1
|
McIntosh MC, Ruple BA, Kontos NJ, Mattingly ML, Lockwood CM, Roberts MD. The effects of a sugar-free amino acid-containing electrolyte beverage on 5-kilometer performance, blood electrolytes, and post-exercise cramping versus a conventional carbohydrate-electrolyte sports beverage and water. J Int Soc Sports Nutr 2024; 21:2296888. [PMID: 38131124 PMCID: PMC10763896 DOI: 10.1080/15502783.2023.2296888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE The purpose of this study was to examine the acute effects of a multi-ingredient, low calorie dietary supplement (MIDS, XTEND® Healthy Hydration) on 5-kilometer (5-km) time trial performance and blood electrolyte concentrations compared to a carbohydrate-electrolyte beverage (CE, GATORADE® Thirst Quencher) and distilled water (W). METHODS During visit 1 (V1), participants (10 men and 10 women, 20-35 years old, BMI ≤ 29 kg/m2, recreationally active) reported to the laboratory whereby the following tests were performed: i) height and weight measurements, ii) body composition analysis, iii) treadmill testing to measure maximal aerobic capacity, and iv) 5-km time trial familiarization. The second visit (V2) was one week after V1 in the morning (0600 - 0900) and participants arrived 12-14 h fasted (no food or drink). The first battery of assessments (V2-T1) included nude body mass, urine specific gravity (USG), a profile of mood states (POMS) questionnaire, and the completion of a visual analogue scale (VAS) questionnaire to quantify cramping. Then heart rate (HR), blood pressure (BP), total body hydration (via bioelectrical impedance spectroscopy [BIS]) were examined. Finally, a measurement of blood markers via finger stick was performed. Participants consumed a randomized beverage (16 fl. oz. of MIDS, 16 fl. oz. of W, or 16 fl. oz. of CE) within 3 min followed by a 45-min rest. Following the rest period, a second battery (V2-T2) was performed whereby participants' USG was assessed and they completed the POMS and VAS questionnaires, and HR, BP, and blood markers were measured. The participants then performed a 5-km treadmill time trial. Immediately following the 5-km time trial, participants completed a third testing battery (V2-T3) that began with blood markers, HR and BP assessments, followed by nude body weight assessment, and the POMS and VAS questionnaires. After 60 min, a fourth battery (V2-T4) was performed that included HR, BP, and blood markers. After sitting quietly for another 60 min a fifth battery assessment was performed (V2-T5) that included participants' USG, POMS and VAS questionnaires, HR, BP, blood markers, and total body hydration. Visits 3 (V3) and 4 (V4) followed the same protocol except a different randomized drink (16 oz. of CE, MIDS, or W) was consumed; all of which were separated by approximately one week. RESULTS No differences occurred between conditions for 5-km time trial completion, indirect calorimetry outcomes during 5-km time trials, USG, or nude mass measurements (p > 0.05 for all relevant statistical tests). However, blood potassium and the sodium/potassium ratio displayed significant interactions (p < 0.05), and post hoc testing indicated these values were better maintained in the MIDS versus other conditions. Post-exercise cramp prevalence was greater in the CE (p < 0.05) and trended higher with W (p = 0.083) compared to the MIDS condition. Post-exercise cramp severity was also elevated with the W and CE beverages (p < 0.05) but not the MIDS (p = 0.211). CONCLUSIONS The MIDS did not affect 5-km time trial performance but exhibited favorable effects on blood electrolyte and post-exercise self-reporting cramp outcomes compared to the CE and W drinks.
Collapse
Affiliation(s)
- Mason C. McIntosh
- Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, School of Kinesiology, Auburn, AL, USA
| | - Bradley A. Ruple
- Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, School of Kinesiology, Auburn, AL, USA
| | - Nicholas J. Kontos
- Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, School of Kinesiology, Auburn, AL, USA
| | - Madison L. Mattingly
- Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, School of Kinesiology, Auburn, AL, USA
| | | | - Michael D. Roberts
- Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, School of Kinesiology, Auburn, AL, USA
| |
Collapse
|
2
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Zawieja E, Drabińska N, Jeleń H, Szwengiel A, Durkalec-Michalski K, Chmurzynska A. Betaine supplementation modulates betaine concentration by methylenetetrahydrofolate reductase genotype, but has no effect on amino acid profile in healthy active males: A randomized placebo-controlled cross-over study. Nutr Res 2024; 127:63-74. [PMID: 38876040 DOI: 10.1016/j.nutres.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to MTHFR genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (n = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, P < .001), with a greater increase observed in MTHFR (C677T, rs180113) T-allele carriers compared to CC (P = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, P = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, P = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, P = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on MTHFR genotype.
Collapse
Affiliation(s)
- Emilia Zawieja
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Natalia Drabińska
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Henryk Jeleń
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
4
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
5
|
Di Credico A, Gaggi G, Izzicupo P, Vitucci D, Buono P, Di Baldassarre A, Ghinassi B. Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes. J Histochem Cytochem 2023; 71:199-209. [PMID: 37013268 PMCID: PMC10149894 DOI: 10.1369/00221554231165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 04/05/2023] Open
Abstract
Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| |
Collapse
|
6
|
The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression. Nutrients 2022; 14:nu14235040. [PMID: 36501070 PMCID: PMC9739923 DOI: 10.3390/nu14235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare the impacts of a potential blood flow restriction (BFR)-betaine synergy on one-leg press performance, lactate concentrations, and exercise-associated biomarkers. Eighteen recreationally trained males (25 ± 5 y) were randomized to supplement 6 g/day of either betaine anhydrous (BET) or cellulose placebo (PLA) for 14 days. Subsequently, subjects performed four standardized sets of one-leg press and two additional sets to muscular failure on both legs (BFR [LL-BFR; 20% 1RM at 80% arterial occlusion pressure] and high-load [HL; 70% 1RM]). Toe-tip lactate concentrations were sampled before (PRE), as well as immediately (POST0), 30 min (POST30M), and 3 h (POST3H) post-exercise. Serum homocysteine (HCY), growth hormone (GH) and insulin-like growth factor-1 concentrations were additionally assessed at PRE and POST30M. Analysis failed to detect any significant between-supplement differences for total repetitions completed. Baseline lactate changes (∆) were significantly elevated from POST0 to POST30 and from POST30 to POST3H (p < 0.05), whereby HL additionally demonstrated significantly higher ∆Lactate versus LL-BFR (p < 0.001) at POST3H. Although serum ∆GH was not significantly impacted by supplement or condition, serum ∆IGF-1 was significantly (p = 0.042) higher in BET versus PLA and serum ∆HCY was greater in HL relative to LL-BFR (p = 0.044). Although these data fail to support a BFR-betaine synergy, they otherwise support betaine’s anabolic potential.
Collapse
|
7
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
8
|
Yang MT, Lin HW, Chuang CY, Wang YC, Huang BH, Chan KH. Effects of 6-Week Betaine Supplementation on Muscular Performance in Male Collegiate Athletes. BIOLOGY 2022; 11:biology11081140. [PMID: 36009767 PMCID: PMC9404903 DOI: 10.3390/biology11081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the effects of 6-week betaine supplementation during a preparatory period of collegiate athletes on muscular power and strength. Sixteen male collegiate athletes received 5 g/day of betaine (betaine group, n = 9) or carboxymethyl cellulose (placebo group, n = 7) for 6 weeks. All participants engaged in their regular training during the experimental period. The overhead medicine-ball throw (OMBT), countermovement jump, and maximal strength (one repetition maximum, 1-RM) on the bench press, overhead press, half squat, and sumo dead lift by the participants were assessed before and after betaine supplementation. Blood lipids were also analyzed before and after betaine supplementation. After supplementation, there were no significant differences between betaine and placebo groups on any variables. Compared to presupplementation, the performance of OMBT and 1-RM of overhead press and half squat in the betaine group had significantly improved (p < 0.05). By contrast, no significant differences were observed in the placebo group before and after supplementation. Blood analysis revealed no negative effect on blood lipid profiles. Betaine seems to be a useful nutritional strategy to improve and maintain performance during 6-week preparatory periods in collegiate athletes.
Collapse
Affiliation(s)
- Ming-Ta Yang
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan;
- Clinical Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ho-Wei Lin
- School of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chih-Yuan Chuang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-Y.C.); (Y.-C.W.)
| | - Yin-Chun Wang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-Y.C.); (Y.-C.W.)
| | - Bo-Huei Huang
- Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown 2006, Australia;
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (C.-Y.C.); (Y.-C.W.)
- Correspondence: ; Tel.: +886-3-3283-3201 (ext. 2423)
| |
Collapse
|
9
|
The Role of Betaine in Patients With Chronic Kidney Disease: a Narrative Review. Curr Nutr Rep 2022; 11:395-406. [PMID: 35792998 DOI: 10.1007/s13668-022-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This narrative review aimed to explore the functions of betaine and discuss its role in patients with chronic kidney disease (CKD). RECENT FINDINGS Some studies on CKD animal models have shown the benefits of betaine supplementation, including decreased kidney damage, antioxidant recovery status, and decreased inflammation. Betaine (N-trimethylglycine) is an N-trimethylated amino acid with an essential regulatory osmotic function. Moreover, it is a methyl donor and has anti-inflammatory and antioxidant properties. Additionally, betaine has positive effects on intestinal health by regulating the osmolality and gut microbiota. Due to these crucial functions, betaine has been studied in several diseases, including CKD, in which betaine plasma levels decline with the progression of the disease. Low betaine levels are linked to increased kidney damage, inflammation, oxidative stress, and intestinal dysbiosis. Furthermore, betaine is considered an essential metabolite for identifying CKD stages.
