1
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
3
|
Hohenauer E, Bianchi G, Wellauer V, Taube W, Clijsen R. Acute physiological responses and muscle recovery in females: a randomised controlled trial of muscle damaging exercise in hypoxia. BMC Sports Sci Med Rehabil 2024; 16:70. [PMID: 38520001 PMCID: PMC10960417 DOI: 10.1186/s13102-024-00861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Studies have investigated the effects of training under hypoxia (HYP) after several weeks in a male population. However, there is still a lack of knowledge on the acute hypoxic effects on physiology and muscle recovery in a female population. METHODS This randomized-controlled trial aimed to investigate the acute effects of muscle damaging exercise, performed in HYP and normoxia (CON), on physiological responses and recovery characteristics in healthy females. Key inclusion criteria were recreationally active female participants between the age of 18 to 35 years without any previous surgeries and injuries, whilst key exclusion criteria were acute pain situations, pregnancy, and medication intake. The females conducted a muscle-damaging protocol, comprising 5 × 20 drop-jumps, in either HYP (FiO2: 12%) or CON (FiO2: 21%). Physiological responses, including capillary oxygenation (SpO2), muscle oxygenation (SmO2), heart rate (HR), core- (Tcore) and skin- (Tskin) temperature were assessed at the end of each exercise set. Recovery characteristics were quantified by taking venous blood samples (serum creatine-kinase [CK], C-reactive protein [CRP] and blood sedimentation rate [BSR]), assessing muscle swelling of the quadriceps femoris muscle, maximum voluntary isometric contraction (MVIC) of the knee extensor muscles, countermovement jump (CMJ) performance and muscle soreness ratings (DOMS) at 24-, 48- and 72-hrs post-exercise. RESULTS SpO2 (HYP: 76.7 ± 3.8%, CON: 95.5 ± 1.7%, p < 0.001) and SmO2 (HYP: 60.0 ± 9.3, CON: 73.4 ± 5.8%, p = 0.03) values were lower (p < 0.05) in HYP compared to CON at the end of the exercise-protocol. No physiological differences between HYP and CON were observed for HR, Tcore, and Tskin (all p > 0.05). There were also no differences detected for any recovery variable (CK, CRP, BSR, MVIC, CMJ, and DOMS) during the 72-hrs follow-up period between HYP and CON (all p > 0.05). CONCLUSION In conclusion, our results showed that muscle damaging exercise under HYP leads to reduced capillary and muscle oxygenation levels compared to normoxia with no difference in inflammatory response and muscle recovery during 72 h post-exercise. TRIAL REGISTRATION NCT04902924, May 26th 2021.
Collapse
Affiliation(s)
- Erich Hohenauer
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland.
- International University of Applied Sciences THIM, Landquart, Switzerland.
- University of Fribourg, Fribourg, Switzerland.
| | - G Bianchi
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
| | - V Wellauer
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
| | - W Taube
- University of Fribourg, Fribourg, Switzerland
| | - R Clijsen
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Benavente C, Schoenfeld BJ, Padial P, Feriche B. Efficacy of resistance training in hypoxia on muscle hypertrophy and strength development: a systematic review with meta-analysis. Sci Rep 2023; 13:3676. [PMID: 36871095 PMCID: PMC9985626 DOI: 10.1038/s41598-023-30808-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A systematic review and meta-analysis was conducted to determine the effects of resistance training under hypoxic conditions (RTH) on muscle hypertrophy and strength development. Searches of PubMed-Medline, Web of Science, Sport Discus and the Cochrane Library were conducted comparing the effect of RTH versus normoxia (RTN) on muscle hypertrophy (cross sectional area (CSA), lean mass and muscle thickness) and strength development [1-repetition maximum (1RM)]. An overall meta-analysis and subanalyses of training load (low, moderate or high), inter-set rest interval (short, moderate or long) and severity of hypoxia (moderate or high) were conducted to explore the effects on RTH outcomes. Seventeen studies met inclusion criteria. The overall analyses showed similar improvements in CSA (SMD [CIs] = 0.17 [- 0.07; 0.42]) and 1RM (SMD = 0.13 [0.0; 0.27]) between RTH and RTN. Subanalyses indicated a medium effect on CSA for longer inter-set rest intervals and a small effect for moderate hypoxia and moderate loads favoring RTH. Moreover, a moderate effect for longer inter-set rest intervals and a trivial effect for severe hypoxia and moderate loads favoring RTH was found on 1RM. Evidence suggests that RTH employed with moderate loads (60-80% 1RM) and longer inter-set rest intervals (≥ 120 s) enhances muscle hypertrophy and strength compared to normoxia. The use of moderate hypoxia (14.3-16% FiO2) seems to be somewhat beneficial to hypertrophy but not strength. Further research is required with greater standardization of protocols to draw stronger conclusions on the topic.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, The Bronx, NY, USA
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Lizamore CA, Stoner L, Kathiravel Y, Elliott J, Hamlin MJ. Does intermittent hypoxic exposure enhance the cardioprotective effect of exercise in an inactive population? Front Physiol 2022; 13:1005113. [DOI: 10.3389/fphys.2022.1005113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether exercise supplemented with passive intermittent hypoxic exposure (IHE) improved overall cardiovascular disease risk and individual risk factors. Participants were randomized to exercise-only (Ex, n = 18, 5 males, 13 females; age: 56.4 ± 6.5 years; weight: 81.2 ± 15.9; height: 167.3 ± 8.42) or exercise + IHE (IHE + Ex, n = 16; 6 males, 10 females; age: 56.7 ± 6.4 years; weight: 78.6 ± 12.4 kg; height: 168.0 ± 8.8 cm). Both groups received the same strength and aerobic exercise training (1 h, 3 days/wk, 10 weeks). IHE + Ex also received IHE (5 min hypoxia: 5 min ambient air ×6) for 2–3 days/wk. Measurements were collected before (Baseline), after (Post), and 4- and 8-week following the intervention. There were small, beneficial reductions in overall 5- year cardiovascular risk in both groups. At Post, for IHE + Ex compared to IHE there were unclear to likely improvements in high density lipoprotein (8.0% ± 8.0%), systolic blood pressure (−3.4% ± 3.4%) and VO2peak (3.1% ± 7.7%). These improvements persisted at 8-week. There was an unclear improvement in arterial wave reflection (augmentation index) at Post (−6.1% ± 18.4%, unclear), but became very likely harmful at 8-week (8-week: 24.8% ± 19.7%). The conflicting findings indicate that in inactive adults, the addition of IHE to exercise may be beneficial to systemic markers of cardiovascular health but may also increase myocardial load due to increased arterial wave reflection.
