1
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Gaspar RS, Katashima CK, Crisol BM, Carneiro FS, Sampaio I, Silveira LDR, Silva ASRD, Cintra DE, Pauli JR, Ropelle ER. Physical exercise elicits UPR mt in the skeletal muscle: The role of c-Jun N-terminal kinase. Mol Metab 2023; 78:101816. [PMID: 37821006 PMCID: PMC10590869 DOI: 10.1016/j.molmet.2023.101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE The mitochondrial unfolded protein response (UPRmt) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPRmt in the skeletal muscle. METHODS Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses. RESULTS Firstly, RNA sequencing and Western blotting analysis revealed that an acute aerobic session stimulated several mitostress-related genes and protein content in muscle, including the UPRmt markers. Conversely, using a large panel of isogenic strains of BXD mice, we identified that BXD73a and 73b strains displayed low levels of several UPRmt-related genes in the skeletal muscle, and this genotypic feature was accompanied by body weight gain, lower locomotor activity, and aerobic capacity. Finally, we identified that c-Jun N-terminal kinase (JNK) activation was critical in exercise-induced UPRmt in the skeletal muscle since pharmacological JNK pathway inhibition blunted exercise-induced UPRmt markers in mice muscle. CONCLUSION Our findings provide new insights into how exercise triggers mitostress signals toward the oxidative capacity in the skeletal muscle.
Collapse
Affiliation(s)
- Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Carlos Kiyoshi Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil
| | - Fernanda Silva Carneiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil
| | - Igor Sampaio
- Department of Structural and Functional Biology, Biology Institute, University of Campinas (Unicamp), Campinas, Brazil
| | - Leonardo Dos Reis Silveira
- Department of Structural and Functional Biology, Biology Institute, University of Campinas (Unicamp), Campinas, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (Labgen), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, Brazil; Faculty of Medical Sciences, Department of Internal Medicine. University of Campinas (Unicamp), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Pohl F, Germann AL, Mao J, Hou S, Bakare B, Kong Thoo Lin P, Yates K, Nonet ML, Akk G, Kornfeld K, Held JM. UNC-49 is a redox-sensitive GABA A receptor that regulates the mitochondrial unfolded protein response cell nonautonomously. SCIENCE ADVANCES 2023; 9:eadh2584. [PMID: 37910615 PMCID: PMC10619936 DOI: 10.1126/sciadv.adh2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
The γ-aminobutyric acid-mediated (GABAergic) system participates in many aspects of organismal physiology and disease, including proteostasis, neuronal dysfunction, and life-span extension. Many of these phenotypes are also regulated by reactive oxygen species (ROS), but the redox mechanisms linking the GABAergic system to these phenotypes are not well defined. Here, we report that GABAergic redox signaling cell nonautonomously activates many stress response pathways in Caenorhabditis elegans and enhances vulnerability to proteostasis disease in the absence of oxidative stress. Cell nonautonomous redox activation of the mitochondrial unfolded protein response (mitoUPR) proteostasis network requires UNC-49, a GABAA receptor that we show is activated by hydrogen peroxide. MitoUPR induction by a spinocerebellar ataxia type 3 (SCA3) C. elegans neurodegenerative disease model was similarly dependent on UNC-49 in C. elegans. These results demonstrate a multi-tissue paradigm for redox signaling in the GABAergic system that is transduced via a GABAA receptor to function in cell nonautonomous regulation of health, proteostasis, and disease.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison L. Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jack Mao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bayode Bakare
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M. Held
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Svagusa T, Sikiric S, Milavic M, Sepac A, Seiwerth S, Milicic D, Gasparovic H, Biocina B, Rudez I, Sutlic Z, Manola S, Varvodic J, Udovicic M, Urlic M, Ivankovic S, Plestina S, Paic F, Kulic A, Bakovic P, Sedlic F. Heart failure in patients is associated with downregulation of mitochondrial quality control genes. Eur J Clin Invest 2023; 53:e14054. [PMID: 37403271 DOI: 10.1111/eci.14054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is one of key factors causing heart failure. We performed a comprehensive analysis of expression of mitochondrial quality control (MQC) genes in heart failure. METHODS Myocardial samples were obtained from patients with ischemic and dilated cardiomyopathy in a terminal stage of heart failure and donors without heart disease. Using quantitative real-time PCR, we analysed a total of 45 MQC genes belonging to mitochondrial biogenesis, fusion-fission balance, mitochondrial unfolded protein response (UPRmt), translocase of the inner membrane (TIM) and mitophagy. Protein expression was analysed by ELISA and immunohistochemistry. RESULTS The following genes were downregulated in ischemic and dilated cardiomyopathy: COX1, NRF1, TFAM, SIRT1, MTOR, MFF, DNM1L, DDIT3, UBL5, HSPA9, HSPE1, YME1L, LONP1, SPG7, HTRA2, OMA1, TIMM23, TIMM17A, TIMM17B, TIMM44, PAM16, TIMM22, TIMM9, TIMM10, PINK1, PARK2, ROTH1, PARL, FUNDC1, BNIP3, BNIP3L, TPCN2, LAMP2, MAP1LC3A and BECN1. Moreover, MT-ATP8, MFN2, EIF2AK4 and ULK1 were downregulated in heart failure from dilated, but not ischemic cardiomyopathy. VDAC1 and JUN were only genes that exhibited significantly different expression between ischemic and dilated cardiomyopathy. Expression of PPARGC1, OPA1, JUN, CEBPB, EIF2A, HSPD1, TIMM50 and TPCN1 was not significantly different between control and any form of heart failure. TOMM20 and COX proteins were downregulated in ICM and DCM. CONCLUSIONS Heart failure in patients with ischemic and dilated cardiomyopathy is associated with downregulation of large number of UPRmt, mitophagy, TIM and fusion-fission balance genes. This indicates multiple defects in MQC and represents one of potential mechanisms underlying mitochondrial dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- T Svagusa
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Sikiric
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Milavic
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Sepac
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - D Milicic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiovascular Diseases, University Hospital Center Zagreb, Zagreb, Croatia
| | - H Gasparovic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - B Biocina
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - I Rudez
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - Z Sutlic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Manola
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - J Varvodic
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - M Udovicic
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Urlic
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Ivankovic
- Department of Cardiac Surgery, University Hospital Center Split, Split, Croatia
| | - S Plestina
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - F Paic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Kulic
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - P Bakovic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - F Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
6
|
Mitochondrial protein import and UPR mt in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:28-36. [PMID: 35063351 DOI: 10.1016/j.semcdb.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023]
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
Collapse
|
7
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
8
|
Yamashita K, Haraguchi M, Yano M. Knockdown of TMEM160 leads to an increase in reactive oxygen species generation and the induction of the mitochondrial unfolded protein response. FEBS Open Bio 2022; 12:2179-2190. [PMID: 36217717 PMCID: PMC9714381 DOI: 10.1002/2211-5463.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Transmembrane protein 160 (TMEM160) was recently reported to be localized to the mitochondrial inner membrane, but mitochondrial function was noted to be unaffected by loss of TMEM160. In contrast to these previously published findings, we report here that the absence of TMEM160 influences intracellular responses. After confirming that TMEM160 is localized in the inner mitochondrial membrane, we knocked down TMEM160 in human cultured cells and analyzed the changes in cellular responses. TMEM160 depletion led to an upregulation of the mitochondrial chaperone HSPD1, suggesting that depletion induced the mitochondrial unfolded protein response (UPRmt ). Indeed, the expression of key transcription factors that induce the UPRmt (ATF4, ATF5, and DDIT3) was increased following TMEM160 depletion. Expression of the mitochondrial protein import-receptors TOMM22 and TOMM20 was also enhanced. In addition, we observed a significant increase in reactive oxygen species (ROS) generation following TMEM160 depletion. Glutathione S-transferases, which detoxify the products of oxidative stress, were also upregulated in TMEM160-depleted cells. Immunoblot analysis was performed to detect proteins modified by 4-hydroxynonenal (which is released after the peroxidation of lipids by ROS): the expression patterns of 4-hydroxynonenal-modified proteins were altered after TMEM160 depletion, suggesting that depletion enhanced degradation of these proteins. HSPD1, TOMM22, ATF4, ATF5, and DDIT3 remained upregulated after ROS was scavenged by N-acetylcysteine, suggesting that once the UPRmt is induced by TMEM160 depletion, it is not suppressed by the subsequent detoxification of ROS. These findings suggest that TMEM160 may suppress ROS generation and stabilize mitochondrial protein(s).