Collapse
|
10
|
Arazi H, Aboutalebi S, Taati B, Cholewa JM, Candow DG. Effects of short-term betaine supplementation on muscle endurance and indices of endocrine function following acute high-intensity resistance exercise in young athletes. J Int Soc Sports Nutr 2022; 19:1-16. [PMID: 35599921 PMCID: PMC9116406 DOI: 10.1080/15502783.2022.2041988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective This study examined the effects of short-term betaine supplementation on muscle endurance, plasma lactate, testosterone and cortisol levels, and the testosterone to cortisol (T/C) ratio in response to acute resistance exercise (RE). Method Using a double-blind, crossover study design, 10 handball players (age ± SD = 16 ± 1 yrs) without prior-structured RE experience performed a high-intensity RE session (leg press followed by bench press; 5 sets to volitional fatigue using 80% baseline 1 repetition maximum (1RM)), before and after 14 days of either placebo (maltodextrin) or betaine (2.5 g·d−1) supplementation. A 30-day washout period separated each treatment. 48 h prior to testing sessions, participants recorded their food intake and did not perform strenuous exercise. Venous blood was sampled before supplementation, and before and after each RE session. Results After betaine supplementation, participants performed more repetitions (p < 0.001) during the leg press (Betaine: 35.8 ± 4.3; Placebo: 24.8 ± 3.6, Cohen’s d = 2.77) and bench press (Betaine: 36.3 ± 2.6; Placebo: 26.1 ± 3.5, Cohen’s d = 3.34). Betaine resulted in lower post-exercise cortisol (Betaine: 7.6 ± 1.7; Placebo: 13 ± 3.4 µg.dL−1, p = 0.003, generalized eta squared (ηG2) = 0.49) and lactate (Betaine: 5.2 ± 0.3; Placebo: 6 ± 0.3 mmol.L−1, p < 0.001, ηG2 = 0.96) and higher total testosterone (Betaine: 15.2 ± 2.2; Placebo: 8.7 ± 1.7 ng.mL−1, p < 0.001, ηG2 = 0.87) and T/C ratio (Betaine: 0.21 ± 0.05; Placebo: 0.07 ± 0.02, p < 0.001, = 0.82). Conclusions Two weeks of betaine supplementation improved upper- and lower-body muscle endurance and influenced indices of endocrine function following an acute session of high-intensity RE in adolescent handball players.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Shima Aboutalebi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Jason M. Cholewa
- Department of Exercise Physiology, College of Health Sciences, University of Lynchburg, Lynchburg, VA USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
11
|
Human Serum Betaine and Associated Biomarker Concentrations Following a 14 Day Supplemental Betaine Loading Protocol and during a 28 Day Washout Period: A Pilot Investigation. Nutrients 2022; 14:nu14030498. [PMID: 35276860 PMCID: PMC8839982 DOI: 10.3390/nu14030498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Several previous investigations have employed betaine supplementation in randomized controlled crossover designs to assess its ostensible ergogenic potential. Nevertheless, prior methodology is predicated on limited pharmacokinetic data and an appropriate betaine-specific washout period is hitherto undescribed. The purpose of the present pilot investigation was therein to determine whether a 28 day washout period was sufficient to return serum betaine concentrations to baseline following a supplementation protocol. Five resistance-trained men (26 ± 6 y) supplemented with 6 g/day betaine anhydrous for 14 days and subsequently visited the lab 10 additional times during a 28 day washout period. Participants underwent venipuncture to assess serum betaine and several other parameters before (PRE) and periodically throughout the washout timeframe (POST0, -4, -7, -10, -13, -16, -19, -22, -25 and -28). All analyses were performed at a significance level of p < 0.05. While analyses failed to detect any differences in any other serum biomarker (p > 0.05), serum betaine was significantly elevated from PRE-to-POST0 (p = 0.047; 2.31 ± 1.05 to 11.1 ± 4.91 µg·mL−1) and was statistically indistinguishable from baseline at POST4 (p = 1.00). Nevertheless, visual data assessment and an inability to assess skeletal muscle concentrations would otherwise suggest that a more conservative 7 day washout period is sufficient to truly return both serum-and-skeletal muscle betaine content to pre-supplementation levels.
Collapse
|
12
|
Nobari H, Cholewa JM, Castillo-Rodríguez A, Kargarfard M, Pérez-Gómez J. Effects of chronic betaine supplementation on performance in professional young soccer players during a competitive season: a double blind, randomized, placebo-controlled trial. J Int Soc Sports Nutr 2021; 18:67. [PMID: 34663363 PMCID: PMC8525016 DOI: 10.1186/s12970-021-00464-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Various nutritional strategies are adopted for athletes to maintain and to improve performance during the competition season. Betaine may enhance performance during a competitive season by increasing the testosterone to cortisol ratio and reducing systemic inflammation. The aim of this study was to investigate the effect of betaine supplementation on the bio-motor abilities in young professional soccer players. METHODS Twenty-nine young professional soccer players (age, 15.5±0.3 years) were matched by position and randomly assigned to one of two groups for 14 weeks: betaine (BG, 2 g/day; n=14) or placebo (PG n=15). Diet was standardized by a nutritionist, and measures of muscular power (countermovement jump: CMJ), change of direction: modified 5-0-5), acceleration (10 m sprint), sprint performance (30 m sprint time: SpT), muscular strength (leg press and bench press one repetition maximum: 1-RM), repeated sprint ability (running-based anaerobic sprint test: RAST), and aerobic capacity (30-15 intermittent fitness test) were assessed in the pre (P1), mid (P2) and post (P3) season over the course of 5 days. All subjects participated in one soccer match and five training sessions per week. RESULTS Significant (p < 0.05) group x time interactions were found for maximal oxygen uptake (VO2max), anaerobic peak power, and muscular strength favoring BG at P2 and P3 compared to P1. There were meaningful (p < 0.05) group x time interactions for CMJ, SpT, and peak power during the RAST that favored the BG. CONCLUSIONS 14-week of betaine supplementation increased predicted 1-RM, VO2max, and repeated sprint ability performance in youth professional soccer players. Betaine supplementation seems to be a useful nutritional strategy to improve and to maintain performance during a competitive soccer season.
Collapse
Affiliation(s)
- Hadi Nobari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, 81746- 7344, Isfahan, Iran.
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
| | - Jason M Cholewa
- Department of Exercise Physiology, College of Health Sciences, University of Lynchburg, 24501, Lynchburg, VA, USA
| | | | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, 81746- 7344, Isfahan, Iran
| | - Jorge Pérez-Gómez
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
13
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Waldman HS, Bryant AR, McAllister MJ. Effects of Betaine Supplementation on Markers of Metabolic Flexibility, Body Composition, and Anaerobic Performance in Active College-Age Females. J Diet Suppl 2021; 20:89-105. [PMID: 34477469 DOI: 10.1080/19390211.2021.1973644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Betaine (BET) has shown to be effective in improving body composition and performance, although research in women is lacking. This study investigated the effects of BET supplementation on markers of metabolic flexibility, body composition, and anaerobic performance in college females. Twenty-three active subjects with 21.8 ± 3.0 years of age, 66.6 ± 8.8 kg body mass, 1.6 ± 0.1 m height, and 23.2 ± 5.3% body fat performed a graded exercise test on a cycle ergometer consisting of 4 incremental, 3 min stages for collection of fat and carbohydrate oxidation rates. Three 10 s sprint tests were then completed against a resistance of 7.5% of body mass, separated by 2.5 min of recovery. The study comprised 3 phases: (a) pre-supplementation, (b) randomization to supplement for 2-weeks with either 2.4 g/day BET or placebo (parallel design), and (c) post-supplementation. Repeated-measures analysis of variance were conducted to determine interactions or main effects. There were no group differences for substrate oxidation rates (p > 0.05). Although body composition improved pre-post for both groups (p < 0.05), only the BET group experienced a significant increase in fat free mass (p < 0.01; ∼3%). Further, only the BET group experienced improvements to performance such as a higher mean power output during the final sprint (p = 0.02; ∼3%) and a lower RPE during the final stage of the graded exercise test (p = 0.02). Results from this study suggest BET supplementation may improve body composition and some markers of performance during exercise in collegiate women.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, AL, USA
| | - Andrea R Bryant
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, AL, USA
| | - Matthew J McAllister
- Metabolic and Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| |
Collapse
|
15
|
Van Every DW, Plotkin DL, Delcastillo K, Cholewa J, Schoenfeld BJ. Betaine Supplementation: A Critical Review of Its Efficacy for Improving Muscle Strength, Power, and Body Composition. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Nicoll JX, Fry AC, Mosier EM. Androgen and glucocorticoid receptor phosphorylation following resistance exercise and pre-workout supplementation. Steroids 2021; 172:108859. [PMID: 33974920 DOI: 10.1016/j.steroids.2021.108859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE Consumption of caffeine or caffeine containing pre-workout supplements (SUPP) augments steroid hormone responses to resistance exercise (RE). However, the activation of glucocorticoid (GR) and androgen receptors (AR) following RE SUPP has not been investigated. The purpose of this study was to determine the influence of a pre-workout supplement on AR and GR phosphorylation following RE. METHODS In a randomized, counter-balanced, double-blind, placebo-controlled, within-subject crossover study, ten resistance-trained males ((X¯±SD, age = 22 ± 2.4 yrs, hgt = 175 ± 7 cm, body mass = 84.1 ± 11.8 kg) performed four sets of 8 repetitions of barbell back squats at 75% of their 1-repetition maximum (1-RM) with two minutes of rest between sets and a fifth set of barbell back squats at 60% of 1-RM until concentric failure. A SUPP or flavor and color matched placebo (PL) was consumed 60-minutes prior to RE. Vastus lateralis muscle biopsies were obtained prior to supplementation at rest (BL), and ten minutes post-exercise (POST). Biopsies were analyzed for phosphorylated GR (ser134, ser211, and ser226) and phosphorylated AR (ser81, ser213, ser515, ser650) via western blotting. RESULTS pGRser134 decreased, and pGRser226 increased following RE (p < 0.05) with no difference between conditions (p > 0.05). pGRser211 was unchanged after RE (p > 0.05). pARser515 increased, and total AR expression decreased after RE (p < 0.05) in SUPP only. Testosterone and cortisol were not different between SUPP and PL at POST (p > 0.05). CONCLUSION RE influences AR and GR phosphorylation, and SUPP minimally influences this response in the early recovery period.
