecular level, a transcriptome analysis of potato tubers after cutting was carried out. A total of 10,872, 10,449, and 11,880 differentially expressed genes (DEGs) were identified at 4 h, 12 h and 24 h after cutting, respectively. More than 87.5% of these DEGs were classified into the categories of biological process (BP) and molecular function (MF) based on Gene Ontology (GO) analysis. There was a difference in the response to cutting at different stages after the cutting of potato tubers. The genes related to the phenol and fatty biosynthesis pathways, which are responsible for enzymatic browning and wound healing in potato tubers, were significantly enriched at 0-24 h after cutting. Most genes related to the enzymatic browning of potato tubers were up-regulated in response to cut-wounding. Plant hormone biosynthesis, signal molecular biosynthesis and transduction-related genes, such as gibberelin (GA), cytokinin (CK), ethylene (ET), auxin (IAA), jasmonic acid (JA), salicylic (SA), and Respiratory burst oxidase (Rboh) significantly changed at the early stage after cutting. In addition, the transcription factors involved in the wound response were the most abundant at the early stage after cutting. The transcription factor with the greatest response to injury was MYB, followed by AP2-EREBP, C3H and WRKY. This study revealed the physiological changes at the molecular level of fresh-cut potato tubers after cutting. This information is needed for developing a better approach to enhancing the postharvest shelf life of fresh processed potato and the breeding of potato plants that are resistant to enzymatic browning.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wanxing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianwei Shan
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengchen Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haicui Suo
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jitao Liu
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kang An
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaobo Li
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (X.L.); (X.X.)
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: (X.L.); (X.X.)
| |
Collapse
|
30
|
Wang L, Yao W, Zhang X, Tang Y, Van Nocker S, Wang Y, Zhang C. The putative ABCG transporter VviABCG20 from grapevine ( Vitis vinifera) is strongly expressed in the seed coat of developing seeds and may participate in suberin biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:23-34. [PMID: 36733832 PMCID: PMC9886760 DOI: 10.1007/s12298-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in many biological processes by transporting specific substrates. Our previous study showed that VviABCG20 was strongly expressed in the seeds of seeded grape and the silencing of VviABCG20 homolog gene in tomato led to a reduction in seed number. To reveal the molecular mechanism of VviABCG20 gene involved in grape seed development/abortion, the gene expression and functional analysis of VviABCG20 were further carried out in the grapevine. It was shown that the gene expression of VviABCG20 was higher in seeds of seeded grapes compared with seedless. Further the expression of VviABCG20 in the seed coat was significantly higher than in ovules (young seeds) and endosperm. VviABCG20 was also induced by exogenous hormones (especially MeJA) in grape leaves. Subcellular localization analysis showed that VviABCG20 is a membrane protein. In overexpressed VviABCG20 transgenic callus of Thompson seedless, expression of genes GPAT5, FAR1 and FAR5 was increased significantly. After treatment with suberin precursors, the transgenic callus reduced the sensitivity to three cinnamic acid derivatives (cis-ferulic acid, caffeic acid, coumaric acid), succinic acid, and glycerol. In suspension cells, expression of VviABCG20 was increased significantly after treatment with suberin precursors. Our research suggested that VviABCG20 may function in seed development in grapevine, at least in part by participating in suberin biosynthesis in the seed coat.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Wang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Steve Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, 48824 USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| |
Collapse
|
31
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
32