Collapse
Affiliation(s)
- Kosei Yamashita
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| | - Misa Haraguchi
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| | - Masato Yano
- Department of Medical Technology, Faculty of Health SciencesKumamoto Health Science UniversityJapan
| |
Collapse
|
9
|
Kang Z, Chen F, Wu W, Liu R, Chen T, Xu F. UPRmt and coordinated UPRER in type 2 diabetes. Front Cell Dev Biol 2022; 10:974083. [PMID: 36187475 PMCID: PMC9523447 DOI: 10.3389/fcell.2022.974083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPRER) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPRmt and UPRER to cooperatively resist stresses such as hyperglycemia in T2D. Increasing evidence suggests that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway is likely an important node for coordinating UPRmt and UPRER. The PERK pathway is activated in both UPRmt and UPRER, and its downstream molecules perform important functions. In this review, we discuss the mechanisms of UPRmt, UPRER and their crosstalk in T2D.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Feng Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wanhui Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianda Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fang Xu
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Fang Xu,
| |
Collapse
|
10
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
11
|
Huo Y, Song Z, Wang H, Zhang Z, Xiao N, Fang R, Zhang Y, Zhang L. GrpE is involved in mitochondrial function and is an effective target for RNAi-mediated pest and arbovirus control. INSECT MOLECULAR BIOLOGY 2022; 31:377-390. [PMID: 35141960 PMCID: PMC9306519 DOI: 10.1111/imb.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Laodelphax striatellus is a sap-feeding pest and the main insect vector of rice stripe virus (RSV). There is an urgent need to identify molecular targets to control this insect pest and plant arboviruses. In this study, we identified a L. striatellus gene (named LsGrpE) encoding a GroP-E-like protein. We found that the LsGrpE protein localized to mitochondria. Using gene-specific dsRNA to interfere with the expression of LsGrpE led to a significant increase in insect mortality, and most of the surviving insects could not develop into adults. Further analyses revealed that LsGrpE deficiency caused mitochondrial dysfunction and inhibited the insulin pathway, resulting in diabetes-like symptoms such as elevated blood sugar, inactive behaviour, developmental delay, and death. In addition, LsGrpE deficiency significantly reduced the RSV titre in surviving L. striatellus, and indirectly prevented viral vertical transmission by reducing the number of adults. We generated transgenic rice plants expressing LsGrpE-specific dsRNA, and the dsRNA was acquired by L. striatellus during feeding, resulting in increased insect mortality and the prevention of arboviral transmission. This study clarifies the function of LsGrpE and demonstrates that LsGrpE can be used as a molecular target of plant-generated dsRNA to resist this sap-feeding pest, a17nd therefore, its transmitted arboviruses.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Zhiyu Song
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Haiting Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ziyu Zhang
- College of Life Sciences, Hebei UniversityBaodingChina
| | - Na Xiao
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Yuman Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lili Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Djidrovski I, Georgiou M, Tasinato E, Leonard MO, Van den Bor J, Lako M, Armstrong L. Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air-liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cells. Cell Biol Toxicol 2022; 39:1-18. [PMID: 35641671 PMCID: PMC10042770 DOI: 10.1007/s10565-022-09726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.
Collapse
Affiliation(s)
- Ivo Djidrovski
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK.,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Maria Georgiou
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elena Tasinato
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Martin O Leonard
- Toxicology Department, Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Campus, Chilton, OX11 0RQ, UK
| | - Jelle Van den Bor
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Majlinda Lako
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK. .,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
13
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Mahatme S, K V, Kumar N, Rao V, Kovela RK, Sinha MK. Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Med Pharm Rep 2022; 95:115-130. [PMID: 35721039 PMCID: PMC9176307 DOI: 10.15386/mpr-2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
Exercise being a potent stimulator of mitochondrial biogenesis, there is a need to investigate the effects of high-intensity interval training (HIIT) among older adults. This review explores and summarizes the impact of HIIT on mitochondria and various cardio-metabolic health outcomes among older adults, healthy and with comorbid conditions. Electronic databases were scrutinized for literature using permutations of keywords related to (i) Elderly population (ii) HIIT (iii) Mitochondria, cell organelles, and (iv) cardio-metabolic health outcomes. Twenty-one studies that met the inclusion criteria are included in this review. HIIT is an innovative therapeutic modality in preserving mitochondrial quality with age and serves to be a viable, safe, and beneficial exercise alternative in both ill and healthy older adults.
Collapse
Affiliation(s)
- Simran Mahatme
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of higher Education, Manipal, Karnataka, India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
15
|
Yim J, Park SB. Label-Free Target Identification Reveals the Anticancer Mechanism of a Rhenium Isonitrile Complex. Front Chem 2022; 10:850638. [PMID: 35372261 PMCID: PMC8964423 DOI: 10.3389/fchem.2022.850638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 01/21/2023] Open
Abstract
Elucidation of the molecular mechanism of therapeutic agents and potential candidates is in high demand. Interestingly, rhenium-based complexes have shown a highly selective anticancer effect, only on cancer cells, unlike platinum-based drugs, such as cisplatin and carboplatin. These differences might be attributed to their different molecular targets. We confirmed that the target of tricarbonyl rhenium isonitrile polypyridyl (TRIP) complex is a protein, not DNA, using ICP-MS analysis and identified heat shock protein 60 (HSP60) as its target protein using a label-free target identification method. The subsequent biological evaluation revealed that TRIP directly inhibits the chaperone function of HSP60 and induces the accumulation of misfolded proteins in mitochondria, thereby leading to the activation of mitochondrial unfolded protein response (mtUPR)-mediated JNK2/AP-1/CHOP apoptotic pathway.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, South Korea
- *Correspondence: Seung Bum Park,
| |
Collapse
|
16
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
17
|
Xie W, Xu R, Fan C, Yang C, Chen H, Cao Y. 900 MHz Radiofrequency Field Induces Mitochondrial Unfolded Protein Response in Mouse Bone Marrow Stem Cells. Front Public Health 2021; 9:724239. [PMID: 34513791 PMCID: PMC8428517 DOI: 10.3389/fpubh.2021.724239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC) to 900 MHz radiofrequency fields used in mobile communication devices can induce mitochondrial unfolded protein response (UPRmt). Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group (SH) were cultured in RF exposure system, but without RF radiation. The positive control cells were irradiated with 6 Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes, 4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured with flow cytometry, the expression levels of UPRmt-related proteins were detected using western blot analysis. Results: Compared with Sham group, the level of ROS in RF and XR group was significantly increased 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF and XR group increased significantly 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed 24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could not induce the increase of HSP10/HSP60/ClpP protein levels any more. Conclusions: The exposure of 900 MHz RF at 120 μW/cm2 power flux density could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure to RF in our experimental condition did not cause permanent and severe mitochondrial dysfunctions. However, the detailed underlying molecular mechanism of RF-induced UPRmt remains to be further studied.
