1
|
Silaeva YY, Safonova PD, Popov DV, Filatov MA, Okulova YD, Shafei RA, Skobel OI, Vysotskii DE, Gubarev YD, Glazko VI, Glazko TT, Georgiev PG, Kosovsky GY, Shepelev MV. Generation of LEPR Knockout Rabbits with CRISPR/CAS9 System. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:248-255. [PMID: 39212886 DOI: 10.1134/s0012496624600234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 09/04/2024]
Abstract
The LEPR gene encodes a leptin hormone receptor, and its mutations are associated with morbid obesity, dysregulation of lipid metabolism, and fertility defects in humans. Spontaneous Lepr mutations have been described in rodents, and Lepr knockout animals have been generated, in particular, using the CRISPR/Cas9 system. Lipid metabolism in rodents significantly differs from that in humans or rabbits, and rabbits are therefore considered as the most relevant model of morbid obesity and lipid metabolism dysregulation in humans. LEPR knockout rabbits have not been reported so far. In this work a LEPR knockout rabbit was generated by introducing a deletion of the region around LEPR exon 10 using the CRISPR/Cas9 system. The body weight of the knockout rabbit was significantly higher than the average body weight of the wild type rabbits. CRISPR/Cas9-mediated generation of LEPR knockout rabbits will allow the development of a model of morbid obesity and endocrine defects due to leptin receptor mutations in humans.
Collapse
Affiliation(s)
- Yu Yu Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P D Safonova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Popov
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - M A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - O I Skobel
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - D E Vysotskii
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - Yu D Gubarev
- Belgorod State National Research University, Belgorod, Russia
| | - V I Glazko
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - T T Glazko
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - G Yu Kosovsky
- Afanas'ev Institute of Fur-bearing Animal Breeding and Rabbit Breeding, Rodniki, Moscow Region, Russia
| | - M V Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, Lindsley SR, Kirigiti MA, MacKenzie A, Polex-Wolf J, Li C, Knudsen LB, Seeley RJ, Olson DP, Kievit P, Myers MG. Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models. J Clin Invest 2023; 133:e157515. [PMID: 37581939 PMCID: PMC10541203 DOI: 10.1172/jci157515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Collapse
Affiliation(s)
| | | | | | - Warren T. Yacawych
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison M. Duensing
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cadence True
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | - Chien Li
- Novo Nordisk, Copenhagen, Denmark
| | | | | | - David P. Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Martin G. Myers
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Kalvaitytė M, Balciunas D. Conditional mutagenesis strategies in zebrafish. Trends Genet 2022; 38:856-868. [PMID: 35662532 DOI: 10.1016/j.tig.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Gene disruption or knockout is an essential tool for elucidating gene function. Conditional knockout methodology was developed to further advance these studies by enabling gene disruption at a predefined time and/or in discrete cells. While the conditional knockout method is widely used in the mouse, technical limitations have stifled direct adoption of this methodology in other animal models including the zebrafish. Recent advances in genome editing have enabled engineering of distinct classes of conditional mutants in zebrafish. To further accelerate the development and application of conditional mutants, we will review diverse methods of conditional knockout engineering and discuss the advantages of different conditional alleles.
Collapse
Affiliation(s)
| | - Darius Balciunas
- Life Sciences Center, Vilnius University, Vilnius, Lithuania; Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Pennington Kathleen A, Oestreich Arin K, Kylie H, Fogliatti Candace M, Celeste L, Lydon John P, Schulz Laura C. Conditional knockout of leptin receptor in the female reproductive tract reduces fertility due to parturition defects in mice. Biol Reprod 2022; 107:546-556. [PMID: 35349646 DOI: 10.1093/biolre/ioac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Leptin is required for fertility, including initiation of estrous cycles. It is therefore challenging to assess the role of leptin signaling during pregnancy. While neuron-specific transgene approaches suggest that leptin signaling in the central nervous system is most important, experiments with pharmacologic inhibition of leptin in the uterus or global replacement of leptin during pregnancy suggest leptin signaling in the reproductive tract may be required. Here, conditional leptin receptor knockout (Lepr cKO) with a progesterone receptor-driven Cre recombinase was used to examine the importance of leptin signaling in pregnancy. Lepr cKO mice have almost no leptin receptor in uterus or cervix, and slightly reduced leptin receptor levels in corpus luteum. Estrous cycles and progesterone concentrations were not affected by Lepr cKO. Numbers of viable embryos did not differ between primiparous control and Lepr cKO dams on days 6.5 and 17.5 of pregnancy, despite a slight reduction in the ratio of embryos to corpora lutea, showing that uterine leptin receptor signaling is not required for embryo implantation. Placentas of Lepr cKO dams had normal weight and structure. However, over four parities, Lepr cKO mice produced 22% fewer live pups than controls, and took more time from pairing to delivery by their fourth parity. Abnormal birth outcomes of either dystocia or dead pups occurred in 33% of Lepr cKO deliveries but zero control deliveries, and the average time to deliver each pup after crouching was significantly increased. Thus, leptin receptor signaling in the reproductive tract is required for normal labor and delivery. Summary sentence. Mice lacking leptin receptor in the reproductive tract produce fewer live pups and have more adverse labor outcomes than controls, but normal numbers of embryos near term, showing that leptin receptor signaling is required for normal parturition.
Collapse
Affiliation(s)
- A Pennington Kathleen
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX United States
| | - K Oestreich Arin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Hohensee Kylie
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - M Fogliatti Candace
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - Lightner Celeste
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| | - P Lydon John
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX United States
| | - C Schulz Laura
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO United States
| |
Collapse
|
5
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
7
|
Cakir I, Diaz-Martinez M, Lining Pan P, Welch EB, Patel S, Ghamari-Langroudi M. Leptin Receptor Signaling in Sim1-Expressing Neurons Regulates Body Temperature and Adaptive Thermogenesis. Endocrinology 2019; 160:863-879. [PMID: 30802281 PMCID: PMC6435012 DOI: 10.1210/en.2019-00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
Leptin signals to regulate food intake and energy expenditure under conditions of normative energy homeostasis. The central expression and function of leptin receptor B (LepRb) have been extensively studied during the past two decades; however, the mechanisms by which LepRb signaling dysregulation contributes to the pathophysiology of obesity remains unclear. The paraventricular nucleus of the hypothalamus (PVN) plays a crucial role in regulating energy balance as well as the neuroendocrine axes. The role of LepRb expression in the PVN in regard to the regulation of physiological function of leptin has been controversial. The single-minded homolog 1 gene (Sim1) is densely expressed in the PVN and in parts of the amygdala, making Sim1-Cre mice a useful model for examining molecular mechanisms regulating PVN function. In this study, we characterized the physiological role of LepRb in Sim1-expressing neurons using LepRb-floxed × Sim1-Cre mice. Sim1-specific LepRb-deficient mice were surprisingly hypophagic on regular chow but gained more weight upon exposure to a high-fat diet than did their control littermates. We show that Sim1-specific deletion of a single LepRb gene copy caused decreased surface and core body temperatures as well as decreased energy expenditure in ambient room temperatures in both female and male mice. Furthermore, cold-induced adaptive (nonshivering) thermogenesis is disrupted in homozygous knockout mice. A defective thermoregulatory response was associated with defective cold-induced upregulation of uncoupling protein 1 in brown adipose tissue and reduced serum T4. Our study provides novel functional evidence supporting LepRb signaling in Sim1 neurons in the regulation of body weight, core body temperature, and cold-induced adaptive thermogenesis.