Collapse
Affiliation(s)
- Justin X Nicoll
- California State University, Northridge, Department of Kinesiology, Northridge, CA, USA.
| | - Andrew C Fry
- University of Kansas, Department of Health, Sport, and Exercise Sciences, Lawrence, KS, USA.
| | - Eric M Mosier
- Northwest Missouri State University, School of Health Science and Wellness, Maryville, MO, USA.
| |
Collapse
|
17
|
Nobari H, Cholewa JM, Pérez-Gómez J, Castillo-Rodríguez A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: a double blind, randomized, placebo-controlled trial. J Int Soc Sports Nutr 2021; 18:42. [PMID: 34090451 PMCID: PMC8180114 DOI: 10.1186/s12970-021-00441-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Systemic elevations in pro-inflammatory cytokines are a marker of non-functional over reaching, and betaine has been shown to reduce the secretion of pro-inflammatory cytokines in vitro. The aim of this study was to investigate the effects of betaine supplementation on tumor necrosis factor alpha (TNF-α), interleukins-1 beta (IL-1β), − 6 (IL-6) and the complete blood cell (CBC) count in professional youth soccer players during a competitive season. Methods Twenty-nine soccer players (age, 15.5 ± 0.3 years) were randomly divided into two groups based on playing position: betaine group (BG, n = 14, 2 g/day) or placebo group (PG, n = 15). During the 14-week period, training load was matched and well-being indicators were monitored daily. The aforementioned cytokines and CBC were assessed at pre- (P1), mid- (P2), and post- (P3) season. Results Significant (p < 0.05) group x time interactions were found for TNF-α, IL-1β, and IL-6. These variables were lower in the BG at P2 and P3 compared to P1, while IL-1β was greater in the PG at P3 compared to P1 (p = 0.033). The CBC count analysis showed there was significant group by time interactions for white blood cells (WBC), red blood cells (RBC), hemoglobin (Hb), and mean corpuscular hemoglobin concentration (MCHC). WBC demonstrated increases at P3 compared to P2 in PG (p = 0.034); RBC was less at P3 compared to P1 in BG (p = 0.020); Hb was greater at P2 compared to P1, whilst it was less at P3 compared to P3 for both groups. MCHC was greater at P3 and P2 compared to P1 in BG, whereas MCHC was significantly lower at P3 compared to P2 in the PG (p = 0.003). Conclusion The results confirmed that 14 weeks of betaine supplementation prevented an increase in pro-inflammatory cytokines and WBC counts. It seems that betaine supplementation may be a useful nutritional strategy to regulate the immune response during a fatiguing soccer season.
Collapse
Affiliation(s)
- Hadi Nobari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, 81746-7344, Iran.
| | - Jason M Cholewa
- Department of Exercise Physiology, College of Health 587 Sciences, University of Lynchburg, Lynchburg, 24501, VA, USA
| | - Jorge Pérez-Gómez
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, Cáceres, 10003, Spain
| | | |
Collapse
|
18
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
19
|
Boshuizen B, Moreno de Vega CV, De Maré L, de Meeûs C, de Oliveira JE, Hosotani G, Gansemans Y, Deforce D, Van Nieuwerburgh F, Delesalle C. Effects of Aleurone Supplementation on Glucose-Insulin Metabolism and Gut Microbiome in Untrained Healthy Horses. Front Vet Sci 2021; 8:642809. [PMID: 33912605 PMCID: PMC8072273 DOI: 10.3389/fvets.2021.642809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
Aleurone, a layer of the bran fraction, is deemed to be responsible for the positive health effects associated with the consumption of whole-grain products. Studies on rodents, pigs, and humans report beneficial effects of aleurone in five main areas: the reduction of oxidative stress, immunomodulatory effects, modulation of energy management, digestive health, and the storage of vitamins and minerals. Our study is the first aleurone supplementation study performed in horses. The aim of this study was to investigate the effect of an increase in the dose levels of aleurone on the postprandial glucose-insulin metabolism and the gut microbiome in untrained healthy horses. Seven adult Standardbred horses were supplemented with four different dose levels of aleurone (50, 100, 200, and 400 g/day for 1 week) by using a Latin square model with a 1-week wash out in between doses. On day 7 of each supplementation week, postprandial blood glucose-insulin was measured and fecal samples were collected. 16S ribosomal RNA (rRNA) gene sequencing was performed and QIIME2 software was used for microbiome analysis. Microbial community function was assessed by using the predictive metagenome analysis tool Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and using the Metacyc database of metabolic pathways. The relative abundancies of a pathway were analyzed by using analysis of composition of microbiomes (ANCOM) in R. There was a significant dose-dependent increase in the postprandial time to peak of glucose (p = 0.030), a significant delay in the time to peak of insulin (p = 0.025), and a significant decrease in both the insulin peak level (p = 0.049) and insulin area under the curve (AUC) (p = 0.019) with increasing dose levels of aleurone, with a consideration of 200 g being the lowest significant dose. Alpha diversity and beta diversity of the fecal microbiome showed no significant changes. Aleurone significantly decreased the relative abundance of the genera Roseburia, Shuttleworthia, Anaerostipes, Faecalibacter, and Succinovibrionaceae. The most pronounced changes in the relative abundance at phyla level were seen in Firmicutes and Verrucomicrobia (downregulation) and Bacteroidetes and Spirochaetes (upregulation). The PICRUSt analysis shows that aleurone induces a downregulation of the degradation of L-glutamate and taurine and an upregulation of the three consecutive pathways of the phospholipid membrane synthesis of the Archaea domain. The results of this study suggest a multimodal effect of aleurone on glucose-insulin metabolism, which is most likely to be caused by its effect on feed texture and subsequent digestive processing; and a synergistic effect of individual aleurone components on the glucose-insulin metabolism and microbiome composition and function.
Collapse
Affiliation(s)
- Berit Boshuizen
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lorie De Maré
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Small Animals and Horses, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Constance de Meeûs
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Catherine Delesalle
- Research Group of Comparative Physiology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
20
|
Nobari H, Kargarfard M, Minasian V, Cholewa JM, Pérez-Gómez J. The effects of 14-week betaine supplementation on endocrine markers, body composition and anthropometrics in professional youth soccer players: a double blind, randomized, placebo-controlled trial. J Int Soc Sports Nutr 2021; 18:20. [PMID: 33663545 PMCID: PMC7934563 DOI: 10.1186/s12970-021-00417-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Betaine supplementation may enhance body composition outcomes when supplemented chronically during an exercise program. The purpose of this study was to evaluate the effect of betaine supplementation on development-related hormones, body composition, and anthropometrics in professional youth soccer players during a competitive season. Methods Twenty-nine players (age, 15.45 ± 0.25 years) were matched based upon position and then randomly assigned to a betaine group (2 g/day; n = 14, BG) or placebo group (PG, n = 15). All subjects participated in team practices, conditioning, and games. If a subject did not participate in a game, a conditioning protocol was used to ensure workload was standardized throughout the 14-week season. Growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, cortisol, height, weight, and body composition were assessed at pre-season (P1), mid-season (P2) and post-season (P3). Anthropometric variables were also measured following a one-year follow-up (F). Results Significant (p < 0.05) group x time interactions were found for testosterone and testosterone to cortisol ratio (T/C). Both variables were greater in BG at P2 and P3 compared to P1, however, the testosterone was less in the PG at P3 compared to P2. There was no significant group by time interactions for GH, IGF-1, lean body mass, or body fat. There was a significant (p < 0.05) group x time interaction in height and weight at F, with the greater increases in BG compared to PG. Conclusion Betaine supplementation increased testosterone levels and T/C ratio in youth professional soccer players during a competitive season. Betaine supplementation had no negative effects on growth (height and weight) and may attenuate reductions in testosterone due to intense training during puberty. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00417-5.