Collapse
Affiliation(s)
- Wen Xie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Rui Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Caiyun Fan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Chunyu Yang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Haiyan Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| |
Collapse
|
18
|
Silencing of Poly(ADP-Ribose) Polymerase-2 Induces Mitochondrial Reactive Species Production and Mitochondrial Fragmentation. Cells 2021; 10:cells10061387. [PMID: 34199944 PMCID: PMC8227884 DOI: 10.3390/cells10061387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
PARP2 is a DNA repair protein. The deletion of PARP2 induces mitochondrial biogenesis and mitochondrial activity by increasing NAD+ levels and inducing SIRT1 activity. We show that the silencing of PARP2 causes mitochondrial fragmentation in myoblasts. We assessed multiple pathways that can lead to mitochondrial fragmentation and ruled out the involvement of mitophagy, the fusion-fission machinery, SIRT1, and mitochondrial unfolded protein response. Nevertheless, mitochondrial fragmentation was reversed by treatment with strong reductants, such as reduced glutathione (GSH), N-acetyl-cysteine (NAC), and a mitochondria-specific antioxidant MitoTEMPO. The effect of MitoTEMPO on mitochondrial morphology indicates the production of reactive oxygen species of mitochondrial origin. Elimination of reactive oxygen species reversed mitochondrial fragmentation in PARP2-silenced cells.
Collapse
|
19
|
Lee JH, Jung SB, Lee SE, Kim JE, Kim JT, Kang YE, Kang SG, Yi HS, Ko YB, Lee KH, Ku BJ, Shong M, Kim HJ. Expression of LONP1 Is High in Visceral Adipose Tissue in Obesity, and Is Associated with Glucose and Lipid Metabolism. Endocrinol Metab (Seoul) 2021; 36:661-671. [PMID: 34154043 PMCID: PMC8258340 DOI: 10.3803/enm.2021.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The nature and role of the mitochondrial stress response in adipose tissue in relation to obesity are not yet known. To determine whether the mitochondrial unfolded protein response (UPRmt) in adipose tissue is associated with obesity in humans and rodents. METHODS Visceral adipose tissue (VAT) was obtained from 48 normoglycemic women who underwent surgery. Expression levels of mRNA and proteins were measured for mitochondrial chaperones, intrinsic proteases, and components of electron-transport chains. Furthermore, we systematically analyzed metabolic phenotypes with a large panel of isogenic BXD inbred mouse strains and Genotype-Tissue Expression (GTEx) data. RESULTS In VAT, expression of mitochondrial chaperones and intrinsic proteases localized in inner and outer mitochondrial membranes was not associated with body mass index (BMI), except for the Lon protease homolog, mitochondrial, and the corresponding gene LONP1, which showed high-level expression in the VAT of overweight or obese individuals. Expression of LONP1 in VAT positively correlated with BMI. Analysis of the GTEx database revealed that elevation of LONP1 expression is associated with enhancement of genes involved in glucose and lipid metabolism in VAT. Mice with higher Lonp1 expression in adipose tissue had better systemic glucose metabolism than mice with lower Lonp1 expression. CONCLUSION Expression of mitochondrial LONP1, which is involved in the mitochondrial quality control stress response, was elevated in the VAT of obese individuals. In a bioinformatics analysis, high LONP1 expression in VAT was associated with enhanced glucose and lipid metabolism.
Collapse
Affiliation(s)
- Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Ji Eun Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Young Bok Ko
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Ki Hwan Lee
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|
20
|
Zhu L, Luo X, Fu N, Chen L. Mitochondrial unfolded protein response: A novel pathway in metabolism and immunity. Pharmacol Res 2021; 168:105603. [PMID: 33838292 DOI: 10.1016/j.phrs.2021.105603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial unfolded protein response (mitoUPR) is a mitochondria stress response to maintain mitochondrial proteostasis during stress. Increasing evidence suggests that mitoUPR participates in diverse physiological processes especially metabolism and immunity. Although mitoUPR regulates metabolism in many aspects, it is mainly reflected in the regulation of energy metabolism. During stress, mitoUPR alters energy metabolism via suppressing oxidative phosphorylation (OXPHOS) or increasing glycolysis. MitoUPR also alters energy metabolism and regulates diverse metabolic diseases such as diabetes, cancers, fatty liver and obesity. In addition, mitoUPR also participates in immune process during stress. MitoUPR can induce innate immune response during various infections and may regulate inflammatory response during diverse inflammations. Considering the pleiotropic actions of mitoUPR, mitoUPR may supply diverse therapeutic targets for metabolic diseases and immune diseases.
Collapse
Affiliation(s)
- Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
21
|
Kausar F, Yusuf Amin KM, Bashir S, Parvez A, Ahmad P. Concept of 'Ihtiraq' in Unani Medicine - A correlation with oxidative stress, and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113269. [PMID: 32937158 DOI: 10.1016/j.jep.2020.113269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, oxidative stress (OS) and the generation of ROS have been recognized as a fundamental pathology contributing, at least partially, to a number of important diseases. However, the therapeutic application has been simplistically limited to using antioxidants with little correction of diseases, and many biomarkers of OS, although confirming and quantifying the magnitude of this pathology, are not suggestive of the underlying causes behind generation of a large amount of free radicals. Unfortunately, research has not noted the multi-implication parallel phenomenon of Ihtiraq (Combustion) in Unani Medicine, which possesses much richer etiopathological sub-typing and much more variegated selective and specific treatments (and prophylactics) corresponding to each sub-type of Ihtiraq; the identification of each sub-type's molecular counterparts can be used to develop not only sub-types of OS pathologies and corresponding selective treatments/prophylactics but also non-biomolecular factors. Eminent Unani physicians described a deteriorative phenomenon, which they termed as 'Ihtiraq' which stands for extreme metabolism or 'combustion' and is recognized as a fundamental pathology, contributing as a major factor to the development of chronic diseases. Further, Unani Medicine also possesses a pathophysiological phenomenon called 'Hararat Ghariba' (Unnatural Heat) whose diverse associations with Ihtiraq may be correlatable as upstream, parallel, or downstream associations of OS and consequent pathologies. AIM OF THE STUDY The aim of the study is to: 1. Explore the correlation of the phenomenon and etiopathology of Ihtiraq and OS and the treatment and prevention of the pathologies arising from them. 2. Extrapolate Ihtiraq, its types, causes, prevention, and treatment to OS, hitherto existing as a fundamental and monolithic pathology of increased ROS, to hypothesize its molecular-level sub-typing, as well as to propose selective interventions in these molecular sub-types of OS in place of the existing use of only basic antioxidants such as Vitamin C. MATERIAL AND METHODS This review is presented with a noteworthy insight into Unani concepts and a thorough study of classical Unani literature by Ibn Sina (10th century), Zakaria Razi (9th century), Ibn Rushd (12th century), Ibn al-Nafees (13th century), Majusi (10th century), and Jurjani (11th century), and comparative detailed study of modern concepts of OS from literature databases, as well as Google, recent researches, and review articles. RESULT The study showed very close correspondences between the phenomenon, etiopathology, and treatment and prevention of Ihtiraq in Unani Medicine and OS in contemporary biomolecular medicine. It also revealed sub-types of Ihtiraq and corresponding selective Unani treatments and prophylactics including drugs and non-drug factors. CONCLUSION After a comprehensive study and analysis of the most recent researches and classical theories, it can be stated that OS can be seen as a molecular level expression of Ihtiraq. Further, various components of Ihtiraq may be used to hypothesize molecular sub-types of OS and propose corresponding specific interventions.
