1
|
Erkens R, Duse DA, Brum A, Chadt A, Becher S, Siragusa M, Quast C, Müssig J, Roden M, Cortese-Krott M, Ibáñez B, Lammert E, Fleming I, Jung C, Al-Hasani H, Heusch G, Kelm M. Inhibition of proline-rich tyrosine kinase 2 restores cardioprotection by remote ischaemic preconditioning in type 2 diabetes. Br J Pharmacol 2024; 181:4174-4194. [PMID: 38956895 DOI: 10.1111/bph.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes. EXPERIMENTAL APPROACH New Zealand obese (NZO) mice that demonstrated key features of diabetes were studied. The consequence of Pyk2 inhibition on endothelial function, rIPC and infarct size after myocardial infarction were evaluated. The impact of plasma from mice and humans with or without diabetes was assessed in isolated buffer perfused murine hearts and aortic rings. KEY RESULTS Plasma from nondiabetic mice and humans, both subjected to rIPC, caused remote tissue protection. Similar to diabetic humans, NZO mice demonstrated endothelial dysfunction. NZO mice had reduced circulating nitrite levels, elevated arterial blood pressure and a larger infarct size after ischaemia and reperfusion than BL6 mice. Pyk2 increased the phosphorylation of eNOS at its inhibitory site (Tyr656), limiting its activity in diabetes. The cardioprotective effects of rIPC were abolished in diabetic NZO mice. Pharmacological Pyk2 inhibition restored endothelial function and rescued cardioprotective effects of rIPC. CONCLUSION AND IMPLICATIONS Endothelial function and remote tissue protection are impaired in diabetes. Pyk2 is a novel target for treating endothelial dysfunction and restoring cardioprotection through rIPC in diabetes.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Dragos Andrei Duse
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mauro Siragusa
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christine Quast
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Johanna Müssig
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
- Institute for Clinical Diabetology, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - Miriam Cortese-Krott
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| | - Borja Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eckhard Lammert
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich-Heine University, Duesseldorf, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
2
|
Zhang Q, Jin W, Wang H, Tang C, Zhao X, Wang Y, Sun L, Piao C. Inhibition of endoplasmic reticulum stress and excessive autophagy by Jiedu Tongluo Tiaogan Formula via a CaMKKβ/AMPK pathway contributes to protect pancreatic β-cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118440. [PMID: 38885916 DOI: 10.1016/j.jep.2024.118440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiedu Tongluo Tiaogan Formula (JTTF), a traditional Chinese herbal decoction, exhibits the potential to treat type 2 diabetes mellitus (T2DM) by inhibiting endoplasmic reticulum stress (ERS) and excessive autophagy, which are the risk factors for the abnormal development and progression of β cells. AIM OF THE STUDY We aimed to assess the effect of JTTF on pancreatic glucotoxicity by inhibiting ERS and excessive autophagy, for which db/db mice and INS-1 insulinoma cells were used. MATERIALS AND METHODS The chemical composition of the JTTF was analyzed by UPLC-Q/TOF-MS. Diabetic (db/db) mice were treated with distilled water or JTTF (2.4 and 7.2 g/kg/day) for 8 weeks. Furthermore, INS-1 cells induced by high glucose (HG) levels were treated with or without JTTF (50, 100, and 200 μg/mL) for 48 h to elucidate the protective mechanism of JTTF on glucose toxicity. The experimental methods included an oral glucose tolerance test, hematoxylin-eosin staining, immunohistochemistry, western blotting, RT-qPCR, and acridine orange staining. RESULT 28 chemical components of JTTF were identified. Additionally, treatment with JTTF significantly decreased the severity of glycemic symptoms in the db/db mice. Moreover, the treatment partially restored glucose homeostasis in the db/db mice and protected the pancreatic β-cell function. JTTF protected INS-1 cells from HG injury by upregulating GSIS and PDX1, MafA mRNA expression. Further, treatment with JTTF downregulated GRP78 and ATF6 expression, whereas it inhibited Beclin-1 and LC3 activation. The treatment protected the cells from HG-induced ERS and excessive autophagy by downregulating the CaMKKβ/AMPK pathway. CONCLUSIONS The present study findings show that JTTF may protects β-cells by inhibiting the CaMKKβ/AMPK pathway, which deepens our understanding of the effectiveness of JTTF as a treatment strategy against T2DM.
Collapse
Affiliation(s)
- Qi Zhang
- Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Wenqi Jin
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130012, Jilin, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Tang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130012, Jilin, China
| | - Xiaohua Zhao
- Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China
| | - Yu Wang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130012, Jilin, China
| | - Liwei Sun
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130012, Jilin, China.
| | - Chunli Piao
- Shenzhen Hospital (Fu Tian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
3
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice. Int J Mol Sci 2023; 24:ijms24010845. [PMID: 36614300 PMCID: PMC9820861 DOI: 10.3390/ijms24010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.
Collapse
|
5
|
Liebmann M, Grupe K, Asuaje Pfeifer M, Rustenbeck I, Scherneck S. Differences in lipid metabolism in acquired versus preexisting glucose intolerance during gestation: role of free fatty acids and sphingosine-1-phosphate. Lipids Health Dis 2022; 21:99. [PMID: 36209101 PMCID: PMC9547403 DOI: 10.1186/s12944-022-01706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide. There is increasing evidence that GDM is a heterogeneous disease with different subtypes. An important question in this context is whether impaired glucose tolerance (IGT), which is a typical feature of the disease, may already be present before pregnancy and manifestation of the disease. The latter type resembles in its clinical manifestation prediabetes that has not yet manifested as type 2 diabetes (T2DM). Altered lipid metabolism plays a crucial role in the disorder's pathophysiology. The aim was to investigate the role of lipids which are relevant in diabetes-like phenotypes in these both models with different time of initial onset of IGT. METHODS Two rodent models reflecting different characteristics of human GDM were used to characterize changes in lipid metabolism occurring during gestation. Since the New Zealand obese (NZO)-mice already exhibit IGT before and during gestation, they served as a subtype model for GDM with preexisting IGT (preIGT) and were compared with C57BL/6 N mice with transient IGT acquired during gestation (aqIGT). While the latter model does not develop manifest diabetes even under metabolic stress conditions, the NZO mouse is prone to severe disease progression later in life. Metabolically healthy Naval Medical Research Institute (NMRI) mice served as controls. RESULTS In contrast to the aqIGT model, preIGT mice showed hyperlipidemia during gestation with elevated free fatty acids (FFA), triglycerides (TG), and increased atherogenic index. Interestingly, sphingomyelin (SM) concentrations in the liver decreased during gestation concomitantly with an increase in the sphingosine-1-phosphate (S1P) concentration in plasma. Further, preIGT mice showed impaired hepatic weight adjustment and alterations in hepatic FFA metabolism during gestation. This was accompanied by decreased expression of peroxisome proliferator-activated receptor alpha (PPARα) and lack of translocation of fatty acid translocase (FAT/CD36) to the hepatocellular plasma membrane. CONCLUSION The preIGT model showed impaired lipid metabolism both in plasma and liver, as well as features of insulin resistance consistent with increased S1P concentrations, and in these characteristics, the preIGT model differs from the common GDM subtype with aqIGT. Thus, concomitantly elevated plasma FFA and S1P concentrations, in addition to general shifts in sphingolipid fractions, could be an interesting signal that the metabolic disorder existed before gestation and that future pregnancies require more intensive monitoring to avoid complications. This graphical abstract was created with BioRender.com .