Collapse
|
6
|
Benjanuvatra N, Bradbury D, Landers G, Goods PSR, Girard O. How does multi-set high-load resistance exercise impact neuromuscular function in normoxia and hypoxia? Eur J Sport Sci 2022:1-10. [PMID: 35770524 DOI: 10.1080/17461391.2022.2095929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study examined whether hypoxia during multi-set, high-load resistance exercise alters neuromuscular responses. Using a single-blinded (participants), randomised crossover design, eight resistance-trained males completed five sets of five repetitions of bench press at 80% of one repetition maximum in moderate normobaric hypoxia (inspiratory oxygen fraction = 0.145) and normoxia. Maximal isometric bench press trials were performed following the warm-up, after 10 min of altitude priming and 5 min post-session (outside, inside and outside the chamber, respectively). Force during pre-/post-session maximal voluntary isometric contractions and bar velocity during exercise sets were measured along with surface electromyographic (EMG) activity of the pectoralis major, anterior deltoid and lateral and medial triceps muscles. Two-way repeated measures ANOVA (condition×time) were used. A significant time effect (p = 0.048) was found for mean bar velocity, independent of condition (p = 0.423). During sets of the bench press exercise, surface EMG amplitude of all studied muscles remained unchanged (p > 0.187). During maximal isometric trials, there were no main effects of condition (p > 0.666) or time (p > 0.119), nor were there any significant condition×time interactions for peak or mean forces and surface EMG amplitudes (p > 0.297). Lower end-exercise blood oxygen saturation (90.9 ± 1.8 vs. 98.6 ± 0.6%; p < 0.001) and higher blood lactate concentration (5.8 ± 1.4 vs. 4.4 ± 1.6 mmol/L; p = 0.007) values occurred in hypoxia. Acute delivery of systemic normobaric hypoxia during multi-set, high-load resistance exercise increased metabolic stress. However, only subtle neuromuscular function adjustments occurred with and without hypoxic exposure either during maximal isometric bench press trials before versus after the session or during actual exercise sets.
Collapse
Affiliation(s)
- N Benjanuvatra
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - D Bradbury
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - G Landers
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - P S R Goods
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, WA, Australia, 6150.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia, 6150
| | - O Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Gene expression changes in vastus lateralis muscle after different strength training regimes during rehabilitation following anterior cruciate ligament reconstruction. PLoS One 2021; 16:e0258635. [PMID: 34648569 PMCID: PMC8516190 DOI: 10.1371/journal.pone.0258635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/03/2021] [Indexed: 11/19/2022] Open
Abstract
Impaired muscle regeneration has repeatedly been described after anterior cruciate ligament reconstruction (ACL-R). The results of recent studies provided some evidence for negative alterations in knee extensor muscles after ACL-R causing persisting strength deficits in spite of the regain of muscle mass. Accordingly, we observed that 12 weeks of concentric/eccentric quadriceps strength training with eccentric overload (CON/ECC+) induced a significantly greater hypertrophy of the atrophied quadriceps muscle after ACL-R than conventional concentric/eccentric quadriceps strength training (CON/ECC). However, strength deficits persisted and there was an unexpected increase in the proportion of slow type I fibers instead of the expected shift towards a faster muscle phenotype after CON/ECC+. In order to shed further light on muscle recovery after ACL-R, the steady-state levels of 84 marker mRNAs were analyzed in biopsies obtained from the vastus lateralis muscle of 31 subjects before and after 12 weeks of CON/ECC+ (n = 18) or CON/ECC strength training (n = 13) during rehabilitation after ACL-R using a custom RT2 Profiler PCR array. Significant (p < 0.05) changes were detected in the expression of 26 mRNAs, several of them involved in muscle wasting/atrophy. A different pattern with regard to the strength training mode was observed for 16 mRNAs, indicating an enhanced hypertrophic stimulus, mechanical sensing or fast contractility after CON/ECC+. The effects of the type of autograft (quadriceps, QUAD, n = 19, or semitendinosus tendon, SEMI, n = 12) were reflected in the lower expression of 6 mRNAs involved in skeletal muscle hypertrophy or contractility in QUAD. In conclusion, the greater hypertrophic stimulus and mechanical stress induced by CON/ECC+ and a beginning shift towards a faster muscle phenotype after CON/ECC+ might be indicated by significant gene expression changes as well as still ongoing muscle wasting processes and a negative impact of QUAD autograft.
Collapse
|
8
|
van Doorslaer de Ten Ryen S, Warnier G, Gnimassou O, Belhaj MR, Benoit N, Naslain D, Brook MS, Smith K, Wilkinson DJ, Nielens H, Atherton PJ, Francaux M, Deldicque L. Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. FASEB J 2021; 35:e21773. [PMID: 34324735 DOI: 10.1096/fj.202100654rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Acute hypoxia has previously been suggested to potentiate resistance training-induced hypertrophy by activating satellite cell-dependent myogenesis rather than an improvement in protein balance in human. Here, we tested this hypothesis after a 4-week hypoxic vs normoxic resistance training protocol. For that purpose, 19 physically active male subjects were recruited to perform 6 sets of 10 repetitions of a one-leg knee extension exercise at 80% 1-RM 3 times/week for 4 weeks in normoxia (FiO2 : 0.21; n = 9) or in hypoxia (FiO2 : 0.135, n = 10). Blood and skeletal muscle samples were taken before and after the training period. Muscle fractional protein synthetic rate was measured over the whole period by deuterium incorporation into the protein pool and muscle thickness by ultrasound. At the end of the training protocol, the strength gain was higher in the hypoxic vs the normoxic group despite no changes in muscle thickness and in the fractional protein synthetic rate. Only early myogenesis, as assessed by higher MyoD and Myf5 mRNA levels, appeared to be enhanced by hypoxia compared to normoxia. No effects were found on myosin heavy chain expression, markers of oxidative metabolism and lactate transport in the skeletal muscle. Though the present study failed to unravel clearly the mechanisms by which hypoxic resistance training is particularly potent to increase muscle strength, it is important message to keep in mind that this training strategy could be effective for all athletes looking at developing and optimizing their maximal muscle strength.
Collapse
Affiliation(s)
| | | | | | - Mehdi R Belhaj
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Benoit
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Naslain
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Henri Nielens
- Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Marc Francaux
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
9
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
10
|
Guardado IM, Ureña BS, Cardenosa AC, Cardenosa MC, Camacho GO, Andrada RT. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biol Sport 2020; 37:121-129. [PMID: 32508379 PMCID: PMC7249800 DOI: 10.5114/biolsport.2020.93037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
The addition of a hypoxic stimulus during resistance training is suggested to increase the metabolic responses, enhancing hypertrophy and muscle strength. The purpose of this study was to investigate the effects of resistance training performed at submaximal intensities combined with normobaric hypoxia on muscular performance, body composition and haematological parameters. Thirty-two untrained subjects participated in this study (weight: 74.68±12.89 kg; height: 175±0.08 cm; BMI: 24.28±3.80 kg/m2). They were randomized to two groups: hypoxia (FiO2 = 13%) or normoxia (FiO2 = 20.9%). The training programme lasted 7 weeks (3 d/w) and several muscle groups were exercised (3 sets x 65-80% 1RM to failure). Measurements were taken before, after the training and after a 3-week detraining period. Body composition and muscle mass were assessed through skinfolds and muscle girths. Muscle strength was evaluated by the 1RM estimated test. Finally, haemoglobin and haematocrit were taken from the antecubital vein. Both groups improved their strength performance and muscle perimeters, but the hypoxia group obtained a greater increase in muscle mass (hypoxia: +1.80% vs. normoxia: +0.38%; p<0.05) and decrease in fat mass (hypoxia: -6.83% vs. normoxia: +1.26%; p<0.05) compared to the normoxia group. Additionally, haematocrit values were also higher for the hypoxia group after the detraining period (hypoxia: +2.20% vs. normoxia: -2.22%; p<0.05). In conclusion, resistance training under hypoxic conditions could increase muscle mass and decrease fat mass more effectively than training performed in normoxia, but without contributing to greater muscle strength.