Collapse
Affiliation(s)
- Firdaus Kausar
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India.
| | - Kunwar Mohammad Yusuf Amin
- Philosophy-Science Forum, Dept. of Ilmul Advia, Ajmal Khan Tibbiya College, Aligarh Muslim University, Aligarh, 202002, India
| | - Showkeen Bashir
- Dept. of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKAUST-K, Srinagar, India
| | - Athar Parvez
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India
| | - Pervaiz Ahmad
- Dept. of Ilmul Advia, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
22
|
Puthanmadhom Narayanan S, O'Brien D, Sharma M, Miller K, Adams P, Passos JF, Eirin A, Ordog T, Bharucha AE. Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy. JCI Insight 2021; 6:143596. [PMID: 33491664 PMCID: PMC7934845 DOI: 10.1172/jci.insight.143596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein-coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE. The promoters of differentially expressed genes were enriched in motifs for transcription factors (e.g., NRF1), which regulate mitochondrial biogenesis. Seventeen of 30 differentially expressed miRNAs targeted differentially expressed mitochondrial genes. Mitochondrial density was reduced and correlated with expression of 9 mtDNA OXPHOS genes. Uncovered by principal component (PC) analysis of 70 OXPHOS genes, PC1 was associated with neuropathy (P = 0.01) and delayed gastric emptying (P < 0.05). In DGE, mtDNA- and nDNA-encoded mitochondrial genes are reduced and increased — associated with reduced mitochondrial density, neuropathy, and delayed gastric emptying — and correlated with cognate miRNAs. These findings suggest that mitochondrial disturbances may contribute to delayed gastric emptying in DGE.
Collapse
Affiliation(s)
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl Miller
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - Peter Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering and
| | - Alfonso Eirin
- Division of Nephrology & Hypertension Research, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Urushima Y, Haraguchi M, Yano M. Depletion of TMEM65 leads to oxidative stress, apoptosis, induction of mitochondrial unfolded protein response, and upregulation of mitochondrial protein import receptor TOMM22. Biochem Biophys Rep 2020; 24:100870. [PMID: 33319071 PMCID: PMC7725676 DOI: 10.1016/j.bbrep.2020.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 10/24/2022] Open
Abstract
Mutation in the transmembrane protein 65 gene (TMEM65) results in mitochondrial dysfunction and a severe mitochondrial encephalomyopathy phenotype. However, neither the function of TMEM65 nor the cellular responses to its depletion have been fully elucidated. Hence, we knocked down TMEM65 in human cultured cells and analyzed the resulting cellular responses. Depletion of TMEM65 led to a mild increase in ROS generation and upregulation of the mRNA levels of oxidative stress suppressors, such as NFE2L2 and SESN3, indicating that TMEM65 knockdown induced an oxidative stress response. A mild induction of apoptosis was also observed upon depletion of TMEM65. Depletion of TMEM65 upregulated protein levels of the mitochondrial chaperone HSPD1 and mitochondrial protease LONP1, indicating that mitochondrial unfolded protein response (UPRmt) was induced in response to TMEM65 depletion. Additionally, we found that the mitochondrial protein import receptor TOMM22 and HSPA9 (mitochondrial Hsp70), were also upregulated in TMEM65-depleted cells. Notably, the depletion of TMEM65 did not lead to upregulation of TOMM22 in an ATF5-dependent manner, although upregulation of LONP1 reportedly occurs in an ATF5-dependent manner. Taken together, our findings suggest that depletion of TMEM65 causes mild oxidative stress and apoptosis, induces UPRmt, and upregulates protein expression of mitochondrial protein import receptor TOMM22 in an ATF5-independent manner.
Collapse
Affiliation(s)
- Yuto Urushima
- Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Misa Haraguchi
- Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Masato Yano
- Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| |
Collapse
|
24
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Das S, Joshi MB, Parashiva GK, Rao SBS. Stimulation of cytoprotective autophagy and components of mitochondrial biogenesis / proteostasis in response to ionizing radiation as a credible pro-survival strategy. Free Radic Biol Med 2020; 152:715-727. [PMID: 31968231 DOI: 10.1016/j.freeradbiomed.2020.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The present study illustrates mitochondria-mediated impact of ionizing radiation which is paralleled by activation of several pro-adaptive responses in normal human dermal fibroblast cells. Irradiation of cells with X-rays (5 Gy) led to an increase in fragmentation and mitochondrial mass. Distinct temporal changes in cytosolic and mitochondrial reactive oxygen species (ROS) were noted in response to radiation, which was associated with depletion in mitochondrial membrane potential followed by decrease in ATP levels. Long Amplicon-Polymerase Chain Reaction (LA-PCR) analysis showed time-dependent increase in mitochondrial DNA damage that preceded mitochondrial ROS generation. Irradiation of cells led to an initial G2/M arrest at 8 h that persisted till 16 h, with subsequent block at G0/G1 measured at 48 and 72 h time points. Interestingly, cells activated autophagy as a countermeasure against radiation-mediated cellular insults and aided in removal of damaged mitochondria. Blocking autophagy using 3-methyladenine led to cell death via activation of enhanced ROS, PARP-1 and caspase 3 cleavage. Upregulation of mitochondrial biogenesis factors Nrf1/PGC-1α, following irradiation was observed. Irradiated cells exhibited an increase in the phosphorylation of GCN2, PERK and eIF2α that might be responsible for the up-regulation of ATF4 and CHOP thereby regulating autophagy and components of integrated stress response. Apart from this, we measured accumulation of mitochondrial chaperones (HSP60/HSP10) and ATF5 which is a major molecule involved in mitochondrial stress. Taken together, mitochondria are one of the major cytoplasmic targets for ionizing radiation and possibly act as an early indicator of cellular insult. The findings also show that stressed mitochondria might influence endoplasmic reticulum (ER)-related signalling leading to the activation of adaptive mechanisms like cytoprotective autophagy, and molecules responsible for mitochondrial biogenesis and protein quality control in order to replenish mitochondrial pool and maintain cellular homeostasis.
