1
|
Lin Q, Chen Y, Yu B, Chen Z, Zhou H, Su J, Yu J, Yan M, Chen S, Lv G. Atractylodes macrocephala Rhizoma alleviates blood hyperviscosity induced by high-fat, high-sugar, and high-salt diet by inhibiting gut-liver inflammation and fibrinogen synthesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 338:119034. [PMID: 39505223 DOI: 10.1016/j.jep.2024.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Unhealthy dietary patterns and lifestyle changes have been linked to increased blood viscosity, which is recognized as an important pathogenic factor in cardiovascular and cerebrovascular diseases. The underlying mechanism may involve chronic inflammation resulting from intestinal barrier disruption induced by unhealthy diets. The rhizome of Atractylodes macrocephala Koidz. (Called Baizhu in China), is a well-used "spleen-reinforcing" traditional Chinese medicinal herb used for thousands of years. Previous research has demonstrated its multiple gastrointestinal health benefits and its ability to regulate metabolic disorders. However, the effects of Baizhu on blood hyperviscosity induced by long-term unhealthy diets remain unclear. AIM OF THE STUDY This study aimed to investigate the effects of the aqueous extract of Baizhu on blood hyperviscosity induced by unhealthy diet and to explore the possible mechanisms. MATERIALS AND METHODS The blood hyperviscosity model in SD rats was established utilizing a high-fat, high-sugar, and high-salt diet (HFSSD). Subsequently, the rats underwent a twelve-week intervention with varying doses of Baizhu and a positive control. To evaluate the efficacy of Baizhu on blood hyperviscosity in model rats, we measured behavioral index, hemorheological parameters, inflammatory cytokines, hematology, adhesion molecules, as well as biochemical indicators in serum and liver. We also assessed the pathological states of the colon and liver. Furthermore, Western blotting, ELISA, IHC, and qRT-PCR were used to determine the effect of Baizhu on the IL-6/STAT3/ESRRG signaling pathway and FIB synthesis. RESULTS The intervention of Baizhu showed evident attenuating effects on blood viscosity and microcirculation disorders, and exhibit the capacity to moderately modulate parameters including grip, autonomous activities, vertigo time, TC, TG, LDL-c, inflammatory factors, adhesion factors, hematological indicators, etc. At the same time, it reduces liver lipid droplet deposition, restores intestinal integrity, and lowers LPS level in the serum. Subsequent experimental results showed that Baizhu downregulated the expression of TLR4 and NF-κB in colon tissue, as well as the expression of IL-6, TLR4, p-JAK2, p-STAT3, and ESRRG in liver tissue. Finally, we also found that Baizhu could regulate the levels of FIB in plasma and liver. CONCLUSION Baizhu protects HFSSD-induced rats from blood hyperviscosity, likely through repairing the intestinal barrier and inhibiting LPS/TLR4-associated liver inflammatory activation, thus suppressing FIB synthesis through the downregulation of IL-6/STAT3/ESRRG pathway.
Collapse
Affiliation(s)
- Qiwei Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Yigong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Bingqing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Wen Y, Ullah H, Ma R, Farooqui NA, Li J, Alioui Y, Qiu J. Anemarrhena asphodeloides Bunge polysaccharides alleviate lipoteichoic acid-induced lung inflammation and modulate gut microbiota in mice. Heliyon 2024; 10:e39390. [PMID: 39469699 PMCID: PMC11513480 DOI: 10.1016/j.heliyon.2024.e39390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Pneumonia remains a prevalent infection primary ailment characterized by severe lung inflammation, leading to respiratory distress and significant mortality rates, particularly affecting young children in less developed regions. This study explores the therapeutic potential of low and high-molecular weight polysaccharides derived from Anemarrhena asphodeloides in a murine model of lipoteichoic acid (LTA)-induced pneumonia, which represents bacterial-induced lung inflammation. Administration of Anemarrhena asphodeloides polysaccharides effectively alleviated LTA-induced symptoms, including decreased lung and colon inflammation, and restored dysbiosis of gut microbiota. Polysaccharide treatment notably increased mucin-2 expression, reduced serum cytokine levels (IL-10, TNF-α), and increased tight junction protein production (ZO-1, Occludin, Claudin). Additionally, polysaccharides promoted a significant recovery in gut microbiota composition, indicating potential prebiotic effects. These findings highlight the therapeutic capability of Anemarrhena asphodeloides polysaccharides against LTA-induced pneumonia through gut microbiota modulation and restored intestinal homeostasis.
Collapse
Affiliation(s)
- Yuqi Wen
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Renzhen Ma
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Nabeel Ahmad Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Li
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Bseiso EA, Sheta NM, Abdel-Haleem KM. Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases. Pharm Dev Technol 2024:1-17. [PMID: 39340392 DOI: 10.1080/10837450.2024.2409807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Nermin M Sheta
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| | - Khaled M Abdel-Haleem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Giza, Egypt
| |
Collapse
|
4
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
6
|
Xu X, Jin H, Li X, Yan C, Zhang Q, Yu X, Liu Z, Liu S, Zhu F. Fecal Microbiota Transplantation Regulates Blood Pressure by Altering Gut Microbiota Composition and Intestinal Mucosal Barrier Function in Spontaneously Hypertensive Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10344-x. [PMID: 39172216 DOI: 10.1007/s12602-024-10344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Hypertension is accompanied by gut microbiota imbalance, but the role of bacteria in the pathogenesis of hypertension requires further study. In this study, we used fecal microbiota transplantation to determine the impact of microbiota composition on blood pressure in spontaneous hypertensive rats (SHRs), using normotensive Wistar Kyoto (WKY) rats as controls. SHRs were randomly divided into two groups (n = 10/group), SHR and SHR-T (SHR plus fecal transplantation) and WKY into WKY and WKY-T (WKY plus fecal transplantation). SHR-T received fecal transplantation from WKY, while WKY-T received fecal transplantation from SHR. Blood pressure was measured from the tail artery in conscious rats. 16S rDNA gene amplicon sequencing was used to analyze bacterial composition. Circulating levels of diamine oxidase, D-lactate, FITC-Dextrans, and lipopolysaccharide were determined. Hematoxylin and eosin (H&E) staining was used to observe structural changes in the intestinal mucosa. Immunofluorescence, Western blot, and RT-PCR were utilized to determine changes in the expression of tight junction proteins. Following cross fecal transplantation, blood pressure decreased in SHR and increased in WKY. Significant differences in gut microbial composition were found between hypertensive and normotensive rats, specifically regarding the relative abundance of lactic and butyric acid-producing bacteria. Changes in gut microbiota composition also impacted the intestinal mucosal barrier integrity. Moreover, fecal transplantation affected the expression of tight junction proteins that may impact intestinal mucosal permeability and structural integrity. Blood pressure may be associated with butyric acid-producing intestinal microbiota and its function in regulating the integrity of intestinal mucosal barrier.
Collapse
Affiliation(s)
- Xinghua Xu
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hua Jin
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Xiaoling Li
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Chunlu Yan
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Qiuju Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiaoying Yu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730020, China
| | - Zhijun Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730020, China
| | - Shuangfang Liu
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Feifei Zhu
- Tianshui Municipal Hospital of Traditional Chinese Medicine, Tianshui, 741000, Gansu, China
| |
Collapse
|
7
|
Sikdar S, Mitra D, Das O, Bhaumik M, Dutta S. The functional antagonist of sphingosine-1-phosphate, FTY720, impairs gut barrier function. Front Pharmacol 2024; 15:1407228. [PMID: 39224783 PMCID: PMC11366638 DOI: 10.3389/fphar.2024.1407228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
FTY720 or fingolimod is a known functional antagonist of sphingosine-1-phosphate (S1P), and it is effective in treating multiple sclerosis and preventing inflammatory bowel disease (IBD). Evidence shows that its use in mice can increase the susceptibility to mucosal infections. Despite the significant contribution of S1P to barrier function, the effect of the administration of FTY720 on the mucosal barrier has never been investigated. In this study, we looked into how FTY720 therapy affected the function of the gut barrier susceptibility. Administration of FTY720 to C57BL/6 mice enhances the claudin-2 expression and reduces the expression of claudin-4 and occludin, as studied by qPCR, Western blot, and immunofluorescence. FTY720 inhibits the Akt-mTOR pathway to decrease occludin and claudin-4 expression and increase claudin-2 expression. FTY720 treatment induced increased colonic inflammation, with notably greater immune cell infiltration, colon histopathology, and increased production of TNF-α, IFN-γ, CXCL-1, and CXCL-2 than that in control mice. Taking into account the close association of "the leaky gut" and gut dysbiosis among the major diseases, we therefore can infer that the vigilance of gut pathology should be maintained, where FTY720 is used as a treatment option.