Collapse
Affiliation(s)
- Hadi Nobari
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Vazgen Minasian
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Jason M Cholewa
- Department of Exercise Physiology, College of Health Sciences, University of Lynchburg, Lynchburg, VA, 24501, USA.
| | - Jorge Pérez-Gómez
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
21
|
Liu F, Ford EM, Brewster CJ, Henman DJ, Smits RJ. Effects of duration of betaine supplementation on growth performance and blood IGF-1 in light- and normal-weight weaner pigs under commercial conditions. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Betaine supplementation has been reported to increase insulin-like growth factor 1 (IGF-1) in pigs. Betaine is not generally added to weaner pig diets due to a lack of knowledge on the duration of supplementation and effect on targeted bodyweight class. Light-weight weaners, known for their inferior growth performance, may benefit from betaine supplementation during the early days post-weaning.
Aims
This experiment aimed to identify the timing of betaine supplementation over the weaner phase (early (0–7 days) or late (7–35 days) post-weaning periods) and targeted weaning weight class (light vs normal).
Methods
The experiment followed a 2 × 2 × 2 factorial arrangement for studying the effects of 0.1% betaine supplementation during early (0–7 days post-weaning) and late (7–35 days post-weaning) weaner phase in light-weight and normal-weight weaners. One hundred and forty-four pens (18 pigs/pen) of weaned pigs (26 days age) were allocated into a 2 × 2 × 2 factorial arrangement on the basis of weaning weight class ((light (3.6 ± 0.75 kg, mean ± s.d.) vs normal (6.6 ± 0.84 kg, mean ± s.d.)), early weaner phase diet (control vs 0.1% betaine) and late weaner phase diet (control vs 0.1% betaine). Basal diets contained sufficient methionine and choline as per industry practice. Growth performance during early, late and whole weaner phase were recorded. Blood IGF-1 was measured at 7 days and 35 days post-weaning.
Key results
Supplementing 0.1% betaine during the early weaner phase reduced (P < 0.05) growth rate over the early post-weaning period (0–7 days) in both light- and normal-weight weaners, although blood IGF-1 concentration (7 days post-weaning) was not affected. Betaine supplementation during early or late weaner phase did not affect growth performance over the late weaner phase (7–35 days), whole weaner phase (0–35 days) or blood IGF-1 concentration (35 days) of light- or normal-weight weaners. Light-weight weaners had a lower feed intake, and a lower average daily gain than did the normal-weight weaners during the early, late and whole post-weaning periods (all P < 0.01).
Conclusions
Light-weight weaners had inferior production performance during the weaner phase, which was not improved by betaine supplementation.
Implications
Betaine supplementation is not recommended in the weaner phase when other dietary methyl donors are sufficient.
Collapse
|
22
|
Yang MT, Lee XX, Huang BH, Chien LH, Wang CC, Chan KH. Effects of Two-Week Betaine Supplementation on Apoptosis, Oxidative Stress, and Aerobic Capacity after Exhaustive Endurance Exercise. Antioxidants (Basel) 2020; 9:E1189. [PMID: 33260915 PMCID: PMC7760816 DOI: 10.3390/antiox9121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the effects of 2 weeks of betaine supplementation on apoptosis, oxidative stress, and aerobic capacity after exhaustive endurance exercise (EEE). A double-blind, crossover, and counterbalanced design was adopted, with 10 healthy male participants asked to consume betaine (1.25 g of betaine mixed with 300 mL of sports beverage, twice per day for 2 weeks) or placebo (300 mL of sports beverage). All participants performed a graded exercise test on a treadmill to determine the maximal oxygen consumption (VO2max) before supplementation and then performed the EEE test at an intensity of 80% VO2max after 2 weeks of supplementation. The time to exhaustion, peak oxygen consumption, maximal heart rate, and average heart rate were recorded during the EEE test. Venous blood samples were drawn before, immediately after, and 3 h after the EEE test to assess apoptosis and the mitochondrial transmembrane potential (MTP) decline of lymphocytes as well as the concentrations of thiobarbituric acid reactive substance and protein carbonyl. The results indicated that lymphocyte apoptosis was significantly higher immediately after and 3 h after EEE than before exercise in participants in the placebo trial. However, lymphocyte apoptosis exhibited no significant differences among the three time points in participants in the betaine trial. Moreover, apoptosis in the betaine trial was significantly lower immediately after and 3 h after exercise compared with the placebo trial. No differences were noted for other variables. Thus, 2 weeks of betaine supplementation can effectively attenuate lymphocyte apoptosis, which is elevated by EEE. However, betaine supplementation exhibited no effects on MTP decline, oxidative stress, or aerobic capacity.
Collapse
Affiliation(s)
- Ming-Ta Yang
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan;
| | - Xiu-Xin Lee
- Department of Primary Care Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
| | - Bo-Huei Huang
- Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia;
| | - Li-Hui Chien
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| | - Chia-Chi Wang
- Office of Physical Education, National Taipei University of Business, Taipei 10051, Taiwan;
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 333325, Taiwan;
| |
Collapse
|
23
|
Dos Santos Quaresma MVL, Guazzelli Marques C, Nakamoto FP. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: A systematic review of clinical studies. Nutrition 2020; 82:110994. [PMID: 33051114 DOI: 10.1016/j.nut.2020.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
CrossFit (CF) is characterized as a constantly varied, high-intensity, functional movement training program, performed with little or no rest between bouts, combining strength and endurance exercises, such as running, cycling, rowing, Olympic weightlifting, power weightlifting, and gymnastic-type exercises. Several nutritional strategies are used to improve sports performance of CF practitioners; however, most of them are empirical and lack scientific evidence. Thus, the aim of this review was to determine the effects of diet intervention, dietary supplements, and performance-enhancing substances on exercise-performance parameters of CF practitioners. MEDLINE/PubMed, Web of Science, LILACS, SciELO, and Scopus databases were searched using specific Medical Subject Headings and keywords for clinical studies that enrolled CF athletes in an intervention using diet, dietary supplements, or performance-enhancing substances. Athletic performance was considered as the primary outcome. No other filters were applied. Including grey literature search, 219 studies were identified; however only 14 studies met the eligibility criteria. Two studies evaluated the effects of caffeine supplementation on exercise performance; five studies evaluated high- or low-carbohydrate effects on performance and other parameters. One study verified the effects of multi-ingredient supplementation on CF-specific performance and body composition. One study compared the intake of protein supplements on performance and body composition. Two studies assessed the effect of green tea and (-)-epicatechin on performance and other parameters. One study evaluated the effects of nitrate supplementation on exercise performance. One study investigated the effect of betaine supplementation on body composition and muscle performance. Finally, one study examined the effects of sodium bicarbonate (SB) ingestion on exercise performance and aerobic capacity. Only SB supplementation improved CF performance. These outcomes may have been obtained due to methodological limitations such as small sample size, lack of control over influencing variables, short period of exercise intervention. Despite the popularity and growing evidence about CF, little is known about the relationship between performance-enhancing substances or dietary interventions and CF performance. Given the lack of scientific evidence, new studies with potential ergogenic supplements, a better methodological model, and practical application are required.
Collapse
|
24
|
Machek SB, Cardaci TD, Willoughby DS. Blood Flow Restriction Training and Betaine Supplementation as a Novel Combined Modality to Augment Skeletal Muscle Adaptation: A Short Review. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Beckner ME, Pihoker AA, Darnell ME, Beals K, Lovalekar M, Proessl F, Flanagan SD, Arciero PJ, Nindl BC, Martin BJ. Effects of Multi-ingredient Preworkout Supplements on Physical Performance, Cognitive Performance, Mood State, and Hormone Concentrations in Recreationally Active Men and Women. J Strength Cond Res 2020; 36:2493-2501. [PMID: 32569125 DOI: 10.1519/jsc.0000000000003660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beckner, ME, Pihoker, AA, Darnell, ME, Beals, K, Lovalekar, M, Proessl, F, Flanagan, SD, Arciero, PJ, Nindl, BC, and Martin, BJ. Effects of multi-ingredient preworkout supplements on physical performance, cognitive performance, mood state, and hormone concentrations in recreationally active men and women. J Strength Cond Res XX(X): 000-000, 2020-Performance enhancement supplement research has primarily focused on the effectiveness of individual ingredients, rather than the combination. This study investigated the acute effects of 2 multi-ingredient preworkout supplements (MIPS), with beta-alanine and caffeine (BAC) and without (NBAC), compared with placebo (PLA) on anaerobic performance, endurance capacity, mood state, cognitive function, vascular function, and anabolic hormones. Thirty exercise-trained individuals (24.4 ± 4.9 years, 15 men and 15 women) completed a fatiguing exercise protocol on 3 separate occasions, 30 minutes after ingestion of BAC, NBAC, or PLA. Outcomes were analyzed using one-way or two-way repeated-measures analysis of variance, as appropriate (alpha = 0.05). Anaerobic power was greater when supplementing with NBAC (10.7 ± 1.2 W·kg) and BAC (10.8 ± 1.4 W·kg) compared with PLA (10.4 ± 1.2 W·kg) (p = 0.014 and p = 0.022, respectively). BAC improved V[Combining Dot Above]O2peak time to exhaustion (p = 0.006), accompanied by an increase in blood lactate accumulation (p < 0.001), compared with PLA. Both NBAC and BAC demonstrated improved brachial artery diameter after workout (p = 0.041 and p = 0.005, respectively), but PLA did not. L-arginine concentrations increased from baseline to postsupplement consumption of BAC (p = 0.017). Reaction time significantly decreased after exercise for all supplements. There was no effect of supplement on mood states. Exercise-trained individuals looking to achieve modest improvements in power and endurance may benefit from consuming MIPS before exercise.
