1
|
Sirois J, Reddy S, Nguyen T, Walker H, Rendall J, Bergen G, Reimers M, Cermak E, Tiwary A, Helmes E, Palmer J, Teo S, Mackle T, Park M, Wang C. Safety considerations for dietary supplement manufacturers in the United States. Regul Toxicol Pharmacol 2024; 147:105544. [PMID: 38158034 DOI: 10.1016/j.yrtph.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Due to significant dietary supplement use in the US, product manufacturers must understand the importance of implementing a robust approach to establishing safety for all ingredients, including dietary ingredients, components, and finished dietary supplement products. Different regulatory pathways exist by which the safety of dietary ingredients can be established, and thus allowed to be marketed in a dietary supplement. For individual dietary ingredients, safety information may come from a variety of sources including history of safe use, presence of the ingredient in foods, and/or non-clinical and clinical data. On occasion safety data gaps are identified for a specific ingredient, particularly those of botanical origin. Modern toxicological methods and models can prove helpful in satisfying data gaps and are presented in this review. For finished dietary supplement products, issues potentially impacting safety to consider include claims, product labeling, overages, contaminants, residual solvents, heavy metals, packaging, and product stability. In addition, a safety assessment does not end once a product is marketed. It is important that manufacturers actively monitor and record the occurrence of adverse events reported in association with the use of their products, in accordance with the law. Herein, we provide a comprehensive overview of considerations for assessing dietary supplement safety.
Collapse
Affiliation(s)
- Jay Sirois
- Consumer Healthcare Products Association, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mimi Park
- Nestle Health Science, Bridgewater, NJ, USA
| | | |
Collapse
|
2
|
Neufeld LM, Ho E, Obeid R, Tzoulis C, Green M, Huber LG, Stout M, Griffiths JC. Advancing nutrition science to meet evolving global health needs. Eur J Nutr 2023; 62:1-16. [PMID: 38015211 PMCID: PMC10684707 DOI: 10.1007/s00394-023-03276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Collapse
Affiliation(s)
- Lynnette M Neufeld
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Emily Ho
- Linus Pauling Institute and College of Health, Oregon State University, Corvallis, OR, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Marina Green
- Nutrition Research Centre Ireland, South East Technological University, Waterford, Ireland
| | - Luke G Huber
- Council for Responsible Nutrition, Washington, DC, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
3
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
4
|
Development and Validation of the LC-MS/MS Method for Determination of 130 Natural and Synthetic Cannabinoids in Cannabis Oil. Molecules 2022; 27:molecules27238601. [PMID: 36500694 PMCID: PMC9736437 DOI: 10.3390/molecules27238601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary supplements are widely available products used by millions of people around the world. Unfortunately, the procedure of adding pharmaceutical and psychoactive substances has recently been observed, in order to increase the effectiveness of supplements in the form of hemp oils. For this reason, it is extremely important to develop analytical methods for the detection of substances prohibited in dietary supplements and food products. In the present study, using the LC-MS/MS technique, an innovative method for the detection and quantification of 117 synthetic cannabinoids and 13 natural cannabinoids in dietary supplements and food products in the form of oils during one 13-min chromatographic run was developed. Each method was fully validated by characterization of the following parameters: The limit of detection was set to 0.1 ng/mL (100 µg/g, 0.01%). The limit of quantification ranged from 0.05 ng/mL to 50 ng/mL. The criteria assumed for systematic error caused by methodological bias (±20%) resulting from the recovery of analytes after the extraction process, as well as the coefficient of variation (CV) (≤20%), were met for all 130 tested compounds. The positive results of the validation confirmed that the developed methods met the requirements related to the adequacy of their application in a given scope. Additionally, methods developed using the LC-MS/MS technique were verified via proficiency tests. The developed analytical procedure was successfully used in the analysis of hemp oils and capsules containing them in the studied dietary supplements.
Collapse
|
5
|
Feskens EJM, Bailey R, Bhutta Z, Biesalski HK, Eicher-Miller H, Krämer K, Pan WH, Griffiths JC. Women's health: optimal nutrition throughout the lifecycle. Eur J Nutr 2022; 61:1-23. [PMID: 35612668 PMCID: PMC9134728 DOI: 10.1007/s00394-022-02915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Sex differences are an important consideration when researching and establishing policies for nutrition and optimal health. For women's health, there are important physiologic, neurologic, and hormonal distinctions throughout the lifecycle that impact nutritional needs. Distinct from those for men, these nutritional needs must be translated into appropriate nutrition policy that aims to not only avoid overt nutritional deficiency, but also to promote health and minimize risk for chronic disease. Through a series of webinars, scientific experts discussed the advances in the understanding of the unique nutritional needs, challenges and opportunities of the various life stages for women across the life course and identified emerging nutritional interventions that may be beneficial for women. Nevertheless, there is concern that existing nutrition policy intended for women's health is falling short with examples of programs that are focused more on delivering calories than achieving optimal nutrition. To be locally effective, targeted nutrition needs to offer different proposals for different cultural, socio-economic, and geographic communities, and needs to be applicable at all stages of growth and development. There must be adequate access to nutritious foods, and the information to understand and implement proven nutritional opportunities. Experts provided recommendations for improvement of current entitlement programs that will address accessibility and other social and environmental issues to support women properly throughout the lifecycle.