Collapse
Affiliation(s)
- Moritz Liebmann
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Melissa Asuaje Pfeifer
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Gottmann P, Speckmann T, Stadion M, Zuljan E, Aga H, Sterr M, Büttner M, Santos PM, Jähnert M, Bornstein SR, Theis FJ, Lickert H, Schürmann A. Heterogeneous Development of β-Cell Populations in Diabetes-Resistant and -Susceptible Mice. Diabetes 2022; 71:1962-1978. [PMID: 35771990 PMCID: PMC9862397 DOI: 10.2337/db21-1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Progressive dysfunction and failure of insulin-releasing β-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of β-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we identified six β-cell clusters with similar abundance in both strains. However, after feeding of a diabetogenic diet for 2 days, β-cell cluster composition markedly differed between strains. Islets of diabetes-resistant mice developed into a protective β-cell cluster (Beta4), whereas those of diabetes-prone mice progressed toward stress-related clusters with a strikingly different expression pattern. Interestingly, the protective cluster showed indications of reduced β-cell identity, such as downregulation of GLUT2, GLP1R, and MafA, and in vitro knockdown of GLUT2 in β-cells-mimicking its phenotype-decreased stress response and apoptosis. This might explain enhanced β-cell survival of diabetes-resistant islets. In contrast, β-cells of diabetes-prone mice responded with expression changes indicating metabolic pressure and endoplasmic reticulum stress, presumably leading to later β-cell loss. In conclusion, failure of diabetes-prone mice to adapt gene expression toward a more dedifferentiated state in response to rising blood glucose levels leads to β-cell failure and diabetes development.
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Erika Zuljan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Sterr
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Maren Büttner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Patrícia Martínez Santos
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King’s College London, London, U.K
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
- Corresponding author: Annette Schürmann,
| |
Collapse
|
7
|
Kuhn T, Kaiser K, Lebek S, Altenhofen D, Knebel B, Herwig R, Rasche A, Pelligra A, Görigk S, Khuong JMA, Vogel H, Schürmann A, Blüher M, Chadt A, Al-Hasani H. Comparative genomic analyses of multiple backcross mouse populations suggest SGCG as a novel potential obesity-modifier gene. Hum Mol Genet 2022; 31:4019-4033. [PMID: 35796564 DOI: 10.1093/hmg/ddac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue (gWAT), defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3 T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with BMI and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will shine light on the mechanism by which Sgcg may protect from the development of obesity.
Collapse
Affiliation(s)
- Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Sandra Lebek
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, D-14195, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, D-14195, Germany
| | - Angela Pelligra
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, D-14558, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, D-14558, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, D-04103, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Heinrich Heine University, Medical Faculty, Duesseldorf, D-40225, Germany.,German Center for Diabetes Research (DZD), Munich-Neuherberg, D-85764, Germany
| |
Collapse
|
8
|
Fang Z, Peltz G. An automated multi-modal graph-based pipeline for mouse genetic discovery. Bioinformatics 2022; 38:3385-3394. [PMID: 35608290 PMCID: PMC9992076 DOI: 10.1093/bioinformatics/btac356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Our ability to identify causative genetic factors for mouse genetic models of human diseases and biomedical traits has been limited by the difficulties associated with identifying true causative factors, which are often obscured by the many false positive genetic associations produced by a GWAS. RESULTS To accelerate the pace of genetic discovery, we developed a graph neural network (GNN)-based automated pipeline (GNNHap) that could rapidly analyze mouse genetic model data and identify high probability causal genetic factors for analyzed traits. After assessing the strength of allelic associations with the strain response pattern; this pipeline analyzes 29M published papers to assess candidate gene-phenotype relationships; and incorporates the information obtained from a protein-protein interaction network and protein sequence features into the analysis. The GNN model produces markedly improved results relative to that of a simple linear neural network. We demonstrate that GNNHap can identify novel causative genetic factors for murine models of diabetes/obesity and for cataract formation, which were validated by the phenotypes appearing in previously analyzed gene knockout mice. The diabetes/obesity results indicate how characterization of the underlying genetic architecture enables new therapies to be discovered and tested by applying 'precision medicine' principles to murine models. AVAILABILITY AND IMPLEMENTATION The GNNHap source code is freely available at https://github.com/zqfang/gnnhap, and the new version of the HBCGM program is available at https://github.com/zqfang/haplomap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Görigk S, Ouwens DM, Kuhn T, Altenhofen D, Binsch C, Damen M, Khuong JMA, Kaiser K, Knebel B, Vogel H, Schürmann A, Chadt A, Al-Hasani H. Nudix hydrolase NUDT19 regulates mitochondrial function and ATP production in murine hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159153. [PMID: 35367353 DOI: 10.1016/j.bbalip.2022.159153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.
Collapse
Affiliation(s)
- Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Mareike Damen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany; Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Ferreira A, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Alper SL, Romero JR. Dysregulated Erythroid Mg2+ Efflux in Type 2 Diabetes. Front Cell Dev Biol 2022; 10:861644. [PMID: 35445032 PMCID: PMC9013827 DOI: 10.3389/fcell.2022.861644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is associated with decreased Mg2+ content in red blood cells (RBC), but mechanisms remain unclear. We characterized the regulation of Mg2+ efflux by glucose in ex vivo human RBC. We observed that hemoglobin A1C (HbA1C) values correlated with Na+-dependent Mg2+ efflux (Na+/Mg2+ exchange) and inversely correlated with cellular Mg content. Treatment of cells with 50 mM D-glucose, but not with sorbitol, lowered total cellular Mg (2.2 ± 0.1 to 2.0 ± 0.1 mM, p < 0.01) and enhanced Na+/Mg2+ exchange activity [0.60 ± 0.09 to 1.12 ± 0.09 mmol/1013 cell × h (flux units, FU), p < 0.05]. In contrast, incubation with selective Src family kinase inhibitors PP2 or SU6656 reduced glucose-stimulated exchange activation (p < 0.01). Na+/Mg2+ exchange activity was also higher in RBC from individuals with type 2 diabetes (T2D, 1.19 ± 0.13 FU) than from non-diabetic individuals (0.58 ± 0.05 FU, p < 0.01). Increased Na+/Mg2+ exchange activity in RBC from T2D subjects was associated with lower intracellular Mg content. Similarly increased exchange activity was evident in RBC from the diabetic db/db mouse model as compared to its non-diabetic control (p < 0.03). Extracellular exposure of intact RBC from T2D subjects to recombinant peptidyl-N-glycosidase F (PNGase F) reduced Na+/Mg2+ exchange activity from 0.98 ± 0.14 to 0.59 ± 0.13 FU (p < 0.05) and increased baseline intracellular Mg content (1.8 ± 0.1 mM) to normal values (2.1 ± 0.1 mM, p < 0.05). These data suggest that the reduced RBC Mg content of T2D RBC reflects enhanced RBC Na+/Mg2+ exchange subject to regulation by Src family kinases and by the N-glycosylation state of one or more membrane proteins. The data extend our understanding of dysregulated RBC Mg2+ homeostasis in T2D.