Collapse
Affiliation(s)
- Sohini Sikdar
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Debmalya Mitra
- Center of Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Oishika Das
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Shanta Dutta
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| |
Collapse
|
8
|
Lai Y, Lin Y. Biological functions and therapeutic potential of CKS2 in human cancer. Front Oncol 2024; 14:1424569. [PMID: 39188686 PMCID: PMC11345170 DOI: 10.3389/fonc.2024.1424569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The incidence of cancer is increasing worldwide and is the most common cause of death. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Cyclin-dependent kinase subunit 2 (CKS2) is involved in cell cycle and proliferation processes, and based on these processes, CKS2 was identified as a cancer gene. CKS2 is expressed in a variety of tissues in the human body, but its abnormal expression is associated with cancer in a variety of systems. CKS2 is generally elevated in cancer, plays a role in almost all aspects of cancer biology (such as cell proliferation, invasion, metastasis, and drug resistance) through multiple mechanisms regulating certain important genes, and is associated with clinicopathological features of patients. In addition, CKS2 expression patterns are closely related to cancer type, stage and other clinical variables. Therefore, CKS2 is considered as a tool for cancer diagnosis and prognosis and may be a promising tumor biomarker and therapeutic target. This article reviews the biological function, mechanism of action and potential clinical significance of CKS2 in cancer, in order to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy and scientific research of cancer.
Collapse
Affiliation(s)
- Yueliang Lai
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Ye Lin
- Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
9
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Jiang H, Xie W, Chen Q, Li Y, Yu Z, Liu N. Construction and validation of a rat model of acute necrotizing pancreatitis-associated intestinal injury. Am J Physiol Gastrointest Liver Physiol 2024; 327:G80-G92. [PMID: 38742280 PMCID: PMC11376975 DOI: 10.1152/ajpgi.00262.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Acute pancreatitis (AP) is an acute inflammatory reaction of the pancreatic tissue, which involves auto-digestion, edema, hemorrhage, and necrosis. AP can be categorized into mild, moderately severe, and severe AP, with severe pancreatitis also referred to as acute necrotizing pancreatitis (ANP). ANP is characterized by the accumulation of necrotic material in the peritoneal cavity. This can result in intestinal injury. However, the mechanism of ANP-associated intestinal injury remains unclear. We established an ANP-associated intestinal injury rat model (ANP-IR model) by injecting pancreatitis-associated ascites fluid (PAAF) and necrotic pancreatic tissue at various proportions into the triangular area formed by the left renal artery and ureter. The feasibility of the ANP-IR model was verified by comparing the similar changes in indicators of intestinal inflammation and barrier function between the two rat models. In addition, we detected changes in apoptosis levels and YAP protein expression in the ileal tissues of rats in each group and validated them in vitro in rat epithelial crypt cells (IEC-6) to further explore the potential injury mechanisms of ANP-associated intestinal injury. We also collected clinical data from patients with ANP to validate the effects of PAAF and pancreatic necrosis on intestinal injury. Our findings offer a theoretical basis for restricting the buildup of peritoneal necrosis in individuals with ANP, thus promoting the restoration of intestinal function and enhancing treatment efficacy. The use of the ANP-IR model in further studies can help us better understand the mechanism and treatment of ANP-associated intestinal injury.NEW & NOTEWORTHY We constructed a rat model of acute necrotizing pancreatitis-associated intestinal injury and verified its feasibility. In addition, we identified the mechanism by which necrotic pancreatic tissue and pancreatitis-associated ascites fluid (PAAF) cause intestinal injury through the HIPPO signaling pathway.
Collapse
Affiliation(s)
- Haojie Jiang
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weidong Xie
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qinbo Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yiling Li
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhen Yu
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai, People's Republic of China
| | - Naxin Liu
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
11
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
13
|
Chen J, Zhang S, You Y, Hu S, Tang J, Chen C, Wen W, Tang T, Yu Q, Tong X, Wang C, Zhao W, Fu X, Zhang X, Wang M, Gong W. Investigating the impact of empagliflozin on the retina of diabetic mice. Eur J Ophthalmol 2024:11206721241247585. [PMID: 38653578 DOI: 10.1177/11206721241247585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) frequently results in compromised visual function, with hyperglycemia-induced disruption of the blood-retinal barrier (BRB) through various pathways as a critical mechanism. Existing DR treatments fail to address early and potentially reversible microvascular alterations. This study examined the effects of empagliflozin (EMPA), a selective Sodium-glucose transporter 2 (SGLT2) inhibitor, on the retina of db/db mice. The objective of this study is to investigate the potential role of EMPA in the prevention and delay of DR. METHODS db/db mice were randomly assigned to either the EMPA treatment group (db/db + Emp) or the model group (db/db), while C57 mice served as the normal control group (C57). Mice in the db/db + Emp group received EMPA for eight weeks. Body weight, fasting blood glucose (FBG), and blood VEGF were subsequently measured in all mice, along with the detection of specific inflammatory factors and BRB proteins in the retina. Retinal SGLT2 protein expression was compared using immunohistochemical analysis, and BRB structural changes were observed via electron microscopy. RESULTS EMPA reduced FBG, blood VEGF, and retinal inflammatory factors TNF-α, IL-6, and VEGF levels in the eye tissues of db/db mice. EMPA also increased Claudin-1, Occludin-1, and ZO-1 levels while decreasing ICAM-1 and Fibronectin, thereby preserving BRB function in db/db mice. Immunohistochemistry revealed that EMPA reduced SGLT2 expression in the retina of diabetic mice, and electron microscopy demonstrated that EMPA diminished tight junction damage between retinal vascular endothelial cells and prevented retinal vascular basement membrane thickening in diabetic mice. CONCLUSION EMPA mitigates inflammation and preserves BRB structure and function, suggesting that it may prevent DR or serve as an effective early treatment for DR.
Collapse
Affiliation(s)
- Juan Chen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Shenghui Zhang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wen Wen
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Ting Tang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Qingwen Yu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xuhan Tong
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wenbin Zhao
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xinyan Fu
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
- Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Wenyan Gong
- Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
14
|
Huang Y, Ning Y, Chen Z, Song P, Tang H, Shi W, Wan Z, Huang G, Liu Q, Chen Y, Zhou Y, Li Y, Zhan Z, Ding J, Duan W, Xie H. A Novel IRAK4 Inhibitor DW18134 Ameliorates Peritonitis and Inflammatory Bowel Disease. Molecules 2024; 29:1803. [PMID: 38675622 PMCID: PMC11052001 DOI: 10.3390/molecules29081803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.
Collapse
Affiliation(s)
- Yuqing Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Yi Ning
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Zhiwei Chen
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Peiran Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Haotian Tang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Wenhao Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Zhipeng Wan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Gege Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Qiupei Liu
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- Department of Chemical and Environment Engineering, Science and Engineering Building, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yun Chen
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Yu Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Yuantong Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
| | - Zhengsheng Zhan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Jian Ding
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
| | - Wenhu Duan
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Hua Xie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (Y.H.); (P.S.); (H.T.); (W.S.); (Z.W.); (G.H.); (Y.Z.); (Y.L.)
- College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.N.); (Q.L.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
15
|
Chen Z, Zhu M, Liu D, Wu M, Niu P, Yu Y, Ding C, Yu S. Occludin and collagen IV degradation mediated by the T9SS effector SspA contributes to blood-brain barrier damage in ducks during Riemerella anatipestifer infection. Vet Res 2024; 55:49. [PMID: 38594770 PMCID: PMC11005161 DOI: 10.1186/s13567-024-01304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.
Collapse
Affiliation(s)
- Zongchao Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Min Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Dan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Mengsi Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Pengfei Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Yang Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China.
| | - Shengqing Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China.
- Yangzhou You-Jia-Chuang Biotechnology Co., Ltd., Yangzhou, China.
| |
Collapse
|
16
|
Gao M, Peng H, Hou Y, Wang X, Li J, Qi H, Kuang F, Zhang J. Electromagnetic pulse induced blood-brain barrier breakdown through tight junction opening in rats. Bioelectromagnetics 2024; 45:130-138. [PMID: 38105659 DOI: 10.1002/bem.22494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
The blood-brain barrier (BBB) is the main obstacle to hydrophilic and large molecules to enter the brain, maintaining the stability of the central nervous system (CNS). But many environmental factors may affect the permeability and structure of the BBB. Electromagnetic pulses (EMP) irradiation has been proven to enhance the permeability of the BBB, but the specific mechanism is still unclear. To explore the potential mechanism of EMP-induced BBB opening, this study investigated the permeability, fine structure and the proteins expression of the tight junction (TJ) of the BBB in the rats exposed to EMP. Using the leakage of fluorescein isothiocyanate-labeled dextran with different molecular mass under different field intensity of EMP exposure, we found that the tracer passing through the BBB is size-dependent in the rat exposed to EMP as field intensity increased. Transmission electron microscopy showed TJ of the endothelial cells in the EMP-exposed group was open, compared with the sham-irradiated group. But the levels of TJ proteins including ZO-1, claudin-5, or occludin were not changed as indicated by western blot. These data suggest that EMP induce BBB opening in a field intensity-dependent manner and probably through dysfunction of TJ proteins instead of their expression. Our findings increase the understanding of the mechanism for EMP working on the brain and are helpful for CNS protection against EMP.