Collapse
Affiliation(s)
| | - Regan Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M University System, College Station, TX, USA
| | - Zulfiqar Bhutta
- Centre for Global Child Health, Toronto, Canada
- Aga Khan University, Karachi, Pakistan
| | | | | | - Klaus Krämer
- Sight & Life, Basel, Switzerland
- Johns Hopkins University, Baltimore, MD, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
6
|
Kalache A, Bazinet RP, Carlson S, Evans WJ, Kim CH, Lanham-New S, Visioli F, Griffiths JC. Science-based policy: targeted nutrition for all ages and the role of bioactives. Eur J Nutr 2021; 60:1-17. [PMID: 34427766 PMCID: PMC8383919 DOI: 10.1007/s00394-021-02662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022]
Abstract
Globally, there has been a marked increase in longevity, but it is also apparent that significant inequalities remain, especially the inequality related to insufficient 'health' to enjoy or at least survive those later years. The major causes include lack of access to proper nutrition and healthcare services, and often the basic information to make the personal decisions related to diet and healthcare options and opportunities. Proper nutrition can be the best predictor of a long healthy life expectancy and, conversely, when inadequate and/or improper a prognosticator of a sharply curtailed expectancy. There is a dichotomy in both developed and developing countries as their populations are experiencing the phenomenon of being 'over fed and under nourished', i.e., caloric/energy excess and lack of essential nutrients, leading to health deficiencies, skyrocketing global obesity rates, excess chronic diseases, and premature mortality. There is need for new and/or innovative approaches to promoting health as individuals' age, and for public health programs to be a proactive blessing and not an archaic status quo 'eat your vegetables' mandate. A framework for progress has been proposed and published by the World Health Organization in their Global Strategy and Action Plan on Ageing and Health (WHO (2017) Advancing the right to health: the vital role of law. https://apps.who.int/iris/bitstream/handle/10665/252815/9789241511384-eng.pdf?sequence=1&isAllowed=y . Accessed 07 Jun 2021; WHO (2020a) What is Health Promotion. www.who.int/healthpromotion/fact-sheet/en/ . Accessed 07 Jun 2021; WHO (2020b) NCD mortality and morbidity. www.who.int/gho/ncd/mortality_morbidity/en/ . Accessed 07 Jun 2021). Couple this WHO mandate with current academic research into the processes of ageing, and the ingredients or regimens that have shown benefit and/or promise of such benefits. Now is the time for public health policy to 'not let the perfect be the enemy of the good,' but to progressively make health-promoting nutrition recommendations.
Collapse
Affiliation(s)
- Alexandre Kalache
- International Longevity Centre-Brazil, Rio de Janiero, Brazil
- Age Friendly Institute, Boston, MA, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Susan Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Chi Hee Kim
- Global Government Affairs, Herbalife Nutrition, Los Angeles, CA, USA
| | - Susan Lanham-New
- Nutritional Sciences Department, University of Surrey, Guildford, UK
| | - Francesco Visioli
- Department of Molecular Sciences, University of Padova, Padova, Italy
- IMDEA-Food, Madrid, Spain
| | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
7
|
ABUALHASAN M, DWAIKAT S, ATAYA R, ALI A, AL-ATRASH M. Quality evaluation of iron-containing food supplements in the Palestinian market. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.01621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Griffiths JC, De Vries J, McBurney MI, Wopereis S, Serttas S, Marsman DS. Measuring health promotion: translating science into policy. Eur J Nutr 2020; 59:11-23. [PMID: 32852581 PMCID: PMC7497380 DOI: 10.1007/s00394-020-02359-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Commonly, it is the end of life when our health is deteriorating, that many will make drastic lifestyle changes to improve their quality of life. However, it is increasingly recognized that bringing good health-promoting behaviors into practice as early in life as possible has the most significant impact across the maximal healthspan. The WHO has brought clarity to health promotion over the last fifteen years, always centering on language relating to a process of enabling people to increase control over, and to improve, their physical, mental and social health. A good healthspan is not just freedom from morbidity and mortality, it is that joie de vivre ("joy of living") that should accompany every day of our lifespan. Therefore, health promotion includes not only the health sector, but also needs individual commitment to achieve that target of a healthspan aligned with the lifespan. This paper explores health promotion and health literacy, and how to design appropriate nutritional studies to characterize contributors to a positive health outcome, the role the human microbiome plays in promoting health and addressing and alleviating morbidity and diseases, and finally how to characterize phenotypic flexibility and a physiologic resilience that we must maintain as our structural and functional systems are bombarded with the insults and perturbations of life.