Collapse
Affiliation(s)
- Shubhankar Das
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad K Parashiva
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish B S Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
26
|
Ringseis R, Gessner DK, Beer AM, Albrecht Y, Wen G, Most E, Krüger K, Eder K. Nicotinic Acid Improves Endurance Performance of Mice Subjected to Treadmill Exercise. Metabolites 2020; 10:metabo10040138. [PMID: 32244770 PMCID: PMC7240961 DOI: 10.3390/metabo10040138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, administration of nicotinic acid (NA) at a pharmacological dose was found to induce a similar change in the muscle´s contractile and metabolic phenotype as observed in response to endurance exercise. Thus, the hypothesis was tested that combined NA administration and endurance exercise promotes the adaptation of muscle to regular exercise and improves the endurance performance to a greater extent than exercise alone. Thus, 30 adult mice were randomly divided into three groups of 10 mice/group. The control and the exercise (EX) group received an adequate NA diet, while the EX + NA group received a high NA diet. Mice of the EX and the EX + NA group were subjected to a treadmill endurance exercise program five times/week during the experimental period of 42 days. At day 41, endurance performance was greater in the EX + NA group than in the control and the EX group (p < 0.05). Mice of the EX + NA group had a higher type IIA (+60%) and a lower type IIB (−55%) fiber percentage in gastrocnemius (GN) muscle than control mice (p < 0.05), while the type I fiber percentage in GN muscle tended to be increased (+100%) in the EX + NA group compared to the control group (p = 0.051). In the EX + NA group, glycogen concentration (+15%) and mRNA levels of two glycolytic (+70–80%) and two glycogenolytic enzymes (+80–120%) in GN muscle were increased compared to the control group (p < 0.05). In conclusion, feeding a high NA diet induces changes in skeletal muscle fiber composition and improves endurance performance of mice subjected to regular endurance exercise.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
- Correspondence: ; Tel./Fax: +49-641-993-9231
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| | - Anna M. Beer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| | - Yvonne Albrecht
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany;
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (D.K.G.); (A.M.B.); (Y.A.); (G.W.); (E.M.); (K.E.)
| |
Collapse
|
27
|
Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, Chuturgoon AA. The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 2020; 875:173059. [PMID: 32131023 DOI: 10.1016/j.ejphar.2020.173059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
Diabetes is a metabolic disorder associated with mitochondrial (mt) dysfunction and oxidative stress. The molecular mechanisms involved in diabetes-associated neurological complications remain elusive. This study aims to investigate the protective effect of metformin (MF) on regulatory networks and integrated stress responses in brain tissue of Streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were treated with MF (20 mg/kg BW), and whole brain tissue was harvested for further analysis. Protein carbonylation was measured as a marker of neuronal oxidative stress. Protein expression of mt chaperones, maintenance proteins, and regulators of the unfolded protein response (UPR) were measured by Western blot. Transcript levels of antioxidant enzyme GSTA4; mt biogenesis markers, ER stress regulators, and miR-132 and miR-148a were analysed using qPCR. The results showed that MF efficiently reduced protein carbonylation and oxidation. Mt function was improved by MF-treatment through upregulation of chaperone proteins (HSP60, HSP70 and LonP1). MF elicits the UPR to attenuate ER stress through a miR-132 repression mechanism. Additionally, MF was found to elevate deacetylases- Sirt1, Sirt3; and mt biogenesis marker PGC-1α through miR-148a repression. This is the first study to demonstrate the epigenetic regulation of mt maintenance by MF in diabetic C57BL/6 mouse whole brain tissue. We thus conclude that MF, beyond its anti-hyperglycaemic role, mediates neuroprotection through epigenomic and integrated stress responses in diabetic mice.
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Nikita Naicker
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Sooraj Baijnath
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Sanil Singh
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
28
|
Abstract
Owing to their ability to efficiently generate ATP required to sustain normal cell function, mitochondria are often considered the 'powerhouses of the cell'. However, our understanding of the role of mitochondria in cell biology recently expanded when we recognized that they are key platforms for a plethora of cell signalling cascades. This functional versatility is tightly coupled to constant reshaping of the cellular mitochondrial network in a series of processes, collectively referred to as mitochondrial membrane dynamics and involving organelle fusion and fission (division) as well as ultrastructural remodelling of the membrane. Accordingly, mitochondrial dynamics influence and often orchestrate not only metabolism but also complex cell signalling events, such as those involved in regulating cell pluripotency, division, differentiation, senescence and death. Reciprocally, mitochondrial membrane dynamics are extensively regulated by post-translational modifications of its machinery and by the formation of membrane contact sites between mitochondria and other organelles, both of which have the capacity to integrate inputs from various pathways. Here, we discuss mitochondrial membrane dynamics and their regulation and describe how bioenergetics and cellular signalling are linked to these dynamic changes of mitochondrial morphology.
Collapse
|
29
|
Zhang Y, Oliveira AN, Hood DA. The intersection of exercise and aging on mitochondrial protein quality control. Exp Gerontol 2020; 131:110824. [PMID: 31911185 DOI: 10.1016/j.exger.2019.110824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
Abstract
Skeletal muscle quality and quantity are negatively impacted with age. Part of this decline in function can be attributed to alterations in mitochondrial turnover, and in the mechanisms that regulate mitochondrial homeostasis. Protein quality control within the mitochondria relies on a number of interconnected processes, namely the mitochondrial unfolded protein response (UPRmt), protein import and mitophagy. In particular, the post-transcriptional regulation of protein import into the organelle has generated considerable recent interest in view of its dynamic versatility. The capacity for import can be increased by chronic exercise, and diminished by muscle disuse, and defects in the import pathway can be rescued by exercise. Within mitochondria, the unfolded protein response (UPR) is activated if protein import is altered, or if protein misfolding takes place. This UPR generates retrograde signaling to the nucleus to activate compensatory gene expression and protein synthesis. Mitophagy is also elevated with age, contributing to the lower mitochondrial content in aging muscle. However, mitophagy is amenable to exercise adaptations, as it is activated with each exercise bout, presumably to mediate mitochondrial quality control. However, this response is attenuated in older subjects. Although not yet completely elucidated, numerous molecular processes involved in mitochondrial biogenesis and turnover are affected with age. The contrasting and often opposite consequences of exercise and age suggest that exercise can serve as non-pharmacological "mitochondrial medicine" for aging muscle to ameliorate mitochondrial content and function, via pathways that implicate organelle protein quality control mechanisms.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, Jiangsu, China
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
30
|
Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109708. [PMID: 31351160 DOI: 10.1016/j.pnpbp.2019.109708] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Major antioxidant responses to increased levels of inflammatory, oxidative and nitrosative stress (ONS) are detailed. In response to increasing levels of nitric oxide, S-nitrosylation of cysteine thiol groups leads to post-transcriptional modification of many cellular proteins and thereby regulates their activity and allows cellular adaptation to increased levels of ONS. S-nitrosylation inhibits the function of nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor-mediated signalling and the activity of several mitogen-activated protein kinases, while activating nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2); in turn, the redox-regulated activation of Nrf2 leads to increased levels and/or activity of key enzymes and transporter systems involved in the glutathione system. The Nrf2/Kelch-like ECH-associated protein-1 axis is associated with upregulation of NAD(P)H:quinone oxidoreductase 1, which in turn has anti-inflammatory effects. Increased Nrf2 transcriptional activity also leads to activation of haem oxygenase-1, which is associated with upregulation of bilirubin, biliverdin and biliverdin reductase as well as increased carbon monoxide signalling, anti-inflammatory and antioxidant activity. Associated transcriptional responses, which may be mediated by retrograde signalling owing to elevated hydrogen peroxide, include the unfolded protein response (UPR), mitohormesis and the mitochondrial UPR; the UPR also results from increasing levels of mitochondrial and cytosolic reactive oxygen species and reactive nitrogen species leading to nitrosylation, glutathionylation, oxidation and nitration of crucial cysteine and tyrosine causing protein misfolding and the development of endoplasmic reticulum stress. It is shown how these mechanisms co-operate in forming a co-ordinated rapid and prolonged compensatory antioxidant response system.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Walker
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Michael Maes
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
31
|
Li J, Zhang D, Brundel BJJM, Wiersma M. Imbalance of ER and Mitochondria Interactions: Prelude to Cardiac Ageing and Disease? Cells 2019; 8:cells8121617. [PMID: 31842269 PMCID: PMC6952992 DOI: 10.3390/cells8121617] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac disease is still the leading cause of morbidity and mortality worldwide, despite some exciting and innovative improvements in clinical management. In particular, atrial fibrillation (AF) and heart failure show a steep increase in incidence and healthcare costs due to the ageing population. Although research revealed novel insights in pathways driving cardiac disease, the exact underlying mechanisms have not been uncovered so far. Emerging evidence indicates that derailed proteostasis (i.e., the homeostasis of protein expression, function and clearance) is a central component driving cardiac disease. Within proteostasis derailment, key roles for endoplasmic reticulum (ER) and mitochondrial stress have been uncovered. Here, we describe the concept of ER and mitochondrial stress and the role of interactions between the ER and mitochondria, discuss how imbalance in the interactions fuels cardiac ageing and cardiac disease (including AF), and finally assess the potential of drugs directed at conserving the interaction as an innovative therapeutic target to improve cardiac function.