Collapse
Affiliation(s)
- Isin Cakir
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Myriam Diaz-Martinez
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Pereira S, O'Dwyer SM, Webber TD, Baker RK, So V, Ellis CE, Yoon JS, Mojibian M, Glavas MM, Karunakaran S, Clee SM, Covey SD, Kieffer TJ. Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues. Sci Rep 2019; 9:3307. [PMID: 30824713 PMCID: PMC6397253 DOI: 10.1038/s41598-019-39498-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/31/2018] [Indexed: 01/26/2023] Open
Abstract
The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Victor So
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Subashini Karunakaran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Susanne M Clee
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. .,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Evans MC, Kumar NS, Inglis MA, Anderson GM. Leptin and insulin do not exert redundant control of metabolic or emotive function via dopamine neurons. Horm Behav 2018; 106:93-104. [PMID: 30292429 DOI: 10.1016/j.yhbeh.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors for leptin (Lepr) and insulin (Insr). Leptin-dopamine signaling reduces running reward and homecage activity. However, dopamine-specific deletion of Lepr does not affect body weight or food intake in mice. We hypothesized insulin-dopamine signaling might compensate for disrupted leptin-dopamine signaling. To investigate the degree to which insulin and leptin exert overlapping (i.e. redundant) versus discrete control over dopamine neurons, we generated transgenic male and female mice exhibiting dopamine-specific deletion of either Lepr (Lepr KO), Insr (Insr KO) or both Lepr and Insr (Dbl KO) and assessed their feeding behavior, voluntary activity, and energy expenditure compared to control mice. No differences in body weight, daily food intake, energy expenditure or hyperphagic feeding of palatable chow were observed between Lepr, Insr or Dbl KO mice and control mice. However, consistent with previous findings, Lepr KO (but not Insr or Dbl KO) male mice exhibited significantly increased running wheel activity compared to controls. These data demonstrate that insulin and leptin do not exert redundant control of dopamine neuron-mediated modulation of energy balance. Furthermore, our results indicate neither leptin nor insulin plays a critical role in the modulation of dopamine neurons regarding hedonic feeding behavior or anxiety-related behavior.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.
| | - Nivesh S Kumar
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
10
|
Mittenbühler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Brüning JC, Wunderlich FT. Hepatic leptin receptor expression can partially compensate for IL-6Rα deficiency in DEN-induced hepatocellular carcinoma. Mol Metab 2018; 17:122-133. [PMID: 30224299 PMCID: PMC6197506 DOI: 10.1016/j.molmet.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Objective The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice. Methods We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations. Results We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL−KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes. Conclusions Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions. High fat diet feeding induces LEPR expression in hepatocytes. IL-6Rα deficiency induces LEPR expression in hepatocytes. Hepatic LEPR deficiency fails to affect body composition and metabolism. Hepatic LEPR deficiency ameliorates HCC burden in IL-6Rα-deficient mice.
Collapse
Affiliation(s)
- Melanie J Mittenbühler
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Hans-Georg Sprenger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany; Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Sabine Gruber
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Lara Kern
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Germany.
| |
Collapse
|
11
|
Rupp AC, Allison MB, Jones JC, Patterson CM, Faber CL, Bozadjieva N, Heisler LK, Seeley RJ, Olson DP, Myers MG. Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Mol Metab 2018; 14:130-138. [PMID: 29914853 PMCID: PMC6034096 DOI: 10.1016/j.molmet.2018.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.
Collapse
Affiliation(s)
- Alan C Rupp
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret B Allison
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justin C Jones
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christa M Patterson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chelsea L Faber
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nadejda Bozadjieva
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David P Olson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Yu S, Cheng H, François M, Qualls-Creekmore E, Huesing C, He Y, Jiang Y, Gao H, Xu Y, Zsombok A, Derbenev AV, Nillni EA, Burk DH, Morrison CD, Berthoud HR, Münzberg H. Preoptic leptin signaling modulates energy balance independent of body temperature regulation. eLife 2018; 7:33505. [PMID: 29761783 PMCID: PMC5953538 DOI: 10.7554/elife.33505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.
Collapse
Affiliation(s)
- Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Helia Cheng
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Marie François
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, United States
| | - Eduardo A Nillni
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,The Warren Alpert Medical School, Department of Medicine, Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - David H Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, United States
| |
Collapse
|
13
|
Pan W, Adams JM, Allison MB, Patterson C, Flak JN, Jones J, Strohbehn G, Trevaskis J, Rhodes CJ, Olson DP, Myers MG. Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology 2018; 159:1860-1872. [PMID: 29522093 PMCID: PMC5888224 DOI: 10.1210/en.2017-03259] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023]
Abstract
The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.
Collapse
Affiliation(s)
- Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Jessica M Adams
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Margaret B Allison
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Christa Patterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan N Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Justin Jones
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Garth Strohbehn
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Mahany EB, Han X, Borges BC, da Silveira Cruz-Machado S, Allen SJ, Garcia-Galiano D, Hoenerhoff MJ, Bellefontaine NH, Elias CF. Obesity and High-Fat Diet Induce Distinct Changes in Placental Gene Expression and Pregnancy Outcome. Endocrinology 2018; 159:1718-1733. [PMID: 29438518 PMCID: PMC6456933 DOI: 10.1210/en.2017-03053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
Obese women are at high risk of pregnancy complications, including preeclampsia, miscarriage, preterm birth, stillbirth, and neonatal death. In the current study, we aimed to determine the effects of obesity on pregnancy outcome and placental gene expression in preclinical mouse models of genetic and nutritional obesity. The leptin receptor (LepR) null-reactivatable (LepRloxTB), LepR-deficient (Leprdb/+), and high-fat diet (HFD)-fed mice were assessed for fertility, pregnancy outcome, placental morphology, and placental transcriptome using standard quantitative polymerase chain reaction (qPCR) and qPCR arrays. The restoration of fertility of LepRloxTB was performed by stereotaxic delivery of adeno-associated virus-Cre into the hypothalamic ventral premammillary nucleus. Fertile LepRloxTB females were morbidly obese, whereas the wild-type mice-fed HFD showed only a mild increase in body weight. Approximately 80% of the LepRloxTB females had embryo resorptions (∼40% of the embryos). In HFD mice, the number of resorptions was not different from controls fed a regular diet. Placentas of resorbed embryos from obese mice displayed necrosis and inflammatory infiltrate in the labyrinth and changes in the expression of genes associated with angiogenesis and inflammation (e.g., Vegfa, Hif1a, Nfkbia, Tlr3, Tlr4). In contrast, placentas from embryos of females on HFD showed changes in a different set of genes, mostly associated with cellular growth and response to stress (e.g., Plg, Ang, Igf1, Igfbp1, Fgf2, Tgfb2, Serpinf1). Sexual dimorphism in gene expression was only apparent in placentas from obese LepRloxTB mice. Our findings indicate that an obese environment and HFD have distinct effects on pregnancy outcome and the placental transcriptome.
Collapse
Affiliation(s)
- Erica B Mahany
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Erica B. Mahany, MD, Department of Obstetrics and Gynecology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Isotope Research Laboratory, Sichuan Agricultural University, Ya'an, China
| | - Beatriz C Borges
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Physiology, Institute of Biosciences, Cidade Universitária, University of São Paulo, São Paulo, Brazil
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nicole H Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Carol F Elias
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Caron A, Dungan Lemko HM, Castorena CM, Fujikawa T, Lee S, Lord CC, Ahmed N, Lee CE, Holland WL, Liu C, Elmquist JK. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. eLife 2018. [PMID: 29528284 PMCID: PMC5866097 DOI: 10.7554/elife.33710] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leptin is critical for energy balance, glucose homeostasis, and for metabolic and neuroendocrine adaptations to starvation. A prevalent model predicts that leptin’s actions are mediated through pro-opiomelanocortin (POMC) neurons that express leptin receptors (LEPRs). However, previous studies have used prenatal genetic manipulations, which may be subject to developmental compensation. Here, we tested the direct contribution of POMC neurons expressing LEPRs in regulating energy balance, glucose homeostasis and leptin secretion during fasting using a spatiotemporally controlled Lepr expression mouse model. We report a dissociation between leptin’s effects on glucose homeostasis versus energy balance in POMC neurons. We show that these neurons are dispensable for regulating food intake, but are required for coordinating hepatic glucose production and for the fasting-induced fall in leptin levels, independent of changes in fat mass. We also identify a role for sympathetic nervous system regulation of the inhibitory adrenergic receptor (ADRA2A) in regulating leptin production. Collectively, our findings highlight a previously unrecognized role of POMC neurons in regulating leptin levels.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, United States
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Caleb C Lord
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Newaz Ahmed
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
16
|
Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice. J Neurosci 2017; 37:3875-3886. [PMID: 28275162 DOI: 10.1523/jneurosci.3138-16.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022] Open
Abstract
The hormone leptin indirectly communicates metabolic information to brain neurons that control reproduction, using GABAergic circuitry. Agouti-related peptide (AgRP) neurons in the arcuate nucleus are GABAergic, express leptin receptors (LepR), and are known to influence reproduction. This study tested whether leptin actions on AgRP neurons are required and sufficient for puberty onset and subsequent fertility. First, Agrp-Cre and Lepr-flox mice were used to target deletion of LepR to AgRP neurons. AgRP-LepR knock-out female mice exhibited mild obesity and adiposity as described previously, as well as a significant delay in the pubertal onset of estrous cycles compared with control animals. No significant differences in male puberty onset or adult fecundity in either sex were observed. Next, mice with a floxed polyadenylation signal causing premature transcriptional termination of the Lepr gene were crossed with AgRP-Cre mice to generate mice with AgRP neuron-specific rescue of LepR. Lepr-null control males and females were morbidly obese and exhibited delayed puberty onset, no evidence of estrous cycles, and minimal fecundity. Remarkably, AgRP-LepR rescue partially or fully restored all of these reproductive attributes to levels similar to those of LepR-intact controls despite minimal rescue of metabolic function. These results indicate that leptin signaling in AgRP neurons is sufficient for puberty onset and normal adult fecundity in both sexes when leptin signaling is absent in all other cells and that in females, the absence of AgRP neuron leptin signaling delays puberty. These actions appear to be independent of leptin's metabolic effects.SIGNIFICANCE STATEMENT Sexual maturation and fertility are dispensable at the individual level but critical for species survival. Conditions such as nutritional imbalance may therefore suppress puberty onset and fertility in an individual. In societies characterized by widespread obesity, the sensitivity of reproduction to metabolic imbalance has significant public health implications. Deficient leptin signaling attributable to diet-induced leptin resistance is associated with infertility in humans and rodents, and treatments for human infertility show a decreased success rate with increasing body mass index. Here we show that the transmission of metabolic information to the hypothalamo-pituitary-gonadal axis is mediated by leptin receptors on AgRP neurons. These results provide conclusive new insights into the mechanisms that cause infertility attributable to malnourishment.