Collapse
Affiliation(s)
- Meaghan E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexis A Pihoker
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew E Darnell
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kim Beals
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mita Lovalekar
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Felix Proessl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul J Arciero
- Health & Human Physiological Sciences Department, Skidmore College, Saratoga Springs, New York
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Betaine Supplementation Does Not Improve Muscle Hypertrophy or Strength Following 6 Weeks of Cross-Fit Training. Nutrients 2020; 12:nu12061688. [PMID: 32516959 PMCID: PMC7352895 DOI: 10.3390/nu12061688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
We aim to investigate the effect of 6 weeks of betaine supplementation on body composition and muscle performance during CrossFit© training. Twenty-nine subjects matched for training status (4.16 ± 0.95 day/week) and body fat mass (12.66 ± 4.08%) were randomly assigned to a betaine (BET; N = 14) or placebo group (PLA; N = 15). Body composition and cellular hydration were estimated with skinfolds measurement and bioelectrical impendence before and after 6 weeks of training. Muscle performance was assessed using three different tests: 3-RM back-squat for muscle strength, 2 km rowing test for aerobic capacity and Bergeron Beep Test for anaerobic capacity. Muscle strength assessed during back squat significantly increased in BET (p = 0.04) but not in the PLA group, however, there were no statistical differences between groups. Although not significant, fat mass was reduced in BET compared to PLA. Overall, body composition and cell hydration measurements did not change in response to training or betaine supplementation. Short-term (6 weeks) betaine supplementation supports muscle strength but was not ergogenic for trained subjects to aerobic and anaerobic performance in the CrossFit©-specific test.
Collapse
|
27
|
Gonzalez AM, Church DD, Townsend JR, Bagheri R. Emerging Nutritional Supplements for Strength and Hypertrophy: An Update of the Current Literature. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Anserine Reverses Exercise-Induced Oxidative Stress and Preserves Cellular Homeostasis in Healthy Men. Nutrients 2020; 12:nu12041146. [PMID: 32325914 PMCID: PMC7231017 DOI: 10.3390/nu12041146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
The study tested whether anserine (beta-alanyl-3-methyl-l-histidine), the active ingredient of chicken essence affects exercise-induced oxidative stress, cell integrity, and haematology biomarkers. In a randomized placebo-controlled repeated-measures design, ten healthy men ingested anserine in either a low dose (ANS-LD) 15 mg·kg−1·bw−1, high dose (ANS-HD) 30 mg·kg−1·bw−1, or placebo (PLA), following an exercise challenge (time to exhaustion), on three separate occasions. Anserine supplementation increased superoxide dismutase (SOD) by 50% (p < 0.001, effect size d = 0.8 for both ANS-LD and ANS-HD), and preserved catalase (CAT) activity suggesting an improved antioxidant activity. However, both ANS-LD and ANS-HD elevated glutathione disulfide (GSSG), (both p < 0.001, main treatment effect), and consequently lowered the glutathione to glutathione disulfide (GSH/GSSG) ratio compared with PLA (p < 0.01, main treatment effect), without significant effects on thiobarbituric acid active reactive substances (TBARS). Exercise-induced cell damage biomarkers of glutamic-oxaloacetic transaminase (GOT) and myoglobin were unaffected by anserine. There were slight but significant elevations in glutamate pyruvate transaminase (GPT) and creatine kinase isoenzyme (CKMB), especially in ANS-HD (p < 0.05) compared with ANS-LD or PLA. Haematological biomarkers were largely unaffected by anserine, its dose, and without interaction with post exercise time-course. However, compared with ANS-LD and PLA, ANS-HD increased the mean cell volume (MCV), and decreased the mean corpuscular haemoglobin concentration (MCHC) (p < 0.001). Anserine preserves cellular homoeostasis through enhanced antioxidant activity and protects cell integrity in healthy men, which is important for chronic disease prevention. However, anserine temporal elevated exercise-induced cell-damage, together with enhanced antioxidant activity and haematological responses suggest an augmented exercise-induced adaptative response and recovery.
Collapse
|
29
|
Abobaker H, Hu Y, Omer NA, Hou Z, Idriss AA, Zhao R. Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. J Anim Sci Biotechnol 2019; 10:87. [PMID: 31827786 PMCID: PMC6862747 DOI: 10.1186/s40104-019-0396-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.
Collapse
Affiliation(s)
- Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,3College of Allied Medical Sciences, University of Nyala, 155 Nyala, Sudan
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
30
|
Schwarz NA, McKinley-Barnard SK, Blahnik ZJ. Effect of Bang® Pre-Workout Master Blaster® combined with four weeks of resistance training on lean body mass, maximal strength, mircoRNA expression, and serum IGF-1 in men: a randomized, double-blind, placebo-controlled trial. J Int Soc Sports Nutr 2019; 16:54. [PMID: 31744521 PMCID: PMC6862793 DOI: 10.1186/s12970-019-0310-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background The aim of the current study was to determine if 4 weeks of consumption of Bang® Pre-Workout Master Blaster® (BMB; Vital Pharmaceuticals Inc., Weston, FL) combined with resistance training resulted in greater increases in muscle mass and maximal strength compared with resistance training combined with placebo (PLA). Additionally, we aimed to determine if BMB ingestion combined with resistance training preferentially altered resting skeletal muscle expression of microRNAs (miRs) or resting serum insulin-like growth factor (IGF-1). Methods Sixteen recreationally-active men completed the study. The study employed a block-randomized, double-blind, placebo-controlled, parallel design. Participants completed two testing sessions separated by 4 weeks of resistance exercise combined with daily supplementation of BMB or PLA. At each testing session, hemodynamics, body composition, and muscle and blood samples were obtained followed by strength assessments of the lower- and upper-body via measurement of squat and bench press one-repetition maximum (1-RM), respectively. A separate general linear model was utilized for analysis of each variable to determine the effect of each supplement (between-factor) over time (within-factor) using an a priori probability level of ≤0.05. Results No significant effects were observed for dietary intake, hemodynamics, fat mass, body fat percentage, or serum IGF-1. A greater increase in total body mass (3.19 kg, 95% CI, 1.98 kg, 4.40 kg vs. 0.44 kg, 95% CI, − 0.50 kg, 1.39 kg) and lean body mass (3.15 kg, 95% CI, 1.80 kg, 4.49 kg vs. 0.89 kg, 95% CI, − 0.14 kg, 1.93 kg) was observed for the BMB group compared with PLA (p < 0.01). A significant increase over time was observed for miR-23a (p = 0.02) and miR-23b (p = 0.05) expression. A greater increase in squat 1-RM was observed for the BMB group (23.86 kg, 95% CI, 16.75 kg, 30.97 kg) compared with the PLA group (14.20 kg, 95% CI, 7.04 kg, 21.37 kg, p = 0.04). Conclusions BMB supplementation combined with resistance exercise training for 4 weeks resulted in superior adaptations in maximal strength and LBM compared with resistance training with a placebo. No adverse resting hemodynamic or clinical blood safety markers were observed as a result of BMB supplementation. The superior outcomes associated with BMB supplementation could not be explained by resting serum IGF-1 or the skeletal muscle miRs measured, although resting miR-23a and miR-23b expression both increased as a result of resistance training.