Collapse
Affiliation(s)
- James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| | - Jan De Vries
- Nutrition in Transition Foundation, Gorssel, The Netherlands
| | - Michael I McBurney
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Suzan Wopereis
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, NL-3704 HE, Zeist, The Netherlands
| | | | | |
Collapse
|
9
|
Abstract
Thanks to advances in modern medicine over the past century, the world’s population has experienced a marked increase in longevity. However, disparities exist that lead to groups with both shorter lifespan and significantly diminished health, especially in the aged. Unequal access to proper nutrition, healthcare services, and information to make informed health and nutrition decisions all contribute to these concerns. This in turn has hastened the ageing process in some and adversely affected others’ ability to age healthfully. Many in developing as well as developed societies are plagued with the dichotomy of simultaneous calorie excess and nutrient inadequacy. This has resulted in mental and physical deterioration, increased non-communicable disease rates, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental to good health, it remains unclear what impact various dietary interventions may have on improving healthspan and quality of life with age. With a rapidly ageing global population, there is an urgent need for innovative approaches to health promotion as individual’s age. Successful research, education, and interventions should include the development of both qualitative and quantitative biomarkers and other tools which can measure improvements in physiological integrity throughout life. Data-driven health policy shifts should be aimed at reducing the socio-economic inequalities that lead to premature ageing. A framework for progress has been proposed and published by the World Health Organization in its Global Strategy and Action Plan on Ageing and Health. This symposium focused on the impact of nutrition on this framework, stressing the need to better understand an individual’s balance of intrinsic capacity and functional abilities at various life stages, and the impact this balance has on their mental and physical health in the environments they inhabit.
Collapse
|
10
|
Rašković A, Ćućuz V, Torović L, Tomas A, Gojković-Bukarica L, Ćebović T, Milijašević B, Stilinović N, Cvejić Hogervorst J. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharm J 2019; 27:1036-1043. [PMID: 31997911 PMCID: PMC6978634 DOI: 10.1016/j.jsps.2019.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Resveratrol was recognized as the major factor responsible for the beneficial properties of red wine. Several resveratrol-based dietary supplements are available, but their efficacy has not been sufficiently tested. This study was designed to examine the effect of resveratrol supplementation, using a commercially available product, on the metabolic status of experimental animals with induced hyperlipidemia or type 2 diabetes mellitus (T2DM). Hyperlipidemia was induced by feeding the rats a standard pellet diet supplemented with cholesterol. T2DM was induced by adding 10% fructose to drinking water and streptozotocin. Treatment with resveratrol-based supplement improved glycemic control in diabetic animals and significantly decreased serum low-density-lipoprotein (LDL) and triglyceride levels, concurrently increasing the high-density-lipoprotein (HDL) levels in animals with hyperlipidemia. Resveratrol-treated animals had improved tolerance to glucose loading. Supplementation did not induce alterations in parameters of liver and renal function. Findings indicate that commercial resveratrol supplement improves metabolic control in rats with induced hyperlipidemia and T2DM.