Collapse
|
17
|
Denroche HC, Glavas MM, Tudurí E, Karunakaran S, Quong WL, Philippe M, Britton HM, Clee SM, Kieffer TJ. Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity. Endocrinology 2016; 157:2671-85. [PMID: 27183315 DOI: 10.1210/en.2015-1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Lepr(flox/flox) Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Lepr(flox/flox) Syn-cre mice and Lepr(flox/flox) littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in leptin-mediated glucose lowering in streptozotocin-induced diabetes. Lepr(flox/flox) Syn-cre mice did not have altered body weight or blood glucose levels but were hyperinsulinemic and had enhanced glucagon secretion in response to experimental hypoglycemia. Surprisingly, when placed on a high-fat diet, Lepr(flox/flox) Syn-cre mice were protected from weight gain, glucose intolerance, and diet-induced hyperinsulinemia. Peripheral leptin administration lowered blood glucose in streptozotocin-induced diabetic Lepr(flox/flox) Syn-cre mice as effectively as in Lepr(flox/flox) littermate controls. Collectively these findings suggest that leptin signaling in LHA/PMV neurons is not critical for regulating glucose levels but has an indispensable role in the regulation of insulin and glucagon levels and, may promote the development of diet-induced hyperinsulinemia and weight gain.
Collapse
Affiliation(s)
- Heather C Denroche
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Maria M Glavas
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Eva Tudurí
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Subashini Karunakaran
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Whitney L Quong
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Marion Philippe
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Heidi M Britton
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Susanne M Clee
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine (H.C.D., M.M.G., E.T., W.L.Q., M.P., H.M.B., T.J.K.) and Laboratory of the Genetics of Obesity and Diabetes (S.K., S.M.C.), Department of Cellular and Physiological Sciences, Life Sciences Institute, and Department of Surgery (T.J.K.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
18
|
Lerea JS, Ring LE, Hassouna R, Chong ACN, Szigeti-Buck K, Horvath TL, Zeltser LM. Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice. Endocrinology 2016; 157:666-78. [PMID: 26587784 PMCID: PMC4733128 DOI: 10.1210/en.2015-1753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.
Collapse
Affiliation(s)
- Jaclyn S Lerea
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Laurence E Ring
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Rim Hassouna
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Angie C N Chong
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Klara Szigeti-Buck
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Tamas L Horvath
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Lori M Zeltser
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| |
Collapse
|
19
|
Liu J, Guo M, Lu XY. Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors. Int J Neuropsychopharmacol 2015; 19:pyv115. [PMID: 26438799 PMCID: PMC4772826 DOI: 10.1093/ijnp/pyv115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Leptin, an adipose-derived hormone, has been implicated in emotional regulation. We have previously shown that systemic administration of leptin produces anxiolytic-like effects and deletion of the leptin receptor, LepRb, in midbrain dopamine neurons leads to an anxiogenic phenotype. This study investigated whether activation or deletion of LepRb in the ventral tegmental area of adult mice is capable of inducing anxiolytic and anxiogenic effects, respectively. METHODS Mice were cannulated in the ventral tegmental area and received bilateral intra-ventral tegmental area infusions of leptin or the JAK2/STAT3 inhibitor AG490. Anxiety-like behaviors were assessed using the elevated plus-maze, light-dark box, and novelty suppressed feeding tests. Deletion of LepRb in the ventral tegmental area was achieved by bilateral injection of AAV-Cre into the ventral tegmental area of adult Lepr(flox/flox) mice. Anxiety-related behaviors were evaluated 3 weeks after viral injection. RESULTS Intra-ventral tegmental area infusions of leptin reduced anxiety-like behaviors, as indicated by increased percent open-arm time and open-arm entries in the elevated plus-maze test, increased time spent in the light side and decreased latency to enter the light side of the light-dark box, and decreased latency to feed in the novelty suppressed feeding test. Blockade of JAK2/STAT3 signaling in the ventral tegmental area by AG490 attenuated the anxiolytic effect produced by systemic administration of leptin. Lepr(flox/flox) mice injected with AAV-Cre into the ventral tegmental area showed decreased leptin-induced STAT3 phosphorylation and enhanced anxiety-like behaviors in the elevated plus-maze test and the novelty suppressed feeding test. CONCLUSIONS These findings suggest that leptin-LepRb signaling in the ventral tegmental area plays an important role in the regulation of anxiety-related behaviors.
Collapse
Affiliation(s)
| | | | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX (Drs Liu, Guo, and Lu); Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University, Binzhou, China (Dr Guo).
| |
Collapse
|
20
|
Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C, Bui K, Rhodes C, Berthoud HR, Morrison CD, Richards BK, Münzberg H. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 2015; 4:706-17. [PMID: 26500842 PMCID: PMC4588437 DOI: 10.1016/j.molmet.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022] Open
Abstract
Objective Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area. Methods We showed earlier that LepRb neurons in the lateral hypothalamus (LHA) co-express the inhibitory acting neuropeptide galanin (GAL-LepRb neurons). We studied the involvement of GAL-LepRb neurons to regulate nutrient reward in mice with selective LepRb deletion from galanin neurons (GAL-LepRbKO mice). Results We found that the rewarding value and preference for sucrose over fat was increased in GAL-LepRbKO mice compared to controls. LHA GAL-LepRb neurons innervate orexin neurons, but not the VTA. Further, expression of galanin and its receptor GalR1 are decreased in the LHA of GAL-LepRbKO mice, resulting in increased activation of orexin neurons. Conclusion We suggest galanin as an important mediator of leptin action to modulate nutrient reward by inhibiting orexin neurons. GAL-LepRbKO shows ↓ galanin and ↓ GalR1 mRNA, ↑ body weight gain. GAL-LepRbKO shows ↑ orexin/hypocretin neuronal activation. GAL-LepRb neurons innervate local orexin/hypocretin and noradrenergic locus coeruleus neurons. Leptin regulates natural reward and body weight via GAL-LepRb neurons.
Collapse
Affiliation(s)
- Amanda Laque
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sangho Yu
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Emily Qualls-Creekmore
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sarah Gettys
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Candice Schwartzenburg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Kelly Bui
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurosignaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Brenda K Richards
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Soedling H, Hodson DJ, Adrianssens AE, Gribble FM, Reimann F, Trapp S, Rutter GA. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 2015; 4:619-30. [PMID: 26413468 PMCID: PMC4563029 DOI: 10.1016/j.molmet.2015.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 01/07/2023] Open
Abstract
AIMS/HYPOTHESIS The adipose tissue-derived hormone leptin plays an important role in the maintenance of body weight and glucose homeostasis. Leptin mediates its effects by interaction with leptin receptors (LepRb), which are highly expressed in the hypothalamus and other brain centres, and at lower levels in the periphery. Previous studies have used relatively promiscuous or inefficient Cre deleter strains, respectively, to explore the roles of LepR in pancreatic β and α cells. Here, we use two newly-developed Cre lines to explore the role of leptin signalling in insulin and proglucagon-expressing cells. METHODS Leptin receptor expression was measured in isolated mouse islets and highly-purified islet cells by RNASeq and quantitative RT-PCR. Mice lacking leptin signalling in pancreatic β, or in α and other proglucagon-expressing cells, were generated using Ins1Cre- or iGluCre-mediated recombination respectively of flox'd leptin receptor alleles. In vivo glucose homeostasis, changes in body weight, pancreatic histology and hormone secretion from isolated islets were assessed using standard techniques. RESULTS Leptin receptor mRNA levels were at or below the level of detection in wild-type adult mouse isolated islets and purified cells, and leptin signalling to Stat3 phosphorylation was undetectable. Whereas male mice further deleted for leptin receptors in β cells exhibited no abnormalities in glucose tolerance up to 16 weeks of age, females transiently displayed improved glucose tolerance at 8 weeks (11.2 ± 3.2% decrease in area under curve; p < 0.05), and improved (39.0 ± 13.0%, P < 0.05) glucose-stimulated insulin secretion in vitro. No differences were seen between genotypes in body weight, fasting glucose or β/α cell ratio. Deletion of LepR from α-cells, a minority of β cells, and a subset of proglucagon-expressing cells in the brain, exerted no effects on body weight, glucose or insulin tolerance, nor on pancreatic hormone secretion assessed in vivo and in vitro. CONCLUSIONS/INTERPRETATION The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.