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Lu HP, Gao Q, Han JP, Guo XH, Wang Q, Altosaar I, Barberon M, Liu JX, Gatehouse AMR, Shu QY. An ABA-serotonin module regulates root suberization and salinity tolerance. THE NEW PHYTOLOGIST 2022; 236:958-973. [PMID: 35872572 DOI: 10.1111/nph.18397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Suberin in roots acts as a physical barrier preventing water/mineral losses. In Arabidopsis, root suberization is regulated by abscisic acid (ABA) and ethylene in response to nutrient stresses. ABA also mediates coordination between microbiota and root endodermis in mineral nutrient homeostasis. However, it is not known whether this regulatory system is common to plants in general, and whether there are other key molecule(s) involved. We show that serotonin acts downstream of ABA in regulating suberization in rice and Arabidopsis and negatively regulates suberization in rice roots in response to salinity. We show that ABA represses transcription of the key gene (OsT5H) in serotonin biosynthesis, thus promoting root suberization in rice. Conversely, overexpression of OsT5H or supplementation with exogenous serotonin represses suberization and reduces tolerance to salt stress. These results identify an ABA-serotonin regulatory module controlling root suberization in rice and Arabidopsis, which is likely to represent a general mechanism as ABA and serotonin are ubiquitous in plants. These findings are of significant importance to breeding novel crop varieties that are resilient to abiotic stresses and developing strategies for production of suberin-rich roots to sequestrate more CO2 , helping to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Pu Han
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Xiao-Hao Guo
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qing Wang
- Wuxi Hupper Bioseed Technology Institute Ltd, Wuxi, 214000, Jiangsu, China
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Proteins Easy Corp., Kemptville, ON, K0G 1J0, Canada
| | - Marie Barberon
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
34
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
35
|
Xu X, Guerriero G, Berni R, Sergeant K, Guignard C, Lenouvel A, Hausman JF, Legay S. MdMYB52 regulates lignin biosynthesis upon the suberization process in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1039014. [PMID: 36275517 PMCID: PMC9583409 DOI: 10.3389/fpls.2022.1039014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process. Phylogenetic analyses and research against Arabidopsis thaliana MYBs database were first performed and the tissue specific expression of MdMYB52 was investigated using RT-qPCR. The function of MdMYB52 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight differentially regulated genes in response MdMYB52. Transcriptomic data were supported by analytical chemistry and microscopy. A massive decreased expression of photosynthetic and primary metabolism pathways was observed with a concomitant increased expression of genes associated with phenylpropanoid and lignin biosynthesis, cell wall modification and senescence. Interestingly key genes involved in the synthesis of suberin phenolic components were observed. The analytical chemistry displayed a strong increase in the lignin content in the cell walls during MdMYB52 expression. More specifically, an enrichment in G-Unit lignin residues was observed, supporting transcriptomic data as well as previous work describing the suberin phenolic domain as a G-unit enriched lignin-like polymer. The time-course qPCR analysis revealed that the observed stress response, might be explain by this lignin biosynthesis and by a possible programmed senescence triggered by MdMYB52. The present work supports a crucial regulatory role for MdMYB52 in the biosynthesis of the suberin phenolic domain and possibly in the fate of suberized cells in russeted apple skins.
Collapse
|
36
|
Liu LL, Deng YQ, Dong XX, Wang CF, Yuan F, Han GL, Wang BS. ALDH2C4 regulates cuticle thickness and reduces water loss to promote drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111405. [PMID: 35914575 DOI: 10.1016/j.plantsci.2022.111405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, ALDH2C4 encodes coniferaldehyde dehydrogenase, which oxidizes coniferaldehyde to ferulic acid. Drought stress is one of the important abiotic stresses affecting plant growth. However, the role of ferulic acid in drought resistance is unknown. To investigate the contribution of ferulic acid to cuticle composition and drought resistance, we used two Arabidopsis aldh2c4 mutant lines. Compared with wild-type (WT) leaves, ferulic acid contents were significantly lower (by more than 50 %) in mutants. The mutants also had lower amounts of cutin and wax, primarily due to reductions in C18:2 dioic acid and alkanes, respectively. Furthermore, the leaves of the mutant plants exhibited greater rates of water loss and released chlorophyll faster than WT leaves when immersed in 80 % ethanol, indicating a defective cuticle barrier. The growth of aldh2c4 mutants was severely inhibited, and their leaves showed a higher degree of wilting relative to the WT plants under drought conditions. In aldh2c4 complementation lines, the growth inhibition of the mutant plants under drought stress was alleviated. Taken together, our results demonstrate that ferulic acid plays an important role in the composition and structural properties of the cuticle and that a ferulic acid deficiency in the cutin leads to reduced drought tolerance.