Collapse
Affiliation(s)
- Meng Gao
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| | - Huaiyu Peng
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| | - Yiran Hou
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| | - Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| | - Jing Li
- Department of Radiation Medicine and Protection, Faculty of Preventive Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hongxing Qi
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| | - Fang Kuang
- Department of Neurobiology, Institute of Neurosciences, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Merlen G, Tordjmann T. Tight junction proteins and biliary diseases. Curr Opin Gastroenterol 2024; 40:70-76. [PMID: 38260939 DOI: 10.1097/mog.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
PURPOSE OF REVIEW In the pathophysiological context of cholangiopathies and more broadly of hepatopathies, while it is conceptually clear that the maintenance of inter-cholangiocyte and inter-hepatocyte tight junction integrity would be crucial for liver protection, only scarce studies have been devoted to this topic. Indeed, in the liver, alteration of tight junctions, the intercellular adhesion complexes that control paracellular permeability would result in leaky bile ducts and bile canaliculi, allowing bile reflux towards hepatic parenchyma, contributing to injury during the disease process. RECENT FINDINGS Last decades have provided a great deal of information regarding both tight junction structural organization and signaling pathways related to tight junctions, providing clues about potential intervention to modulate paracellular permeability during cholangiopathies pathogenesis. Interestingly, several liver diseases have been reported to be associated with abnormal expression of one or several tight junction proteins. However, the question remains unanswered if these alterations would be primarily involved in the disease pathogenesis or if they would occur secondarily in the pathological course. SUMMARY In this review, we provide an overview of tight junction disruptions described in various biliary diseases that should pave the way for defining new therapeutic targets in this field.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Université Paris-Saclay, bât Henri Moissan, 17 av. des Sciences, Orsay, France
| | | |
Collapse
|
18
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Fu S, Yang B, Gao Y, Qiu Y, Sun N, Li Z, Feng S, Xu Y, Zhang J, Luo Z, Han X, Miao J. A critical role for host-derived cystathionine-β-synthase in Staphylococcus aureus-induced udder infection. Free Radic Biol Med 2024; 210:13-24. [PMID: 37951283 DOI: 10.1016/j.freeradbiomed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int J Mol Sci 2023; 24:16267. [PMID: 38003454 PMCID: PMC10671762 DOI: 10.3390/ijms242216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetic, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| |
Collapse
|
21
|
Moratin H, Thöle A, Lang J, Ehret Kasemo T, Stöth M, Hagen R, Scherzad A, Hackenberg S. Ag- but Not ZnO-Nanoparticles Disturb the Airway Epithelial Barrier at Subtoxic Concentrations. Pharmaceutics 2023; 15:2506. [PMID: 37896266 PMCID: PMC10610507 DOI: 10.3390/pharmaceutics15102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Inhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles. The aim of this study was to investigate whether subtoxic concentrations of zinc oxide (ZnO)- and silver (Ag)-NPs have an influence on upper airway barrier integrity. Nasal epithelial cells from 17 donors were cultured at the air-liquid interface and exposed to ZnO- and Ag-NPs. Barrier function, quantified by transepithelial electrical resistance (TEER), decreased after treatment with 10 µg/mL Ag-NPs, but FITC-dextran permeability remained stable and no change in mRNA levels of tight junction proteins and E-cadherin was detected by real-time quantitative PCR (RT-qPCR). The results indicate that subtoxic concentrations of Ag-NPs may already induce damage of the upper airway epithelial barrier in vitro. The lack of similar disruption by ZnO-NPs of similar size suggests a specific effect by Ag-NPs.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany (S.H.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zeng Q, Liu J, Hao C, Zhang B, Zhang H. Making sense of flavivirus non-strctural protein 1 in innate immune evasion and inducing tissue-specific damage. Virus Res 2023; 336:199222. [PMID: 37716670 PMCID: PMC10518729 DOI: 10.1016/j.virusres.2023.199222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Flaviviruses include medically important mosquito-borne pathogens, such as Zika virus (ZIKV), Japanese encephalitis virus (JEV), dengue virus (DENV) and West Nile virus (WNV), that cause hundreds of millions of infections each year. Currently, there are no approved effect therapies against mosquito-borne flaviviruses. The flaviviruses encoded nonstructural protein 1 (NS1) is a secreted glycoprotein widely involved in viral replication, immune evasion, and directly causing tissue-specific damage during flaviviruses infection. Upon viral infection of host cell, NS1 can be found in multiple oligomeric forms and include a dimer on the cell surface, and a soluble secreted hexameric lipoparticle. In the recent decade, the detailed crystal structure of several flaviviruses NS1 have been determined and unraveled its broader and deeper functions. Consistent with the potential immune function revealed by its structure, NS1 is involved in the escaping of host signal immune pathway mediated by pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRS) and Toll-like receptors (TLRs). Moreover, the flavivirus NS1 is efficiently secreted by infected cells and circulates in the blood of the host to directly induce specific tissues damage. The NS1 of ZIKV, JEV and WNV changes the permeability of brain microvascular endothelial cell to cause endothelial cell dysfunction and promote virus pathogenesis. DENV NS1 can induce systemic tissues damage in humans through multiple strategies. Mutations of several key amino acids in NS1 can reduce the neurovirulence of the flavivirus. In this article, we provide an overview of the latest research on this fascinating protein in these disparate areas.
Collapse
Affiliation(s)
- Quan Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
23
|
Bonetti A, Toschi A, Tugnoli B, Piva A, Grilli E. A blend of selected botanicals maintains intestinal epithelial integrity and reduces susceptibility to Escherichia coli F4 infection by modulating acute and chronic inflammation in vitro. Front Vet Sci 2023; 10:1275802. [PMID: 37841479 PMCID: PMC10570737 DOI: 10.3389/fvets.2023.1275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
In the pig production cycle, the most delicate phase is weaning, a sudden and early change that requires a quick adaptation, at the cost of developing inflammation and oxidation, especially at the intestinal level. In this period, pathogens like enterotoxigenic Escherichia coli (ETEC) contribute to the establishment of diarrhea, with long-lasting detrimental effects. Botanicals and their single bioactive components represent sustainable well-recognized tools in animal nutrition thanks to their wide-ranging beneficial functions. The aim of this study was to investigate the in vitro mechanism of action of a blend of botanicals (BOT), composed of thymol, grapeseed extract, and capsicum oleoresin, in supporting intestinal cell health during inflammatory challenges and ETEC infections. To reach this, we performed inflammatory and ETEC challenges on Caco-2 cells treated with BOT, measuring epithelial integrity, cellular oxidative stress, bacterial translocation and adhesion, gene expression levels, and examining tight junction distribution. BOT protected enterocytes against acute inflammation: while the challenge reduced epithelial tightness by 40%, BOT significantly limited its drop to 30%, also allowing faster recovery rates. In the case of chronic inflammation, BOT systematically improved by an average of 25% the integrity of challenged cells (p < 0.05). Moreover, when cells were infected with ETEC, BOT maintained epithelial integrity at the same level as an effective antibiotic and significantly reduced bacterial translocation by 1 log average. The mode of action of BOT was strictly related to the modulation of the inflammatory response, protecting tight junctions' expression and structure. In addition, BOT influenced ETEC adhesion to intestinal cells (-4%, p < 0.05), also thanks to the reduction of enterocytes' susceptibility to pathogens. Finally, BOT effectively scavenged reactive oxygen species generated by inflammatory and H2O2 challenges, thus alleviating oxidative stress by 40% compared to challenge (p < 0.05). These results support the employment of BOT in piglets at weaning to help manage bacterial infections and relieve transient or prolonged stressful states thanks to the modulation of host-pathogen interaction and the fine-tuning activity on the inflammatory tone.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | | | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| |
Collapse
|
24
|
Xun W, Ji M, Ma Z, Deng T, Yang W, Hou G, Shi L, Cao T. Dietary emodin alleviates lipopolysaccharide-induced intestinal mucosal barrier injury by regulating gut microbiota in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:152-162. [PMID: 37455790 PMCID: PMC10344667 DOI: 10.1016/j.aninu.2023.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
This study was to determine the effects of dietary emodin (ED) on the intestinal mucosal barrier, nuclear factor kappa-B (NF-κB) pathways, and gut microbial flora in lipopolysaccharide (LPS)-induced piglets. Twenty-four weaned piglets were chosen and 4 treatments were created by randomly distributing piglets into CON, ED, LPS, and ED_LPS groups. Experiments were done in a 2 × 2 factorial arrangement and maintained for 21 d. Dietary treatment (a basal diet or 300 mg/kg ED) and immunological challenge (LPS or sterile saline) were 2 major factors. Intraperitoneal injections of LPS or sterilized saline were given to piglets on d 21. Six hours after the LPS challenge, all piglets were euthanized for sample collection and analysis. The results showed that piglets of the ED_LPS group had higher (P < 0.05) villus height to crypt depth ratio (VCR), and lower (P < 0.05) plasma D-lactate and diamine oxidase (DAO) than the LPS group. Furthermore, ED inhibited (P < 0.05) the decrease of glutathione peroxidase (GSH-Px) and catalase (CAT) activities and increase of malonaldehyde level (P < 0.05) in jejunal mucosa induced by LPS. The mRNA levels of pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) were significantly reduced (P < 0.05), and the mRNA levels of antioxidant enzyme genes (GPX-1, SOD2 and CAT), as well as protein and mRNA levels of tight junction proteins (occludin, claudin-1, and ZO-1), were also significantly increased (P < 0.05) by ED addition in LPS-induced piglets. Meanwhile, ED supplementation significantly decreased the LPS-induced protein levels of cyclooxygenase-2 and phosphorylation levels of NF-κB p65 and IκBα in jejunal mucosa. Emodin had a significant effect on the composition of gut microbial flora at various taxonomic positions as indicated by 16S RNA sequencing. The acetic acid, isobutyric acid, valeric acid, and isovaleric acid concentrations in the cecum were also increased by ED addition in pigs (P < 0.05). Furthermore, the correlation analysis revealed that some intestinal microbiota had a potential relationship with jejunal VCR, plasma D-lactate and DAO, jejunal mucosa GSH-Px and CAT activity, and cecal short-chain fatty acid concentration. These data suggest that ED is effective in alleviating LPS-induced intestinal mucosal barrier injury by modulating gut microbiota in piglets.