Collapse
Affiliation(s)
- Helen Soedling
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| | | | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, du Cane Road, London W12 0NN, UK
| |
Collapse
|
22
|
Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A. The thymoprotective function of leptin is indirectly mediated via suppression of obesity. Immunology 2015; 146:122-9. [PMID: 26059465 DOI: 10.1111/imm.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.
Collapse
Affiliation(s)
- Jayasree Sreenivasan
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan Schlenner
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Dean Franckaert
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - James Dooley
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Qiu X, Dao H, Wang M, Heston A, Garcia KM, Sangal A, Dowling AR, Faulkner LD, Molitor SC, Elias CF, Hill JW. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS One 2015; 10:e0121974. [PMID: 25946091 PMCID: PMC4422586 DOI: 10.1371/journal.pone.0121974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.
Collapse
Affiliation(s)
- Xiaoliang Qiu
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Hoangha Dao
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Mengjie Wang
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Amelia Heston
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Kaitlyn M. Garcia
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Alisha Sangal
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Latrice D. Faulkner
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Scott C. Molitor
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Role of Astrocytes in Leptin Signaling. J Mol Neurosci 2015; 56:829-839. [PMID: 25687329 DOI: 10.1007/s12031-015-0518-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that astrocytic leptin signaling induces an overall potentiation of the neuronal response to leptin, we generated a new line of astrocyte-specific leptin receptor knockout (ALKO-Δ1) mice in which no leptin receptor is expressed in astrocytes. Corresponding to cell-specific Cre recombinase expression in hypothalamic astrocytes but not neurons, this new strain of ALKO mice had attenuated pSTAT3 signaling in the arcuate nucleus of the hypothalamus 30 min after intracerebroventricular delivery of leptin. In response to high-fat diet for 2 months, the ALKO mice showed a greater increase of percent fat and blood leptin concentration. This coincided with a mild reactive gliosis in the hypothalamus. Overall, the absence of leptin receptors in astrocytes attenuated hypothalamic pSTAT3 signaling, induced a mild reactive morphology, and promoted the development of diet-induced obesity. We conclude that leptin signaling in astrocytes is essential for the homeostasis of neuroendocrine regulation in obesity.
Collapse
|
25
|
Allison MB, Patterson CM, Krashes MJ, Lowell BB, Myers MG, Olson DP. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol Metab 2015; 4:299-309. [PMID: 25830093 PMCID: PMC4354921 DOI: 10.1016/j.molmet.2015.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Leptin acts via its receptor (LepRb) on multiple subpopulations of LepRb neurons in the brain, each of which controls specific aspects of energy balance. Despite the importance of LepRb-containing neurons, the transcriptome and molecular identity of many LepRb subpopulations remain undefined due to the difficulty of studying the small fraction of total cells represented by LepRb neurons in heterogeneous brain regions. Here we sought to examine the transcriptome of LepRb neurons directly and identify markers for functionally relevant LepRb subsets. METHODS We isolated mRNA from mouse hypothalamic and brainstem LepRb cells by Translating Ribosome Affinity Purification (TRAP) and analyzed it by RNA-seq (TRAP-seq). RESULTS TRAP mRNA from LepRb cells was enriched for markers of peptidergic neurons, while TRAP-depleted mRNA from non-LepRb cells was enriched for markers of glial and immune cells. Genes encoding secreted proteins that were enriched in hypothalamic and brainstem TRAP mRNA revealed subpopulations of LepRb neurons that contained neuropeptide-encoding genes (including prodynorphin, Pdyn) not previously used as functional markers for LepRb neurons. Furthermore, Pdyn (cre) -mediated ablation of Lepr (flox) in Pdyn-expressing neurons (LepRb (Pdyn) KO mice) blunted energy expenditure to promote obesity during high-fat feeding. CONCLUSIONS TRAP-seq of CNS LepRb neurons defines the LepRb neuron transcriptome and reveals novel markers for previously unrecognized subpopulations of LepRb neurons.
Collapse
Affiliation(s)
- Margaret B. Allison
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Christa M. Patterson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael J. Krashes
- Division of Endocrinology, Beth Israel-Deaconess Medical Center, Boston, MA, USA
| | - Bradford B. Lowell
- Division of Endocrinology, Beth Israel-Deaconess Medical Center, Boston, MA, USA
| | - Martin G. Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Corresponding author. Department of Internal Medicine, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI 48105, USA. Tel.: +1 734 647 9515; fax: +1 734 232 8175.
| | - David P. Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, 1000 Wall St, 6321 Brehm Tower, Ann Arbor, MI 48105, USA
- Corresponding author. Department of Pediatrics and Communicable Diseases, University of Michigan, 1000 Wall St, 6321 Brehm Tower, Ann Arbor, MI 48105, USA. Tel.: +1 734 323 8205; fax: +1 734 232 8175.
| |
Collapse
|
26
|
Chong ACN, Greendyk RA, Zeltser LM. Distinct networks of leptin- and insulin-sensing neurons regulate thermogenic responses to nutritional and cold challenges. Diabetes 2015; 64:137-46. [PMID: 25125486 PMCID: PMC4274810 DOI: 10.2337/db14-0567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Defense of core body temperature (Tc) can be energetically costly; thus, it is critical that thermoregulatory circuits are modulated by signals of energy availability. Hypothalamic leptin and insulin signals relay information about energy status and are reported to promote thermogenesis, raising the possibility that they interact to direct an appropriate response to nutritional and thermal challenges. To test this idea, we used an Nkx2.1-Cre driver to generate conditional knockouts (KOs) in mice of leptin receptor (L(2.1)KO), insulin receptor (I(2.1)KO), and double KOs of both receptors (D(2.1)KO). L(2.1)KOs are hyperphagic and obese, whereas I(2.1)KOs are similar to controls. D(2.1)KOs exhibit higher body weight and adiposity than L(2.1)KOs, solely due to reduced energy expenditure. At 20-22°C, fed L(2.1)KOs maintain a lower baseline Tc than controls, which is further decreased in D(2.1)KOs. After an overnight fast, some L(2.1)KOs dramatically suppress energy expenditure and enter a torpor-like state; this behavior is markedly enhanced in D(2.1)KOs. When fasted mice are exposed to 4°C, L(2.1)KOs and D(2.1)KOs both mount a robust thermogenic response and rapidly increase Tc. These observations support the idea that neuronal populations that integrate information about energy stores to regulate the defense of Tc set points are distinct from those required to respond to a cold challenge.
Collapse
Affiliation(s)
- Angie C N Chong
- Institute of Human Nutrition, Columbia University, New York, NY Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | | | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
27
|
Dodd GT, Worth AA, Nunn N, Korpal AK, Bechtold DA, Allison MB, Myers MG, Statnick MA, Luckman SM. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab 2014; 20:639-49. [PMID: 25176149 PMCID: PMC4192552 DOI: 10.1016/j.cmet.2014.07.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 06/06/2014] [Accepted: 07/23/2014] [Indexed: 01/05/2023]
Abstract
Leptin is a critical regulator of metabolism, which acts on brain receptors (Lepr) to reduce energy intake and increase energy expenditure. Some of the cellular pathways mediating leptin's anorectic actions are identified, but those mediating the thermogenic effects have proven more difficult to decipher. We define a population of neurons in the dorsomedial hypothalamic nucleus (DMH) containing the RFamide PrRP, which is activated by leptin. Disruption of Lepr selectively in these cells blocks thermogenic responses to leptin and causes obesity. A separate population of leptin-insensitive PrRP neurons in the brainstem is required, instead, for the satiating actions of the gut-derived hormone cholecystokinin (CCK). Global deletion of PrRP (in a loxSTOPlox-PrRP mouse) results in obesity and attenuated responses to leptin and CCK. Cre-recombinase-mediated reactivation of PrRP in brainstem rescues the anorectic actions of CCK, but reactivation in the hypothalamus is required to re-establish the thermogenic effect of leptin.