Collapse
Affiliation(s)
- Li-Li Liu
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Yun-Quan Deng
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin-Xiu Dong
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Cheng-Feng Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Guo-Liang Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bao-Shan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| |
Collapse
|
37
|
Wang YZ, Dai MS, Cai DY, Shi ZB. Solving the regulation puzzle of periderm development using advances in fruit skin. FRONTIERS IN PLANT SCIENCE 2022; 13:1006153. [PMID: 36247566 PMCID: PMC9558172 DOI: 10.3389/fpls.2022.1006153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Periderm protects enlarged organs of most dicots and gymnosperms as a barrier to water loss and disease invasion during their secondary growth. Its development undergoes a complex process with genetically controlled and environmental stress-induced characters. Different development of periderm makes the full and partial russet of fruit skin, which diverges in inheritance with qualitative and quantitative characters, respectively, in pear pome. In addition to its specific genetics, fruit periderm has similar development and structure as that of stem and other organs, making it an appropriate material for periderm research. Recently, progress in histochemical as well as transcriptome and proteome analyses, and quantitative trait locus (QTL) mapping have revealed the regulatory molecular mechanism in the periderm based on the identification of switch genes. In this review, we concentrate on the periderm development, propose the conservation of periderm regulation between fruit and other plant organs based on their morphological and molecular characteristics, and summarize a regulatory network with the elicitors and repressors for the tissue development. Spontaneous programmed-cell death (PCD) or environmental stress produces the original signal that triggers the development of periderm. Spatio-temporal specific PCD produced by PyPPCD1 gene and its homologs can play a key role in the coordinated regulation of cell death related tissue development.
Collapse
Affiliation(s)
| | | | | | - Ze-bin Shi
- *Correspondence: Yue-zhi Wang, ; Ze-bin Shi,
| |
Collapse
|
38
|
Liu X, Wang P, An Y, Wang CM, Hao Y, Zhou Y, Zhou Q, Wang P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. FRONTIERS IN PLANT SCIENCE 2022; 13:1007494. [PMID: 36212320 PMCID: PMC9539332 DOI: 10.3389/fpls.2022.1007494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. Elymus sibiricus is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of E. sibiricus genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 E. sibiricus genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in E. sibiricus. These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Hao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
39
|
Han Y, Yang R, Wang Q, Wang B, Prusky D. Sodium silicate promotes wound healing by inducing the deposition of suberin polyphenolic and lignin in potato tubers. FRONTIERS IN PLANT SCIENCE 2022; 13:942022. [PMID: 36092440 PMCID: PMC9453558 DOI: 10.3389/fpls.2022.942022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Wound healing is a postharvest characteristic of potato tubers through accumulating suberin and lignin, which could reduce decay and water loss during storage. This study aimed to explore the impact and mechanisms of sodium silicate on wound healing of potatoes. After being wounded, "Atlantic" potato tubers were treated with water or 50 mM sodium silicate. The results showed that sodium silicate treatment accelerated the formation of wound healing structures and significantly reduced the weight loss and disease index of tubers. Furthermore, sodium silicate induced the genes expression and enzyme activity of phenylalanine ammonia lyase (PAL), 4-coumarate: coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD) involved in the phenylpropane metabolism, enhancing the synthesis of the main precursors of suberin polyphenolic (SPP) and lignin, such as coniferyl alcohol, sinapyl alcohol, and cinnamyl alcohol. Meanwhile, the gene expression of StPOD and StNOX was activated, and the production of O2- and H2O2 was promoted, which could be used for injury signal transmission and oxidative crosslinking of SPP monomers and lignin precursors. Besides, antimicrobial compounds, total phenolics, and flavonoids were also induced. We suggest that sodium silicate could promote wound healing by inducing the deposition of SPP, lignin, and antimicrobial compounds in potato tubers.
Collapse
Affiliation(s)
- Ye Han
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
40
|
Suresh K, Zeisler-Diehl VV, Wojciechowski T, Schreiber L. Comparing anatomy, chemical composition, and water permeability of suberized organs in five plant species: wax makes the difference. PLANTA 2022; 256:60. [PMID: 35988126 PMCID: PMC9393130 DOI: 10.1007/s00425-022-03975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The efficiency of suberized plant/environment interfaces as transpiration barriers is not established by the suberin polymer but by the wax molecules sorbed to the suberin polymer. Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs (soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition and efficiency as transpiration barriers (water loss in m s-1) of the different suberized cell wall samples were quantified. Results clearly indicated that there was no correlation between barrier properties of the suberized interfaces and the number of suberized cell layers, the amount of soluble wax and the amounts of suberin. Suberized interfaces of C. miniata roots, M. esculenta roots, and M. domestica bark periderms formed poor or hardly any transpiration barrier. Permeances varying between 1.1 and 5.1 × 10-8 m s-1 were very close to the permeance of water (7.4 × 10-8 m s-1) evaporating from a water/atmosphere interface. Suberized interfaces of aerial roots of M. deliciosa and tubers of S. tuberosum formed reasonable transpiration barriers with permeances varying between 7.4 × 10-10 and 4.2 × 10-9 m s-1, which were similar to the upper range of permeances measured with isolated cuticles (about 10-9 m s-1). Upon wax extraction, permeances of M. deliciosa and S. tuberosum increased nearly tenfold, which proves the importance of wax establishing a transpiration barrier. Finally, highly opposite results obtained with M. esculenta and S. tuberosum periderms are discussed in relation to their agronomical importance for postharvest losses and tuber storage.