Collapse
Affiliation(s)
- Wenjuan Xun
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Mengyao Ji
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhonghua Ma
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Tanjie Deng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Wen Yang
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| |
Collapse
|
25
|
Li Z, Dong H, Bian S, Wu H, Song W, Jia X, Chen J, Zhu X, Zhao L, Xuan Z, Jin C, Zhou M, Zheng S, Song P. FXR Maintains the Intestinal Barrier and Stemness by Regulating CYP11A1-Mediated Corticosterone Synthesis in Biliary Obstruction Diseases. Int J Mol Sci 2023; 24:13494. [PMID: 37686300 PMCID: PMC10487515 DOI: 10.3390/ijms241713494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Biliary obstruction diseases are often complicated by an impaired intestinal barrier, which aggravates liver injury. Treatment of the intestinal barrier is often neglected. To investigate the mechanism by which intestinal bile acid deficiency mediates intestinal barrier dysfunction after biliary obstruction and identify a potential therapeutic modality, we mainly used a bile duct ligation (BDL) mouse model to simulate biliary obstruction and determine the important role of the bile acid receptor FXR in maintaining intestinal barrier function and stemness. Through RNA-seq analysis of BDL and sham mouse crypts and qRT-PCR performed on intestinal epithelial-specific Fxr knockout (FxrΔIEC) and wild-type mouse crypts, we found that FXR might maintain intestinal stemness by regulating CYP11A1 expression. Given the key role of CYP11A1 during glucocorticoid production, we also found that FXR activation could promote intestinal corticosterone (CORT) synthesis by ELISA. Intestinal organoid culture showed that an FXR agonist or corticosterone increased crypt formation and organoid growth. Further animal experiments showed that corticosterone gavage treatment could maintain intestinal barrier function and stemness, decrease LPS translocation, and attenuate liver injury in BDL mice. Our study hopefully provides a new theoretical basis for the prevention of intestinal complications and alleviation of liver injury after biliary obstruction.
Collapse
Affiliation(s)
- Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Haijiang Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Xing Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Jian Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Long Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Cheng Jin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Mengqiao Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Z.L.)
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| |
Collapse
|
26
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Paterson C, Cannon J, Vargis E. The impact of early RPE cell junction loss on VEGF, Ang-2, and TIMP secretion in vitro. Mol Vis 2023; 29:87-101. [PMID: 37859808 PMCID: PMC10584031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/14/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose The retinal pigment epithelium (RPE) is an important tissue for maintaining a healthy retina. Retinal pigment epithelial cells help regulate nutrient transport to photoreceptors and are heavily pigmented to prevent light scattering. These cells also have junction proteins to form monolayers. Monolayers are key players in pathologies such as age-related macular degeneration (AMD), a leading cause of vision loss in older adults. During AMD, RPE cell detachment can occur, resulting in a loss of junctions. Losing junctions can increase the expression of pro-angiogenic vascular endothelial growth factor (VEGF). This overexpression can cause abnormal blood vessel growth or angiogenesis in the retina. Age-related macular degeneration treatments target VEGF to slow angiogenesis progression. However, other proteins, such as angiopoietin-2 (Ang-2) and the tissue inhibitor of metalloproteinase-1 (TIMP-1), may also play important roles, making them potential targets for treatment. Controlling RPE junction formation will help elucidate the relationship between RPE cell detachment and additional angiogenic factor secretion, lead to more therapeutics, and increase the efficacy of current treatments. Methods Micropatterning was used to control the spatial arrangement of primary porcine RPE cells using polydimethylsiloxane (PDMS) stencils. Patterns were formed into PDMS stencils to mimic 10%, 25%, and 50% overall detachment of the RPE monolayer. Zonula-occludens-1 (ZO-1), Ang-2, and VEGF were visualized using immunocytochemical (ICC) staining. An enzyme-linked immunosorbent assay (ELISA) was used to quantify extracellular Ang-2, VEGF, TIMP-1, and TIMP-2 levels. A rod outer segment (OS) phagocytosis assay was performed to determine how RPE junction loss directly affects photoreceptor support. Results The growth of primary porcine RPE cells was successfully controlled using stencils. Morphological changes and a decrease in pigmentation were observed, showing a decline in barrier and light absorption functions as degeneration increased. One day after stencil removal, junction proteins were delocalized, and angiogenic factor secretions were correlated with increased levels of detachment. Secretion levels of Ang-2 and TIMP-1 were significantly increased, whereas VEGF and TIMP-2 concentrations were not as affected by varying levels of detachment. OS phagocytosis appeared lower in RPE cells when ZO-1 was affected. Conclusions These results suggest a correlation between loss of junctions, abnormal angiogenic protein secretion, and reduced OS phagocytosis. Furthermore, Ang-2 and TIMP-1 proteins might be beneficial targets for AMD treatments, and their roles in retinal diseases deserve further investigation.
Collapse
Affiliation(s)
- Chase Paterson
- Utah State University, Biological Engineering, Logan, UT
| | - Jamen Cannon
- Utah State University, Biological Engineering, Logan, UT
| | | |
Collapse
|
28
|
Deng Z, Jang KB, Jalukar S, Du X, Kim SW. Efficacy of Feed Additive Containing Bentonite and Enzymatically Hydrolyzed Yeast on Intestinal Health and Growth of Newly Weaned Pigs under Chronic Dietary Challenges of Fumonisin and Aflatoxin. Toxins (Basel) 2023; 15:433. [PMID: 37505702 PMCID: PMC10467124 DOI: 10.3390/toxins15070433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the efficacy of a feed additive containing bentonite and enzymatically hydrolyzed yeast on the intestinal health and growth of newly weaned pigs under chronic dietary exposure to fumonisin and aflatoxin. Newly weaned pigs were randomly allotted to one of four possible treatments: a control diet of conventional corn; a diet of corn contaminated with fumonisin and aflatoxin; a diet of mycotoxin-contaminated corn with 0.2% of feed additive; and a diet of mycotoxin contaminated corn with 0.4% of feed additive. We observed lower average weight gain and average daily feed intake in pigs that were fed only mycotoxin-contaminated corn compared to the control group. Feed additive supplementation linearly increased both average weight gain and feed intake, as well as tumor necrosis factor-alpha. In the jejunum, there was an observed decrease in immunoglobulin A and an increase in claudin-1. Additionally, feed additive supplementation increased the villus height to crypt depth ratio compared to the control. In conclusion, feed additives containing bentonite and enzymatically hydrolyzed yeast could mitigate the detrimental effects of mycotoxins on the growth performance of newly weaned pigs by improving intestinal integrity and positively modulating immune response.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| | - Sangita Jalukar
- Arm & Hammer Animal and Food Production, Church & Dwight Co., Inc., Ewing, NJ 02628, USA;
| | - Xiangwei Du
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (Z.D.); (K.B.J.)