Collapse
Affiliation(s)
- Aleksandar Rašković
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Veljko Ćućuz
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ljilja Torović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ana Tomas
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Ljiljana Gojković-Bukarica
- University of Belgrade, Faculty of Medicine, Department of Pharmacology and Toxicology and Clinical Pharmacology, Belgrade, Serbia
| | - Tatjana Ćebović
- University of Novi Sad, Faculty of Medicine, Department of Biochemistry, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Boris Milijašević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Nebojša Stilinović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Hajduk Veljkova 3, Novi Sad, Serbia
| | - Jelena Cvejić Hogervorst
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, Novi Sad, Serbia
| |
Collapse
|
11
|
Monterrosa EC, Beesabathuni K, van Zutphen KG, Steiger G, Kupka R, Fleet A, Kraemer K. Situation analysis of procurement and production of multiple micronutrient supplements in 12 lower and upper middle-income countries. MATERNAL & CHILD NUTRITION 2018; 14 Suppl 5:e12500. [PMID: 29280300 PMCID: PMC6586060 DOI: 10.1111/mcn.12500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Globally, there are few vitamin and mineral ingredient manufacturers. To support local, in-country or regional procurement and production of multiple micronutrient supplements (MMS), the following production scenarios are possible: (a) straight ingredients of vitamins and minerals forms imported or locally produced that are mixed, tableted, or encapsulated and packaged by a local manufacturer; (b) import or local production of a vitamin and minerals premix that is tableted or encapsulated and packaged locally; (c) import of a bulk, finished product (tablets or capsules) that is packaged and branded; and (d) or import of a branded packaged product. This paper is a situation analysis of the market, manufacturing, and policy factors that are driving the production of MMS in 12 lower and upper middle-income countries. Key informants completed a self-administered structured questionnaire, which examined the local context of products available in the market and their cost, regulations and policies, in Brazil, Colombia, Guatemala, Mexico, Peru, Bangladesh, India, Vietnam, Ghana, Kenya, Nigeria, and South Africa. Our study found that although most countries have the capacity to produce locally MMS, the major barriers observed for sustainable and affordable production include (a) poor technical capacity and policies for ensuring quality along the value chain and (b) lack of policy coherence to incentivize local production and lower the manufacture and retail price of MMS. Also, better guidelines and government oversight will be required because not one country had an MMS formulation that matched the globally recommended formulation of the United Nations Multiple Micronutrient Preparation (UNIMMAP).
Collapse
Affiliation(s)
| | | | | | - Georg Steiger
- Nutrition Improvement Program, DSMKaiseraugstSwitzerland
| | | | | | - Klaus Kraemer
- Sight and LifeBaselSwitzerland
- Johns Hopkins School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
12
|
Bailey RL. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit Rev Food Sci Nutr 2018; 60:298-309. [PMID: 30421981 PMCID: PMC6513729 DOI: 10.1080/10408398.2018.1524364] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
Abstract
The U.S. Dietary Supplement Health and Education Act (DSHEA) established the regulatory framework for dietary supplements as foods through the Food and Drug Administration (FDA). DSHEA outlined the legal definition, labeling requirements, and process for adverse event reporting for dietary supplements. FDA also issued formal guidance on current Good Manufacturing Practice to ensure that processes for preparation, packaging, labeling, and storage of supplements and ingredients are documented and meet specifications to ensure purity, composition, and strength. However, efficacy of dietary supplements is not required under U.S. law. Despite regulations to improve the marketplace, many challenges remain; as a result, the quality and safety of products available can be highly variable, especially for botanical and herbal products. The ability of regulators to successfully carry out their mission is hampered by the sheer number of products and manufacturing facilities and a lack of analytical methods for all ingredients and products in the marketplace, this is especially difficult for herbal and botanical dietary supplements. Safety issues continue to exist such as adulteration and contamination, especially with specific product types (i.e. body building, sexual enhancement). Thus, a need remains for continued efforts and improved techniques to assess the quality of dietary supplements, especially with regard to purity, bioavailability, and safety. This review will highlight the existing American regulatory framework for dietary supplements and will describe the remaining regulatory barriers to ensuring that safe and high-quality dietary supplements are offered in the marketplace.
Collapse
Affiliation(s)
- Regan L Bailey
- Department of Nutrition Science, Purdue University, , West Lafayette, Indiana 47907, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Osteoarthritis, the most common joint disease, is associated with substantial medical costs, lost productivity, and reduced quality of life. However, available pharmaceutical treatments have limitations in terms of efficacy and long-term safety. RECENT FINDINGS In vitro evidence suggests that some natural products may possess anti-inflammatory and anti-oxidative properties and may inhibit the release of key osteoarthritis-related cytokines. There is, therefore, ongoing interest in identifying natural products that safely promote joint health and treat osteoarthritis. Numerous plant extracts, including curcumin, Boswellia extract, and pycnogenol, have shown effect sizes (ES) for reducing pain and functional disability larger than those observed with analgesics and products such as glucosamine and chondroitin. The ES for methylsulfonylmethane and avocado/soybean unsaponifiables are also considered to be clinically relevant. Data from a small number of studies using natural products for treating osteoarthritis are promising but require confirmation in further well-designed clinical trials.