Collapse
Affiliation(s)
- Ana Ferreira
- Interdisciplinary Centre of Social Sciences (CICS.NOVA), Faculty of Social Sciences and Humanities (NOVA FCSH), Lisbon, Portugal
| | - Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- *Correspondence: Alicia Rivera,
| | | | | | | | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Ramasubramanian B, Griffith C, Hanson M, Bunquin LE, Reddy AP, Hegde V, Reddy PH. Protective Effects of Chaya against Mitochondrial and Synaptic Toxicities in the Type 2 Diabetes Mouse Model TallyHO. Cells 2022; 11:cells11040744. [PMID: 35203393 PMCID: PMC8870610 DOI: 10.3390/cells11040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/06/2022] Open
Abstract
The purpose of our study is to determine the protective effects of the chaya leaf against mitochondrial abnormalities and synaptic damage in the Type 2 diabetes (T2D) mouse model, TallyHO (TH). The TH mouse is a naturally occurring polygenic mouse model of diabetes that mimics many characteristics of human Type 2 diabetes. Only male TH mice develop hyperglycemia and moderate obesity. Female mice display moderate obesity but do not manifest overt diabetes. In this study, we evaluated three groups of mice over a period of 11 weeks: (1) the experimental group of TH diabetic mice fed with chaya chow; (2) a diabetic control group of TH diabetic mice fed with regular chow; and (3) a non-diabetic control group of SWR/J mice fed with regular chow. Body mass and fasting blood glucose were assessed weekly. Brain and other peripheral tissues were collected. Using qRT-PCR and immunoblotting analyses, we measured the mRNA abundance and protein levels of mitochondrial biogenesis, mitochondrial dynamics, autophagy/mitophagy, and synaptic genes. Using immunofluorescence analysis, we measured the regional immunoreactivities of mitochondrial and synaptic proteins. Using biochemical methods, we assessed mitochondrial function. We found increased body mass and fasting glucose levels in the TH diabetic mice relative to the non-diabetic control SWRJ mice. In chaya chow-fed TH diabetic mice, we found significantly reduced body mass and fasting glucose levels. Mitochondrial fission genes were increased and fusion, biogenesis, autophagy/mitophagy, and synaptic genes were reduced in the TH mice; however, in the chaya chow-fed TH diabetic mice, mitochondrial fission genes were reduced and fusion, biogenesis, autophagy/mitophagy, and synaptic genes were increased. Mitochondrial function was defective in the diabetic TH mice; however, it was rescued in the chaya chow-fed TH mice. These observations strongly suggest that chaya chow reduces the diabetic properties, mitochondrial abnormalities, and synaptic pathology in diabetic, TH male mice. Our data strongly indicates that chaya can be used as natural supplemental diet for prediabetic and diabetic subjects and individuals with metabolic disorders.
Collapse
Affiliation(s)
- Bhagavathi Ramasubramanian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Cameron Griffith
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
- Department of Sociology, Anthropology, and Social Work, Texas Tech University, Lubbock, TX 79409, USA
| | - Madison Hanson
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Lloyd E. Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; (A.P.R.); (V.H.)
| | - Vijay Hegde
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; (A.P.R.); (V.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (B.R.); (C.G.); (M.H.); (L.E.B.)
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3194
| |
Collapse
|
12
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
13
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
14
|
Indu S, Vijayalakshmi P, Selvaraj J, Rajalakshmi M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules 2021; 26:6812. [PMID: 34833905 PMCID: PMC8621110 DOI: 10.3390/molecules26226812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Here, we identified the mechanisms of action of antidiabetic activity of novel compounds isolated from Cassia fistula stem bark in STZ-diabetic animals. Novel triterpenoid compounds (C1, C2 and C3) were treated to STZ-administered diabetic animals at a concentration of 20mg/kg body weight orally for 60 days to assess their effects on plasma glucose, plasma insulin/C-peptide, serum lipid markers and the enzymes of carbohydrate metabolism, glucose oxidation and insulin signaling molecules. Oral administration of novel triterpenoid compounds to STZ-diabetic animals significantly decreased (p < 0.05) the plasma glucose concentration on the 7th, 15th, 30th, 45th and 60th daysin a duration-dependent manner (p < 0.05). Plasma insulin (p < 0.0001)/C-peptide (p < 0.0006), tissue glycogen (p < 0.0034), glycogen phosphorylase (p < 0.005), glucose 6-phosphatase (p < 0.0001) and lipid markers were significantly increased (p < 0.0001) in diabetic rats, whereas glucokinase (p < 0.0047), glycogen synthase (p < 0.003), glucose oxidation (p < 0.001), GLUT4 mRNA (p < 0.0463), GLUT4 protein (p < 0.0475) and the insulin-signaling molecules IR mRNA (p < 0.0195), IR protein (p < 0.0001), IRS-1 mRNA (p < 0.0478), p-IRS-1Tyr612 (p < 0.0185), Akt mRNA (p < 0.0394), p-AktSer473 (p < 0.0162), GLUT4 mRNA (p < 0.0463) and GLUT4 (p < 0.0475) were decreased in the gastrocnemius muscle. In silico analysis of C1-C3 with IRK and PPAR-γ protein coincided with in vivo findings. C1-C3 possessed promising antidiabetic activity by regulating insulin signaling mechanisms and carbohydrate metabolic enzymes.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- C-Peptide/blood
- Cassia/chemistry
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Glucokinase/metabolism
- Glucose-6-Phosphatase/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Insulin/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Lipid Metabolism/drug effects
- Male
- Molecular Docking Simulation
- Molecular Structure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- PPAR gamma/metabolism
- Plant Bark/chemistry
- Plants, Medicinal/chemistry
- Potassium Channels, Inwardly Rectifying/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Triterpenes/chemistry
- Triterpenes/isolation & purification
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Sabapathy Indu
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| | - Periyasamy Vijayalakshmi
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| | - Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600020, Tamil Nadu, India;
| | - Manikkam Rajalakshmi
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| |
Collapse
|
15
|
Ikegami H, Babaya N, Noso S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig 2021; 12:1526-1539. [PMID: 33993642 PMCID: PMC8409822 DOI: 10.1111/jdi.13576] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β-cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| |
Collapse
|
16
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Kim M, Huda MN, O'Connor A, Albright J, Durbin-Johnson B, Bennett BJ. Hepatic transcriptional profile reveals the role of diet and genetic backgrounds on metabolic traits in female progenitor strains of the Collaborative Cross. Physiol Genomics 2021; 53:173-192. [PMID: 33818129 PMCID: PMC8424536 DOI: 10.1152/physiolgenomics.00140.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - Annalouise O'Connor
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | | | - Brian J Bennett
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| |
Collapse
|
18
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
19
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
20
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
21
|
König C, Plank AC, Kapp A, Timotius IK, von Hörsten S, Zimmermann K. Thirty Mouse Strain Survey of Voluntary Physical Activity and Energy Expenditure: Influence of Strain, Sex and Day-Night Variation. Front Neurosci 2020; 14:531. [PMID: 32733181 PMCID: PMC7358574 DOI: 10.3389/fnins.2020.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
We measured indirect calorimetry and activity parameters, VO2 and VCO2 to extract respiratory exchange ratio (RER) and energy expenditure in both sexes of 30 inbred mouse strains of 6 genetic families at 9–13 weeks during one photophase and the subsequent scotophase. We observed a continuous distribution of all traits. While males had higher body weights than females, we observed no sex difference for food and water intake. All strains drank and fed more during the night even if they displayed no day–night difference in activity traits. Several strains showed absent or weak day–night variation in one or more activity traits and these included FVB and 129X1, males of 129S1, SWR, NZW, and SM, and females of SJL. In general females showed higher rearing and ambulatory activity with 6 and 9 strains, respectively, showing a sex difference. Fine motor movements, like grooming, showed less sex differences. RER underlied a strong day–night difference and no sex effect. Only FVB females and males of the RIIIS and SM strain had no day–night variation. Energy expenditure underlies a large day–night variation which was absent in SWR and in FVB females and RIIIS males. In general, female bodies had a tendency to higher energy expenditure values, which became a significant difference in C3H, MAMy, SM, DBA1, and BUB. Our data illustrate the diversity of these traits in male and female inbred mice and provide a resource in the selection of strains for future studies.