| |
Collapse
|
29
|
Andrani M, Borghetti P, Ravanetti F, Cavalli V, Ferrari L, De Angelis E, Martelli P, Saleri R. Acetate and propionate effects in response to LPS in a porcine intestinal co-culture model. Porcine Health Manag 2023; 9:23. [PMID: 37221609 DOI: 10.1186/s40813-023-00316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The interest in acetate and propionate as short chain fatty acids (SCFA) derives from research on alternative strategies to the utilization of antibiotics in pig farms. SCFA have a protective role on the intestinal epithelial barrier and improve intestinal immunity by regulating the inflammatory and immune response. This regulation is associated with an increase in intestinal barrier integrity, mediated by the enhancement of tight junction protein (TJp) functions, which prevent the passage of pathogens through the paracellular space. The purpose of this study was to evaluate the effect of in vitro supplementation with SCFA (5 mM acetate and 1 mM propionate) on viability, nitric oxide (NO) release (oxidative stress), NF-κB gene expression, and gene and protein expression of major TJp (occludin [OCLN], zonula occludens-1 [ZO-1], and claudin-4 [CLDN4]) in a porcine intestinal epithelial cell (IPEC-J2) and peripheral blood mononuclear cell (PBMC) co-culture model upon LPS stimulation, through which an acute inflammatory state was simulated. RESULTS Firstly, the inflammatory stimulus induced by LPS evaluated in the IPEC-J2 monoculture was characterized by a reduction of viability, gene expression of TJp and OCLN protein synthesis, and an increase of NO release. The response evaluated in the co-culture showed that acetate positively stimulated the viability of both untreated and LPS-stimulated IPEC-J2 and reduced the release of NO in LPS-stimulated cells. Acetate also promoted an increase of gene expression of CLDN4, ZO-1, and OCLN, and protein synthesis of CLDN4, OCLN and ZO-1 in untreated and LPS-stimulated cells. Propionate induced a reduction of NO release in both untreated and LPS-stimulated IPEC-J2. In untreated cells, propionate induced an increase of TJp gene expression and of CLDN4 and OCLN protein synthesis. Contrarily, propionate in LPS-stimulated cells induced an increase of CLDN4 and OCLN gene expression and protein synthesis. PBMC were influenced by acetate and propionate supplementation, in that NF-κB expression was strongly downregulated in LPS-stimulated cells. CONCLUSIONS The present study demonstrates the protective effect of acetate and propionate upon acute inflammation by regulating epithelial tight junction expression and protein synthesis in a co-culture model, which simulates the in vivo interaction between epithelial intestinal cells and local immune cells.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
30
|
Yoon JW, Shin S, Park J, Lee BR, Lee SI. TLR/MyD88-Mediated Inflammation Induced in Porcine Intestinal Epithelial Cells by Ochratoxin A Affects Intestinal Barrier Function. TOXICS 2023; 11:toxics11050437. [PMID: 37235251 DOI: 10.3390/toxics11050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
The intestinal epithelium performs vital functions such as nutrient absorption and acting as an intestinal barrier to maintain the host's homeostasis. Mycotoxin, which affects the processing and storage of animal feedstuff, is a problematic pollutant in farming products. Ochratoxin A generated by Aspergillus and Penicillium fungi causes inflammation, intestinal dysfunction, decline in growth, and reduced intake in porcine and other livestock. Despite these ongoing problems, OTA-related studies in intestinal epithelium are lacking. This study aimed to demonstrate that OTA regulates TLR/MyD88 signaling in IPEC-J2 cells and induces barrier function impairment through tight junction reduction. We measured expression of TLR/MyD88 signaling-related mRNAs and proteins. The indicator of intestinal barrier integrity was confirmed through immunofluorescence and transepithelial electrical resistance. Additionally, we confirmed whether inflammatory cytokines and barrier function were affected by MyD88 inhibition. MyD88 inhibition alleviated inflammatory cytokine levels, tight junction reduction, and damage to barrier function due to OTA. These results indicate that OTA induces TLR/MyD88 signaling-related genes and impairs tight junctions and intestinal barrier function in IPEC-J2 cells. MyD88 regulation in OTA-treated IPEC-J2 cells mitigates the tight junction and intestinal barrier function impairments. Our findings provide a molecular understanding of OTA toxicity in porcine intestinal epithelial cells.
Collapse
Affiliation(s)
- Jung Woong Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju-si 37224, Republic of Korea
- Department of Animal Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
| | - JeongWoong Park
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju-si 37224, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
- Research Center for Horse Industry, Kyungpook National University, Sangju-si 37224, Republic of Korea
- Department of Animal Biotechnology, Kyungpook National University, Sangju-si 37224, Republic of Korea
| |
Collapse
|
31
|
Yang Y, Chai H, Ding Z, Tang C, Liang Y, Li Y, Liang H. Meta-analysis of corneal endothelial changes after phacoemulsification in diabetic and non-diabetic patients. BMC Ophthalmol 2023; 23:174. [PMID: 37095472 PMCID: PMC10124059 DOI: 10.1186/s12886-023-02924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Currently, there is still controversy about the differential changes in corneal endothelium function and morphology after phacoemulsification between Diabetes Mellitus (DM) and non-Diabetes Mellitus (non-DM) patients. In this study, we aimed to evaluate the influence of phacoemulsification on the corneal endothelium in DM and non-DM patients. METHODS Databases of PubMed, Embase, Web of Science, and the Cochrane Library were searched for studies published between January 1, 2011 and December 25, 2021. The weighted mean difference and 95% confidence interval were used to estimate the outcomes of statistical analyses performed. RESULTS Thirteen studies involving 1744 eyes were included in this meta-analysis. No significant difference was observed in the central corneal thickness (CCT), endothelial cell density (ECD), coefficients of variation (CV), or hexagonal cell percentage (HCP) between the DM and non-DM groups (CCT: P = 0.91; ECD: P = 0.07; CV: P = 0.06; HCP: P = 0.09) preoperatively. The CCT was significantly thicker in the DM group at 1 month (P = 0.003) and 3 months (P = 0.0009) postoperatively, and there was no significant difference at 6 months postoperatively (P = 0.26) than non-DM group. The CV was significantly higher and HCP was significantly lower in the DM group at 1 month (CV:P < 0.0001, HCP: P = 0.002), with no significant difference at 3 months (CV: P = 0.09, HCP: P = 0.36) and 6 months (CV: P = 0.32, HCP: P = 0.36) postoperatively than non-DM group. DM patients had lower ECD than non-DM patients at all postoperative time points (1 month, 3 months: P < 0.00001, 6 months: P < 0.0001). CONCLUSIONS The influence of phacoemulsification on corneal endothelial damage is greater in diabetic patients. Moreover, the recovery of corneal endothelial function and morphology is delayed in these patients. Clinicians should be more attentive to the corneal health of DM patients when considering phacoemulsification.
Collapse
Affiliation(s)
- Yingqin Yang
- Department of Ophtalmology, The First Affiliated Hospital of Guangxi Medical University, NanNing, 530000, China
| | - Hongtao Chai
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Ginlin, 541001, China
| | - Zhixiang Ding
- Department of Ophtalmology, Affiliated Hospital of Guilin Medical University, Ginlin, 541001, China
| | - Chengye Tang
- Department of Ophtalmology, The First Affiliated Hospital of Guangxi Medical University, NanNing, 530000, China
| | - Yongshun Liang
- Department of Ophtalmology, The First Affiliated Hospital of Guangxi Medical University, NanNing, 530000, China
| | - Yihong Li
- Department of Ophtalmology, The First Affiliated Hospital of Guangxi Medical University, NanNing, 530000, China
| | - Hao Liang
- Department of Ophtalmology, The First Affiliated Hospital of Guangxi Medical University, NanNing, 530000, China.
| |
Collapse
|
32
|
Dunne K, Reece E, McClean S, Doyle S, Rogers TR, Murphy P, Renwick J. Aspergillus fumigatus Supernatants Disrupt Bronchial Epithelial Monolayers: Potential Role for Enhanced Invasion in Cystic Fibrosis. J Fungi (Basel) 2023; 9:jof9040490. [PMID: 37108944 PMCID: PMC10141846 DOI: 10.3390/jof9040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus fumigatus is the most commonly isolated fungus in chronic lung diseases, with a prevalence of up to 60% in cystic fibrosis patients. Despite this, the impact of A. fumigatus colonisation on lung epithelia has not been thoroughly explored. We investigated the influence of A. fumigatus supernatants and the secondary metabolite, gliotoxin, on human bronchial epithelial cells (HBE) and CF bronchial epithelial (CFBE) cells. CFBE (F508del CFBE41o-) and HBE (16HBE14o-) trans-epithelial electrical resistance (TEER) was measured following exposure to A. fumigatus reference and clinical isolates, a gliotoxin-deficient mutant (ΔgliG) and pure gliotoxin. The impact on tight junction (TJ) proteins, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were determined by western blot analysis and confocal microscopy. A. fumigatus conidia and supernatants caused significant disruption to CFBE and HBE TJs within 24 h. Supernatants from later cultures (72 h) caused the greatest disruption while ΔgliG mutant supernatants caused no disruption to TJ integrity. The ZO-1 and JAM-A distribution in epithelial monolayers were altered by A. fumigatus supernatants but not by ΔgliG supernatants, suggesting that gliotoxin is involved in this process. The fact that ΔgliG conidia were still capable of disrupting epithelial monolayers indicates that direct cell-cell contact also plays a role, independently of gliotoxin production. Gliotoxin is capable of disrupting TJ integrity which has the potential to contribute to airway damage, and enhance microbial invasion and sensitisation in CF.