Collapse
Affiliation(s)
| | - Braulio Sánchez Ureña
- School of Human Movement Sciences and Quality of Life, National University of Costa Rica, Costa Rica
| | | | | | | | - Rafael Timón Andrada
- GAEDAF Research Group. Faculty of Sport Science, University of Extremadura, Spain
| |
Collapse
|
11
|
Törpel A, Peter B, Schega L. Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Front Physiol 2020; 11:335. [PMID: 32411007 PMCID: PMC7198789 DOI: 10.3389/fphys.2020.00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Resistance training (RT) under hypoxic conditions has been used to increase muscular performance under normoxic conditions in young people. However, the effects of RT and thus of RT under hypoxia (RTH) could also be valuable for parameters of physical capacity and body composition across the lifespan. Therefore, we compared the effects of low- to moderate-load RTH with matched designed RT on muscular strength capacity, cardiopulmonary capacity, hematological adaptation, and body composition in young and older people. Methods In a pre–post randomized, blinded, and controlled experiment, 42 young (18 to 30 year) and 42 older (60 to 75 year) participants were randomly assigned to RTH or RT (RTH young, RT young, RTH old, RT old). Both groups performed eight resistance exercises (25–40% of 1RM, 3 × 15 repetitions) four times a week over 5 weeks. The intensity of hypoxic air for the RTH was administered individually in regards to the oxygen saturation of the blood (SpO2): ∼80–85%. Changes and differences in maximal isokinetic strength, cardiopulmonary capacity, total hemoglobin mass (tHb), blood volume (BV), fat free mass (FFM), and fat mass (FM) were determined pre–post, and the acute reaction of erythropoietin (EPO) was tested during the intervention. Results In all parameters, no significant pre–post differences in mean changes (time × group effects p = 0.120 to 1.000) were found between RTH and RT within the age groups. However, within the four groups, isolated significant improvements (p < 0.050) of the single groups were observed regarding the muscular strength of the legs and the cardiopulmonary capacity. Discussion Although the hypoxic dose and the exercise variables of the resistance training in this study were based on the current recommendations of RTH, the RTH design used had no superior effect on the tested parameters in young and older people in comparison to the matched designed RT under normoxia after a 5-week intervention period. Based on previous RTH-studies as well as the knowledge about RT in general, it can be assumed that the expected higher effects of RTH can may be achieved by changing exercise variables (e.g., longer intervention period, higher loads).
Collapse
Affiliation(s)
- Alexander Törpel
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Beate Peter
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department Health and Physical Activity, Institute III Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Britto FA, Gnimassou O, De Groote E, Balan E, Warnier G, Everard A, Cani PD, Deldicque L. Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB J 2019; 34:1885-1900. [PMID: 31914659 DOI: 10.1096/fj.201902244r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Acute environmental hypoxia may potentiate muscle hypertrophy in response to resistance training but the mechanisms are still unknown. To this end, twenty subjects performed a 1-leg knee extension session (8 sets of 8 repetitions at 80% 1 repetition maximum, 2-min rest between sets) in normoxic or normobaric hypoxic conditions (FiO2 14%). Muscle biopsies were taken 15 min and 4 hours after exercise in the vastus lateralis of the exercised and the non-exercised legs. Blood samples were taken immediately, 2h and 4h after exercise. In vivo, hypoxic exercise fostered acute inflammation mediated by the TNFα/NF-κB/IL-6/STAT3 (+333%, +194%, + 163% and +50% respectively) pathway, which has been shown to contribute to satellite cells myogenesis. Inflammation activation was followed by skeletal muscle invasion by CD68 (+63%) and CD197 (+152%) positive immune cells, both known to regulate muscle regeneration. The role of hypoxia-induced activation of inflammation in myogenesis was confirmed in vitro. Acute hypoxia promoted myogenesis through increased Myf5 (+300%), MyoD (+88%), myogenin (+1816%) and MRF4 (+489%) mRNA levels in primary myotubes and this response was blunted by siRNA targeting STAT3. In conclusion, our results suggest that hypoxia could improve muscle hypertrophic response following resistance exercise through IL-6/STAT3-dependent myogenesis and immune cells-dependent muscle regeneration.
Collapse
Affiliation(s)
- Florian A Britto
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Olouyoumi Gnimassou
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Estelle De Groote
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Estelle Balan
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Geoffrey Warnier
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO - Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain la Neuve, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO - Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain la Neuve, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Louvain la Neuve, Belgium
| |
Collapse
|
13
|
Feriche B, Schoenfeld BJ, Bonitch-Gongora J, de la Fuente B, Almeida F, Argüelles J, Benavente C, Padial P. Altitude-induced effects on muscular metabolic stress and hypertrophy-related factors after a resistance training session. Eur J Sport Sci 2019; 20:1083-1092. [PMID: 31699003 DOI: 10.1080/17461391.2019.1691270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examined the acute effects of exposure to moderate altitude on factors associated with muscular adaptations following whole-body hypertrophy-oriented resistance training (R T) sessions. Thirteen resistance-trained males completed both counterbalanced standard hypertrophic R T sessions (3 sets × 10RM, 2 min rest) at moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Participants rested 72 h between training sessions. Before and after the exercise session, blood samples were obtained for determination of metabolites and ions (lactate, inorganic phosphate, liquid carbon dioxide and calcium) and hormones (testosterone and growth hormone). Session-related performance and perception of effort (s-RPE) were also monitored. Results showed no meaningful differences in performance or s-RPE (8.5 ± 1.4 vs 8.6 ± 0.8 respectively for N and H; p = 0.603). All blood variables displayed statistically significant changes throughout the recovery period compared to basal levels (p < 0.05), except for the testosterone. However, no altitude effect was observed in maximal blood lactate, calcium or anabolic hormones (p > 0.05). The reduction observed in the liquid carbon dioxide concentration in H (21.11 ± 1.46 vs 16.19 ± 1.61 mmol·l-1) seems compatible with an increase in buffering capacity. Compared to N, inorganic phosphate displayed lower recovery values after the R T in H (2.89 ± 0.64 vs 2.23 ± 0.60 mg dl-1; p = 0.007). The results of this study do not support an accentuated effect of acute moderate terrestrial hypoxia on metabolic and hormonal factors linked to muscle growth during hypertrophic resistance training.