Collapse
Affiliation(s)
- Christine König
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne-Christine Plank
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Kapp
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ivanna K Timotius
- Machine Learning & Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Abstract
Background Pancreatic Islets of Langerhans are heterogeneous tissues consisting of multiple endocrine cell types that carry out distinct yet coordinated roles to regulate blood glucose homeostasis. Islet dysfunction and specifically failure of the beta cells to secrete adequate insulin are known precursors to type 2 diabetes (T2D) onset. However, the exact genetic, (epi)genomic, and environmental mechanisms that contribute to islet failure, and ultimately to T2D pathogenesis, require further elucidation. Scope of review This review summarizes efforts and advances in dissection of the complex genetic underpinnings of islet function and resilience in T2D pathogenesis. In this review, we will highlight results of the latest T2D genome-wide association study (GWAS) and discuss how these data are being combined with clinical measures in patients to uncover putative T2D subtypes and with functional (epi)genomic studies in islets to understand the genetic programming of islet cell identity, function, and adaptation. Finally, we discuss new and important opportunities to address major knowledge gaps in our understanding of islet (dys)function in T2D risk and progression. Major conclusions Genetic variation exerts clear effects on the islet epigenome, regulatory element usage, and gene expression. Future (epi)genomic comparative analyses between T2D and normal islets should incorporate genetics to distinguish patient-specific from disease-specific differences. Incorporating genotype information into future analyses and studies will also enable more precise insights into the molecular genetics of islet deficiency and failure in T2D risk, and should ultimately contribute to a stratified view of T2D and more precise treatment strategies. Islet cellular heterogeneity continues to remain a challenge for understanding the associations between islet failure and T2D development. Further efforts to obtain purified islet cell type populations and determine the specific genetic and environmental effects on each will help address this. Beyond observation of islets at steady state conditions, more research of islet stress and stimulation responses are needed to understand the transition of these tissues from a healthy to diseased state. Together, focusing on these objectives will provide more opportunities to prevent, treat, and manage T2D.
Collapse
|
23
|
Kim MY, Shin MR, Seo BI, Noh JS, Roh SS. Young Persimmon Fruit Extract Suppresses Obesity by Modulating Lipid Metabolism in White Adipose Tissue of Obese Mice. J Med Food 2020; 23:273-280. [DOI: 10.1089/jmf.2019.4557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Min Yeong Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Bu-Il Seo
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| |
Collapse
|
24
|
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A Comprehensive Review on Preclinical Diabetic Models. Curr Diabetes Rev 2020; 16:104-116. [PMID: 31074371 DOI: 10.2174/1573399815666190510112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. INTRODUCTION Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. METHODS The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. RESULTS A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. CONCLUSION This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Sushil Kumar Chaudary
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Debapriya Garabadu
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
25
|
Ramasubramanian B, Reddy PH. Are TallyHo Mice A True Mouse Model for Type 2 Diabetes and Alzheimer’s Disease? J Alzheimers Dis 2019; 72:S81-S93. [DOI: 10.3233/jad-190613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
26
|
Abu-Toamih Atamni HJ, Kontogianni G, Binenbaum I, Mott R, Himmelbauer H, Lehrach H, Chatziioannou A, Iraqi FA. Hepatic gene expression variations in response to high-fat diet-induced impaired glucose tolerance using RNAseq analysis in collaborative cross mouse population. Mamm Genome 2019; 30:260-275. [PMID: 31650267 DOI: 10.1007/s00335-019-09816-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Hepatic gene expression is known to differ between healthy and type 2 diabetes conditions. Identifying these variations will provide better knowledge to the development of gene-targeted therapies. The aim of this study is to assess diet-induced hepatic gene expression of susceptible versus resistant CC lines to T2D development. Next-generation RNA-sequencing was performed for 84 livers of diabetic and non-diabetic mice of 41 different CC lines (both sexes) following 12 weeks on high-fat diet (42% fat). Data analysis revealed significant variations of hepatic gene expression in diabetic versus non-diabetic mice with significant sex effect, where 601 genes were differentially expressed (DE) in overall population (males and females), 718 genes in female mice, and 599 genes in male mice. Top prioritized DE candidate genes were Lepr, Ins2, Mb, Ckm, Mrap2, and Ckmt2 for the overall population; for females-only group were Hdc, Serpina12, Socs1, Socs2, and Mb, while for males-only group were Serpine1, Mb, Ren1, Slc4a1, and Atp2a1. Data analysis for sex differences revealed 193 DE genes in health (Top: Lepr, Cav1, Socs2, Abcg2, and Col5a3), and 389 genes DE between diabetic females versus males (Top: Lepr, Clps, Ins2, Cav1, and Mrap2). Furthermore, integrating gene expression results with previously published QTL, we identified significant variants mapped at chromosomes at positions 36-49 Mb, 62-71 Mb, and 79-99 Mb, on chromosomes 9, 11, and 12, respectively. Our findings emphasize the complexity of T2D development and that significantly controlled by host complex genetic factors. As well, we demonstrate the significant sex differences between males and females during health and increasing to extent levels during disease/diabetes. Altogether, opening the venue for further studies targets the discovery of effective sex-specific and personalized preventions and therapies.
Collapse
Affiliation(s)
- H J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - G Kontogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - I Binenbaum
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - R Mott
- Department of Genetics, University College of London, London, UK
| | - H Himmelbauer
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - H Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, 17671, Kallithea, Greece
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
27
|
Sundaram S, Palaniappan B, Nepal N, Chaffins S, Sundaram U, Arthur S. Mechanism of Dyslipidemia in Obesity-Unique Regulation of Ileal Villus Cell Brush Border Membrane Sodium-Bile Acid Cotransport. Cells 2019; 8:E1197. [PMID: 31623375 PMCID: PMC6830326 DOI: 10.3390/cells8101197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
In obesity, increased absorption of dietary fat contributes to altered lipid homeostasis. In turn, dyslipidemia of obesity leads to many of the complications of obesity. Bile acids are necessary for the absorption of dietary fat. In the mammalian intestine, apical sodium-dependent bile acid cotransporter (ASBT; SLC10A2) is exclusively responsible for the reabsorption of bile acids in the terminal ileum. In rat and mice models of obesity and importantly in obese humans, ASBT was increased in ileal villus cells. The mechanism of stimulation of ASBT was secondary to an increase in ASBT expression in villus cell brush border membrane. The stimulation of ASBT was not secondary to the altered Na-extruding capacity of villus cells during obesity. Further, increased Farnesoid X receptor (FXR) expression in villus cells during obesity likely mediated the increase in ASBT. Moreover, enhanced FXR expression increased the expression of bile-acid-associated proteins (IBABP and OSTα) that are responsible for handling bile acids absorbed via ASBT in villus cells during obesity. Thus, this study demonstrated that in an epidemic condition, obesity, the dyslipidemia that leads to many of the complications of the condition, may, at least in part, be due to deregulation of intestinal bile acid absorption.