Collapse
|
14
|
Simmler C, Graham JG, Chen SN, Pauli GF. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018; 129:401-414. [PMID: 29175549 PMCID: PMC5963993 DOI: 10.1016/j.fitote.2017.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/30/2022]
Abstract
This article reviews and develops a perspective for the meaning of authenticity in the context of quality assessment of botanical materials and the challenges associated with discerning adulterations vs. contaminations vs. impurities. Authentic botanicals are by definition non-adulterated, a mutually exclusive relationship that is confirmed through the application of a multilayered set of analytical methods designed to validate the (chemo)taxonomic identity of a botanical and certify that it is devoid of any adulteration. In practice, the ever-increasing sophistication in the process of intentional adulteration, as well as the growing number of botanicals entering the market, altogether necessitate a constant adaptation and reinforcement of authentication methods with new approaches, especially new technologies. This article summarizes the set of analytical methods - classical and contemporary - that can be employed in the authentication of botanicals. Particular emphasis is placed on the application of untargeted metabolomics and chemometrics. An NMR-based untargeted metabolomic model is proposed as a rapid, systematic, and complementary screening for the discrimination of authentic vs. potentially adulterated botanicals. Such analytical model can help advance the evaluation of botanical integrity in natural product research.
Collapse
Affiliation(s)
- Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - James G Graham
- Center for Natural Product Technologies (CENAPT), United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
15
|
Andrews KW, Gusev PA, McNeal M, Savarala S, Dang PTV, Oh L, Atkinson R, Pehrsson PR, Dwyer JT, Saldanha LG, Betz JM, Costello RB, Douglass LW. Dietary Supplement Ingredient Database (DSID) and the Application of Analytically Based Estimates of Ingredient Amount to Intake Calculations. J Nutr 2018; 148:1413S-1421S. [PMID: 31505677 PMCID: PMC6857613 DOI: 10.1093/jn/nxy092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/12/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE We describe the purpose of the Dietary Supplement Ingredient Database (DSID), the statistical methodology underlying online calculators of analytically verified supplement content estimates, and the application and significance of DSID label adjustments in nutritional epidemiology. BACKGROUND AND HISTORY During dietary supplement (DS) manufacturing, many ingredients are added at higher than declared label amounts, but overages are not standardized among manufacturers. As a result, researchers may underestimate nutrient intakes from DSs. The DSID provides statistical tools on the basis of the results of chemical analysis to convert label claims into analytically predicted ingredient amounts. These adjustments to labels are linked to DS products reported in NHANES. RATIONALE Tables summarizing the numbers of NHANES DS products with ingredient overages and below label content show the importance of DSID adjustments to labels for accurate intake calculations. RECENT DEVELOPMENTS We show the differences between analytically based estimates and labeled content for vitamin D, calcium, iodine, caffeine, and omega-3 (n-3) fatty acids and their potential impact on the accuracy of intake assessments in large surveys. Analytical overages >20% of label levels are predicted for several nutrients in 50-99% of multivitamin-mineral products (MVMs) reported in NHANES: for iodine and selenium in adult MVMs, for iodine and vitamins D and E in children's MVMs, and for iodine, chromium, and potassium in nonprescription prenatal MVMs. Predicted overages of 10-20% for calcium can be applied to most MVMs and overages >10% for folic acid in the vast majority of adult and children's MVMs. FUTURE DIRECTIONS DSID studies are currently evaluating ingredient levels in prescription prenatal MVMs and levels of constituents in botanical DSs. CONCLUSIONS We estimate that the majority of MVM products reported in NHANES have significant overages for several ingredients. It is important to account for nonlabeled additional nutrient exposure from DSs to better evaluate nutritional status in the United States.
Collapse
Affiliation(s)
- Karen W Andrews
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD,Address correspondence to KWA (e-mail: )
| | - Pavel A Gusev
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Malikah McNeal
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Sushma Savarala
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Phuong Tan V Dang
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Laura Oh
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Renata Atkinson
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Pamela R Pehrsson
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Johanna T Dwyer
- Office of Dietary Supplements, NIH, US Department of Health and Human Services, Bethesda, MD
| | - Leila G Saldanha
- Office of Dietary Supplements, NIH, US Department of Health and Human Services, Bethesda, MD
| | - Joseph M Betz
- Office of Dietary Supplements, NIH, US Department of Health and Human Services, Bethesda, MD
| | - Rebecca B Costello
- Office of Dietary Supplements, NIH, US Department of Health and Human Services, Bethesda, MD
| | | |
Collapse
|
16
|
Marsman D, Belsky DW, Gregori D, Johnson MA, Low Dog T, Meydani S, Pigat S, Sadana R, Shao A, Griffiths JC. Healthy ageing: the natural consequences of good nutrition-a conference report. Eur J Nutr 2018; 57:15-34. [PMID: 29799073 PMCID: PMC5984649 DOI: 10.1007/s00394-018-1723-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many countries are witnessing a marked increase in longevity and with this increased lifespan and the desire for healthy ageing, many, however, suffer from the opposite including mental and physical deterioration, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental for good health, it remains unclear what impact various dietary interventions may have on prolonging good quality of life. Studies which span age, geography and income all suggest that access to quality foods, host immunity and response to inflammation/infections, impaired senses (i.e., sight, taste, smell) or mobility are all factors which can limit intake or increase the body's need for specific micronutrients. New clinical studies of healthy ageing are needed and quantitative biomarkers are an essential component, particularly tools which can measure improvements in physiological integrity throughout life, thought to be a primary contributor to a long and productive life (a healthy "lifespan"). A framework for progress has recently been proposed in a WHO report which takes a broad, person-centered focus on healthy ageing, emphasizing the need to better understand an individual's intrinsic capacity, their functional abilities at various life stages, and the impact by mental, and physical health, and the environments they inhabit.