Collapse
Affiliation(s)
- Belen Feriche
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, NY, USA
| | - Juan Bonitch-Gongora
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Blanca de la Fuente
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Filipa Almeida
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Javier Argüelles
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Cristina Benavente
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Paulino Padial
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Entrenamiento de fuerza y resistencia en hipoxia: efecto en la hipertrofia muscular. BIOMEDICA 2019; 39:212-220. [PMID: 31021559 DOI: 10.7705/biomedica.v39i1.4084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 02/07/2023]
Abstract
El entrenamiento en altitud y el entrenamiento en hipoxia simulada producen adaptaciones fisiológicas y bioquímicas en el músculo esquelético como la capacidad oxidativa, así como modificaciones de la actividad mitocondrial, en el metabolismo aerobio y en el contenido de mioglobina.El propósito de esta revisión fue analizar las adaptaciones del músculo esquelético en respuesta a la exposición temporal a la hipoxia combinada con ejercicios de fuerza y resistencia. Según los hallazgos de numerosos autores, las adaptaciones estructurales del músculo son similares en la hipoxia y en la ‘normoxia’, con excepción de un aumento en el volumen muscular y en el área de la sección transversal de la fibra muscular, que son mayores en la hipoxia.En conclusión, la sinergia del entrenamiento de fuerza y resistencia y la hipoxia normobárica produce mejores y mayores adaptaciones, ganancias y cambios fisiológicos beneficiosos en el tejido muscular, lo cual genera cambios fenotípicos favorables, como la hipertrofia del músculo esquelético.
Collapse
|
15
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Argüelles-Cienfuegos J, De la Fuente B, Feriche B. Intermittent Resistance Training at Moderate Altitude: Effects on the Force-Velocity Relationship, Isometric Strength and Muscle Architecture. Front Physiol 2018; 9:594. [PMID: 29882549 PMCID: PMC5976859 DOI: 10.3389/fphys.2018.00594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxic resistance training (IHRT) may help to maximize the adaptations following resistance training, although conflicting evidence is available. The aim of this study was to explore the influence of moderate altitude on the functional, neural and muscle architecture responses of the quadriceps muscles following a power-oriented IHRT intervention. Twenty-four active males completed two 4-week consecutive training blocks comprising general strengthening exercises (weeks 1–4) and power-oriented resistance training (weeks 5–8). Training sessions were conducted twice a week at moderate altitude (2320 m; IHRT, n = 13) or normoxia (690 m; NT, n = 11). Training intensity during the second training block was set to the individual load corresponding to a barbell mean propulsive velocity of 1 m·s−1. Pre-post assessments, performed under normoxic conditions, comprised quadriceps muscle architecture (thickness, pennation angle and fascicle length), isometric maximal (MVF) and explosive strength, and voluntary muscle activation. Dynamic strength performance was assessed through the force-velocity relationship (F0, V0, P0) and a repeated CMJ test (CMJ15MP). Region-specific muscle thickness changes were observed in both training groups (p < 0.001, ηG2 = 0.02). A small opposite trend in pennation angle changes was observed (ES [90% CI]: −0.33 [−0.65, −0.01] vs. 0.11 [−0.44, 0.6], in the IHRT and NT group, respectively; p = 0.094, ηG2 = 0.02). Both training groups showed similar improvements in MVF (ES: 0.38 [0.20, 0.56] vs. 0.55 [0.29, 0.80], in the IHRT and NT group, respectively; p = 0.645, ηG2 < 0.01), F0 (ES: 0.41 [−0.03, 0.85] vs. 0.52 [0.04, 0.99], in the IHRT and NT group, respectively; p = 0.569, ηG2 < 0.01) and P0 (ES: 0.53 [0.07, 0.98] vs. 0.19 [−0.06, 0.44], in the IHRT and NT group, respectively; p = 0.320, ηG2 < 0.01). No meaningful changes in explosive strength performance were observed. In conclusion, contrary to earlier adverse associations between altitude and resistance-training muscle adaptations, similar anatomical and functional muscle strength responses can be achieved in both environmental conditions. The observed region-specific muscle thickness changes may encourage further research on the potential influence of IHRT on muscle morphological changes.
Collapse
Affiliation(s)
- Antonio J Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Pérez-Castilla
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | | | - Blanca De la Fuente
- High Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3617508. [PMID: 29849885 PMCID: PMC5907404 DOI: 10.1155/2018/3617508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.
Collapse
|
18
|
Ramos-Campo DJ, Scott BR, Alcaraz PE, Rubio-Arias JA. The efficacy of resistance training in hypoxia to enhance strength and muscle growth: A systematic review and meta-analysis. Eur J Sport Sci 2017; 18:92-103. [PMID: 29045191 DOI: 10.1080/17461391.2017.1388850] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have reported that resistance training in hypoxia (RTH) may augment muscle size and strength development. However, consensus on the effects of RTH via systematic review and meta-analysis is not yet available. This work aimed to systematically review studies which have investigated using RTH versus normoxic resistance training (NRT) to improve muscular size and strength, and to perform a meta-analysis to determine the effect of RTH on these adaptive parameters. Searches were conducted in PubMed, Web of Science and the Cochrane Library from database inception until 17 June 2017 for original articles assessing the effects of RTH on muscle size and strength versus NRT. The effects on outcomes were expressed as standardized mean differences (SMD). Nine studies (158 participants) reported on the effects of RTH versus NRT for muscle cross-sectional area (CSA) (n = 4) or strength (n = 6). RTH significantly increased CSA (SMD = 0.70, 95% confidence intervals (CI) 0.05, 1.35; p = .04) and strength (SMD = 1.88; 95% CI = 1.20, 2.56; p < .00001). However, RTH did not produce significant change in CSA (SMD = 0.24, 95% CI -0.19, 0.68, p = .27) or strength (SMD = 0.20; 95% CI = -0.27, 0.78; p = .23) when compared to NRT. Although RTH improved muscle size and strength, this protocol did not provide significant benefit over resistance training in normoxia. Nevertheless, this paper identified marked differences in methodologies for implementing RTH, and future research using standardized protocols is therefore warranted.