Collapse
Affiliation(s)
- Katie Dunne
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Emma Reece
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, W23 F2K8 Kildare, Ireland
| | - Thomas R Rogers
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Philip Murphy
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Julie Renwick
- Discipline of Clinical Microbiology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
33
|
Nakashima M, Goda N, Tenno T, Kotake A, Inotsume Y, Amaya M, Hiroaki H. Pharmacologic Comparison of High-Dose Hesperetin and Quercetin on MDCK II Cell Viability, Tight Junction Integrity, and Cell Shape. Antioxidants (Basel) 2023; 12:antiox12040952. [PMID: 37107328 PMCID: PMC10135814 DOI: 10.3390/antiox12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The modulation of tight junction (TJ) integrity with small molecules is important for drug delivery. High-dose baicalin (BLI), baicalein (BLE), quercetin (QUE), and hesperetin (HST) have been shown to open TJs in Madin-Darby canine kidney (MDCK) II cells, but the mechanisms for HST and QUE remain unclear. In this study, we compared the effects of HST and QUE on cell proliferation, morphological changes, and TJ integrity. HST and QUE were found to have opposing effects on the MDCK II cell viability, promotion, and suppression, respectively. Only QUE, but not HST, induced a morphological change in MDCK II into a slenderer cell shape. Both HST and QUE downregulated the subcellular localization of claudin (CLD)-2. However, only QUE, but not HST, downregulated CLD-2 expression. Conversely, only HST was shown to directly bind to the first PDZ domain of ZO-1, a key molecule to promote TJ biogenesis. The TGFβ pathway partially contributed to the HST-induced cell proliferation, since SB431541 ameliorated the effect. In contrast, the MEK pathway was not involved by both the flavonoids, since U0126 did not revert their TJ-opening effect. The results offer insight for using HST or QUE as naturally occurring absorption enhancers through the paracellular route.
Collapse
Affiliation(s)
- Mio Nakashima
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Minako Amaya
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Yanagito, Gifu 501-1112, Gifu, Japan
| |
Collapse
|
34
|
Guarnieri G, Iervolino M, Cavallone S, Unfer V, Vianello A. The "Asthma-Polycystic Ovary Overlap Syndrome" and the Therapeutic Role of Myo-Inositol. Int J Mol Sci 2023; 24:ijms24086959. [PMID: 37108123 PMCID: PMC10138395 DOI: 10.3390/ijms24086959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease characterized by abnormalities in immune response. Due to the inherent complexity of the disease and the presence of comorbidities, asthma control is often difficult to obtain. In asthmatic patients, an increased prevalence of irregular menstrual cycles, infertility, obesity, and insulin resistance has been reported. Given that these conditions are also common in patients with polycystic ovary syndrome (PCOS), we propose the definition of "asthma-PCOS overlap syndrome" to indicate a medical condition which shares characteristics of both diseases. The aim of this review is to analyze the links between asthma and PCOS and evaluate the therapeutic role of myo-inositol, a natural compound currently utilized in patients with PCOS, in the management of asthma patients.
Collapse
Affiliation(s)
- Gabriella Guarnieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | | | | | - Vittorio Unfer
- Systems Biology Group Laboratory, 00163 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
35
|
Effects of Lactobacillus casei NCU011054 on immune response and gut microbiota of cyclophosphamide induced immunosuppression mice. Food Chem Toxicol 2023; 174:113662. [PMID: 36775138 DOI: 10.1016/j.fct.2023.113662] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Lactobacillus (L.) casei NCU011054 isolated from infant feces has been proven to be a potential probiotic in vitro. The present study aimed to investigate the effects of L. casei NCU011054 on the immune response and gut microbiota in cyclophosphamide (CP)-induced immunosuppression mice. Results indicated that L. casei NCU011054 could increase the levels of mucin (Muc2) and tight junction proteins (ZO-1, occludin and claudin-1). Moreover, L. casei NCU011054 was found to upregulate TLRs/NF-κB pathway (TLR-2, TLR-4, TLR-6, p65 and NF-κB) and two transcription factors (T-bet and GATA-3) mRNA levels, and enhance the number of CD4+T cells. Th1-related cytokines (IL-12p70, IFN-γ and TNF-α) and Th2-related cytokines (IL-2, IL-4, IL-6 and IL-10) significantly increased after L. casei NCU011054 treatment. More importantly, L. casei NCU011054 increased the ratio of T-bet to GATA-3 and IFN-γ to IL-4. Apart from these, L. casei NCU011054 remodeled gut microbiota and modulated gut metabolites in CP-induced immunosuppressed mice. The correlation analysis showed that Lactobacillus upregulated by L. casei NCU011054 was positively correlated with TLRs/NF-κB pathway, and the ratio of T-bet to GATA-3 and IFN-γ to IL-4. All findings revealed that L. casei NCU011054 could improve intestinal immune dysfunction and modulate Th1/Th2 balance via TLRs/NF-κB pathway in CP-induced immunosuppressed mice.
Collapse
|
36
|
Hou A, Mohamed Ali S, Png E, Hunziker W, Tong L. Transglutaminase-2 is critical for corneal epithelial barrier function via positive regulation of Claudin-1. Ocul Surf 2023; 28:155-164. [PMID: 37037393 DOI: 10.1016/j.jtos.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Transglutaminase (TG)-2 is a ubiquitous multi-functional protein expressed in all living cells. The purpose of the current study was to investigate the role of TG-2 in corneal barrier function and its potential regulation of epithelial junctional proteins and transcription factors. METHODS Corneal barrier function to ions in TG-2-/- and TG-2+/+ mice was assessed by Ussing chamber assay. Hypo-osmolar water or FITC-dextran was applied on top of mouse eyes to evaluate the corneal barrier function to water and macromolecules. Western blots, qPCR and immunofluorescent staining were used to investigate the expression of tight junction proteins in TG-2-/- and TG-2+/+ mouse corneas, and also in TG-2 knockdown human corneal epithelial cells. RESULTS Corneal explants from TG-2-/- mice had a lower trans-epithelial electrical resistance compared to TG-2+/+ mice. When challenged by hypo-osmolar water, the central corneal thickness of TG-2-/- mice increased faster, and these mice had a faster rise of fluorescence in the anterior chamber after ocular exposure to FITC-dextran, compared to TG-2+/+. Claudin-1 protein and transcript levels were reduced in the cornea of TG-2-/- mice and in TG-2 knockdown human corneal epithelial cells. Slug which previously reported suppressing Claudin-1 transcription, was increased at both protein and transcript level in TG-2 knockdown cells. TG-2 and Claudin-1 protein levels were unchanged in shRNA and shTG cells after MG132 treatment, while Slug accumulated in treated cells. CONCLUSION TG-2 may positively regulate Claudin-1 through repressing Slug at transcript level, and thus it is critical for normal corneal barrier function.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore; Eye-Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore
| | - Safiah Mohamed Ali
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Evelyn Png
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; SERI-IMCB Program in Retinal Angiogenic Diseases, Singapore Eye Research Institute, 169856, Singapore; Department of Physiology, National University of Singapore, 117593, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore; Eye-Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore; Corneal and External Eye Disease Service, Singapore National Eye Centre, 168751, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
37
|
Yang Y, Zheng S, Chu H, Du C, Chen M, Emran MY, Chen J, Yang F, Tian L. Subchronic Microcystin-LR Aggravates Colorectal Inflammatory Response and Barrier Disruption via Raf/ERK Signaling Pathway in Obese Mice. Toxins (Basel) 2023; 15:toxins15040262. [PMID: 37104200 PMCID: PMC10145857 DOI: 10.3390/toxins15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Microcystin-LR (MC-LR) is an extremely poisonous cyanotoxin that poses a threat to ecosystems and human health. MC-LR has been reported as an enterotoxin. The objective of this study was to determine the effect and the mechanism of subchronic MC-LR toxicity on preexisting diet-induced colorectal damage. C57BL/6J mice were given either a regular diet or a high-fat diet (HFD) for 8 weeks. After 8 weeks of feeding, animals were supplied with vehicle or 120 μg/L MC-LR via drinking water for another 8 weeks, and their colorectal were stained with H&E to detect microstructural alterations. Compared with the CT group, the HFD and MC-LR + HFD-treatment group induced a significant weight gain in the mice. Histopathological findings showed that the HFD- and MC-LR + HFD-treatment groups caused epithelial barrier disruption and infiltration of inflammatory cells. The HFD- and MC-LR + HFD-treatment groups raised the levels of inflammation mediator factors and decreased the expression of tight junction-related factors compared to the CT group. The expression levels of p-Raf/Raf and p-ERK/ERK in the HFD- and MC-LR + HFD-treatment groups were significantly increased compared with the CT group. Additionally, treated with MC-LR + HFD, the colorectal injury was further aggravated compared with the HFD-treatment group. These findings suggest that by stimulating the Raf/ERK signaling pathway, MC-LR may cause colorectal inflammation and barrier disruption. This study suggests that MC-LR treatment may exacerbate the colorectal toxicity caused by an HFD. These findings offer unique insights into the consequences and harmful mechanisms of MC-LR and provide strategies for preventing and treating intestinal disorders.