Collapse
Affiliation(s)
- Shanmuga Sundaram
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Niraj Nepal
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Shaun Chaffins
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Appalachian Center for Cellular transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA.
| |
Collapse
|
28
|
Plötz T, von Hanstein AS, Krümmel B, Laporte A, Mehmeti I, Lenzen S. Structure-toxicity relationships of saturated and unsaturated free fatty acids for elucidating the lipotoxic effects in human EndoC-βH1 beta-cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165525. [PMID: 31398470 DOI: 10.1016/j.bbadis.2019.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/03/2019] [Accepted: 08/04/2019] [Indexed: 01/22/2023]
Abstract
Lipotoxicity has been considered a major cause for beta-cell dysfunction in type 2 diabetes mellitus. However, the underlying mechanisms are still unclear. To achieve a better understanding of the toxicity a wide range of structurally different free fatty acids (FFAs) has been analyzed in human EndoC-βH1 beta-cells. Exposure of human EndoC-βH1 beta-cells to physiological saturated and monounsaturated long-chain FFAs induced apoptosis. Particularly noteworthy was that the toxicity increased more rapidly with increasing chain length of saturated than of unsaturated FFAs. The highest toxicity was observed in the presence of very long-chain FFAs (C20-C22), whereas polyunsaturated FFAs were not toxic. Long-chain FFAs increased peroxisomal hydrogen peroxide generation slightly, while very long-chain FFAs increased hydrogen peroxide generation more potently in both peroxisomes and mitochondria. The greater toxicity of very long-chain FFAs was accompanied by hydroxyl radical formation, along with cardiolipin peroxidation and ATP depletion. Intriguingly, only saturated very long-chain FFAs activated ER stress. On the other hand saturated very long-chain FFAs did not induce lipid droplet formation in contrast to long-chain FFAs and unsaturated very long-chain FFAs. The present data highlight the importance of structure-activity relationship analyses for the understanding of the mechanisms of lipotoxicity. Chain length and degree of saturation of FFAs are crucial factors for the toxicity of FFAs, with peroxisomal, mitochondrial, and ER stress representing the major pathogenic factors for induction of lipotoxicity. The results might provide a guide for the composition of a healthy beta-cell protective diet.
Collapse
Affiliation(s)
- T Plötz
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - A S von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - B Krümmel
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - A Laporte
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - I Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - S Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
29
|
Hegde V, Vijayan M, Kumar S, Akheruzzaman M, Sawant N, Dhurandhar NV, Reddy PH. Adenovirus 36 improves glycemic control and markers of Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165531. [PMID: 31398466 DOI: 10.1016/j.bbadis.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are unclear, several risk factors have been identified, including impaired glycemic control, which significantly increases the risk of cognitive decline and AD. In vitro and in vivo studies show that human adenovirus 36 (Ad36) improves glycemic control by increasing cellular glucose uptake in cells, experimental animal models and in humans who are naturally exposed to the virus. This study, tested improvement in glycemic control by Ad36 and delay in onset of cognitive decline in APPswe transgenic mice (Tg2576 line), a model of genetic predisposition to impaired glycemic control and AD. Three-month old APPswe mice were divided into Ad36 infected (Ad36) or mock infected (control) groups and baseline glycemic control measured by glucose tolerance test (GTT) prior to infection. Changes in glycemic control were determined 10- and 24-week post infection. Serum insulin was also measured during GTT. Cognition was determined by Y-maze test, while motor coordination and skill acquisition by rotarod test. Glycemic control as determined by GTT showed less deterioration in Ad36 infected mice over time, accompanied by a significant attenuation of cognitive decline. Analysis of brain tissue lysate showed significantly reduced levels of amyloid beta 42 in Ad36 mice relative to control mice. Golgi-Cox staining analysis also revealed reduced dendritic spines and synaptic gene expression in control mice compared to Ad36 infected mice. This proof of concept study shows that in a mouse model of AD, Ad36 improves glycemic control and ameliorates cognitive decline.
Collapse
Affiliation(s)
- V Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - M Vijayan
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - S Kumar
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Akheruzzaman
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - N Sawant
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - N V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P H Reddy
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
30
|
Palaniappan B, Arthur S, Sundaram VL, Butts M, Sundaram S, Mani K, Singh S, Nepal N, Sundaram U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J 2019; 33:9323-9333. [PMID: 31107610 PMCID: PMC6662973 DOI: 10.1096/fj.201802673r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Molly Butts
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Shanmuga Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Kathiresh Mani
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Niraj Nepal
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
31
|
Kluth O, Stadion M, Gottmann P, Aga H, Jähnert M, Scherneck S, Vogel H, Krus U, Seelig A, Ling C, Gerdes J, Schürmann A. Decreased Expression of Cilia Genes in Pancreatic Islets as a Risk Factor for Type 2 Diabetes in Mice and Humans. Cell Rep 2019; 26:3027-3036.e3. [DOI: 10.1016/j.celrep.2019.02.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
|
32
|
Xin R, An D, Li Y, Fu J, Huang F, Zhu Q. Fenofibrate improves vascular endothelial function in diabetic mice. Biomed Pharmacother 2019; 112:108722. [PMID: 30970521 DOI: 10.1016/j.biopha.2019.108722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Microvascular and macrovascular complications are major causes of disability and death in diabetic patients. High levels of blood glucose sabotage the integrity of blood vessels and induce endothelial dysfunction. Fenofibrate is an agonist of peroxisome proliferator-activated receptor α and can reduce the incidence of cardiovascular events in diabetic patients. This study tested the hypothesis that fenofibrate could ameliorate endothelium-dependent vasodilation in diabetic mice and relieve high glucose-induced endothelial dysfunction via activating endothelial nitric oxide synthase (eNOS) and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. A streptozotocin (STZ)-induced diabetic model was established by intraperitoneal injection of STZ (dissolved in sodium citrate buffer) at a dose of 60 mg/kg for 5 consecutive days. Mice were administered fenofibrate (100 mg/kg/d, i.g.) for 14 days. The endothelial function of extracted mouse aortae was examined by evaluating acetylcholine induced endothelium-dependent relaxation combined with phenylephrine-induced vasoconstriction and sodium nitroprusside-induced endothelium-independent relaxation. Superoxide onion (O2-) was determined using dihydroethidium staining of aortae. Functions of mouse aortic endothelial cells (MAECs) were assessed, and expression levels of eNOS and AMPK were determined by Western blotting. Fenofibrate ameliorated the impaired endothelium-dependent relaxation in diabetic mice and decreased the level of intracellular O2- in diabetic mouse aortae. In-vitro, fenofibrate treatment improved the impaired function of MAECs, increased nitric oxide production, and decreased the O2- level, as well as activated eNOS and AMPK phosphorylation in cultured MAECs by high glucose. Fenofibrate could ameliorate endothelium-dependent vasodilation in diabetic mice and relieve high glucose-induced endothelial dysfunction, which was possibly related to the activation of eNOS and AMPK phosphorylation.