Collapse
Affiliation(s)
- Domingo J Ramos-Campo
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Brendan R Scott
- c School of Psychology and Exercise Science , Murdoch University , Perth , Australia
| | - Pedro E Alcaraz
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| | - Jacobo A Rubio-Arias
- a Department of Physical Activity and Sport Science, Sport Science Faculty , Catholic University of Murcia , Murcia , Spain.,b UCAM Research Center for High Performance Sport , Murcia , Spain
| |
Collapse
|
19
|
Lizamore CA, Hamlin MJ. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. High Alt Med Biol 2017; 18:305-321. [PMID: 28846046 DOI: 10.1089/ham.2017.0050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizamore, Catherine A., and Michael J. Hamlin. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: A literature review. High Alt Med Biol 18:305-321, 2017. BACKGROUND The reportedly beneficial improvements in an athlete's physical performance following altitude training may have merit for individuals struggling to meet physical activity guidelines. AIM To review the effectiveness of simulated altitude training methodologies at improving cardiovascular health in sedentary and clinical cohorts. METHODS Articles were selected from Science Direct, PubMed, and Google Scholar databases using a combination of the following search terms anywhere in the article: "intermittent hypoxia," "intermittent hypoxic," "normobaric hypoxia," or "altitude," and a participant descriptor including the following: "sedentary," "untrained," or "inactive." RESULTS 1015 articles were returned, of which 26 studies were accepted (4 clinical cohorts, 22 studies used sedentary participants). Simulated altitude methodologies included prolonged hypoxic exposure (PHE: continuous hypoxic interval), intermittent hypoxic exposure (IHE: 5-10 minutes hypoxic:normoxic intervals), and intermittent hypoxic training (IHT: exercising in hypoxia). CONCLUSIONS In a clinical cohort, PHE for 3-4 hours at 2700-4200 m for 2-3 weeks may improve blood lipid profile, myocardial perfusion, and exercise capacity, while 3 weeks of IHE treatment may improve baroreflex sensitivity and heart rate variability. In the sedentary population, IHE was most likely to improve submaximal exercise tolerance, time to exhaustion, and heart rate variability. Hematological adaptations were unclear. Typically, a 4-week intervention of 1-hour-long PHE intervals 5 days a week, at a fraction of inspired oxygen (FIO2) of 0.15, was beneficial for pulmonary ventilation, submaximal exercise, and maximum oxygen consumption ([Formula: see text]O2max), but an FIO2 of 0.12 reduced hyperemic response and antioxidative capacity. While IHT may be beneficial for increased lipid metabolism in the short term, it is unlikely to confer any additional advantage over normoxic exercise over the long term. IHT may improve vascular health and autonomic balance.
Collapse
Affiliation(s)
- Catherine A Lizamore
- Department of Tourism, Sport and Society, Lincoln University , Lincoln, New Zealand
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University , Lincoln, New Zealand
| |
Collapse
|
20
|
De Smet S, van Herpt P, D'Hulst G, Van Thienen R, Van Leemputte M, Hespel P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front Physiol 2017; 8:347. [PMID: 28620311 PMCID: PMC5449743 DOI: 10.3389/fphys.2017.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting.
Collapse
Affiliation(s)
- Stefan De Smet
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Paul van Herpt
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Marc Van Leemputte
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Peter Hespel
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium.,Athletic Performance Center, Bakala Academy, KU LeuvenLeuven, Belgium
| |
Collapse
|
21
|
Filopoulos D, Cormack SJ, Whyte DG. Normobaric hypoxia increases the growth hormone response to maximal resistance exercise in trained men. Eur J Sport Sci 2017; 17:821-829. [PMID: 28445110 DOI: 10.1080/17461391.2017.1317834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study examined the effect of hypoxia on growth hormone (GH) release during an acute bout of high-intensity, low-volume resistance exercise. Using a single-blinded, randomised crossover design, 16 resistance-trained males completed two resistance exercise sessions in normobaric hypoxia (HYP; inspiratory oxygen fraction, (FiO2) 0.12, arterial oxygen saturation (SpO2) 82 ± 2%) and normoxia (NOR; FiO2 0.21, SpO2 98 ± 0%). Each session consisted of five sets of three repetitions of 45° leg press and bench press at 85% of one repetition maximum. Heart rate, SpO2, and electromyographic activity (EMG) of the vastus lateralis muscle were measured throughout the protocol. Serum lactate and GH levels were determined pre-exposure, and at 5, 15, 30 and 60 min post-exercise. Differences in mean and integrated EMG between HYP and NOR treatments were unclear. However, there was an important increase in the peak levels and area under the curve of both lactate (HYP 5.8 ± 1.8 v NOR 3.9 ± 1.1 mmol.L-1 and HYP 138.7 ± 33.1 v NOR 105.8 ± 20.8 min.mmol.L-1) and GH (HYP 4.4 ± 3.1 v NOR 2.1 ± 2.5 ng.mL-1 and HYP 117.7 ± 86.9 v NOR 72.9 ± 85.3 min.ng.mL-1) in response to HYP. These results suggest that performing high-intensity resistance exercise in a hypoxic environment may provide a beneficial endocrine response without compromising the neuromuscular activation required for maximal strength development.
Collapse
Affiliation(s)
- Dean Filopoulos
- a School of Exercise Science , Australian Catholic University , Melbourne , Australia
| | - Stuart J Cormack
- a School of Exercise Science , Australian Catholic University , Melbourne , Australia
| | - Douglas G Whyte
- a School of Exercise Science , Australian Catholic University , Melbourne , Australia
| |
Collapse
|
22
|
Feriche B, García-Ramos A, Morales-Artacho AJ, Padial P. Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development. SPORTS MEDICINE-OPEN 2017; 3:12. [PMID: 28315193 PMCID: PMC5357242 DOI: 10.1186/s40798-017-0078-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain.
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Antonio J Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| |
Collapse
|
23
|
Inness MWH, Billaut F, Walker EJ, Petersen AC, Sweeting AJ, Aughey RJ. Heavy Resistance Training in Hypoxia Enhances 1RM Squat Performance. Front Physiol 2016; 7:502. [PMID: 27857693 PMCID: PMC5093137 DOI: 10.3389/fphys.2016.00502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/13/2016] [Indexed: 12/02/2022] Open
Abstract
Purpose: To determine if heavy resistance training in hypoxia (IHRT) is more effective at improving strength, power, and increasing lean mass than the same training in normoxia. Methods: A pair-matched, placebo-controlled study design included 20 resistance-trained participants assigned to IHRT (FIO2 0.143) or placebo (FIO2 0.20), (n = 10 per group). Participants were matched for strength and training. Both groups performed 20 sessions over 7 weeks either with IHRT or placebo. All participants were tested for 1RM, 20-m sprint, body composition, and countermovement jump pre-, mid-, and post-training and compared via magnitude-based inferences. Presentation of Results: Groups were not clearly different for any test at baseline. Training improved both absolute (IHRT: 13.1 ± 3.9%, effect size (ES) 0.60, placebo 9.8 ± 4.7%, ES 0.31) and relative 1RM (IHRT: 13.4 ± 5.1%, ES 0.76, placebo 9.7 ± 5.3%, ES 0.48) at mid. Similarly, at post both groups increased absolute (IHRT: 20.7 ± 7.6%, ES 0.74, placebo 14.1 ± 6.0%, ES 0.58) and relative 1RM (IHRT: 21.6 ± 8.5%, ES 1.08, placebo 13.2 ± 6.4%, ES 0.78). Importantly, the change in IHRT was greater than placebo at mid for both absolute [4.4% greater change, 90% Confidence Interval (CI) 1.0:8.0%, ES 0.21, and relative strength (5.6% greater change, 90% CI 1.0:9.4%, ES 0.31 (relative)]. There was also a greater change for IHRT at post for both absolute (7.0% greater change, 90% CI 1.3:13%, ES 0.33), and relative 1RM (9.2% greater change, 90% CI 1.6:14.9%, ES 0.49). Only IHRT increased countermovement jump peak power at Post (4.9%, ES 0.35), however the difference between IHRT and placebo was unclear (2.7, 90% CI –2.0:7.6%, ES 0.20) with no clear differences in speed or body composition throughout. Conclusion: Heavy resistance training in hypoxia is more effective than placebo for improving absolute and relative strength.