Collapse
Affiliation(s)
- Neil A Schwarz
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA.
| | - Sarah K McKinley-Barnard
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Zachary J Blahnik
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
31
|
Gao X, Zhang H, Guo XF, Li K, Li S, Li D. Effect of Betaine on Reducing Body Fat-A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11102480. [PMID: 31623137 PMCID: PMC6835719 DOI: 10.3390/nu11102480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/22/2022] Open
Abstract
Animal studies have shown the beneficial effect of betaine supplementation on reducing body fat, while the data from human studies are controversial and inconsistent. The objective of the present systematic review was to investigate the effects of betaine intervention on treating obesity in humans and quantitatively evaluate the pooled effects based on randomized controlled trials with a meta-analysis. The PubMed and Scopus databases, and the Cochrane Library, were searched up to September 2019. Weighted mean differences were calculated for net changes in obesity-related indices by using a random-effects model. Publication bias was estimated using Begg’s test. Six studies with 195 participants were identified. Betaine supplementation significantly reduced the total body fat mass (−2.53 kg; 95% CI: −3.93, −0.54 kg; I2 = 6.6%, P = 0.36) and body fat percentage (−2.44%; 95% CI: −4.20, −0.68%; I2 = 0.0%, P = 0.44). No changes were observed regarding body weight (−0.29 kg; 95% CI: −1.48, 0.89 kg; I2 = 0.00%, P = 0.99) and body mass index (−0.10 kg/m2; 95% CI: −5.13, 0.31 kg/m2; I2 = 0.00%, P = 0.84). The results suggested that dietary betaine supplementation might be an effective approach for reducing body fat.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Huijun Zhang
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Kelei Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Shan Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Chen R, Wen C, Cheng Y, Chen Y, Zhuang S, Zhou Y. Effects of dietary supplementation with betaine on muscle growth, muscle amino acid contents and meat quality in Cherry Valley ducks. J Anim Physiol Anim Nutr (Berl) 2019; 103:1050-1059. [PMID: 31140661 DOI: 10.1111/jpn.13083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
The effects of dietary betaine supplementation on growth performance, carcass characteristics, muscle amino acid contents, meat quality, antioxidant capacity, myogenic gene expression and mechanistic target of rapamycin (mTOR) signalling pathway in Cherry Valley ducks were evaluated. A total of 720 1-day-old Cherry Valley ducks were randomly distributed into four groups with six replicates of 30 birds for a 42-day feeding trial. Ducks were fed a basal diet supplemented with 0 (control), 250, 500 or 1,000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine linearly (p < 0.05) increased the breast muscle yield and linearly (p < 0.05) decreased the subcutaneous fat thickness and the abdominal fat yield. The contents of methionine, serine, glycine, glutamate and total non-essential amino acid in breast muscle were linearly (p < 0.05) increased by betaine supplementation. With increasing betaine levels, the drip loss and the content of malondialdehyde (MDA) were linearly (p < 0.05) decreased, and the redness of meat (linear p < 0.05), the activities of catalase (CAT) (linear p < 0.05) and total superoxide dismutase (T-SOD) (linear p < 0.05, quadratic p < 0.05) were increased. Moreover, the myogenic differentiation factor 1 (MyoD1) mRNA expression and the mTOR mRNA expression and protein phosporylation were linearly (p < 0.05) up-regulated, and the myostatin (MSTN) mRNA expression was linearly (p < 0.05) down-regulated by betaine supplementation. Overall, this study indicated that betaine supplementation did not affect the growth performance of Cherry Valley ducks, but could linearly increase some amino acid contents in breast muscle, especially glycine, and increase muscle antioxidant activity to improve meat quality. Moreover, betaine supplementation could improve the breast muscle yield by increasing MyoD1 mRNA expression, decreasing MSTN mRNA expression and regulating mTOR signalling pathway.
Collapse
Affiliation(s)
- Rui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Su Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 2019; 848:39-48. [PMID: 30689995 DOI: 10.1016/j.ejphar.2019.01.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.
Collapse
Affiliation(s)
- Milena Veskovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suncica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embriology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Dragutinovic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Vucevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgacevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tatjana Radosavljevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
34
|
Chen R, Zhuang S, Chen YP, Cheng YF, Wen C, Zhou YM. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult Sci 2019; 97:4297-4305. [PMID: 30085311 DOI: 10.3382/ps/pey303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate the effect of betaine on growth performance, carcass characteristics, myogenic gene expression, and insulin-like growth factor-1 (IGF-1) signaling pathway in partridge shank broiler chickens. A total of 192 one-day-old partridge shank broiler chickens were randomly divided into 4 groups with 6 replicates of 8 chickens for a 52-d feeding trial. Broilers were fed a basal diet supplemented with 0 (control), 250 (B250), 500 (B500), or 1,000 (B1000) mg/kg betaine. Compared with the control group, the B500 and B1000 groups had higher (P < 0.05) body weight gain (BWG), and the B500 group had a lower (P < 0.05) feed/gain ratio (F:G) during the whole trial period. Moreover, the B1000 group increased (P < 0.05) the breast muscle yield and decreased (P < 0.05) relative abdominal fat weight. The mRNA expression of myocyte enhancer factor 2B (MEF2B) and mechanistic target of rapamycin (mTOR) and mTOR phosporylation were higher (P < 0.05) in both breast and thigh muscles in the B500 and B1000 groups than those in the control group. The higher (P < 0.05) concentration and mRNA expression of IGF-1 were also observed in breast muscle in the B500 and B1000 groups. Additionally, the B1000 group up-regulated (P < 0.05) the mRNA level of myogenic differentiation factor 1 (MyoD1) in breast muscle and myogenin (MyoG) in thigh muscle. In conclusion, diets supplemented with 500 or 1,000 mg/kg betaine improved the growth performance of partridge shank broiler chickens during the whole trial period, and the B1000 group significantly improved the breast muscle growth. These improvements might result from increased mRNA expression of MyoD1 and MEF2B in breast muscle and MyoG and MEF2B in thigh muscle, and through alterations in IGF-1/mTOR signaling pathway.
Collapse
Affiliation(s)
- R Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - S Zhuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y F Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
36
|
Schwarz NA, McKinley-Barnard SK. Acute Oral Ingestion of a Multi-ingredient Preworkout Supplement Increases Exercise Performance and Alters Postexercise Hormone Responses: A Randomized Crossover, Double-Blinded, Placebo-Controlled Trial. J Diet Suppl 2018; 17:211-226. [DOI: 10.1080/19390211.2018.1498963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Neil A. Schwarz
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
37
|
Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr (Berl) 2018; 102:1634-1650. [PMID: 30238641 DOI: 10.1111/jpn.12990] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/11/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023]
Abstract
This review focuses on the osmoregulatory function of betaine and its effect in terms of alleviating heat stress in poultry. Poultry appear to be particularly sensitive to temperature-associated environmental challenges, especially heat stress. High ambient temperatures are deleterious to productive performance in poultry, including broilers, laying hens, quails and turkeys, resulting in considerable economic losses. Heat stress impairs overall poultry production by decreasing feed intake and negatively affecting intestinal development, leading to reduced nutrient digestibility. Apart from inducing a high mortality rate, heat stress is known to depress growth rate and reduce meat yield in broilers. In layers, lower feed intake impairs ovarian function, leading to decreased feed efficiency, egg production and egg quality. In addition, reduced immune functions, such as thyroid activity and antibody production, are evident in poultry exposed to heat stress. Heat stress increases the production of oxidants, causing oxidative stress and lipid peroxidation of cell membranes. Poultry respond physiologically and behaviourally when encountering the negative effects of heat stress, attempting to return the body to homeostasis. This requires energy at the expense of weight gain or egg production. Due to its zwitterionic structure, betaine has osmoprotective properties that aid in protecting intestinal cell proteins and enzymes from environmental stress, including high ambient temperature, thereby counteracting performance losses. Betaine also exerts an osmoregulatory role in cells, regulating water balance, and this results in more stable tissue metabolism. Inclusion of betaine in the diet may be beneficial for alleviating physical reactions to heat stress, as indicated by increases in nutrient digestibility. In broilers, betaine supplementation increases weight gain and breast muscle yield, while improving feed conversion. In layers, betaine supplementation improves egg production, egg quality traits and immune indices. In conclusion, due to its osmoregulatory functions, betaine plays an important role in alleviating heat stress in poultry.