Collapse
Affiliation(s)
- D Marsman
- Procter & Gamble, Cincinnati, OH, USA
| | - D W Belsky
- Duke University, Raleigh-Durham, NC, USA
| | | | | | - T Low Dog
- Integrative Medicine Concepts, Tucson, AZ, USA
| | | | - S Pigat
- Creme Global, Dublin, Ireland
| | - R Sadana
- World Health Organization, Geneva, Switzerland
| | - A Shao
- Amway/Nutrilite, Buena Park, CA, USA
| | - J C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
17
|
Shao A, Drewnowski A, Willcox DC, Krämer L, Lausted C, Eggersdorfer M, Mathers J, Bell JD, Randolph RK, Witkamp R, Griffiths JC. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur J Nutr 2017; 56:1-21. [PMID: 28474121 PMCID: PMC5442251 DOI: 10.1007/s00394-017-1460-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The field of nutrition has evolved rapidly over the past century. Nutrition scientists and policy makers in the developed world have shifted the focus of their efforts from dealing with diseases of overt nutrient deficiency to a new paradigm aimed at coping with conditions of excess-calories, sedentary lifestyles and stress. Advances in nutrition science, technology and manufacturing have largely eradicated nutrient deficiency diseases, while simultaneously facing the growing challenges of obesity, non-communicable diseases and aging. Nutrition research has gone through a necessary evolution, starting with a reductionist approach, driven by an ambition to understand the mechanisms responsible for the effects of individual nutrients at the cellular and molecular levels. This approach has appropriately expanded in recent years to become more holistic with the aim of understanding the role of nutrition in the broader context of dietary patterns. Ultimately, this approach will culminate in a full understanding of the dietary landscape-a web of interactions between nutritional, dietary, social, behavioral and environmental factors-and how it impacts health maintenance and promotion.
Collapse
Affiliation(s)
- A Shao
- Herbalife Nutrition, Los Angeles, CA, USA
| | | | - D C Willcox
- Okinawa International University, Ginowan, Japan
| | - L Krämer
- Technische Universität Braunschweig, Brunswick, Germany
| | - C Lausted
- Institute for Systems Biology, Seattle, WA, USA
| | | | - J Mathers
- Newcastle University, Newcastle upon Tyne, UK
| | - J D Bell
- University of Westminster, London, UK
| | | | - R Witkamp
- Wageningen University, Wageningen, The Netherlands
| | - J C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
18
|
Andrews KW, Roseland JM, Gusev PA, Palachuvattil J, Dang PT, Savarala S, Han F, Pehrsson PR, Douglass LW, Dwyer JT, Betz JM, Saldanha LG, Bailey RL. Analytical ingredient content and variability of adult multivitamin/mineral products: national estimates for the Dietary Supplement Ingredient Database. Am J Clin Nutr 2017; 105:526-539. [PMID: 27974309 PMCID: PMC5267296 DOI: 10.3945/ajcn.116.134544] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multivitamin/mineral products (MVMs) are the dietary supplements most commonly used by US adults. During manufacturing, some ingredients are added in amounts exceeding the label claims to compensate for expected losses during the shelf life. Establishing the health benefits and harms of MVMs requires accurate estimates of nutrient intake from MVMs based on measures of actual rather than labeled ingredient amounts. OBJECTIVES Our goals were to determine relations between analytically measured and labeled ingredient content and to compare adult MVM composition with Recommended Dietary Allowances (RDAs) and Tolerable Upper Intake Levels. DESIGN Adult MVMs were purchased while following a national sampling plan and chemically analyzed for vitamin and mineral content with certified reference materials in qualified laboratories. For each ingredient, predicted mean percentage differences between analytically obtained and labeled amounts were calculated with the use of regression equations. RESULTS For 12 of 18 nutrients, most products had labeled amounts at or above RDAs. The mean measured content of all ingredients (except thiamin) exceeded labeled amounts (overages). Predicted mean percentage differences exceeded labeled amounts by 1.5-13% for copper, manganese, magnesium, niacin, phosphorus, potassium, folic acid, riboflavin, and vitamins B-12, C, and E, and by ∼25% for selenium and iodine, regardless of labeled amount. In contrast, thiamin, vitamin B-6, calcium, iron, and zinc had linear or quadratic relations between the labeled and percentage differences, with ranges from -6.5% to 8.6%, -3.5% to 21%, 7.1% to 29.3%, -0.5% to 16.4%, and -1.9% to 8.1%, respectively. Analytically adjusted ingredient amounts are linked to adult MVMs reported in the NHANES 2003-2008 via the Dietary Supplement Ingredient Database (http://dsid.usda.nih.gov) to facilitate more accurate intake quantification. CONCLUSIONS Vitamin and mineral overages were measured in adult MVMs, most of which already meet RDAs. Therefore, nutrient overexposures from supplements combined with typical food intake may have unintended health consequences, although this would require further examination.