Collapse
Affiliation(s)
- Mathew W H Inness
- Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia; Western Bulldogs Football ClubMelbourne, VIC, Australia
| | - François Billaut
- Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia; Département de Kinesiologie, Université LavalQuebec City, QC, Canada
| | - Emily J Walker
- Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia; Collingwood Football ClubMelbourne, VIC, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Alice J Sweeting
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Robert J Aughey
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| |
Collapse
|
24
|
Chycki J, Czuba M, Gołaś A, Zając A, Fidos-Czuba O, Młynarz A, Smółka W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J Hum Kinet 2016; 53:91-98. [PMID: 28149414 PMCID: PMC5260579 DOI: 10.1515/hukin-2016-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to evaluate the effects of a 6 week resistance training protocol under hypoxic conditions (FiO2 = 12.9%, 4000 m) on muscle hypertrophy. The project included 12 resistance trained male subjects, randomly divided into two experimental groups. Group 1 (n = 6; age 21 ± 2.4 years; body height [BH] 178.8 ± 7.3 cm; body mass [BM] 80.6 ± 12.3 kg) and group 2 (n = 6; age 22 ± 1.5 years; BH 177.8 ± 3.7cm; BM 81.1 ± 7.5 kg). Each group performed resistance exercises alternately under normoxic and hypoxic conditions (4000 m) for 6 weeks. All subjects followed a training protocol that comprised two training sessions per week at an exercise intensity of 70% of 1RM; each training session consisted of eight sets of 10 repetitions of the bench press and barbell squat, with 3 min rest periods. The results indicated that strength training in normobaric hypoxia caused a significant increase in BM (p < 0.01) and fat free mass (FFM) (p < 0.05) in both groups. Additionally, a significant increase (p < 0.05) was observed in IGF-1 concentrations at rest after 6 weeks of hypoxic resistance training in both groups. The results of this study allow to conclude that resistance training (6 weeks) under normobaric hypoxic conditions induces greater muscle hypertrophy compared to training in normoxic conditions.
Collapse
Affiliation(s)
- Jakub Chycki
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Miłośz Czuba
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Artur Gołaś
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Adam Zając
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Olga Fidos-Czuba
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Adrian Młynarz
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Wojciech Smółka
- Medical University of Silesia School of Medicine in Katowice, Poland
| |
Collapse
|
25
|
Yan B, Lai X, Yi L, Wang Y, Hu Y. Effects of Five-Week Resistance Training in Hypoxia on Hormones and Muscle Strength. J Strength Cond Res 2016; 30:184-93. [DOI: 10.1519/jsc.0000000000001056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
McLean BD, Gore CJ, Kemp J. Application of 'live low-train high' for enhancing normoxic exercise performance in team sport athletes. Sports Med 2015; 44:1275-87. [PMID: 24849544 DOI: 10.1007/s40279-014-0204-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Hypoxic training techniques are increasingly used by athletes in an attempt to improve performance in normoxic environments. The 'live low-train high (LLTH)' model of hypoxic training may be of particular interest to athletes because LLTH protocols generally involve shorter hypoxic exposures (approximately two to five sessions per week of <3 h) than other traditional hypoxic training techniques (e.g., live high-train high or live high-train low). However, the methods employed in LLTH studies to date vary greatly with respect to exposure times, training intensities, training modalities, degrees of hypoxia and performance outcomes assessed. Whilst recent reviews provide some insight into how LLTH may be applied to enhance performance, little attention has been given to how training intensity/modality may specifically influence subsequent performance in normoxia. Therefore, this systematic review aims to evaluate the normoxic performance outcomes of the available LLTH literature, with a particular focus on training intensity and modality. DATA SOURCES AND STUDY SELECTION A systematic search was conducted to capture all LLTH studies with a matched normoxic (control) training group and the assessment of performance under normoxic conditions. Studies were excluded if no training was completed during the hypoxic exposures, or if these exposures exceeded 3 h per day. Four electronic databases were searched (PubMed, SPORTDiscus, EMBASE and Web of Science) during August 2013, and these searches were supplemented by additional manual searches until December 2013. RESULTS After the electronic and manual searches, 40 papers were deemed to meet the inclusion criteria, representing 31 separate studies. Within these 31 studies, four types of LLTH were identified: (1) continuous low-intensity training in hypoxia (CHT, n = 16), (2) interval hypoxic training (IHT, n = 4), (3) repeated sprint training in hypoxia (RSH, n = 3) and (4) resistance training in hypoxia (RTH, n = 4). Four studies also used a combination of CHT and IHT. The majority of studies reported no difference in normoxic performance between the hypoxic and normoxic training groups (n = 19), while nine reported greater improvements in the hypoxic group and three reported poorer outcomes compared with the control group. Selection of training intensity (including matching relative or absolute intensity between normoxic and hypoxic groups) was identified as a key factor in mediating the subsequent normoxic performance outcomes. Five studies included some form of normoxic training for the hypoxic group and 14 studies assessed performance outcomes not specific to the training intensity/modality completed during the training intervention. CONCLUSION Four modes of LLTH are identified in the current literature (CHT, IHT, RSH and RTH), with training mode and intensity appearing to be key factors in mediating subsequent performance responses in normoxia. Improvements in normoxic performance appear most likely following high-intensity, short-term and intermittent training (e.g., IHT, RSH). LLTH programmes should carefully apply the principles of training and testing specificity and include some high-intensity training in normoxia. For RTH, it is unclear whether the associated adaptations are greater than those of traditional (maximal) resistance training programmes.