Collapse
Affiliation(s)
- Kiran Suresh
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
41
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
42
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
43
|
Leal AR, Barros PM, Parizot B, Sapeta H, Vangheluwe N, Andersen TG, Beeckman T, Oliveira MM. Translational profile of developing phellem cells in Arabidopsis thaliana roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:899-915. [PMID: 35106861 DOI: 10.1111/tpj.15691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The phellem is a specialized boundary tissue providing the first line of defense against abiotic and biotic stresses in organs undergoing secondary growth. Phellem cells undergo several differentiation steps, which include cell wall suberization, cell expansion, and programmed cell death. Yet, the molecular players acting particularly in phellem cell differentiation remain poorly described, particularly in the widely used model plant Arabidopsis thaliana. Using specific marker lines we followed the onset and progression of phellem differentiation in A. thaliana roots and further targeted the translatome of newly developed phellem cells using translating ribosome affinity purification followed by mRNA sequencing (TRAP-SEQ). We showed that phellem suberization is initiated early after phellogen (cork cambium) division. The specific translational landscape was organized in three main domains related to energy production, synthesis and transport of cell wall components, and response to stimulus. Novel players in phellem differentiation related to suberin monomer transport and assembly as well as novel transcription regulators were identified. This strategy provided an unprecedented resolution of the translatome of developing phellem cells, giving a detailed and specific view on the molecular mechanisms acting on cell differentiation in periderm tissues of the model plant Arabidopsis.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Pedro Miguel Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
44
|
Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J, Formentin E, Velasco J, Cabanlit S, Duvenjian C, Prior MJ, Akmakjian GZ, Deal RB, Sinha NR, Brady SM, Girke T, Bailey-Serres J. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev Cell 2022; 57:1177-1192.e6. [PMID: 35504287 DOI: 10.1016/j.devcel.2022.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; IBBM, FCE-UNLP CONICET, La Plata 1900, Argentina
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elaine Yeung
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Jianhai Zhang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elide Formentin
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Department of Biology, University of Padova, Padova, Italy
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Christine Duvenjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew J Prior
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Garo Z Akmakjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Girke
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
45
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
46
|
Jiang H, Li X, Ma L, Ren Y, Bi Y, Prusky D. Transcriptome sequencing and differential expression analysis of natural and BTH-treated wound healing in potato tubers (Solanum tuberosum L.). BMC Genomics 2022; 23:263. [PMID: 35382736 PMCID: PMC8981635 DOI: 10.1186/s12864-022-08480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. Results Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. Conclusion This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08480-1.
Collapse
Affiliation(s)
- Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yingyue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Department of Postharvest Science, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| |
Collapse
|
47
|
Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Sci Rep 2022; 12:5057. [PMID: 35322159 PMCID: PMC8943126 DOI: 10.1038/s41598-022-09135-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
C4 photosynthesis in the maize leaf involves the exchange of organic acids between mesophyll (M) and the bundle sheath (BS) cells. The transport is mediated by plasmodesmata embedded in the suberized cell wall. We examined the maize Kranz anatomy with a focus on the plasmodesmata and cell wall suberization with microscopy methods. In the young leaf zone where M and BS cells had indistinguishable proplastids, plasmodesmata were simple and no suberin was detected. In leaf zones where dimorphic chloroplasts were evident, the plasmodesma acquired sphincter and cytoplasmic sleeves, and suberin was discerned. These modifications were accompanied by a drop in symplastic dye mobility at the M-BS boundary. We compared the kinetics of chloroplast differentiation and the modifications in M-BS connectivity in ppdk and dct2 mutants where C4 cycle is affected. The rate of chloroplast diversification did not alter, but plasmodesma remodeling, symplastic transport inhibition, and cell wall suberization were observed from younger leaf zone in the mutants than in wild type. Our results indicate that inactivation of the C4 genes accelerated the changes in the M-BS interface, and the reduced permeability suggests that symplastic transport between M and BS could be regulated for normal operation of C4 cycle.