Collapse
Affiliation(s)
- Jin Li
- Correspondence: (J.L.); (M.W.)
| | | | | | | |
Collapse
|
32
|
Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol 2019; 599:803-817. [PMID: 31674658 DOI: 10.1113/jp278853] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial health is an important mediator of cellular function across a range of tissues, and as a result contributes to whole-body vitality in health and disease. Our understanding of the regulation and function of these organelles is of great interest to scientists and clinicians across many disciplines within our healthcare system. Skeletal muscle is a useful model tissue for the study of mitochondrial adaptations because of its mass and contribution to whole body metabolism. The remarkable plasticity of mitochondria allows them to adjust their volume, structure and capacity under conditions such as exercise, which is useful or improving metabolic health in individuals with various diseases and/or advancing age. Mitochondria exist within muscle as a functional reticulum which is maintained by dynamic processes of biogenesis and fusion, and is balanced by opposing processes of fission and mitophagy. The sophisticated coordination of these events is incompletely understood, but is imperative for organelle function and essential for the maintenance of an interconnected organelle network that is finely tuned to the metabolic needs of the cell. Further elucidation of the mechanisms of mitochondrial turnover in muscle could offer potential therapeutic targets for the advancement of health and longevity among our ageing populations. As well, investigating exercise modalities that are both convenient and capable of inducing robust mitochondrial adaptations are useful in fostering more widespread global adherence. To this point, exercise remains the most potent behavioural therapeutic approach for the improvement of mitochondrial health, not only in muscle, but potentially also in other tissues.
Collapse
Affiliation(s)
- Jonathan M Memme
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Avigail T Erlich
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Geetika Phukan
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| |
Collapse
|
33
|
Lee T, Huang L, Dong H, Tohru Y, Liu B, Yang R. Impairment of mitochondrial unfolded protein response contribute to resistance declination of H
2
O
2
‐induced injury in senescent MRC‐5 cell model. Kaohsiung J Med Sci 2019; 36:89-97. [DOI: 10.1002/kjm2.12146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tzu‐Ying Lee
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Li‐Ju Huang
- Teaching and Research CenterKaohsiung Municipal Ta‐Tung Hospital Kaohsiung Taiwan ROC
| | - Huei‐Ping Dong
- Department of Physical TherapyFooyin University Kaohsiung Taiwan ROC
| | - Yoshioka Tohru
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Bo‐Hong Liu
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| | - Rei‐Cheng Yang
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan ROC
- Graduate Institute of MedicineCollege of Medicine, Kaohsiung Medical University Kaohsiung Taiwan ROC
| |
Collapse
|
34
|
The Role of Mitochondrial Stress in Muscle Wasting Following Severe Burn Trauma. J Burn Care Res 2019; 39:100-108. [PMID: 28448295 DOI: 10.1097/bcr.0000000000000553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/26/2018] [Indexed: 11/26/2022]
Abstract
Increased resting metabolic rate and skeletal muscle wasting are hallmarks of the pathophysiological stress response to severe burn trauma. However, whether these two responses occur independently in burn patients or are in fact related remains unclear. In light of recent evidence demonstrating that increased proteolysis in skeletal muscle of burned patients is accompanied by mitochondrial hypermetabolism, oxidative stress, and protein damage; in this article, we discuss the evidence for a role for the mitochondrion in skeletal muscle wasting following severe burn trauma. In particular, we focus on the role of mitochondrial superoxide production in oxidative stress and subsequent proteolysis, and discuss the role of the mitochondrion as a signaling organelle resulting in protein catabolism in other cellular compartments following severe burn trauma.
Collapse
|
35
|
Wardelmann K, Blümel S, Rath M, Alfine E, Chudoba C, Schell M, Cai W, Hauffe R, Warnke K, Flore T, Ritter K, Weiß J, Kahn CR, Kleinridders A. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Mol Metab 2019; 21:68-81. [PMID: 30670351 PMCID: PMC6407370 DOI: 10.1016/j.molmet.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism. METHODS To investigate the crosstalk of insulin action and mitochondrial stress responses (MSR), namely the mitochondrial unfolded protein response (UPRmt) and integrated stress response (ISR), qPCR, western blotting, and mitochondrial activity assays were performed. These methods were used to analyze the hypothalamic cell line CLU183 treated with insulin in the presence or absence of the insulin receptor as well as in mice fed a high fat diet (HFD) for three days and STZ-treated mice without or with insulin therapy. Intranasal insulin treatment was used to investigate the effect of acute brain insulin action on metabolism and mitochondrial stress responses. RESULTS Acute HFD feeding reduces hypothalamic mitochondrial stress responsive gene expression of Atf4, Chop, Hsp60, Hsp10, ClpP, and Lonp1 in C57BL/6N mice. We show that insulin via ERK activation increases the expression of MSR genes in vitro as well as in the hypothalamus of streptozotocin-treated mice. This regulation propagates mitochondrial function by controlling mitochondrial proteostasis and prevents excessive autophagy under serum deprivation. Finally, short-term intranasal insulin treatment activates MSR gene expression in the hypothalamus of HFD-fed C57BL/6N mice and reduces food intake and body weight development. CONCLUSIONS We define hypothalamic insulin action as a novel master regulator of MSR, ensuring proper mitochondrial function by controlling mitochondrial proteostasis and regulating metabolism.
Collapse
Affiliation(s)
- Kristina Wardelmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Sabine Blümel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Michaela Rath
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Eugenia Alfine
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Chantal Chudoba
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Mareike Schell
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Hauffe
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Kathrin Warnke
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Tanina Flore
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Katrin Ritter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - André Kleinridders
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
36
|
Mansouri A, Gattolliat CH, Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018; 155:629-647. [PMID: 30012333 DOI: 10.1053/j.gastro.2018.06.083] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria regulate hepatic lipid metabolism and oxidative stress. Ultrastructural mitochondrial lesions, altered mitochondrial dynamics, decreased activity of respiratory chain complexes, and impaired ability to synthesize adenosine triphosphate are observed in liver tissues from patients with alcohol-associated and non-associated liver diseases. Increased lipogenesis with decreased fatty acid β-oxidation leads to the accumulation of triglycerides in hepatocytes, which, combined with increased levels of reactive oxygen species, contributes to insulin resistance in patients with steatohepatitis. Moreover, mitochondrial reactive oxygen species mediate metabolic pathway signaling; alterations in these pathways affect development and progression of chronic liver diseases. Mitochondrial stress and lesions promote cell death, liver fibrogenesis, inflammation, and the innate immune responses to viral infections. We review the involvement of mitochondrial processes in development of chronic liver diseases, such as nonalcoholic fatty, alcohol-associated, and drug-associated liver diseases, as well as hepatitis B and C, and discuss how they might be targeted therapeutically.