Collapse
Affiliation(s)
- Garron T Dodd
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Amy A Worth
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nicolas Nunn
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Aaron K Korpal
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David A Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Margaret B Allison
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, Michigan 48105, USA
| | - Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, Michigan 48105, USA
| | - Michael A Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Simon M Luckman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Akhter N, CarlLee T, Syed MM, Odle AK, Cozart MA, Haney AC, Allensworth-James ML, Beneš H, Childs GV. Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility. Endocrinology 2014; 155:4027-42. [PMID: 25057790 PMCID: PMC4164926 DOI: 10.1210/en.2014-1132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipokine, leptin (LEP), is a hormonal gateway, signaling energy stores to appetite-regulatory neurons, permitting reproduction when stores are sufficient. Dual-labeling for LEP receptors (LEPRs) and gonadotropins or GH revealed a 2-fold increase in LEPR during proestrus, some of which was seen in LH gonadotropes. We therefore investigated LEPR functions in gonadotropes with Cre-LoxP technology, deleting the signaling domain of the LEPR (Lepr-exon 17) with Cre-recombinase driven by the rat LH-β promoter (Lhβ-cre). Selectivity of the deletion was validated by organ genotyping and lack of LEPR and responses to LEP by mutant gonadotropes. The mutation had no impact on growth, body weight, the timing of puberty, or pregnancy. Mutant females took 36% longer to produce their first litter and had 50% fewer pups/litter. When the broad impact of the loss of gonadotrope LEPR on all pituitary hormones was studied, mutant diestrous females had reduced serum levels of LH (40%), FSH (70%), and GH (54%) and mRNA levels of Fshβ (59%) and inhibin/activin β A and β B (25%). Mutant males had reduced serum levels of GH (74%), TSH (31%), and prolactin (69%) and mRNA levels of Gh (31%), Ghrhr (30%), Fshβ (22%), and glycoprotein α-subunit (Cga) (22%). Serum levels of LEP and ACTH and mRNA levels of Gnrhr were unchanged. However, binding to GnRH receptors was reduced in LEPR-null LH or FSH gonadotropes by 82% or 89%, respectively, in females (P < .0001) and 27% or 53%, respectively, in males (P < .03). This correlated with reductions in GnRH receptor protein immunolabeling, suggesting that LEP's actions may be posttranscriptional. Collectively, these studies highlight the importance of LEP to gonadotropes with GnRH-binding sites and activin as potential targets. LEP may modulate population growth, adjusting the number of offspring to the availability of food supplies.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, Derbenev AV, Zsombok A, Münzberg H. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab 2014; 3:681-93. [PMID: 25352997 PMCID: PMC4209380 DOI: 10.1016/j.molmet.2014.07.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) thermogenesis. Intra-DMH leptin injections also activate sympathetic outflow to BAT, but whether such effects are mediated directly via DMH/DHA LepRb neurons and whether this is physiologically relevant for whole body energy expenditure and body weight regulation has yet to be determined. METHODS We used pharmacosynthetic receptors (DREADDs) to selectively activate DMH/DHA LepRb neurons. We further deleted LepRb with virally driven cre-recombinase from DMH/DHA neurons and determined the physiological importance of DMH/DHA LepRb neurons in whole body energy homeostasis. RESULTS Neuronal activation of DMH/DHA LepRb neurons with DREADDs promoted BAT thermogenesis and locomotor activity, which robustly induced energy expenditure (p < 0.001) and decreases body weight (p < 0.001). Similarly, intra-DMH/DHA leptin injections normalized hypothermia and attenuated body weight gain in leptin-deficient ob/ob mice. Conversely, ablation of LepRb from DMH/DHA neurons remarkably drives weight gain (p < 0.001) by reducing energy expenditure (p < 0.001) and locomotor activity (p < 0.001). The observed changes in body weight were largely independent of food intake. CONCLUSION Taken together, our data highlight that DMH/DHA LepRb neurons are sufficient and necessary to regulate energy expenditure and body weight.
Collapse
Affiliation(s)
- Kavon Rezai-Zadeh
- Central Leptin Signaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| | - Sanghou Yu
- Central Leptin Signaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| | - Yanyan Jiang
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Amanda Laque
- Central Leptin Signaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| | - Candice Schwartzenburg
- Central Leptin Signaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurosignaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Heike Münzberg
- Central Leptin Signaling, Pennington Biomedical Research Center (PBRC), LSU System, Baton Rouge, LA, USA
| |
Collapse
|
30
|
Ouyang S, Hsuchou H, Kastin AJ, Mishra PK, Wang Y, Pan W. Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling. Brain Behav Immun 2014; 40:61-73. [PMID: 24576482 PMCID: PMC4131983 DOI: 10.1016/j.bbi.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Leptin, a pleiotropic adipokine, crosses the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) from the periphery and facilitates experimental autoimmune encephalomyelitis (EAE). EAE induces dynamic changes of leptin receptors in enriched brain and spinal cord microvessels, leading to further questions about the potential roles of endothelial leptin signaling in EAE progression. In endothelial leptin receptor specific knockout (ELKO) mice, there were lower EAE behavioral scores in the early phase of the disorder, better preserved BSCB function shown by reduced uptake of sodium fluorescein and leukocyte infiltration into the spinal cord. Flow cytometry showed that the ELKO mutation decreased the number of CD3 and CD45 cells in the spinal cord, although immune cell profiles in peripheral organs were unchanged. Not only were CD4(+) and CD8(+) T lymphocytes reduced, there were also lower numbers of CD11b(+)Gr1(+) granulocytes in the spinal cord of ELKO mice. In enriched microvessels from the spinal cord of the ELKO mice, the decreased expression of mRNAs for a few tight junction proteins was less pronounced in ELKO than WT mice, as was the elevation of mRNA for CCL5, CXCL9, IFN-γ, and TNF-α. Altogether, ELKO mice show reduced inflammation at the level of the BSCB, less leukocyte infiltration, and better preserved tight junction protein expression and BBB function than WT mice after EAE. Although leptin concentrations were high in ELKO mice and microvascular leptin receptors show an initial elevation before inhibition during the course of EAE, removal of leptin signaling helped to reduce disease burden. We conclude that endothelial leptin signaling exacerbates BBB dysfunction to worsen EAE.
Collapse
Affiliation(s)
- Suidong Ouyang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Hung Hsuchou
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Pramod K Mishra
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Yuping Wang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Weihong Pan
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
31
|
Higurashi T, Endo H, Uchiyama T, Uchiyama S, Yamada E, Ohkubo H, Sakai E, Takahashi H, Maeda S, Wada K, Natsumeda Y, Hippo Y, Nakajima A, Nakagama H. Conditional knockout of the leptin receptor in the colonic epithelium revealed the local effects of leptin receptor signaling in the progression of colonic tumors in mice. Carcinogenesis 2014; 35:2134-41. [PMID: 24958593 DOI: 10.1093/carcin/bgu135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptin, secreted by the adipose tissue and known to be related to obesity, is considered to be involved in the onset and progression of colorectal cancer. However, the exact role of leptin in colorectal carcinogenesis is still unclear, as several controversial reports have been published on the various systemic effects of leptin. The aim of this study was to clarify the local and precise roles of leptin receptor (LEPR)-mediated signaling in colonic carcinogenesis using intestinal epithelium-specific LEPRb conditional knockout (cKO) mice. We produced and used colonic epithelium-specific LEPRb cKO mice to investigate the carcinogen-induced formation of aberrant crypt foci (ACF) and tumors in the colon, using their littermates as control. There were no differences in the body weight or systemic condition between the control and cKO mice. The tumor sizes and number of large-sized tumors were significantly lower in the cKO mice as compared with those in the control mice. On the other hand, there was no significant difference in the proliferative activity of the normal colonic epithelial cells or ACF formation between the control and cKO mice. In the control mice, marked increase of the LEPRb expression level was observed in the colonic tumors as compared with that in the normal epithelium; furthermore, signal transducer and activator of transcription (STAT3) was activated in the tumor cells. These findings suggest that STAT3 is one of the important molecules downstream of LEPRb, and LEPRb/STAT3 signaling controls tumor cell proliferation. We demonstrated the importance of local/regional LEPR-mediated signaling in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Takuma Higurashi
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroki Endo
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Uchiyama
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Shiori Uchiyama
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Eiji Yamada
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hidenori Ohkubo
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Eiji Sakai
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hirokazu Takahashi
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Shin Maeda
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koichiro Wada
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Yutaka Natsumeda
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and
| | - Yoshitaka Hippo
- Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Atsushi Nakajima
- Division of Gastroenterology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan, Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan, Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan and Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
32
|
Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J Neurosci 2014; 34:6047-56. [PMID: 24760864 DOI: 10.1523/jneurosci.3003-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adipocyte-derived hormone leptin plays a critical role in the central transmission of energy balance to modulate reproductive function. However, the neurocircuitry underlying this interaction remains elusive, in part due to incomplete knowledge of first-order leptin-responsive neurons. To address this gap, we explored the contribution of predominantly inhibitory (GABAergic) neurons versus excitatory (glutamatergic) neurons in the female mouse by selective ablation of the leptin receptor in each neuronal population: Vgat-Cre;Lepr(lox/lox) and Vglut2-Cre;Lepr(lox/lox) mice, respectively. Female Vgat-Cre;Lepr(lox/lox) but not Vglut2-Cre;Lepr(lox/lox) mice were obese. Vgat-Cre;Lepr(lox/lox) mice had delayed or absent vaginal opening, persistent diestrus, and atrophic reproductive tracts with absent corpora lutea. In contrast, Vglut2-Cre;Lepr(lox/lox) females exhibited reproductive maturation and function comparable to Lepr(lox/lox) control mice. Intracerebroventricular administration of kisspeptin-10 to Vgat-Cre;Lepr(lox/lox) female mice elicited robust gonadotropin responses, suggesting normal gonadotropin-releasing hormone neuronal and gonadotrope function. However, adult ovariectomized Vgat-Cre;Lepr(lox/lox) mice displayed significantly reduced levels of Kiss1 (but not Tac2) mRNA in the arcuate nucleus, and a reduced compensatory luteinizing hormone increase compared with control animals. Estradiol replacement after ovariectomy inhibited gonadotropin release to a similar extent in both groups. These animals also exhibited a compromised positive feedback response to sex steroids, as shown by significantly lower Kiss1 mRNA levels in the AVPV, compared with Lepr(lox/lox) mice. We conclude that leptin-responsive GABAergic neurons, but not glutamatergic neurons, act as metabolic sensors to regulate fertility, at least in part through modulatory effects on kisspeptin neurons.