Collapse
|
48
|
Han Y, Yang R, Zhang X, Wang Q, Wang B, Zheng X, Li Y, Prusky D, Bi Y. Brassinosteroid Accelerates Wound Healing of Potato Tubers by Activation of Reactive Oxygen Metabolism and Phenylpropanoid Metabolism. Foods 2022; 11:906. [PMID: 35406993 PMCID: PMC8997868 DOI: 10.3390/foods11070906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022] Open
Abstract
Wound healing could effectively reduce the decay rate of potato tubers after harvest, but it took a long time to form typical and complete healing structures. Brassinosteroid (BR), as a sterol hormone, is important for enhancing plant resistance to abiotic and biotic stresses. However, it has not been reported that if BR affects wound healing of potato tubers. In the present study, we observed that BR played a positive role in the accumulation of lignin and suberin polyphenolic (SPP) at the wounds, and effectively reduced the weight loss and disease index of potato tubers (cv. Atlantic) during healing. At the end of healing, the weight loss and disease index of BR group was 30.8% and 23.1% lower than the control, respectively. Furthermore, BR activated the expression of StPAL, St4CL, StCAD genes and related enzyme activities in phenylpropanoid metabolism, and promoted the synthesis of lignin precursors and phenolic acids at the wound site, mainly by inducing the synthesis of caffeic acid, sinapic acid and cinnamyl alcohol. Meanwhile, the expression of StNOX was induced and the production of O2- and H2O2 was promoted, which mediated oxidative crosslinking of above phenolic acids and lignin precursors to form SPP and lignin. In addition, the expression level of StPOD was partially increased. In contrast, the inhibitor brassinazole inhibited phenylpropanoid metabolism and reactive oxygen metabolism, and demonstrated the function of BR hormone in healing in reverse. Taken together, the activation of reactive oxygen metabolism and phenylpropanoid metabolism by BR could accelerate the wound healing of potato tubers.
Collapse
Affiliation(s)
- Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (R.Y.); (X.Z.); (Q.W.); (B.W.); (X.Z.); (Y.L.)
| |
Collapse
|
49
|
De Bellis D, Kalmbach L, Marhavy P, Daraspe J, Geldner N, Barberon M. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat Commun 2022; 13:1489. [PMID: 35304458 PMCID: PMC8933581 DOI: 10.1038/s41467-022-29110-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Suberin is a fundamental plant biopolymer, found in protective tissues, such as seed coats, exodermis and endodermis of roots. Suberin is deposited in most suberizing cells in the form of lamellae just outside of the plasma membrane, below the primary cell wall. How monomeric suberin precursors, thought to be synthesized at the endoplasmic reticulum, are transported outside of the cell, for polymerization into suberin lamellae has remained obscure. Using electron-microscopy, we observed large numbers of extracellular vesiculo-tubular structures (EVs) to accumulate specifically in suberizing cells, in both chemically and cryo-fixed samples. EV presence correlates perfectly with root suberization and we could block suberin deposition and vesicle accumulation by affecting early, as well as late steps in the secretory pathway. Whereas many previous reports have described EVs in the context of biotic interactions, our results suggest a developmental role for extracellular vesicles in the formation of a major cell wall polymer. Suberizing plant cells export suberin monomers outside of the cell to form a hydrophobic barrier. Here the authors propose a role for extracellular vesiculo-tubular structures in the deposition of suberin monomers.
Collapse
Affiliation(s)
- Damien De Bellis
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lothar Kalmbach
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Sainsbury Laboratory University Cambridge, CB2 1LR, Cambridge, United Kingdom
| | - Peter Marhavy
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Forest Genetics and Plant Physiology, 90736, Umeå, Sweden
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, 1015, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Marie Barberon
- Department of Plant Molecular Biology, DBMV, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland. .,Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
50
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|