Collapse
Affiliation(s)
- Blake D McLean
- Sport Science Department, Collingwood Football Club, Melbourne, Australia,
| | | | | |
Collapse
|
27
|
Scott BR, Slattery KM, Sculley DV, Dascombe BJ. Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med 2015; 44:1037-54. [PMID: 24715613 DOI: 10.1007/s40279-014-0177-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally believed that optimal hypertrophic and strength gains are induced through moderate- or high-intensity resistance training, equivalent to at least 60% of an individual's 1-repetition maximum (1RM). However, recent evidence suggests that similar adaptations are facilitated when low-intensity resistance exercise (~20-50% 1RM) is combined with blood flow restriction (BFR) to the working muscles. Although the mechanisms underpinning these responses are not yet firmly established, it appears that localized hypoxia created by BFR may provide an anabolic stimulus by enhancing the metabolic and endocrine response, and increase cellular swelling and signalling function following resistance exercise. Moreover, BFR has also been demonstrated to increase type II muscle fibre recruitment during exercise. However, inappropriate implementation of BFR can result in detrimental effects, including petechial haemorrhage and dizziness. Furthermore, as BFR is limited to the limbs, the muscles of the trunk are unable to be trained under localized hypoxia. More recently, the use of systemic hypoxia via hypoxic chambers and devices has been investigated as a novel way to stimulate similar physiological responses to resistance training as BFR techniques. While little evidence is available, reports indicate that beneficial adaptations, similar to those induced by BFR, are possible using these methods. The use of systemic hypoxia allows large groups to train concurrently within a hypoxic chamber using multi-joint exercises. However, further scientific research is required to fully understand the mechanisms that cause augmented muscular changes during resistance exercise with a localized or systemic hypoxic stimulus.
Collapse
Affiliation(s)
- Brendan R Scott
- Applied Sports Science and Exercise Testing Laboratory, School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, PO Box 127, Ourimbah, NSW, 2258, Australia,
| | | | | | | |
Collapse
|
28
|
Scott BR, Slattery KM, Dascombe BJ. Intermittent hypoxic resistance training: is metabolic stress the key moderator? Med Hypotheses 2014; 84:145-9. [PMID: 25547781 DOI: 10.1016/j.mehy.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/03/2014] [Indexed: 01/21/2023]
Abstract
Traditionally, researchers and practitioners have manipulated acute resistance exercise variables to elicit the desired responses to training. However, recent research indicates that altering the muscular environment during resistance training, namely by implementing a hypoxic stimulus, can augment muscle hypertrophy and strength. Intermittent hypoxic resistance training (IHRT), whereby participants inspire hypoxic air during resistance training, has been previously demonstrated to increase muscle cross-sectional area and maximum strength by significantly greater amounts than the equivalent training in normoxia. However, some recent evidence has provided conflicting results, reporting that the use of systemic hypoxia during resistance training provided no added benefit. While the definitive mechanisms that may augment muscular responses to IHRT are not yet fully understood, an increased metabolic stress is thought to be important for moderating many downstream processes related to hypertrophy. It is likely that methodological differences between conflicting IHRT studies have resulted in different degrees of metabolic stress during training, particularly when considering the inter-set recovery intervals used. Given that the most fundamental physiological stresses resulting from hypoxia are disturbances to oxidative metabolism, it becomes apparent that resistance training may only benefit from additional hypoxia if the exercise is structured to elicit a strong metabolic response. We hypothesize that for IHRT to be more effective in producing muscular hypertrophy and increasing strength than the equivalent normoxic training, exercise should be performed with relatively brief inter-set recovery periods, with the aim of providing a potent metabolic stimulus to enhance anabolic responses.
Collapse
Affiliation(s)
- Brendan R Scott
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Katie M Slattery
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW 2258, Australia; New South Wales Institute of Sport, Sydney Olympic Park, NSW 2127, Australia
| | - Ben J Dascombe
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW 2258, Australia
| |
Collapse
|
29
|
Scott BR, Slattery KM, Dascombe BJ. Intermittent hypoxic resistance training: does it provide added benefit? Front Physiol 2014; 5:397. [PMID: 25352810 PMCID: PMC4195285 DOI: 10.3389/fphys.2014.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/24/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Brendan R Scott
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle Ourimbah, NSW, Australia
| | - Katie M Slattery
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle Ourimbah, NSW, Australia ; New South Wales Institute of Sport Sydney, NSW, Australia
| | - Ben J Dascombe
- Applied Sports Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of Newcastle Ourimbah, NSW, Australia
| |
Collapse
|
30
|
Jaspers RT, Testerink J, Della Gaspera B, Chanoine C, Bagowski CP, van der Laarse WJ. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia. Biol Open 2014; 3:718-27. [PMID: 25063194 PMCID: PMC4133725 DOI: 10.1242/bio.20149167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022] Open
Abstract
Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.
Collapse
Affiliation(s)
- Richard T Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Janwillem Testerink
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands Department of Integrative Zoology, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | | | | | | | - Willem J van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med 2014; 47 Suppl 1:i17-21. [PMID: 24282200 PMCID: PMC3903139 DOI: 10.1136/bjsports-2013-092950] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged in these sports are required to repeatedly produce skilful actions and maximal or near-maximal efforts (eg, accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed with brief recovery intervals (consisting of rest or low-intensity to moderate-intensity activity), over an extended period of time (1–2 h). While performance in most team sports is dominated by technical and tactical proficiencies, successful team-sport athletes must also have highly-developed, specific, physical capacities. Much effort goes into designing training programmes to improve these physical capacities, with expected benefits for team-sport performance. Recently, some team sports have introduced altitude training in the belief that it can further enhance team-sport physical performance. Until now, however, there is little published evidence showing improved team-sport performance following altitude training, despite the often considerable expense involved. In the absence of such studies, this review will identify important determinants of team-sport physical performance that may be improved by altitude training, with potential benefits for team-sport performance. These determinants can be broadly described as factors that enhance either sprint performance or the ability to recover from maximal or near-maximal efforts. There is some evidence that some of these physical capacities may be enhanced by altitude training, but further research is required to verify that these adaptations occur, that they are greater than what could be achieved by appropriate sea-level training and that they translate to improved team-sport performance.
Collapse
Affiliation(s)
- David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, , Melbourne, Australia
| | | |
Collapse
|
32
|
Kon M, Ohiwa N, Honda A, Matsubayashi T, Ikeda T, Akimoto T, Suzuki Y, Hirano Y, Russell AP. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol Rep 2014; 2:2/6/e12033. [PMID: 24907297 PMCID: PMC4208656 DOI: 10.14814/phy2.12033] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. This study investigated the effect of resistance exercise training performed under systemic hypoxia or normoxia on biochemical and molecular muscular adaptations in healthy male subjects. Our findings demonstrate that resistance training under systemic hypoxia led not only muscle hypertrophy, but most interestingly, to a greater increase in muscular endurance. This increase in muscular endurance was potentially caused by the increased angiogenesis as determined by capillary‐to‐fiber ratio.