Collapse
Affiliation(s)
- Rujuan Xin
- Department of Pharmacy, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Duopeng An
- Department of Pharmacy, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Ying Li
- Department of Pharmacy, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jin Fu
- Department of Pharmacy, Ninghai First Hospital, Zhejiang, 315600, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| |
Collapse
|
33
|
Saussenthaler S, Ouni M, Baumeier C, Schwerbel K, Gottmann P, Christmann S, Laeger T, Schürmann A. Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein. J Nutr Biochem 2019; 63:109-116. [DOI: 10.1016/j.jnutbio.2018.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
|
34
|
Two Novel Candidate Genes for Insulin Secretion Identified by Comparative Genomics of Multiple Backcross Mouse Populations. Genetics 2018; 210:1527-1542. [PMID: 30341086 DOI: 10.1534/genetics.118.301578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/FeJ. Subsequent whole-genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome 7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4, fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the phenotype linked to Nbg7p In conclusion, our combined- and comparative-cross analysis approach has successfully led to the identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery of novel disease genes.
Collapse
|
35
|
Gottmann P, Ouni M, Saussenthaler S, Roos J, Stirm L, Jähnert M, Kamitz A, Hallahan N, Jonas W, Fritsche A, Häring HU, Staiger H, Blüher M, Fischer-Posovszky P, Vogel H, Schürmann A. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 2018; 11:145-159. [PMID: 29605715 PMCID: PMC6001404 DOI: 10.1016/j.molmet.2018.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. METHODS A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. RESULTS In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. CONCLUSION Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.
Collapse
Affiliation(s)
- Pascal Gottmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Meriem Ouni
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Sophie Saussenthaler
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Julian Roos
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Laura Stirm
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Markus Jähnert
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Anne Kamitz
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Nicole Hallahan
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Wenke Jonas
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Harald Staiger
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103, Leipzig, Germany.
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Heike Vogel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|
36
|
Griffith CM, Eid T, Rose GM, Patrylo PR. Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology 2018; 136:202-215. [PMID: 29353052 DOI: 10.1016/j.neuropharm.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological data have shown that metabolic disease can increase the propensity for developing cognitive decline and dementia, particularly Alzheimer's disease (AD). While this interaction is not completely understood, clinical studies suggest that both hyper- and hypoinsulinemia are associated with an increased risk for developing AD. Indeed, insulin signaling is altered in post-mortem brain tissue from AD patients and treatments known to enhance insulin signaling can improve cognitive function. Further, clinical evidence has shown that AD patients and mouse models of AD often display alterations in peripheral metabolism. Since insulin is primarily derived from the periphery, it is likely that changes in peripheral insulin levels lead to alterations in central nervous system (CNS) insulin signaling and could contribute to cognitive decline and pathogenesis. Developing a better understanding of the relationship between alterations in peripheral metabolism and cognitive function might provide a foundation for the development of better treatment options for patients with AD. In this article we will begin to piece together the present data defining this relationship by briefly discussing insulin signaling in the periphery and CNS, its role in cognitive function, insulin's relationship to AD, peripheral metabolic alterations in mouse models of AD and how information from these models helps understand the mechanisms through which these changes potentially lead to impairments in insulin signaling in the CNS, and potential ways to target insulin signaling that could improve cognitive function in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA.
| |
Collapse
|
37
|
Weiser A, Giesbertz P, Daniel H, Spanier B. Acylcarnitine Profiles in Plasma and Tissues of Hyperglycemic NZO Mice Correlate with Metabolite Changes of Human Diabetes. J Diabetes Res 2018; 2018:1864865. [PMID: 29854816 PMCID: PMC5944288 DOI: 10.1155/2018/1864865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The New Zealand obese (NZO) mouse is a polygenic model for obesity and diabetes with obese females and obese, diabetes-prone males, used to study traits of the metabolic syndrome like type 2 diabetes mellitus (T2DM), obesity, and dyslipidaemia. By using LC-MS/MS, we here examine the suitability of this model to mirror tissue-specific changes in acylcarnitine (AC) and amino acid (AA) species preceding T2DM which may reflect patterns investigated in human metabolism. We observed high concentrations of fatty acid-derived ACs in 11 female mice, high abundance of branched-chain amino acid- (BCAA-) derived ACs in 6 male mice, and slight increases in BCAA-derived ACs in the remaining 6 males. Principal component analysis (PCA) including all ACs and AAs confirmed our hypothesis especially in plasma samples by clustering females, males with high BCAA-derived ACs, and males with slight increases in BCAA-derived ACs. Concentrations of insulin, blood glucose, NEFAs, and triacylglycerols (TAGs) further supported the hypothesis of high BCAA-derived ACs being able to mirror the onset of diabetic traits in male individuals. In conclusion, alterations in AC and AA profiles overlap with observations from human studies indicating the suitability of NZO mice to study metabolic changes preceding human T2DM.
Collapse
Affiliation(s)
- Anna Weiser
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Pieter Giesbertz
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Hannelore Daniel
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Britta Spanier
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| |
Collapse
|
38
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
John C, Grune J, Ott C, Nowotny K, Deubel S, Kühne A, Schubert C, Kintscher U, Regitz-Zagrosek V, Grune T. Sex Differences in Cardiac Mitochondria in the New Zealand Obese Mouse. Front Endocrinol (Lausanne) 2018; 9:732. [PMID: 30564194 PMCID: PMC6289062 DOI: 10.3389/fendo.2018.00732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus (T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage. Thus, studying cardiovascular events and establishing therapeutic intervention in the period of type T2DM onset and manifestation are of highest importance. Mitochondrial dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac function. Methods: An adequate animal model for studying pathophysiology of T2DM is the New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet (HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates. NZO mice developed severe obesity and only male mice developed manifest T2DM. We determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte signaling in this model. Results: The development of an obese phenotype and T2DM in male mice was accompanied by an impaired systolic function as judged by echocardiography and MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was significantly reduced and ERK1/2 and AMPK protein levels were altered. Conclusions: This is the first report demonstrating that the cardiac phenotype in male diabetic NZO mice is associated with impaired cardiac energy function and signaling events.