Collapse
Affiliation(s)
- Abdellah Mansouri
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Charles-Henry Gattolliat
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Tarik Asselah
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
37
|
Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res 2018; 60:1720-1732. [PMID: 30054342 DOI: 10.1194/jlr.r087510] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is a major risk factor for numerous diseases, including type 2 diabetes and cardiovascular disease. These disorders have dramatically increased in incidence with modern life, suggesting that excess nutrients and obesity are major causes of "common" insulin resistance. Despite considerable effort, the mechanisms that contribute to common insulin resistance are not resolved. There is universal agreement that extracellular perturbations, such as nutrient excess, hyperinsulinemia, glucocorticoids, or inflammation, trigger intracellular stress in key metabolic target tissues, such as muscle and adipose tissue, and this impairs the ability of insulin to initiate its normal metabolic actions in these cells. Here, we present evidence that the impairment in insulin action is independent of proximal elements of the insulin signaling pathway and is likely specific to the glucoregulatory branch of insulin signaling. We propose that many intracellular stress pathways act in concert to increase mitochondrial reactive oxygen species to trigger insulin resistance. We speculate that this may be a physiological pathway to conserve glucose during specific states, such as fasting, and that, in the presence of chronic nutrient excess, this pathway ultimately leads to disease. This review highlights key points in this pathway that require further research effort.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - James R Krycer
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Alison L Kearney
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha L Hocking
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia .,Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
38
|
Oliveira AN, Hood DA. Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPR mt in muscle. Am J Physiol Cell Physiol 2018; 315:C516-C526. [PMID: 29949403 DOI: 10.1152/ajpcell.00275.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a protein quality control mechanism that strives to achieve proteostasis in the face of misfolded proteins. Because of the reliance of mitochondria on both the nuclear and mitochondrial genomes, a perturbation of the coordination of these genomes results in a mitonuclear imbalance in which holoenzymes are unable to assume mature stoichiometry and thereby activates the UPRmt. Thus, we sought to perturb this genomic coordination by using a systemic antisense oligonucleotide (in vivo morpholino) targeted to translocase of the inner membrane channel subunit 23 (Tim23), the major channel of the inner membrane. This resulted in a 40% reduction in Tim23 protein content, a 32% decrease in matrix-destined protein import, and a trend to elevate reactive oxygen species (ROS) emission under maximal respiration conditions. This import defect activated the C/EBP homologous protein (CHOP) branch of the UPRmt, as evident from increases in caseinolytic mitochondrial matrix peptidase proteolytic subunit (ClpP) and chaperonin 10 (cpn10) but not the activating transcription factor 5 (ATF5) arm. Thus, in the face of proteotoxic stress, CHOP and ATF5 could be activated independently to regain proteostasis. Our second aim was to investigate the role of proteolytically derived peptides in mediating retrograde signaling. Peptides released from the mitochondrion following basal proteolysis were isolated and incubated with import reactions. Dose- and time-dependent effect of peptides on protein import was observed. Our data suggest that mitochondrial proteolytic byproducts exert an inhibitory effect on protein import, possibly to reduce excessive protein import as a potential negative feedback mechanism. The inhibition of import into the organelle also serves a retrograde function, possibly via ROS emission, to modify nuclear gene expression and ultimately improve folding capacity.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| |
Collapse
|
39
|
Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF. The Complex Interaction of Mitochondrial Genetics and Mitochondrial Pathways in Psychiatric Disease. MOLECULAR NEUROPSYCHIATRY 2018; 4:52-69. [PMID: 29998118 DOI: 10.1159/000488031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
While accounting for only 2% of the body's weight, the brain utilizes up to 20% of the body's total energy. Not surprisingly, metabolic dysfunction and energy supply-and-demand mismatch have been implicated in a variety of neurological and psychiatric disorders. Mitochondria are responsible for providing the brain with most of its energetic demands, and the brain uses glucose as its exclusive energy source. Exploring the role of mitochondrial dysfunction in the etiology of psychiatric disease is a promising avenue to investigate further. Genetic analysis of mitochondrial activity is a cornerstone in understanding disease pathogenesis related to metabolic dysfunction. In concert with neuroimaging and pathological study, genetics provides an important bridge between biochemical findings and clinical correlates in psychiatric disease. Mitochondrial genetics has several unique aspects to its analysis, and corresponding special considerations. Here, we review the components of mitochondrial genetic analysis - nuclear DNA, mitochon-drial DNA, mitochondrial pathways, pseudogenes, nuclear-mitochondrial mismatch, and microRNAs - that could contribute to an observable clinical phenotype. Throughout, we highlight psychiatric diseases that can arise due to dysfunction in these processes, with a focus on schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Ari B Cuperfain
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Zhi Lun Zhang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Fazakerley DJ, Minard AY, Krycer JR, Thomas KC, Stöckli J, Harney DJ, Burchfield JG, Maghzal GJ, Caldwell ST, Hartley RC, Stocker R, Murphy MP, James DE. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J Biol Chem 2018; 293:7315-7328. [PMID: 29599292 PMCID: PMC5950018 DOI: 10.1074/jbc.ra117.001254] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice. To dissociate oxidative stress from impaired oxidative phosphorylation and study whether mitochondrial oxidative stress per se can cause insulin resistance, we used mitochondria-targeted paraquat (MitoPQ) to generate superoxide within mitochondria without directly disrupting the respiratory chain. At ≤10 μm, MitoPQ specifically increased mitochondrial superoxide and hydrogen peroxide without altering mitochondrial respiration in intact cells. Under these conditions, MitoPQ impaired insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation to the plasma membrane in both adipocytes and myotubes. MitoPQ recapitulated many features of insulin resistance found in other experimental models, including increased oxidants in mitochondria but not cytosol; a more profound effect on glucose transport than on other insulin-regulated processes, such as protein synthesis and lipolysis; an absence of overt defects in insulin signaling; and defective insulin- but not AMP-activated protein kinase (AMPK)-regulated GLUT4 translocation. We conclude that elevated mitochondrial oxidants rapidly impair insulin-regulated GLUT4 translocation and significantly contribute to insulin resistance and that MitoPQ is an ideal tool for studying the link between mitochondrial oxidative stress and regulated GLUT4 trafficking.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Annabel Y Minard
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Kristen C Thomas
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuart T Caldwell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
41
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
42
|
UPR mt coordinates immunity to maintain mitochondrial homeostasis and animal fitness. Mitochondrion 2017; 41:9-13. [PMID: 29180055 DOI: 10.1016/j.mito.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Proper function of mitochondria is often challenged by intrinsic factors and extrinsic stimuli. To cope with mitochondrial stress, organisms evolve mitochondrial unfolded protein response (UPRmt) to monitor mitochondrial function and induce the transcription of mitochondrial chaperones and proteases to restore mitochondrial proteostasis and alleviate stress. Interestingly, UPRmt also induces immune response genes and improves animals' fitness against pathogen infection. In this review, we will summarize progresses of UPRmt studies and discuss the relationship between UPRmt and the induction of innate immunity.