Collapse
|
33
|
Bellefontaine N, Elias CF. Minireview: Metabolic control of the reproductive physiology: insights from genetic mouse models. Horm Behav 2014; 66:7-14. [PMID: 24746731 PMCID: PMC4204395 DOI: 10.1016/j.yhbeh.2014.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
Abstract
This article is part of a Special Issue Energy Balance. Over the past two decades, and in particular over the past 5-7 years, there has been a tremendous advancement in the understanding of the metabolic control of reproductive physiology. This has been in large part due to the advancement and refinement of gene targeting tools and techniques for molecular mapping. Yet despite the emergence of exciting and often times thought-provoking data through the use of new mouse models, the heavy reliance on gene targeting strategies has become fundamental in this process and thus caution must be exercised when interpreting results. This minireview article will explore the generation of new mouse models using genetic manipulation, such as viral vector delivery and the use of the Cre/loxP system, to investigate the role of circulating metabolic hormones in the coordination of reproductive physiology. In addition, we will also highlight some of the pitfalls in the use of genetic manipulation in the current paradigms. However, it has become clear that metabolic cues employ integrated and plastic neural circuits in order to modulate the neuroendocrine reproductive axis, and despite recent advances much remains to be elucidated about this circuitry.
Collapse
Affiliation(s)
- Nicole Bellefontaine
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Tudurí E, Denroche HC, Kara JA, Asadi A, Fox JK, Kieffer TJ. Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid homeostasis. Am J Physiol Endocrinol Metab 2014; 306:E748-55. [PMID: 24473435 DOI: 10.1152/ajpendo.00681.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of glucagon in the pathological condition of diabetes is gaining interest, and it has been recently reported that its action is essential for hyperglycemia to occur. Glucagon levels, which are elevated in some diabetic models, are reduced following leptin therapy. Likewise, hyperglycemia is corrected in type 1 diabetic mice treated with leptin, although the mechanisms have not been fully determined. A direct inhibitory effect of leptin on mouse and human α-cells has been demonstrated at the levels of electrical activity, calcium signaling, and glucagon secretion. In the present study we employed the Cre-loxP strategy to generate Lepr(flox/flox) Gcg-cre mice, which specifically lack leptin receptors in glucagon-secreting α-cells, to determine whether leptin resistance in α-cells contributes to hyperglucagonemia, and also whether leptin action in α-cells is required to improve glycemia in type 1 diabetes with leptin therapy. Immunohistochemical analysis of pancreas sections revealed Cre-mediated recombination in ∼ 43% of the α-cells. We observed that in vivo Lepr(flox/flox) Gcg-cre mice display normal glucose and lipid homeostasis. In addition, leptin administration in streptozotocin-induced diabetic Lepr(flox/flox) Gcg-cre mice restored euglycemia similarly to control mice. These findings suggest that loss of leptin receptor signaling in close to one-half of α-cells does not alter glucose metabolism in vivo, nor is it sufficient to prevent the therapeutic action of leptin in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Deletion
- Glucagon-Secreting Cells/metabolism
- Glucose/metabolism
- Homeostasis/genetics
- Leptin/metabolism
- Leptin/therapeutic use
- Lipid Metabolism/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | | | | | | | | |
Collapse
|
35
|
Seli E, Babayev E, Collins SC, Nemeth G, Horvath TL. Minireview: Metabolism of female reproduction: regulatory mechanisms and clinical implications. Mol Endocrinol 2014; 28:790-804. [PMID: 24678733 DOI: 10.1210/me.2013-1413] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences (E.S., E.B., S.C., T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; Department of Obstetrics and Gynecology (G.N., T.L.H.), University of Szeged, Faculty of Medicine, Szeged, Hungary 6701; Department of Comparative Medicine (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; and the Department of Neurobiology (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520
| | | | | | | | | |
Collapse
|
36
|
Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Neurosci 2013; 33:17874-83. [PMID: 24198376 DOI: 10.1523/jneurosci.2278-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.
Collapse
|
37
|
Elias CF. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. Am J Physiol Regul Integr Comp Physiol 2013; 306:R1-9. [PMID: 24196667 DOI: 10.1152/ajpregu.00444.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression (LepR(neo/neo) and LepR(loxTB/loxTB)) and one model of leptin signaling blockade (LepR(flox/flox)). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Molecular and Integrative Physiology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Mishra PK, Hsuchou H, Ouyang S, Kastin AJ, Wu X, Pan W. Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav Immun 2013; 34:98-107. [PMID: 23916894 PMCID: PMC3818286 DOI: 10.1016/j.bbi.2013.07.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 11/30/2022] Open
Abstract
Leptin is commonly thought to play a detrimental role in exacerbating experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis. Paradoxically, we show here that astrocytic leptin signaling has beneficial effects in reducing disease severity. In the astrocyte specific leptin receptor knockout (ALKO) mouse in which leptin signaling is absent in astrocytes, there were higher EAE scores (more locomotor deficits) than in the wildtype counterparts. The difference mainly occurred at a late stage of EAE when wildtype mice showed signs of recovery whereas ALKO mice continued to deteriorate. The more severe symptoms in ALKO mice coincided with more infiltrating cells in the spinal cord and perivascular brain parenchyma, more demyelination, more infiltrating CD4 cells, and a lower percent of neutrophils in the spinal cord 28 days after EAE induction. Cultured astrocytes from wildtype mice showed increased adenosine release in response to interleukin-6 and the hippocampus of wildtype mice had increased adenosine production 28 days after EAE induction, but the ALKO mutation abolished the increase in both conditions. This indicates a role of astrocytic leptin in normal gliotransmitter release and astrocyte functions. The worsening of EAE in the ALKO mice in the late stage suggests that astrocytic leptin signaling helps to clear infiltrating leukocytes and reduce autoimmune destruction of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihong Pan
- Corresponding author: Weihong Pan, MD, PhD, Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Tel. 225-763-2715; Fax 225-763-0261,
| |
Collapse
|
39
|
Tudurí E, Bruin JE, Denroche HC, Fox JK, Johnson JD, Kieffer TJ. Impaired Ca(2+) signaling in β-cells lacking leptin receptors by Cre-loxP recombination. PLoS One 2013; 8:e71075. [PMID: 23936486 PMCID: PMC3731269 DOI: 10.1371/journal.pone.0071075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
Obesity is a major risk factor for diabetes and is typically associated with hyperleptinemia and a state of leptin resistance. The impact of chronically elevated leptin levels on the function of insulin-secreting β-cells has not been elucidated. We previously generated mice lacking leptin signaling in β-cells by using the Cre-loxP strategy and showed that these animals develop increased body weight and adiposity, hyperinsulinemia, impaired glucose-stimulated insulin secretion and insulin resistance. Here, we performed several in vitro studies and observed that β-cells lacking leptin signaling in this model are capable of properly metabolizing glucose, but show impaired intracellular Ca2+ oscillations and lack of synchrony within the islets in response to glucose, display reduced response to tolbutamide and exhibit morphological abnormalities including increased autophagy. Defects in intracellular Ca2+ signaling were observed even in neonatal islets, ruling out the possible contribution of obesity to the β-cell irregularities observed in adults. In parallel, we also detected a disrupted intracellular Ca2+ pattern in response to glucose and tolbutamide in control islets from adult transgenic mice expressing Cre recombinase under the rat insulin promoter, despite these animals being glucose tolerant and secreting normal levels of insulin in response to glucose. This unexpected observation impeded us from discerning the consequences of impaired leptin signaling as opposed to long-term Cre expression in the function of insulin-secreting cells. These findings highlight the need to generate improved Cre-driver mouse models or new tools to induce Cre recombination in β-cells.