Collapse
Affiliation(s)
- Karen W Andrews
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD;
| | - Janet M Roseland
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Pavel A Gusev
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Joel Palachuvattil
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Phuong T Dang
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Sushma Savarala
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Fei Han
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Pamela R Pehrsson
- Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | | | - Johanna T Dwyer
- Office of Dietary Supplements, NIH, Department of Health and Human Services, Bethesda, MD; and
| | - Joseph M Betz
- Office of Dietary Supplements, NIH, Department of Health and Human Services, Bethesda, MD; and
| | - Leila G Saldanha
- Office of Dietary Supplements, NIH, Department of Health and Human Services, Bethesda, MD; and
| | - Regan L Bailey
- Office of Dietary Supplements, NIH, Department of Health and Human Services, Bethesda, MD; and,Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Roseland JM, Patterson KY, Andrews KW, Phillips KM, Phillips MM, Pehrsson PR, Dufresne GL, Jakobsen J, Gusev PA, Savarala S, Nguyen QV, Makowski AJ, Scheuerell CR, Larouche GP, Wise SA, Harnly JM, Williams JR, Betz JM, Taylor CL. Interlaboratory Trial for Measurement of Vitamin D and 25-Hydroxyvitamin D [25(OH)D] in Foods and a Dietary Supplement Using Liquid Chromatography-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3167-3175. [PMID: 27045951 PMCID: PMC4934653 DOI: 10.1021/acs.jafc.5b05016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Assessment of total vitamin D intake from foods and dietary supplements (DSs) may be incomplete if 25-hydroxyvitamin D [25(OH)D] intake is not included. However, 25(OH)D data for such intake assessments are lacking, no food or DS reference materials (RMs) are available, and comparison of laboratory performance has been needed. The primary goal of this study was to evaluate whether vitamin D3 and 25(OH)D3 concentrations in food and DS materials could be measured with acceptable reproducibility. Five experienced laboratories from the United States and other countries participated, all using liquid chromatography tandem-mass spectrometry but no common analytical protocol; however, various methods were used for determining vitamin D3 in the DS. Five animal-based materials (including three commercially available RMs) and one DS were analyzed. Reproducibility results for the materials were acceptable. Thus, it is possible to obtain consistent results among experienced laboratories for vitamin D3 and 25(OH)D3 in foods and a DS.