Collapse
|
43
|
Olson DH, Burrill JS, Kuzmicic J, Hahn WS, Park JM, Kim DH, Bernlohr DA. Down regulation of Peroxiredoxin-3 in 3T3-L1 adipocytes leads to oxidation of Rictor in the mammalian-target of rapamycin complex 2 (mTORC2). Biochem Biophys Res Commun 2017; 493:1311-1317. [PMID: 28986255 DOI: 10.1016/j.bbrc.2017.09.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrially-derived oxidative stress has been implicated in the development of obesity-induced insulin resistance and is correlated with down regulation of Peroxiredoxin-3 (Prdx3). Prdx3 knockout mice exhibit whole-body insulin resistance, while Prdx3 transgenic animals remain insulin sensitive when placed on a high fat diet. To define the molecular events linking mitochondrial oxidative stress to insulin action, Prdx3 was silenced in 3T3-L1 adipocytes (Prdx3 KD) and the resultant cells evaluated for mitochondrial function, endoplasmic reticulum stress (ER stress), mitochondrial unfolded protein response (mtUPR) and insulin signaling. Prdx3 KD cells exhibit a two-fold increase in H2O2, reduced insulin-stimulated glucose transport and attenuated S473 phosphorylation of the mTORC2 substrate, Akt. Importantly, the decrease in glucose uptake can be rescued by pre-treatment with the antioxidant N-acetyl-cysteine (NAC). The changes in insulin sensitivity occur independently from activation of the ER stress or mtUPR pathways. Analysis of mTORC2, the complex responsible for phosphorylating Akt at S473, reveals increased cysteine oxidation of Rictor in Prdx3 KD cells that can be rescued with NAC. Taken together, these data suggest mitochondrial dysfunction in adipocytes may attenuate insulin signaling via oxidation of the mammalian-target of rapamycin complex 2 (mTORC2).
Collapse
Affiliation(s)
- Dalay H Olson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel S Burrill
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jovan Kuzmicic
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy S Hahn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ji-Man Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Lleonart ME, Grodzicki R, Graifer DM, Lyakhovich A. Mitochondrial dysfunction and potential anticancer therapy. Med Res Rev 2017; 37:1275-1298. [DOI: 10.1002/med.21459] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Robert Grodzicki
- Thomas Steitz Laboratory; Department of Molecular Biophysics & Biochemistry, Center for Structural Biology, Howard Hughes Medical Institute; Yale University; New Haven Connecticut
| | | | - Alex Lyakhovich
- Oncology Program; Vall D'Hebron Research Institute; Barcelona Spain
- Institute of Molecular Biology and Biophysics, Novosibirsk; Russia
- International Clinical Research Center and St. Anne's University Hospital Brno; Czech Republic
| |
Collapse
|
45
|
Yano M. ABCB10 depletion reduces unfolded protein response in mitochondria. Biochem Biophys Res Commun 2017; 486:465-469. [PMID: 28315685 DOI: 10.1016/j.bbrc.2017.03.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
Mitochondria have many functions, including ATP generation. The electron transport chain (ETC) and the coupled ATP synthase generate ATP by consuming oxygen. Reactive oxygen species (ROS) are also produced by ETC, and ROS damage deoxyribonucleic acids, membrane lipids and proteins. Recent analysis indicate that mitochondrial unfolded protein response (UPRmt), which enhances expression of mitochondrial chaperones and proteases to remove damaged proteins, is activated when damaged proteins accumulate in the mitochondria. In Caenorhabditis elegans, HAF-1, a putative ortholog of human ABCB10, plays an essential role in signal transduction from mitochondria to nuclei to enhance UPRmt. Therefore, it is possible that ABCB10 has a role similar to that of HAF-1. However, it has not been reported whether ABCB10 is a factor in the signal transduction pathway to enhance UPRmt. In this study, ABCB10 was depleted in HepG2 cells using small interfering RNA (siRNA), and the effect was examined. ABCB10 depletion upregulated ROS and the expression of ROS-detoxifying enzymes (SOD2, GSTA1, and GSTA2), and SESN3, a protein induced by ROS to protect the cell from oxidative stress. In addition, ABCB10 depletion significantly decreased expression of UPRmt-related mitochondrial chaperones (HSPD1 and DNAJA3), and a mitochondrial protease (LONP1). However, the putative activity of ABCB10 to export peptides from mitochondria was not lost by ABCB10 depletion. Altogether, these data suggest that ABCB10 is involved in UPRmt signaling pathway similar to that of HAF-1, although ABCB10 probably does not participate in peptide export from mitochondria.
Collapse
Affiliation(s)
- Masato Yano
- Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto 861-5598, Japan.
| |
Collapse
|
46
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
47
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
48
|
Ogunbileje JO, Porter C, Herndon DN, Chao T, Abdelrahman DR, Papadimitriou A, Chondronikola M, Zimmers TA, Reidy PT, Rasmussen BB, Sidossis LS. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma. Am J Physiol Endocrinol Metab 2016; 311:E436-48. [PMID: 27382037 PMCID: PMC5005969 DOI: 10.1152/ajpendo.00535.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/01/2016] [Indexed: 01/11/2023]
Abstract
Burn trauma results in prolonged hypermetabolism and skeletal muscle wasting. How hypermetabolism contributes to muscle wasting in burn patients remains unknown. We hypothesized that oxidative stress, cytosolic protein degradation, and mitochondrial stress as a result of hypermetabolism contribute to muscle cachexia postburn. Patients (n = 14) with burns covering >30% of their total body surface area were studied. Controls (n = 13) were young healthy adults. We found that burn patients were profoundly hypermetabolic at both the skeletal muscle and systemic levels, indicating increased oxygen consumption by mitochondria. In skeletal muscle of burn patients, concurrent activation of mTORC1 signaling and elevation in the fractional synthetic rate paralleled increased levels of proteasomes and elevated fractional breakdown rate. Burn patients had greater levels of oxidative stress markers as well as higher expression of mtUPR-related genes and proteins, suggesting that burns increased mitochondrial stress and protein damage. Indeed, upregulation of cytoprotective genes suggests hypermetabolism-induced oxidative stress postburn. In parallel to mtUPR activation postburn, mitochondrial-specific proteases (LONP1 and CLPP) and mitochondrial translocases (TIM23, TIM17B, and TOM40) were upregulated, suggesting increased mitochondrial protein degradation and transport of preprotein, respectively. Our data demonstrate that proteolysis occurs in both the cytosolic and mitochondrial compartments of skeletal muscle in severely burned patients. Increased mitochondrial protein turnover may be associated with increased protein damage due to hypermetabolism-induced oxidative stress and activation of mtUPR. Our results suggest a novel role for the mitochondria in burn-induced cachexia.
Collapse
Affiliation(s)
- John O Ogunbileje
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - David N Herndon
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Tony Chao
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Doaa R Abdelrahman
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Anastasia Papadimitriou
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | | | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Labros S Sidossis
- Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas; Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey; and Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
49
|
Erlich AT, Tryon LD, Crilly MJ, Memme JM, Moosavi ZSM, Oliveira AN, Beyfuss K, Hood DA. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res 2016; 5:187-197. [PMID: 28462117 PMCID: PMC5390460 DOI: 10.1016/j.imr.2016.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Hood
- Corresponding author. Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
50
|
Xu M, Bi X, He X, Yu X, Zhao M, Zang W. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells. Cell Cycle 2016; 15:1331-43. [PMID: 27111378 DOI: 10.1080/15384101.2016.1160985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR.
Collapse
Affiliation(s)
- Man Xu
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xueyuan Bi
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xi He
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xiaojiang Yu
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Ming Zhao
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Weijin Zang
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| |
Collapse
|