Collapse
Affiliation(s)
- Cathleen John
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jana Grune
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Arne Kühne
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Schubert
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Kintscher
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Pharmacology, Center for Cardiovascular Research, Charité -Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Gender in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research, Oberschleißheim, Germany
- *Correspondence: Tilman Grune
| |
Collapse
|
40
|
Halperin Kuhns VL, Pluznick JL. Novel differences in renal gene expression in a diet-induced obesity model. Am J Physiol Renal Physiol 2017; 314:F517-F530. [PMID: 29141937 DOI: 10.1152/ajprenal.00345.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Obesity is a significant risk factor for both chronic kidney disease and end-stage renal disease. To better understand disease development, we sought to identify novel genes differentially expressed early in disease progression. We first confirmed that mice fed a high-fat (HF) diet exhibit early signs of renal injury including hyperfiltration. We then performed RNA-Seq using renal cortex RNA from C57BL6/J male mice fed either HF or control (Ctrl) diet. We identified 1,134 genes differentially expressed in the cortex on HF vs. Ctrl, of which 31 genes were selected for follow-up analysis. This included the 9 most upregulated, the 11 most downregulated, and 11 genes of interest (primarily sensory receptors and G proteins). Quantitative (q)RT-PCR for these 31 genes was performed on additional male renal cortex and medulla samples, and 11 genes (including all 9 upregulated genes) were selected for further study based on qRT-PCR. We then examined expression of these 11 genes in Ctrl and HF male heart and liver samples, which demonstrated that these changes are relatively specific to the renal cortex. These 11 genes were also examined in female renal cortex, where we found that the expression changes seen in males on a HF diet are not replicated in females, even when the females are started on the diet sooner to match weight gain of the males. In sum, these data demonstrate that in a HF-diet model of early disease, novel transcriptional changes occur that are both sex specific and specific to the renal cortex.
Collapse
Affiliation(s)
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
41
|
Yoshimura RF, Tran MB, Hogenkamp DJ, Ayala NL, Johnstone T, Dunnigan AJ, Gee TK, Gee KW. Allosteric modulation of nicotinic and GABA A receptor subtypes differentially modify autism-like behaviors in the BTBR mouse model. Neuropharmacology 2017; 126:38-47. [PMID: 28842344 DOI: 10.1016/j.neuropharm.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acidA (GABAA) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T+tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A β2/3-subunit containing GABAA receptor (GABAAR) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABAAR subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD.
Collapse
Affiliation(s)
- Ryan F Yoshimura
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Minhtam B Tran
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Derk J Hogenkamp
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Narielle L Ayala
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Timothy Johnstone
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Andrew J Dunnigan
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Timothy K Gee
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States
| | - Kelvin W Gee
- Department of Pharmacology, School of Medicine, University of California Irvine, Irvine, CA, 92697-4625, United States.
| |
Collapse
|
42
|
Abstract
The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide. CONCLUSION Male FATZO mice spontaneously develop significant metabolic disease when compared to normal controls while maintaining hyperglycemia in the presence of high leptin levels and hyperinsulinemia. The disease condition responds to commonly used antidiabetic agents.
Collapse
|
43
|
Macklin L, Griffith CM, Cai Y, Rose GM, Yan XX, Patrylo PR. Glucose tolerance and insulin sensitivity are impaired in APP/PS1 transgenic mice prior to amyloid plaque pathogenesis and cognitive decline. Exp Gerontol 2017; 88:9-18. [DOI: 10.1016/j.exger.2016.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
44
|
Griffith CM, Macklin LN, Bartke A, Patrylo PR. Differential Fasting Plasma Glucose and Ketone Body Levels in GHRKO versus 3xTg-AD Mice: A Potential Contributor to Aging-Related Cognitive Status? Int J Endocrinol 2017; 2017:9684061. [PMID: 28638409 PMCID: PMC5468562 DOI: 10.1155/2017/9684061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cognitive function declines with age and appears to correlate with decreased cerebral metabolic rate (CMR). Caloric restriction, an antiaging manipulation that extends life-span and can preserve cognitive function, is associated with decreased glucose uptake, decreased lactate levels, and increased ketone body (KB) levels in the brain. Since the majority of brain nutrients come from the periphery, this study examined whether the capacity to regulate peripheral glucose levels and KB production differs in animals with successful cognitive aging (growth hormone receptor knockouts, GHRKOs) versus unsuccessful cognitive aging (the 3xTg-AD mouse model of Alzheimer's disease). Animals were fasted for 5 hours with their plasma glucose and KB levels subsequently measured. Intriguingly, in GHRKO mice, compared to those in controls, fasting plasma glucose levels were significantly decreased while their KB levels were significantly increased. Conversely, 3xTg-AD mice, compared to controls, exhibited significantly elevated plasma glucose levels and significantly reduced plasma KB levels. Taken together, these results suggest that the capacity to provide the brain with KBs versus glucose throughout an animal's life could somehow help preserve cognitive function with age, potentially through minimizing overall brain exposure to reactive oxygen species and advanced glycation end products and improving mitochondrial function.
Collapse
Affiliation(s)
- Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Lauren N. Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- *Peter R. Patrylo:
| |
Collapse
|
45
|
Denvir J, Boskovic G, Fan J, Primerano DA, Parkman JK, Kim JH. Whole genome sequence analysis of the TALLYHO/Jng mouse. BMC Genomics 2016; 17:907. [PMID: 27835940 PMCID: PMC5106808 DOI: 10.1186/s12864-016-3245-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. Results We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant’s effect on protein function. Conclusions We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3245-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Goran Boskovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave. #435K BBSC, Huntington, WV, 25755, USA.
| |
Collapse
|
46
|
Lamont BJ, Waters MF, Andrikopoulos S. A low-carbohydrate high-fat diet increases weight gain and does not improve glucose tolerance, insulin secretion or β-cell mass in NZO mice. Nutr Diabetes 2016; 6:e194. [PMID: 26878317 PMCID: PMC4775822 DOI: 10.1038/nutd.2016.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/OBJECTIVES Dietary guidelines for the past 20 years have recommended that dietary fat should be minimized. In contrast, recent studies have suggested that there could be some potential benefits for reducing carbohydrate intake in favor of increased fat. It has also been suggested that low-carbohydrate diets be recommended for people with type 2 diabetes. However, whether such diets can improve glycemic control will likely depend on their ability to improve β-cell function, which has not been studied. The objective of the study was to assess whether a low-carbohydrate and therefore high-fat diet (LCHFD) is beneficial for improving the endogenous insulin secretory response to glucose in prediabetic New Zealand Obese (NZO) mice. METHODS NZO mice were maintained on either standard rodent chow or an LCHFD from 6 to 15 weeks of age. Body weight, food intake and blood glucose were assessed weekly. Blood glucose and insulin levels were also assessed after fasting and re-feeding and during an oral glucose tolerance test. The capacity of pancreatic β-cells to secrete insulin was assessed in vivo with an intravenous glucose tolerance test. β-Cell mass was assessed in histological sections of pancreata collected at the end of the study. RESULTS In NZO mice, an LCHFD reduced plasma triglycerides (P=0.001) but increased weight gain (P<0.0001), adipose tissue mass (P=0.0015), high-density lipoprotein cholesterol (P=0.044) and exacerbated glucose intolerance (P=0.013). Although fasting insulin levels tended to be higher (P=0.08), insulin secretory function in LCHFD-fed mice was not improved (P=0.93) nor was β-cell mass (P=0.75). CONCLUSIONS An LCHFD is unlikely to be of benefit for preventing the decline in β-cell function associated with the progression of hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- B J Lamont
- Department of Medicine, Austin Hospital, The University of Melbourne, Heidelberg, Victoria, Australia
| | - M F Waters
- Department of Medicine, Austin Hospital, The University of Melbourne, Heidelberg, Victoria, Australia
| | - S Andrikopoulos
- Department of Medicine, Austin Hospital, The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
47
|
Atamni HJAT, Mott R, Soller M, Iraqi FA. High-fat-diet induced development of increased fasting glucose levels and impaired response to intraperitoneal glucose challenge in the collaborative cross mouse genetic reference population. BMC Genet 2016; 17:10. [PMID: 26728312 PMCID: PMC4700737 DOI: 10.1186/s12863-015-0321-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background The prevalence of Type 2 Diabetes (T2D) mellitus in the past decades, has reached epidemic proportions. Several lines of evidence support the role of genetic variation in the pathogenesis of T2D and insulin resistance. Elucidating these factors could contribute to developing new medical treatments and tools to identify those most at risk. The aim of this study was to characterize the phenotypic response of the Collaborative Cross (CC) mouse genetic resource population to high-fat diet (HFD) induced T2D-like disease to evluate its suitability for this purpose. Results We studied 683 mice of 21 different lines of the CC population. Of these, 265 mice (149 males and 116 females) were challenged by HFD (42 % fat); and 384 mice (239 males and145 females) of 17 of the 21 lines were reared as control group on standard Chow diet (18 % fat). Briefly, 8 week old mice were maintained on HFD until 20 weeks of age, and subsequently assessed by intraperitoneal glucose tolerance test (IPGTT). Biweekly body weight (BW), body length (BL), waist circumstance (WC), and body mass index (BMI) were measured. On statistical analysis, trait measurements taken at 20 weeks of age showed significant sex by diet interaction across the different lines and traits. Consequently, males and females were analyzed, separately. Differences among lines were analyzed by ANOVA and shown to be significant (P <0.05), for BW, WC, BMI, fasting blood glucose, and IPGTT-AUC. We use these data to infer broad sense heritability adjusted for number of mice tested in each line; coefficient of genetic variation; genetic correlations between the same trait in the two sexes, and phenotypic correlations between different traits in the same sex. Conclusions These results are consistent with the hypothesis that host susceptibility to HFD-induced T2D is a complex trait and controlled by multiple genetic factors and sex, and that the CC population can be a powerful tool for genetic dissection of this trait. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0321-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanifa J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| | | | | | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel-Aviv, 69978, Israel.