Collapse
Affiliation(s)
- Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
- Changsha Center for Disease Control and Prevention, Changsha 410004, China
| | - Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mohammed Y. Emran
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
38
|
Huang S, Lin L, Wang S, Ding W, Zhang C, Shaukat A, Xu B, Yue K, Zhang C, Liu F. Total Flavonoids of Rhizoma Drynariae Mitigates Aflatoxin B1-Induced Liver Toxicity in Chickens via Microbiota-Gut-Liver Axis Interaction Mechanisms. Antioxidants (Basel) 2023; 12:antiox12040819. [PMID: 37107194 PMCID: PMC10134996 DOI: 10.3390/antiox12040819] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin that widely occurs in feed and has severe hepatotoxic effects both in humans and animals. Total flavonoids of Rhizoma Drynaria (TFRD), a traditional Chinese medicinal herb, have multiple biological activities and potential hepatoprotective activity. This study investigated the protective effects and potential mechanisms of TFRD against AFB1-induced liver injury. The results revealed that supplementation with TFRD markedly lessened broiler intestinal permeability by increasing the expression of intestinal tight junction proteins, as well as correcting the changes in gut microbiota and liver damage induced by AFB1. Metabolomics analysis revealed that the alterations in plasma metabolites, especially taurolithocholic acid, were significantly improved by TFRD treatment in AFB1-exposed chickens. In addition, these metabolites were closely associated with [Ruminococcus], ACC, and GPX1, indicating that AFB1 may cause liver injury by inducing bile acid metabolism involving the microbiota–gut–liver axis. We further found that TFRD treatment markedly suppressed oxidative stress and hepatic lipid deposition, increased plasma glutathione (GSH) concentrations, and reversed hepatic ferroptosis gene expression. Collectively, these findings indicate that ferroptosis might contribute to the hepatotoxicity of AFB1-exposed chickens through the microbiota–gut–liver axis interaction mechanisms; furthermore, TFRD was confirmed as an herbal extract that could potentially antagonize mycotoxins detrimental effects.
Collapse
|
39
|
Lutein Prevents Liver Injury and Intestinal Barrier Dysfunction in Rats Subjected to Chronic Alcohol Intake. Nutrients 2023; 15:nu15051229. [PMID: 36904226 PMCID: PMC10005241 DOI: 10.3390/nu15051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic alcohol intake can affect both liver and intestinal barrier function. The goal of this investigation was to evaluate the function and mechanism of lutein administration on the chronic ethanol-induced liver and intestinal barrier damage in rats. During the 14-week experimental cycle, seventy rats were randomly divided into seven groups, with 10 rats in each group: a normal control group (Co), a control group of lutein interventions (24 mg/kg/day), an ethanol model group (Et, 8-12 mL/kg/day of 56% (v/v) ethanol), three intervention groups with lutein (12, 24 and 48 mg/kg/day) and a positive control group (DG). The results showed that liver index, ALT, AST and TG levels were increased, and SOD and GSH-Px levels were reduced in the Et group. Furthermore, alcohol intake over a long time increased the level of pro-inflammatory cytokines TNF-α and IL-1β, disrupted the intestinal barrier, and stimulated the release of LPS, causing further liver injury. In contrast, lutein interventions prevented alcohol-induced alterations in liver tissue, oxidative stress and inflammation. In addition, the protein expression of Claudin-1 and Occludin in ileal tissues was upregulated by lutein intervention. In conclusion, lutein can improve chronic alcoholic liver injury and intestinal barrier dysfunction in rats.
Collapse
|
40
|
Piccioni A, Rosa F, Mannucci S, Manca F, Merra G, Chiloiro S, Candelli M, Covino M, Gasbarrini A, Franceschi F. Gut Microbiota, LADA, and Type 1 Diabetes Mellitus: An Evolving Relationship. Biomedicines 2023; 11:707. [PMID: 36979685 PMCID: PMC10045633 DOI: 10.3390/biomedicines11030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
There is much evidence confirming the crucial role played by the gut microbiota in modulating the immune system in the onset of autoimmune diseases. In this article, we focus on the relationship between alterations in the microbiome and the onset of diabetes mellitus type 1 and LADA, in light of the latest evidence. We will then look at both how the role of the gut microbiota appears to be increasingly crucial in the pathogenesis of these disorders and how this aspect may be instrumental in the development of new potential therapeutic strategies that modulate the gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Rosa
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sergio Mannucci
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Manca
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Sabrina Chiloiro
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
41
|
Lin H, Lin J, Pan T, Li T, Jiang H, Fang Y, Wang Y, Wu F, Huang J, Zhang H, Chen D, Chen Y. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis 2023; 14:68. [PMID: 36709322 PMCID: PMC9884241 DOI: 10.1038/s41419-023-05589-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease with unclear pathogenesis. The gut microbiota and intestinal barrier play an essential role in AIH. Polymeric immunoglobulin receptor (pIgR) is a central component of mucosal immunity. Herein, we aimed to test the hypothesis that pIgR plays a pivotal role in maintaining gut microbiota homeostasis and gut barrier integrity in an AIH mouse model. The expression of intestinal pIgR shows the variation tendency of falling after rising with the aggravation of experimental AIH (EAH). The deletion of Pigr exacerbates liver damage in EAH. Furthermore, we identified a distinct microbiota profile of Pigr-deficient EAH mice, with a significant increased aboundance in the Oscillospiraceae family, particularly the Anaeromassilibacillus genus. Such a situation occurs because the loss of Pigr inhibits MEK/ERK, a key signal pathway whereby pIgR transports immunoglobulin A (IgA), resulting in reduced IgA secretion, which leads to the destruction of intestinal epithelial tight junction proteins and intestinal flora disturbance. Increased intestinal leakage causes increased translocation of bacteria to the liver, thus aggravating liver inflammation in EAH. Treatment with the Lactobacillus rhamnosus GG supernatant reverses liver damage in EAH mice but loses its protective effect without pIgR. Our study identifies that intestinal pIgR is a critical regulator of the adaptive response to S100-induced alterations in gut flora and the gut barrier function, which closely correlates with liver injury. Intestinal upregulation of pIgR could be a novel approach for treating AIH.
Collapse
Affiliation(s)
- Hongwei Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jing Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Tongtong Pan
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Ting Li
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huimian Jiang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yan Fang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yuxin Wang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Faling Wu
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jia Huang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huadong Zhang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| | - Yongping Chen
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
42
|
Phillygenin Attenuated Colon Inflammation and Improved Intestinal Mucosal Barrier in DSS-induced Colitis Mice via TLR4/Src Mediated MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032238. [PMID: 36768559 PMCID: PMC9917337 DOI: 10.3390/ijms24032238] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, relapsing, and nonspecific inflammatory bowel disease (IBD). Phillygenin (PHI), a natural bioactive ingredient, isolated from Forsythiae Fructus, exhibits anti-inflammatory, anti-oxidative, and hepatoprotective activities. However, few reports provide direct evidence on the efficacy of PHI in improving colitis mice. The present study elucidated that the symptoms of DSS-induced colitis mice were alleviated after PHI administration, including body weight loss, the disease activity index, colon length shortening, colonic pathological damage, splenomegaly, and hepatomegaly. PHI treatment improved the intestinal mucosal barrier by protecting goblet cells, promoting gene expressions of Clca1, Slc26a3, and Aqp8, increasing tight junction proteins (TJs), and reducing epithelial cell apoptosis. In addition, the levels of oxidative stress (MPO, SOD, and MDA) and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10) were reversed by PHI in colitis mice. According to transcriptome and network pharmacology analysis, inflammatory pathway might be an important mechanism for PHI to improve colitis. Western blotting displayed that the PHI inhibited the activation of tyrosine kinase Src mediated by TLR4, and then reduced the phosphorylation of downstream proteins p38, JNK, and NF-κB in colitis mice. In summary, our results suggested that PHI might be an appropriate and effective drug candidate to protect colitis.
Collapse
|
43
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
44
|
Park N, Chung JY, Kim MH, Yang WM. Protective effects of inhalation of essential oils from Mentha piperita leaf on tight junctions and inflammation in allergic rhinitis. FRONTIERS IN ALLERGY 2022; 3:1012183. [PMID: 36578435 PMCID: PMC9790934 DOI: 10.3389/falgy.2022.1012183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Allergic rhinitis is one of the most common diseases, which is caused by IgE-mediated reactions to inhaled allergens. Essential oils from the Mentha piperita leaf (EOM) are known to be effective for various diseases, such as respiratory diseases. However, the effect of inhalation of EOM on tight junctions and inflammation related to allergic rhinitis is not yet known. The purpose of this research was to explain the effects of the inhalation of EOM on tight junctions and inflammation of allergic rhinitis through network pharmacology and an experimental study. For that purpose, a pharmacology network analysis was conducted comprising major components of EOM. Based on the network pharmacology prediction results, we evaluated the effect of EOM on histological changes in mice with ovalbumin and PM10-induced allergic rhinitis. Allergic symptoms, infiltration of inflammatory cells, and regulation of ZO-1 were investigated in mice with allergic rhinitis. Other allergic parameters were also analyzed by reverse transcription polymerase chain reaction and western blot in nasal epithelial cells. In the network analysis, the effects of EOM were closely related to tight junctions and inflammation in allergic rhinitis. Consistent with the results from the network analysis, EOM significantly decreased epithelial thickness, mast cell degranulation, goblet cell secretion, and the infiltration of inflammatory cells in nasal tissue. EOM also regulated the MAPK-NF-κB signaling pathway, which was related to tight junctions in nasal epithelial cells. This research confirmed that inhalation of EOM effectively restores tight junctions and suppresses inflammation in the allergic rhinitis model. These results reveal that EOM has a therapeutic mechanism to treat allergic rhinitis.