Collapse
Affiliation(s)
- Janet M Roseland
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Kristine Y Patterson
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Karen W Andrews
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Katherine M Phillips
- Virginia Tech, Biochemistry Department (0308), 304 Engel Hall, Blacksburg, VA 24061
| | - Melissa M Phillips
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8392, Gaithersburg, MD 20899-8392
| | - Pamela R Pehrsson
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Guy L Dufresne
- Health Canada, Food and Nutrition Laboratory, 1001, St-Laurent Ouest, Longueuil, Québec, Canada J4K IC7
| | - Jette Jakobsen
- Division of Food Chemistry, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Pavel A Gusev
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Sushma Savarala
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Quynhanh V Nguyen
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | | | | | - Guillaume P Larouche
- Health Canada, Food and Nutrition Laboratory, 1001, St-Laurent Ouest, Longueuil, Québec, Canada J4K IC7
| | - Stephen A Wise
- Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8392, Gaithersburg, MD 20899-8392
| | - James M Harnly
- USDA Agricultural Research Service, Food Composition and Method Development Laboratory, 10300 Baltimore Avenue, Building 161, BARC-East, Beltsville, MD 20705
| | - Juhi R Williams
- USDA Agricultural Research Service, Nutrient Data Laboratory, 10300 Baltimore Avenue, Building 005, BARC-West, Beltsville, MD 20705
| | - Joseph M Betz
- Office of Dietary Supplements, National Institutes of Health, 6100 Executive Blvd., 3B01, MSC 7517,Bethesda, MD 20892
| | - Christine L Taylor
- Office of Dietary Supplements, National Institutes of Health, 6100 Executive Blvd., 3B01, MSC 7517,Bethesda, MD 20892
| |
Collapse
|
20
|
Lupton JR, Blumberg JB, L'Abbe M, LeDoux M, Rice HB, von Schacky C, Yaktine A, Griffiths JC. Nutrient reference value: non-communicable disease endpoints--a conference report. Eur J Nutr 2016; 55 Suppl 1:S1-10. [PMID: 26983608 PMCID: PMC4819601 DOI: 10.1007/s00394-016-1195-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nutrition is complex-and seemingly getting more complicated. Most consumers are familiar with "essential nutrients," e.g., vitamins and minerals, and more recently protein and important amino acids. These essential nutrients have nutrient reference values, referred to as dietary reference intakes (DRIs) developed by consensus committees of scientific experts convened by the Institute of Medicine of the National Academy of Sciences, Engineering, and Medicine and carried out by the Food and Nutrition Board. The DRIs comprise a set of four nutrient-based reverence values, the estimated average requirements, the recommended dietary allowances (RDAs), the adequate intakes and the tolerable upper intake levels for micronutrient intakes and an acceptable macronutrient distribution range for macronutrient intakes. From the RDA, the US Food and Drug Administration (FDA) derives a labeling value called the daily value (DV), which appears on the nutrition label of all foods for sale in the US. The DRI reports do not make recommendations about whether the DV labeling values can be set only for what have been defined to date as "essential nutrients." For example, the FDA set a labeling value for "dietary fiber" without having the DV. Nutrient reference values-requirements are set by Codex Alimentarius for essential nutrients, and regulatory bodies in many countries use these Codex values in setting national policy for recommended dietary intakes. However, the focus of this conference is not on essential nutrients, but on the "nonessential nutrients," also termed dietary bioactive components. They can be defined as "Constituents in foods or dietary supplements, other than those needed to meet basic human nutritional needs, which are responsible for changes in health status (Office of Disease Prevention and Health Promotion, Office of Public Health and Science, Department of Health and Human Services in Fed Regist 69:55821-55822, 2004)." Substantial and often persuasive scientific evidence does exist to confirm a relationship between the intake of a specific bioactive constituent and enhanced health conditions or reduced risk of a chronic disease. Further, research on the putative mechanisms of action of various classes of bioactives is supported by national and pan-national government agencies, and academic institutions, as well as functional food and dietary supplement manufacturers. Consumers are becoming educated and are seeking to purchase products containing bioactives, yet there is no evaluative process in place to let the public know how strong the science is behind the benefits or the quantitative amounts needed to achieve these beneficial health effects or to avoid exceeding the upper level (UL). When one lacks an essential nutrient, overt deficiency with concomitant physiological determents and eventually death are expected. The absence of bioactive substances from the diet results in suboptimal health, e.g., poor cellular and/or physiological function, which is relative and not absolute. Regrettably at this time, there is no DRI process to evaluate bioactives, although a recent workshop convened by the National Institutes of Health (Options for Consideration of Chronic Disease Endpoints for Dietary Reference Intakes (DRIs); March 10-11, 2015; http://health.gov/dietaryguidelines/dri/ ) did explore the process to develop DVs for nutrients, the lack of which result in increased risk of chronic disease (non-communicable disease) endpoints. A final report is expected soon. This conference (CRN-International Scientific Symposium; "Nutrient Reference Value-Non-Communicable Disease (NRV-NCD) Endpoints," 20 November in Kronberg, Germany; http://www.crn-i.ch/2015symposium/ ) explores concepts related to the Codex NRV process, the public health opportunities in setting NRVs for bioactive constituents, and further research and details on the specific class of bioactives, n-3 long-chain polyunsaturated fatty acids (also termed omega-3 fatty acids) and their constituents, specifically docosahexaenoic acid and eicosapentaenoic acid.
Collapse
Affiliation(s)
- J R Lupton
- Emeritus, Texas A&M University, College Station, TX, USA
| | | | - M L'Abbe
- University of Toronto, Toronto, ON, Canada
| | - M LeDoux
- Natural Alternatives International, Inc., San Marcos, CA, USA
| | - H B Rice
- Global Organization for EPA and DHA Omega-3s, Salt Lake City, UT, USA
| | | | - A Yaktine
- The National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - J C Griffiths
- Council for Responsible Nutrition, Washington, DC, USA.
| |
Collapse
|