| |
Collapse
|
48
|
Skeletal muscle mitochondrial uncoupling prevents diabetes but not obesity in NZO mice, a model for polygenic diabesity. GENES AND NUTRITION 2015; 10:57. [PMID: 26584809 DOI: 10.1007/s12263-015-0507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
Induction of skeletal muscle (SM) mitochondrial stress by expression of uncoupling protein 1 (UCP1) in mice results in a healthy metabolic phenotype associated with increased secretion of FGF21 from SM. Here, we investigated whether SM mitochondrial uncoupling can compensate obesity and insulin resistance in the NZO mouse, a polygenic diabesity model. Male NZO mice were crossed with heterozygous UCP1 transgenic (tg) mice (mixed C57BL/6/CBA background) and further backcrossed to obtain F1 and N2 offspring with 50 and 75 % NZO background, respectively. Male F1 and N2 progeny were fed a high-fat diet ad libitum for 20 weeks from weaning. Blood glucose was reduced, and diabetes (severe hyperglycemia >300 mg/dl) was fully prevented in both F1- and N2-tg progeny compared to a diabetes prevalence of 15 % in F1 and 42 % in N2 wild type. In contrast, relative body fat content and plasma insulin were decreased, and glucose tolerance was improved, in F1-tg only. Both F1 and N2-tg showed decreased lean body mass. Accordingly, induction of SM stress response including FGF21 expression and secretion was similar in both F1 and N2-tg mice. In white adipose tissue, expression of FGF21 target genes was enhanced in F1 and N2-tg mice, whereas lipid metabolism genes were induced in F1-tg only. There was no evidence for induction of browning in either UCP1 backcross. We conclude that SM mitochondrial uncoupling induces FGF21 expression and prevents diabetes in mice with a 50-75 % NZO background independent of its effects on adipose tissue.
Collapse
|
49
|
King A, Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochem Pharmacol 2015; 99:1-10. [PMID: 26432954 DOI: 10.1016/j.bcp.2015.08.108] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a lifelong, metabolic disease that is characterised by an inability to maintain normal glucose homeostasis. There are several different forms of diabetes, however the two most common are Type 1 and Type 2 diabetes. Type 1 diabetes is caused by the autoimmune destruction of pancreatic beta cells and a subsequent lack of insulin production, whilst Type 2 diabetes is due to a combination of both insulin resistance and an inability of the beta cells to compensate adequately with increased insulin release. Animal models are increasingly being used to elucidate the mechanisms underlying both Type 1 and Type 2 diabetes as well as to identify and refine novel treatments. However, a wide range of different animal models are currently in use. The majority of these models are suited to addressing certain specific aspects of diabetes research, but may be of little use in other studies. All have pros and cons, and selecting an appropriate model for addressing a specific question is not always a trivial task and will influence the study results and their interpretation. Thus, as the number of available animal models increases it is important to consider the potential roles of these models in the many different aspects of diabetes research. This review gathers information on the currently used experimental animal models of both Type 1 and Type 2 diabetes and evaluates their advantages and disadvantages for research purposes and details the factors that should be taken into account in their use.
Collapse
Affiliation(s)
- Aileen King
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Hodgkin Building 2nd Floor, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.
| | - James Bowe
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Hodgkin Building 2nd Floor, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
50
|
Energy homeostasis genes and breast cancer risk: The influence of ancestry, body size, and menopausal status, the breast cancer health disparities study. Cancer Epidemiol 2015; 39:1113-22. [PMID: 26395295 DOI: 10.1016/j.canep.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Obesity and breast cancer risk is multifaceted and genes associated with energy homeostasis may modify this relationship. METHODS We evaluated 10 genes that have been associated with obesity and energy homeostasis to determine their association with breast cancer risk in Hispanic/Native American (2111 cases, 2597 controls) and non-Hispanic white (1481 cases, 1585 controls) women. RESULTS Cholecystokinin (CCK) rs747455 and proopiomelanocortin (POMC) rs6713532 and rs7565877 (for low Indigenous American (IA) ancestry); CCK rs8192472 and neuropeptide Y (NYP) rs16141 and rs14129 (intermediate IA ancestry); and leptin receptor (LEPR) rs11585329 (high IA ancestry) were strongly associated with multiple indicators of body size. There were no significant associations with breast cancer risk between genes and SNPs overall. However, LEPR was significantly associated with breast cancer risk among women with low IA ancestry (PARTP=0.024); POMC was significantly associated with breast cancer risk among women with intermediate (PARTP=0.015) and high (PARTP=0.012) IA ancestry. The overall pathway was statistically significant for pre-menopausal women with low IA ancestry (PARTP=0.05), as was cocaine and amphetamine regulated transcript protein (CARTPT) (PARTP=0.014) and ghrelin (GHRL) (PARTP=0.007). POMC was significantly associated with breast cancer risk among post-menopausal women with higher IA ancestry (PARTP=0.005). Three SNPs in LEPR (rs6704167, rs17412175, and rs7626141), and adiponectin (ADIPOQ); rs822391) showed significant 4-way interactions (GxExMenopausexAncestry) for multiple indicators of body size among pre-menopausal women. CONCLUSIONS Energy homeostasis genes were associated with breast cancer risk; menopausal status, body size, and genetic ancestry influenced this relationship.
Collapse
|