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer E. Bruin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather C. Denroche
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K. Fox
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
40
|
Hsuchou H, Wang Y, Cornelissen-Guillaume GG, Kastin AJ, Jang E, Halberg F, Pan W. Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol (1985) 2013; 115:995-1003. [PMID: 23869060 DOI: 10.1152/japplphysiol.00630.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leptin, a hormone mainly produced by fat cells, shows cell-specific effects to regulate feeding and metabolic activities. We propose that an important feature of metabolic dysregulation resulting in obesity is the loss of the circadian rhythm of biopotentials. This was tested in the pan-leptin receptor knockout (POKO) mice newly generated in our laboratory. In the POKO mice, leptin no longer induced pSTAT-3 signaling after intracerebroventricular injection. Three basic phenotypes were observed: the heterozygotes had similar weight and adiposity as the wild-type (WT) mice (>60% of the mice); the homozygotes were either fatter (∼30%), or rarely leaner (<5%) than the WT mice. By early adulthood, the POKO mice had higher average body weight and adiposity than their respective same-sex WT littermate controls, and this was consistent among different batches. The homozygote fat POKO showed significant reduction of midline estimating statistic of rhythm of circadian parameters, and shifts of ultradian rhythms. The blunted circadian rhythm of these extremely obese POKO mice was also seen in their physical inactivity, longer feeding bouts, and higher food intake. The extent of obesity correlated with the blunted circadian amplitude, accumulative metabolic and locomotor activities, and the severity of hyperphagia. This contrasts with the heterozygote POKO mice which showed little obesity and metabolic disturbance, and only subtle changes of the circadian rhythm of metabolic activity without alterations in feeding behavior. The results provide a novel aspect of leptin resistance, almost manifesting as an "all or none" phenomenon.
Collapse
Affiliation(s)
- Hung Hsuchou
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | | | | | | | | | | |
Collapse
|
41
|
Selective deletion of leptin receptors in adult hippocampus induces depression-related behaviours. Int J Neuropsychopharmacol 2013; 16:857-67. [PMID: 22932068 PMCID: PMC3612133 DOI: 10.1017/s1461145712000703] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies have demonstrated that leptin and its receptors (LepRb) in the central nervous system play an important role in regulating depression- and anxiety-related behaviours. However, the physiological functions of LepRb in specific brain regions for mediating different emotional behaviours remain to be defined. In this study, we examined the behavioural effects of LepRb ablation in the adult hippocampus using a series of behavioural paradigms for assessing depression- and anxiety-related behaviours. Targeted deletion of LepRb was achieved using the Cre/loxP site-specific recombination system through bilateral stereotaxic delivery of an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the dentate gyrus of adult mice homozygous for a floxed leptin receptor allele. AAV-Cre-mediated deletion of the floxed region of LepRb was detected 2 wk after injection. In accordance with this, leptin-stimulated phosphorylation of Akt was attenuated in the hippocampus of AAV-Cre injected mice. Mice injected with AAV-Cre displayed normal locomotor activity and anxiety-like behaviour, as determined in the elevated plus-maze, light-dark box and open field tests, but showed increased depression-like behaviours in the tail suspension, saccharin preference and learned helplessness tests. Taken together, these data suggest that deletion of LepRb in the adult hippocampus is sufficient to induce depression-like behaviours. Our results support the view that leptin signalling in the hippocampus may be essential for positive mood states and active coping to stress.
Collapse
|
42
|
Jayaram B, Pan W, Wang Y, Hsuchou H, Mace A, Cornelissen-Guillaume GG, Mishra PK, Koza RA, Kastin AJ. Astrocytic leptin-receptor knockout mice show partial rescue of leptin resistance in diet-induced obesity. J Appl Physiol (1985) 2013; 114:734-41. [PMID: 23329815 DOI: 10.1152/japplphysiol.01499.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To determine how astrocytic leptin signaling regulates the physiological response of mice to diet-induced obesity (DIO), we performed metabolic analyses and hypothalamic leptin signaling assays on astrocytic leptin-receptor knockout (ALKO) mice in which astrocytes lack functional leptin receptor (ObR) signaling. ALKO mice and wild-type (WT) littermate controls were studied at different stages of DIO with measurement of body wt, percent fat, metabolic activity, and biochemical parameters. When fed regular chow, the ALKO mice had similar body wt, percent fat, food intake, heat dissipation, respiratory exchange ratio, and activity as their WT littermates. There was no change in blood concentrations of triglyceride, soluble leptin receptor (sObR), mRNA for leptin and uncoupling protein 1 (UCP1) in adipose tissue, and insulin sensitivity. Unexpectedly, in response to a high-fat diet the ALKO mice had attenuated hyperleptinemia and sObR, a lower level of leptin mRNA in subcutaneous fat, and a paradoxical increase in UCP1 mRNA. Thus, ALKO mice did not show the worsening of obesity that occurs with normal WT mice and the neuronal ObR mutation that results in morbid obesity. The findings are consistent with a competing, counterregulatory model between neuronal and astrocytic leptin signaling.
Collapse
Affiliation(s)
- Bhavaani Jayaram
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Arteaga-Solis E, Zee T, Emala CW, Vinson C, Wess J, Karsenty G. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab 2013; 17:35-48. [PMID: 23312282 PMCID: PMC3815545 DOI: 10.1016/j.cmet.2012.12.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 12/12/2022]
Abstract
Impaired lung function caused by decreased airway diameter (bronchoconstriction) is frequently observed whether body weight is abnormally high or low. That these opposite conditions affect the airways similarly suggests that the regulation of airway diameter and body weight are intertwined. We show here that, independently of its regulation of appetite, melanocortin pathway, or sympathetic tone, leptin is necessary and sufficient to increase airway diameter by signaling through its cognate receptor in cholinergic neurons. The latter decreases parasympathetic signaling through the M(3) muscarinic receptor in airway smooth muscle cells, thereby increasing airway diameter without affecting local inflammation. Accordingly, decreasing parasympathetic tone genetically or pharmacologically corrects bronchoconstriction and normalizes lung function in obese mice regardless of bronchial inflammation. This study reveals an adipocyte-dependent regulation of bronchial diameter whose disruption contributes to the impaired lung function caused by abnormal body weight. These findings may be of use in the management of obesity-associated asthma.
Collapse
Affiliation(s)
- Emilio Arteaga-Solis
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function.