Collapse
Affiliation(s)
- Adi Ratriyanto
- Department of Animal Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Indonesia
| | - Rainer Mosenthin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Jung Kim M. Betaine enhances the cellular survival via mitochondrial fusion and fission factors, MFN2 and DRP1. Anim Cells Syst (Seoul) 2018; 22:289-298. [PMID: 30460110 PMCID: PMC6171430 DOI: 10.1080/19768354.2018.1512523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Betaine is a key metabolite of the methionine cycle and known for attenuating alcoholic steatosis in the liver. Recent studies have focused on the protection effect of betaine in mitochondrial regulation through the enhanced oxidative phosphorylation system. However, the mechanisms of its beneficial effects have not been clearly identified yet. Mitochondrial dynamics is important for the maintenance of functional mitochondria and cell homeostasis. A defective mitochondrial dynamics and oxidative phosphorylation system have been closely linked to several pathologies, raising the possibility that novel drugs targeting mitochondrial dynamics may present a therapeutic potential to restore the cellular homeostasis. In this study, we investigated betaine’s effect on mitochondrial morphology and physiology and demonstrated that betaine enhances mitochondrial function by increasing mitochondrial fusion and improves cell survival. Furthermore, it rescued the unbalance of the mitochondrial dynamics from mitochondrial oxidative phosphorylation dysfunction induced by oligomycin and rotenone. The elongation properties by betaine were accompanied by lowering DRP1 and increasing MFN2 expression. These data suggest that betaine could play an important role in remodeling mitochondrial dynamics to enhance mitochondrial function and cell viability.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
39
|
Cholewa JM, Hudson A, Cicholski T, Cervenka A, Barreno K, Broom K, Barch M, Craig SAS. The effects of chronic betaine supplementation on body composition and performance in collegiate females: a double-blind, randomized, placebo controlled trial. J Int Soc Sports Nutr 2018; 15:37. [PMID: 30064450 PMCID: PMC6069865 DOI: 10.1186/s12970-018-0243-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Betaine supplementation has been shown to improve body composition and some metrics of muscular performance in young men; but, whether betaine enhances body composition or performance in female subjects is currently unknown. Therefore, the purpose of this study was to investigate the interaction between resistance training adaptation and chronic betaine supplementation in females. METHODS Twenty-three young women (21.0 ± 1.4 years, 165.9 ± 6.4 cm, 68.6 ± 11.8 kg) without prior structured resistance training experience volunteered for this study. Body composition (BodPod), rectus femoris muscle thickness (B-mode Ultrasound), vertical jump, back squat 1RM and bench press 1RM were assessed pre- and post-training. Following 1 week of familiarization training, subjects were matched for body composition and squat strength, and randomly assigned to either a betaine (2.5 g/day; n = 11) or placebo (n = 12) group that completed 3 sets of 6-7 exercises per day performed to momentary muscular failure. Training was divided into two lower and one upper body training sessions per week performed on non-consecutive days for 8 weeks, and weekly volume load was used to analyze work capacity. RESULTS Significant main effects of time were found for changes in lean mass (2.4 ± 1.8 kg), muscle thickness (0.13 ± 0.08 cm), vertical jump (1.8 ± 1.6 cm), squat 1RM (39.8 ± 14.0 kg), and bench press 1 RM (9.1 ± 7.3 kg); however, there were no significant interactions. A trend (p = .056) was found for greater weekly training volumes for betaine versus placebo. Significant interactions were found for changes in body fat percentage and fat mass: body fat percentage and fat mass decreased significantly more in betaine (- 3.3 ± 1.7%; - 2.0 ± 1.1 kg) compared to placebo (- 1.7 ± 1.6%; - 0.8 ± 1.3 kg), respectively. CONCLUSIONS The results of this study indicated that betaine supplementation may enhance reductions in fat mass, but not absolute strength, that accompany a resistance training program in untrained collegiate females.
Collapse
Affiliation(s)
- Jason Michael Cholewa
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Andrea Hudson
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Taylor Cicholski
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Amanda Cervenka
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Karley Barreno
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Kayla Broom
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - McKenzie Barch
- Department of Kinesiology, Coastal Carolina University, PO Box 261954, Williams-Brice 101A, Conway, SC 29528 USA
| | - Stuart A. S. Craig
- Regulatory & Scientific Affairs, DuPont Nutrition & Health Experimental Station, Wilmington, DE USA
| |
Collapse
|
40
|
Jin C, Zhuo Y, Wang J, Zhao Y, Xuan Y, Mou D, Liu H, Zhou P, Fang Z, Che L, Xu S, Feng B, Li J, Jiang X, Lin Y, Wu D. Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. J Anim Physiol Anim Nutr (Berl) 2018; 102:1340-1350. [PMID: 29959805 DOI: 10.1111/jpn.12933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin-like growth factor-1 (IGF-1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12 , from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28-days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (p < 0.05) and increased the piglet weights (p < 0.01) and litter weights (p < 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (p < 0.05) and tended to lower F:G ratio (p = 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF-1 concentrations and expressions of hepatic IGF-1 gene and muscular IGF-1 receptor (IGF-1r) protein at birth (p < 0.05), and greater hepatic IGF-1 protein (p = 0.03) and muscular IGF-1r gene expressions (p < 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF-1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (p < 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF-1 gene and IGF-1r, as well as the altered DNA methylation of IGF-1 gene promotor.
Collapse
Affiliation(s)
- Chao Jin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Higher serum choline and betaine levels are associated with better body composition in male but not female population. PLoS One 2018; 13:e0193114. [PMID: 29462191 PMCID: PMC5819804 DOI: 10.1371/journal.pone.0193114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
Background Animal studies proved that choline and betaine have beneficial effect on reducing body fat. However, evidence in humans is scarce. We aim to investigate the association between serum choline and betaine levels with body composition in general population. Methods This is an observational cross-sectional study performed in 1081 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics) study. Serum choline and betaine levels were measured based on liquid chromatography coupled with tandem mass spectrometry technology. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses. Results Significantly inverse correlations were found between serum betaine levels and all obesity measurements in males (r ranged from -0.12 to -0.23, and p<0.01 for all) but not in females. Serum choline was negatively associated with total percent body fat (%BF), percent trunk fat (%TF), weight, body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (r ranged from -0.11 to -0.19, and p<0.05 for all) in males and positively associated with weight, BMI and WC (r ranged from 0.09 to 0.10, and p<0.05 for all) in females. The negative associations between serum choline and betaine levels with obesity in males were more profound in those not on any medication than those taking medications. Moreover, obese males had the lowest serum choline and betaine levels, followed by overweight males, and normal weight males having the highest serum choline and betaine levels, especially in those not taking medications (p<0.05). Likewise, subjects with the highest serum levels of both had the lowest obesity indexes, especially those not taking medications. Conclusions Higher serum choline and betaine levels were associated with a more favorable body composition (lower body fat and higher lean body mass) in males and the favorable association was more pronounced in non-medication users.
Collapse
|
42
|
Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Gan M, Yang Q, Ma J, Jiang A, Tang G, Jiang Y, Jin L, Li M, Bai L, Li X, Wang J, Zhang S, Zhu L. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018; 10:E131. [PMID: 29373534 PMCID: PMC5852707 DOI: 10.3390/nu10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced obese mice. This might be due to betaine preventing the formation of new white fat (WAT), and guiding the original WAT to burn through stimulated mitochondrial biogenesis and promoting browning of WAT. Furthermore, dietary betaine supplementation decreases intramyocellular lipid accumulation in HFD-induced obese mice. Further analysis shows that betaine supplementation reduced intramyocellular lipid accumulation might be associated with increasing polyunsaturated fatty acids (PUFA), fatty acid oxidation, and the inhibition of fatty acid synthesis in muscle. Notably, by performing insulin-tolerance tests (ITTs) and glucose-tolerance tests (GTTs), dietary betaine supplementation could be observed for improvement of obesity and non-obesity induced insulin resistance. Together, these findings could suggest that inhibiting WAT production, intramyocellular lipid accumulation and inflammation, betaine supplementation limits HFD-induced obesity and improves insulin resistance.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adiposity
- Animals
- Animals, Outbred Strains
- Anti-Obesity Agents/therapeutic use
- Betaine/adverse effects
- Betaine/therapeutic use
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Female
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Weight Gain
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xue Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yan Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mailing Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, China.
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| |
Collapse
|
43
|
Abobaker H, Hu Y, Hou Z, Sun Q, Idriss AA, Omer NA, Zong Y, Zhao R. Dietary betaine supplementation increases adrenal expression of steroidogenic acute regulatory protein and yolk deposition of corticosterone in laying hens. Poult Sci 2017; 96:4389-4398. [DOI: 10.3382/ps/pex241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/09/2017] [Indexed: 01/16/2023] Open
|
44
|
Liśkiewicz AD, Kasprowska-Liśkiewicz D, Sługocka A, Nowacka-Chmielewska MM, Wiaderkiewicz J, Jędrzejowska-Szypułka H, Barski JJ, Lewin-Kowalik J. The modification of the ketogenic diet mitigates its stunting effects in rodents. Appl Physiol Nutr Metab 2017; 43:203-210. [PMID: 29045796 DOI: 10.1139/apnm-2017-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The high-fat and low-carbohydrate ketogenic diet (HFKD) is extensively studied within the fields of numerous diseases, including cancer and neurological disorders. Since most studies incorporate animal models, ensuring the quality of ketogenic rodent diets is important, both in the context of laboratory animal welfare as well as for the accuracy of the obtained results. In this study we implemented a modification to a commonly used ketogenic rodent chow by replacing non-resorbable cellulose with wheat bran. We assessed the effects of month-long treatment with either the unmodified or the modified HFKD on the growth and development of young male rats. Daily body weight, functional performance, and brain morphometric parameters were assessed to evaluate the influence of both applied diets on rodent development. Our results revealed that the unmodified ketogenic chow induced strong side effects that included weakness, emaciation, and brain undergrowth concomitant to growth inhibition. However, application of the ketogenic chow supplemented with wheat bran suppressed these adverse side effects, which was associated with the restoration of insulin-like growth factor 1 and a decrease in corticosterone levels. We have also shown that the advantageous results of the modified HFKD are not species- or sex-specific. Our data indicate that the proposed HFKD modification even allows for its application in young animals, without causing detrimental side effects.