Collapse
|
45
|
O'Connor G, Quintero MA, Deo SK, Abreu MT, Daunert S. Bacterial Quorum-Sensing Molecules in Serum: A Potential Tool for Crohn's Disease Management. Clin Transl Gastroenterol 2022; 13:e00547. [PMID: 36413804 PMCID: PMC9780115 DOI: 10.14309/ctg.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Crohn's disease (CD) is an idiopathic inflammatory condition of the gastrointestinal tract with the primary method of diagnosis and follow-up being colonoscopy. A disturbed host-microbiome interaction, including the presence of pathobionts, is implicated in initiation and perpetuation of inflammation. As such, we hypothesized that bacterial quorum-sensing (QS) molecules (QSMs), small molecules bacteria generate to regulate gene expression, would be elevated in patients with CD. We collected serum at the time of colonoscopy from patients with CD and healthy controls, determining through biosensors for QSMs that patients with CD had significantly elevated levels of QSMs in serum. Expansion of these studies may allow for QSM levels in serum to serve as a biomarker for intestinal inflammation in patients with CD.
Collapse
Affiliation(s)
- Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria A. Quintero
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, Miami, Florida, USA
| |
Collapse
|
46
|
Farhat W, Yeung V, Kahale F, Parekh M, Cortinas J, Chen L, Ross AE, Ciolino JB. Doxorubicin-Loaded Extracellular Vesicles Enhance Tumor Cell Death in Retinoblastoma. Bioengineering (Basel) 2022; 9:bioengineering9110671. [PMID: 36354582 PMCID: PMC9687263 DOI: 10.3390/bioengineering9110671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Chemotherapy is often used to treat retinoblastoma; however, this treatment method has severe systemic adverse effects and inadequate therapeutic effectiveness. Extracellular vesicles (EVs) are important biological information carriers that mediate local and systemic cell-to-cell communication under healthy and pathological settings. These endogenous vesicles have been identified as important drug delivery vehicles for a variety of therapeutic payloads, including doxorubicin (Dox), with significant benefits over traditional techniques. In this work, EVs were employed as natural drug delivery nanoparticles to load Dox for targeted delivery to retinoblastoma human cell lines (Y-79). Two sub-types of EVs were produced from distinct breast cancer cell lines (4T1 and SKBR3) that express a marker that selectively interacts with retinoblastoma cells and were loaded with Dox, utilizing the cells’ endogenous loading machinery. In vitro, we observed that delivering Dox with both EVs increased cytotoxicity while dramatically lowering the dosage of the drug. Dox-loaded EVs, on the other hand, inhibited cancer cell growth by activating caspase-3/7. Direct interaction of EV membrane moieties with retinoblastoma cell surface receptors resulted in an effective drug delivery to cancer cells. Our findings emphasize the intriguing potential of EVs as optimum methods for delivering Dox to retinoblastoma.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mohit Parekh
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - John Cortinas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| |
Collapse
|
47
|
Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet J Rare Dis 2022; 17:378. [PMID: 36253797 PMCID: PMC9575261 DOI: 10.1186/s13023-022-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a hereditary retinal disease which leads to visual impairment. The onset and progression of RP has physiological consequences that affects the ocular environment. Some of the key non-genetic factors which hasten the retinal degeneration in RP include oxidative stress, hypoxia and ocular inflammation. In this study, we investigated the status of the ocular immune privilege during retinal degeneration and the effect of ocular immune changes on the peripheral immune system in RP. We assessed the peripheral blood mononuclear cell stimulation by retinal antigens and their immune response status in RP patients. Subsequently, we examined alterations in ocular immune privilege machineries which may contribute to ocular inflammation and disease progression in rd1 mouse model. Results In RP patients, we observed a suppressed anti-inflammatory response to self-retinal antigens, thereby indicating a deviated response to self-antigens. The ocular milieu in rd1 mouse model indicated a significant decrease in immune suppressive ligands and cytokine TGF-B1, and higher pro-inflammatory ocular protein levels. Further, blood–retinal-barrier breakdown due to decrease in the expression of tight junction proteins was observed. The retinal breach potentiated pro-inflammatory peripheral immune activation against retinal antigens and caused infiltration of the peripheral immune cells into the ocular tissue. Conclusions Our studies with RP patients and rd1 mouse model suggest that immunological consequences in RP is a contributing factor in the progression of retinal degeneration. The ocular inflammation in the RP alters the ocular immune privilege mechanisms and peripheral immune response. These aberrations in turn create an auto-reactive immune environment and accelerate retinal degeneration.
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02528-x.
Collapse
|
48
|
Zhi Y, Chen X, Cao G, Chen F, Seo HS, Li F. The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119826. [PMID: 35932897 DOI: 10.1016/j.envpol.2022.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
Collapse
Affiliation(s)
- Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Chen
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
49
|
Salati M, Caputo F, Bocconi A, Cerri S, Baldessari C, Piacentini F, Dominici M, Gelsomino F. Successes and failures of angiogenesis blockade in gastric and gastro-esophageal junction adenocarcinoma. Front Oncol 2022; 12:993573. [PMID: 36212393 PMCID: PMC9540203 DOI: 10.3389/fonc.2022.993573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric and gastro-esophageal junction adenocarcinoma (GEA) remains a considerable major public health problem worldwide, being the fifth most common cancer with a fatality-to-case ratio that stands still at 70%. Angiogenesis, which is a well-established cancer hallmark, exerts a fundamental role in cancer initiation and progression and its targeting has been actively pursued as a promising therapeutic strategy in GEA. A wealth of clinical trials has been conducted, investigating anti-angiogenic agents including VEGF-directed monoclonal antibodies, small molecules tyrosine kinase inhibitors and VEGF-Trap agents both in the resectable and advanced setting, reporting controversial results. While phase III randomized trials testing the anti-VEGFR-2 antibody Ramucirumab and the selective VEGFR-2 tyrosine kinase inhibitor Apatinib demonstrated a significant survival benefit in later lines, the shift of angiogenesis inhibitors in the perioperative and first-line setting failed to improve patients' outcome in GEAs. The molecular landscape of disease, together with novel combinatorial strategies and biomarker-selected approaches are under investigation as key elements to the success of angiogenesis blockade in GEA. In this article, we critically review the existing literature on the biological rationale and clinical development of antiangiogenic agents in GEA, discussing major achievements, limitations and future developments, aiming at fully realizing the potential of this therapeutic approach.
Collapse
Affiliation(s)
- Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Alessandro Bocconi
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Sara Cerri
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Federico Piacentini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
50
|
Siddiqui NZ, Rehman AU, Yousuf W, khan AI, Farooqui NA, Zang S, Xin Y, Wang L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog 2022; 14:39. [PMID: 36115959 PMCID: PMC9482207 DOI: 10.1186/s13099-022-00512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Type-1 Diabetes Mellitus (T1DM) is regarded as a multifunctional, immune-related disease which causes massive destruction of islet β-cells in pancreas resulting in hyperglycemic, hypoinsulinemia and hyperlipidimic conditions. The aim of the present study, was to investigate the hypothesis that streptozotocin (STZ)-induced T1DM in Balb/c mice when treated with crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) depicts improvement in diabetes-related symptoms. Treatment with CDDP resulted in decreased body weight loss, improved food consumption and water intake disbalances. The CDDP effectively improved fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, insulin secretion, rejuvenation of β-cells mass, serum lipid profile and pro-inflammatory cytokines levels. Additionally, treatment with CDDP increased the population of beneficial bacteria such as Firmicutes, Bacteroidetes and Lactobacillus at phylum, family and genus levels by 16S rRNA sequencing. Furthermore, immunohistological examination confirmed that CDDP reduces the inflammation and restored the structural morphology of colon and upraised the levels of insulin receptor substrate-1 (IRS-1), Mucin-2 (MUC-2) and tight-junction proteins (TJs) whereby maintaining the gut structures and barrier permeability. Thus, the above presented data, highlights the safe and therapeutic effects of crude polysaccharide (CDDP) from D. divaricata in the treatment and restoration of T1DM disorders and can be used as a food supplement alternative to diabetes medicine.
Collapse
|