Collapse
Affiliation(s)
- Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | | | | |
Collapse
|
45
|
Akhter N, Odle AK, Allensworth-James ML, Haney AC, Syed MM, Cozart MA, Chua S, Kineman R, Childs GV. Ablation of leptin signaling to somatotropes: changes in metabolic factors that cause obesity. Endocrinology 2012; 153:4705-15. [PMID: 22865370 PMCID: PMC3512011 DOI: 10.1210/en.2012-1331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 01/22/2023]
Abstract
Mice with somatotrope-specific deletion of the Janus kinase binding site in leptin receptors are GH deficient as young adults and become obese by 6 months of age. This study focused on the metabolic status of young (3-4.5 month old) preobese mutant mice. These mutants had normal body weights, lean body mass, serum leptin, glucose, and triglycerides. Mutant males and females showed significantly higher respiratory quotients (RQ) and lower energy output, resulting from a higher volume of CO(2) output and lower volume of O(2) consumption. Deletion mutant females were significantly less active than controls; they had higher levels of total serum ghrelin and ate more food. Mutant females also had lower serum insulin and higher glucagon. In contrast, deletion mutant males were not hyperphagic, but they were more active and spent less time sleeping. Adiponectin and resistin, both products of adipocytes, were increased in male and female mutant mice. In addition, mutant males showed an increase in circulating levels of the potent lipogenic hormone, glucose-dependent insulinotropic peptide. Taken together, these results indicate that mutant mice may become obese due to a reduction in lipid oxidation and energy expenditure. This may stem from GH deficiency. Reduced fat oxidation and enhanced insulin sensitivity (in females) are directly related to GH deficiency in mutant mice because GH has been shown by others to increase insulin sensitivity and fat oxidation and reduce carbohydrate oxidation. Gender-dependent alterations in metabolic signals may further exacerbate the future obese phenotype and affect the timing of its onset. Females show a delay in onset of obesity, perhaps because of their low serum insulin, which is lipogenic, whereas young males already have higher levels of the lipogenic hormone, glucose-dependent insulinotropic peptide. These findings signify that leptin signals to somatotropes are vital for the normal metabolic activity needed to optimize body composition.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat Med 2012; 18:820-3. [PMID: 22522563 PMCID: PMC3531967 DOI: 10.1038/nm.2724] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/09/2012] [Indexed: 11/18/2022]
Abstract
Few effective measures exist to combat the worldwide obesity epidemic1, and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte hormone that signals the status of cellular energy stores, acts via multiple types of leptin receptor (LepR-b)-expressing neurons in the brain to control feeding, energy expenditure and endocrine function2–4. The modest contributions to energy balance attributable to leptin action via many previously-studied LepR-b populations5–9 suggest that other, heretofore unidentified, hypothalamic LepR-b neurons play important roles. Here, we examine the role of LepR-b in neuronal nitric oxide synthase (NOS1)-expressing (LepR-bNOS1) neurons that comprise approximately 20% of hypothalamic LepR-b neurons. Nos1cre-mediated ablation of LepR-b (LeprNOS1KO mice) produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that of LepR-b-null mice. In contrast, endocrine functions in LeprNOS1KO mice are relatively spared. Thus, hypothalamic LepR-bNOS1 neurons are essential for the control of energy balance by leptin.
Collapse
|
47
|
Guo M, Lu Y, Garza JC, Li Y, Chua SC, Zhang W, Lu B, Lu XY. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression. Transl Psychiatry 2012; 2:e83. [PMID: 22408745 PMCID: PMC3298113 DOI: 10.1038/tp.2012.9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates NMDA-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the GluN2B subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestations of depression.
Collapse
Affiliation(s)
- M Guo
- Department of Pharmacology,University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Y Lu
- Genes Cognition and Psychosis Program, NIMH, National Institutes of Health, Bethesda, MD, USA
| | - J C Garza
- Department of Pharmacology,University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Y Li
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S C Chua
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - W Zhang
- Department of Pharmacology,University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B Lu
- Genes Cognition and Psychosis Program, NIMH, National Institutes of Health, Bethesda, MD, USA,GlaxoSmithKline, R&D China, Shanghai, China,GlaxoSmithKline, R&D China, Shanghai 201203, China E-mail:
| | - X-Y Lu
- Department of Pharmacology,University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA. E-mail:
| |
Collapse
|
48
|
Scheller EL, Song J, Dishowitz MI, Hankenson KD, Krebsbach PH. A potential role for the myeloid lineage in leptin-regulated bone metabolism. Horm Metab Res 2012; 44:1-5. [PMID: 22205566 PMCID: PMC3606882 DOI: 10.1055/s-0031-1297971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Leptin influences bone formation centrally through the hypothalamus and peripherally by acting on osteoblasts or their precursors. However, neither mechanism explains the divergent, gender-specific correlation between leptin and bone mineral density in humans. Although leptin is a potent regulator of pro-inflammatory immune responses, a potential role for leptin as an osteoimmunologic intermediate in bone metabolism has not been tested. Mice with myeloid-specific ablation of the long-form leptin receptor (ObRb) were generated using mice expressing cre-recombinase from the lysoszyme M promoter. At 12 weeks of age, the conditional knockout mice did not display any appreciable phenotype. However, at 52 weeks 2 changes were noted. First, there was a mild increase in liver inflammation. Second, a gender-specific, divergent bone phenotype was observed. Female mice displayed a consistent trend toward decreased trabecular bone parameters including reductions in bone volume fraction, trabecular number, and bone mineral content as well as a significant increase in marrow adipogenesis. Conversely, male mice lacked trabecular changes, but had statistically significant increases in cortical bone volume, thickness, and bone mineral density with equivalent total cortical volume. Since the year 2000, over 25 studies on more than 10,000 patients have sought to determine the correlation between leptin and bone mineral density. The results revealed a gender-specific correlation similar to that observed in our LysM transgenic animals. We hypothesize and show new evidence that regulation of myeloid lineage cells by leptin may facilitate their actions as an osteoimmunologic intermediate and contribute to leptin-regulated bone formation and metabolism in a gender-specific manner.
Collapse
Affiliation(s)
- Erica L. Scheller
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry Ann Arbor, MI 48109 United States of America
| | - Junhui Song
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry Ann Arbor, MI 48109 United States of America
| | - Michael I. Dishowitz
- Department of Animal Biology School of Veterinary Medicine University of Pennsylvania Philadelphia, PA 19104 United States of America
| | - Kurt D. Hankenson
- Department of Animal Biology School of Veterinary Medicine University of Pennsylvania Philadelphia, PA 19104 United States of America
- Corresponding author Kurt D Hankenson DVM PhD University of Pennsylvania 311 Hill Pavilion 380 S. University Ave Philadelphia, PA 19104 Phone: 215-746-1873 Fax: 215-573-5187
| | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry Ann Arbor, MI 48109 United States of America
| |
Collapse
|
49
|
Scheller EL, Hankenson KD, Reuben JS, Krebsbach PH. Zoledronic acid inhibits macrophage SOCS3 expression and enhances cytokine production. J Cell Biochem 2011; 112:3364-72. [PMID: 21751240 PMCID: PMC3196771 DOI: 10.1002/jcb.23267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Suppressor of cytokine signaling-3 (SOCS3) has multiple functions including inhibition of Janus kinase (Jak) activity, regulation of protein degradation, and suppression of cytokine signaling. SOCS3 modulates macrophage response to cytokines such as IL-6 and leptin that are systemically induced in obesity. Obesity is a suspected risk factor for SOCS3-related pathology such as rheumatoid arthritis and Crohn's disease as well as zoledronic acid (ZA)-induced osteonecrosis of the jaw (ONJ). Thus, understanding the ability of bisphosphonates to modulate SOCS3 is necessary to qualify their contribution to these disorders. ONJ occurs in up to 10% of patients using intravenous bisphosphonates and has an unknown pathogenesis that may be linked to decreased bone turnover, altered vascularity, bacterial invasion, and compromised wound healing. Given the increased risk of ONJ with obesity and importance of macrophages in wound healing, we hypothesized that amino-bisphosphonates could contribute to the pathogenesis of ONJ by regulating macrophage responses to cytokines such as leptin and IL-6. We report that ZA is a novel inhibitor of SOCS3 in primary macrophages and human ONJ biopsy specimens. Inhibition of SOCS3 by ZA resulted in significant increases in IL-6 production. SOCS3 transcription is regulated by nuclear accumulation of phosphorylated-Stat3 (P-Stat3). We found that ZA decreased phosphorylation of Stat3 in a mevalonate-pathway dependent manner. However, restoration of P-Stat3 was not sufficient to correct SOCS3 inhibition. We propose that disruption of macrophage SOCS3 expression by amino-bisphosphonates such as ZA may be a novel contributor to inflammatory phenotypes in obesity and the pathogenesis of ONJ.
Collapse
Affiliation(s)
- Erica L. Scheller
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States of America
| | - Kurt D. Hankenson
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jayne S. Reuben
- Baylor College of Dentistry, Dallas, TX 75246, United States of America
| | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
50
|
Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 2011; 16:1024-38. [PMID: 21483433 PMCID: PMC3432580 DOI: 10.1038/mp.2011.36] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The leptin receptor (Lepr) is expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional Lepr selectively on dopamine neurons (Lepr(DAT-Cre)). These mice exhibit normal body weight and feeding. Behaviorally, Lepr(DAT-Cre) mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors, as assessed by chronic stress-induced anhedonia, forced swim and tail-suspension tests, were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area revealed an increase in burst firing in Lepr(DAT-Cre) mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of Lepr(DAT-Cre) mice. These findings suggest that Lepr signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Stephanie M. Perez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|