Collapse
Affiliation(s)
- Arkadiusz Damian Liśkiewicz
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Daniela Kasprowska-Liśkiewicz
- b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Anna Sługocka
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Marta Maria Nowacka-Chmielewska
- b Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Jan Wiaderkiewicz
- c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,d Department of Physiology & Biophysics, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Halina Jędrzejowska-Szypułka
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Jarosław Jerzy Barski
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland.,c Department for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- a Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
45
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
46
|
Ratriyanto A, Indreswari R, Nuhriawangsa AMP. Effects of Dietary Protein Level and Betaine Supplementation on Nutrient Digestibility and Performance of Japanese Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0442] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Villa I, Senesi P, Montesano A, Ferraretto A, Vacante F, Spinello A, Bottani M, Bolamperti S, Rubinacci A, Luzi L, Terruzzi I. Betaine promotes cell differentiation of human osteoblasts in primary culture. J Transl Med 2017; 15:132. [PMID: 28592272 PMCID: PMC5463390 DOI: 10.1186/s12967-017-1233-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Betaine (BET), a component of many foods, is an essential osmolyte and a source of methyl groups; it also shows an antioxidant activity. Moreover, BET stimulates muscle differentiation via insulin like growth factor I (IGF-I). The processes of myogenesis and osteogenesis involve common mechanisms with skeletal muscle cells and osteoblasts sharing the same precursor. Therefore, we have hypothesized that BET might be effective on osteoblast cell differentiation. METHODS The effect of BET was tested in human osteoblasts (hObs) derived from trabecular bone samples obtained from waste material of orthopedic surgery. Cells were treated with 10 mM BET at 5, 15, 60 min and 3, 6 and 24 h. The possible effects of BET on hObs differentiation were evaluated by real time PCR, western blot and immunofluorescence analysis. Calcium imaging was used to monitor intracellular calcium changes. RESULTS Real time PCR results showed that BET stimulated significantly the expression of RUNX2, osterix, bone sialoprotein and osteopontin. Western blot and immunofluorescence confirmed BET stimulation of osteopontin protein synthesis. BET stimulated ERK signaling, key pathway involved in osteoblastogenesis and calcium signaling. BET induced a rise of intracellular calcium by means of the calcium ions influx from the extracellular milieu through the L-type calcium channels and CaMKII signaling activation. A significant rise in IGF-I mRNA at 3 and 6 h and a significant increase of IGF-I protein at 6 and 24 h after BET stimulus was detected. Furthermore, BET was able to increase significantly both SOD2 gene expression and protein content. CONCLUSIONS Our study showed that three signaling pathways, i.e. cytosolic calcium influx, ERK activation and IGF-I production, are enhanced by BET in human osteoblasts. These pathways could have synergistic effects on osteogenic gene expression and protein synthesis, thus potentially leading to enhanced bone formation. Taken together, these results suggest that BET could be a promising nutraceutical therapeutic agent in the strategy to counteract the concomitant and interacting impact of sarcopenia and osteoporosis, i.e. the major determinants of senile frailty and related mortality.
Collapse
Affiliation(s)
- Isabella Villa
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anita Ferraretto
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alice Spinello
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Bottani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, 60 Olgettina street, 20132 Milan, Italy
| |
Collapse
|
48
|
Zhao N, Yang S, Hu Y, Dong H, Zhao R. Maternal betaine supplementation in rats induces intergenerational changes in hepatic IGF-1 expression and DNA methylation. Mol Nutr Food Res 2017; 61. [PMID: 28239993 DOI: 10.1002/mnfr.201600940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
SCOPE Betaine is widely used in animal nutrition to promote growth. Here, we aimed to investigate whether maternal betaine supplementation during pregnancy can exert multigenerational effects on growth across two generations and the possible epigenetic modifications associated to such effects. METHODS AND RESULTS In this study, 3-month-old female Sprague-Dawley rats were fed diet supplemented with 1% betaine throughout the pregnancy and lactation. Betaine-supplemented dams produced bigger litter but smaller F1 pups at birth and weaning. However, F2 pubs had higher weaning weight. In accordance with the growth performance, serum insulin-like growth factor 1 (IGF-1) levels were significantly lower in F1 yet higher in F2 pups, so was hepatic IGF-1 mRNA expression. Concurrently, dietary betaine supplementation to F0 dams increased hepatic expression of betaine homocysteine methyltransferase, at both mRNA and protein levels, in F1, but not F2 pups. Moreover, hepatic IGF-1 gene promoter 1 was detected to be significantly hypermethylated in F1 pups, whereas both promoters 1 and 2, together with almost all exons, were found to be hypomethylated in F2 offspring. CONCLUSION Maternal betaine supplementation during pregnancy and lactation exerts distinct effects on growth of F1 and F2 rat offspring, probably through differential modification of IGF-1 gene methylation and expression in liver.
Collapse
Affiliation(s)
- Nannan Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shu Yang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Haibo Dong
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, P. R. China
| |
Collapse
|
49
|
Cholewa JM, Dardevet D, Lima-Soares F, de Araújo Pessôa K, Oliveira PH, Dos Santos Pinho JR, Nicastro H, Xia Z, Cabido CET, Zanchi NE. Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging: role of the MPS response. Amino Acids 2017; 49:811-820. [PMID: 28175999 DOI: 10.1007/s00726-017-2390-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/28/2017] [Indexed: 12/14/2022]
Abstract
Dietary proteins/essential amino acids (EAAs) are nutrients with anabolic properties that may increase muscle mass or attenuate muscle loss during immobilization and aging via the stimulation of muscle protein synthesis (MPS). An EAA's anabolic threshold, capable to maximize the stimulation of MPS has been hypothesized, but during certain conditions associated with muscle loss, this anabolic threshold seems to increase which reduces the efficacy of dietary EAAs to stimulate MPS. Preliminary studies have demonstrated that acute ingestion of dietary proteins/EAA (with a sufficient amount of leucine) was capable to restore the postprandial MPS during bed rest, immobilization or aging; however, whether these improvements translate into chronic increases (or attenuates loss) of muscle mass is equivocal. For example, although free leucine supplementation acutely increases MPS and muscle mass in some chronic studies, other studies have reported no increases in muscle mass following chronic leucine supplementation. In contrast, chronically increasing leucine intake via the consumption of an overall increase in dietary protein appears to be the most effective dietary intervention toward increasing or attenuating lean mass during aging; however, more research investigating the optimal dose and timing of protein ingestion is necessary. Several studies have demonstrated that decreases in postprandial MPS as a result of increased circulating oxidative and inflammatory are more responsible than muscle protein breakdown for the decreases in muscle mass during disuse and health aging. Therefore, nutritional interventions that reduce oxidation or inflammation in conjunction with higher protein intakes that overcome the anabolic resistance may enhance the MPS response to feeding and either increase muscle mass or attenuate loss. In preliminary studies, antioxidant vitamins and amino acids with antioxidant or anti-inflammatory properties show potential to restore the anabolic response associated with protein ingestion. More research, however, is required to investigate if these nutrients translate to increases in MPS and, ultimately, increased lean mass in aging humans. The purpose of the present review is to discuss the role of protein/EAA intake to enhance postprandial MPS during conditions associated with muscle loss, and bring new perspectives and challenges associated nutritional interventions aimed to optimize the anabolic effects of dietary protein/EAAs ingestion.
Collapse
Affiliation(s)
- Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, SC, 29528, USA
| | | | - Fernanda Lima-Soares
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - Kassiana de Araújo Pessôa
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - Paulo Henrique Oliveira
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - João Ricardo Dos Santos Pinho
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - Humberto Nicastro
- Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.,Department of Sports Medicine, Chengdu Sport Institute, Chengdu, China
| | - Christian Emmanuel Torres Cabido
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil
| | - Nelo Eidy Zanchi
- Federal University of Maranhão (UFMA), Department of Physical Education, São Luis, Maranhão, Brazil. .,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luis, Maranhão, Brazil.
| |
Collapse
|
50
|
Hu Y, Sun Q, Liu J, Jia Y, Cai D, Idriss AA, Omer NA, Zhao R. In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications. Sci Rep 2017; 7:40251. [PMID: 28059170 PMCID: PMC5216338 DOI: 10.1038/srep40251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022] Open
Abstract
Betaine alleviates high-fat diet-induced fatty liver and prenatal betaine programs offspring hepatic lipid metabolism. Excessive corticosterone (CORT) exposure causes fatty liver in chickens, yet it remains unknown whether and how prenatal betaine modulates the susceptibility of CORT-induced fatty liver later in life. In this study, fertilized eggs were injected with saline or betaine before incubation, and the hatchlings were raised at 8 weeks of age followed by 7 days of subcutaneous CORT injection. CORT-induced fatty liver was less severe in betaine-treated chickens, with significantly reduced oil-red staining and hepatic triglyceride content (P < 0.05). The protective effect of prenatal betaine was associated with significantly up-regulated expression of PPARα and CPT1α, as well as mitochondrial DNA (mtDNA)-encoded genes (P < 0.05). Moreover, betaine rescued CORT-induced alterations in methionine cycle genes, which coincided with modifications of CpG methylation on CPT1α gene promoter and mtDNA D-loop regions. Furthermore, the elevation of hepatic GR protein content after CORT treatment was significantly reduced (P < 0.05), while the reduction of GR binding to the control region of affected genes was significantly increased (P < 0.05), in betaine-treated chickens. These results indicate that in ovo betaine injection protects the juvenile chickens from CORT-induced fatty liver.
Collapse
Affiliation(s)
- Yun Hu
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yimin Jia
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Demin Cai
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Abdulrahman A Idriss
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Nagmeldin A Omer
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology &Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, P. R. China
| |
Collapse
|