Collapse
Affiliation(s)
- Michihiro Kon
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nao Ohiwa
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Akiko Honda
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Takeo Matsubayashi
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Tatsuaki Ikeda
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, BunkyoTokyo, Japan
| | - Yasuhiro Suzuki
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Yuichi Hirano
- Department of Sports Sciences, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, KitaTokyo, Japan
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
33
|
Girard O, Amann M, Aughey R, Billaut F, Bishop DJ, Bourdon P, Buchheit M, Chapman R, D'Hooghe M, Garvican-Lewis LA, Gore CJ, Millet GP, Roach GD, Sargent C, Saunders PU, Schmidt W, Schumacher YO. Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues. Br J Sports Med 2013; 47 Suppl 1:i8-16. [PMID: 24282213 PMCID: PMC3903313 DOI: 10.1136/bjsports-2013-093109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 01/09/2023]
Abstract
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Collapse
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert Aughey
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
- Western Bulldogs Football Club, Melbourne, Australia
| | | | - David J Bishop
- Exercise and Active Living, Institute of Sport, Victoria University, Melbourne, Australia
| | | | | | - Robert Chapman
- Department of Kinesiology, Indiana University, High Performance Department, USA Track & Field, Indianapolis, Indiana, USA
| | - Michel D'Hooghe
- Fédération Internationale de Football Association (FIFA) Medical Commission and FIFA Medical Assessment and Research Centre (F-MARC), Langerei, 71, 8000 Brugge, Belgium
| | - Laura A Garvican-Lewis
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Christopher J Gore
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| | - Grégoire P Millet
- Department of Physiology—Faculty of Biology and Medicine, ISSUL—Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Charli Sargent
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - Philo U Saunders
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
| | - Walter Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Yorck O Schumacher
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
34
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
35
|
Ozaki H, Loenneke JP, Thiebaud RS, Stager JM, Abe T. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review. Clin Interv Aging 2013; 8:369-75. [PMID: 23573066 PMCID: PMC3620094 DOI: 10.2147/cia.s43837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate) intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.
Collapse
|
36
|
Manimmanakorn A, Hamlin MJ, Ross JJ, Taylor R, Manimmanakorn N. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport 2012; 16:337-42. [PMID: 22999393 DOI: 10.1016/j.jsams.2012.08.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/31/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the effect of blood flow restriction or normobaric hypoxic exposure combined with low-load resistant exercise (LRE), on muscular strength and endurance. DESIGN A randomised controlled trial. METHODS Well-trained netball players (n=30) took part in a 5 weeks training of knee flexor and extensor muscles in which LRE (20% of one repetition maximum) was combined with (1) an occlusion pressure of approximately 230mmHg around the upper thigh (KT, n=10), (2) hypoxic air to generate blood oxyhaemoglobin levels of approximately 80% (HT, n=10) or (3) with no additional stimulus (CT, n=10). The training was of the same intensity and amount in all groups. One to five days before and after training, participants performed a series of strength and endurance tests of the lower limbs (3-s maximal voluntary contraction [MVC3], area under 30-s force curve [MVC30], number of repetitions at 20% 1RM [Reps201RM]). In addition, the cross-sectional area (CSA) of the quadriceps and hamstrings were measured. RESULTS Relative to CT, KT and HT increased MVC3 (11.0±11.9% and 15.0±13.1%), MVC30 (10.2±9.0% and 18.3±17.4%) and Reps201RM (28.9±23.7% and 23.3±24.0%, mean±90% confidence interval) after training. CSA increased by 6.6±4.5%, 6.1±5.1% and 2.9±2.7% in the KT, HT and CT groups respectively. CONCLUSIONS LRE in conjunction with KT or HT can provide substantial improvements in muscle strength and endurance and may be useful alternatives to traditional training practices.
Collapse
Affiliation(s)
- Apiwan Manimmanakorn
- Department of Social Sciences, Parks, Recreation, Tourism and Sport, Lincoln University, New Zealand.
| | | | | | | | | |
Collapse
|
37
|
Ohno H, Shirato K, Sakurai T, Ogasawara J, Sumitani Y, Sato S, Imaizumi K, Ishida H, Kizaki T. Effect of exercise on HIF-1 and VEGF signaling. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Friedmann-Bette B, Schwartz FR, Eckhardt H, Billeter R, Bonaterra G, Kinscherf R. Similar changes of gene expression in human skeletal muscle after resistance exercise and multiple fine needle biopsies. J Appl Physiol (1985) 2011; 112:289-95. [PMID: 22052872 DOI: 10.1152/japplphysiol.00959.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated biopsy sampling from one muscle is necessary to investigate muscular adaptation to different forms of exercise as adaptation is thought to be the result of cumulative effects of transient changes in gene expression in response to single exercise bouts. In a crossover study, we obtained four fine needle biopsies from one vastus lateralis muscle of 11 male subjects (25.9 ± 3.8 yr, 179.2 ± 4.8 cm, 76.5 ± 7.0 kg), taken before (baseline), 1, 4, and 24 h after one bout of squatting exercise performed as conventional squatting or as whole body vibration exercise. To investigate if the repeated biopsy sampling has a confounding effect on the observed changes in gene expression, four fine needle biopsies from one vastus lateralis muscle were also taken from 8 male nonexercising control subjects (24.5 ± 3.7 yr, 180.6 ± 1.2 cm, 81.2 ± 1.6 kg) at the equivalent time points. Using RT-PCR, we observed similar patterns of change in the squatting as well as in the control group for the mRNAs of interleukin 6 (IL-6), IL-6 receptor, insulin-like growth factor 1, p21, phosphofructokinase, and glucose transporter in relation to the baseline biopsy. In conclusion, multiple fine needle biopsies obtained from the same muscle region can per se influence the expression of marker genes induced by an acute bout of resistance exercise.
Collapse
Affiliation(s)
- Birgit Friedmann-Bette
- Department of Sports Medicine, Medical Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1078-87. [DOI: 10.1152/ajpregu.00285.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training “specificity” hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (FiO2) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (V̇o2max) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase ( P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ETN) and strength training normoxia group (STN); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ETH) and strength training hypoxia group (STH); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation ( P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ETN ( P < 0.01), with the same trend in ETH and STH ( P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.
Collapse
Affiliation(s)
- Dominik Pesta
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Hoppel
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Christian Macek
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Hubert Messner
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Faulhaber
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Conrad Kobel
- Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Innsbruck, Austria; and
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Division of Diagnostic Radiology I, Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Erich Gnaiger
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
40
|
St-Amand J, Yoshioka M, Nishida Y, Tobina T, Shono N, Tanaka H. Effects of mild-exercise training cessation in human skeletal muscle. Eur J Appl Physiol 2011; 112:853-69. [DOI: 10.1007/s00421-011-2036-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 05/30/2011] [Indexed: 01/21/2023]
|
41
|
Hypoxia Increases Muscle Hypertrophy Induced by Resistance Training. Int J Sports Physiol Perform 2010; 5:497-508. [DOI: 10.1123/ijspp.5.4.497] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose:Recent studies have shown that low-intensity resistance training with vascular occlusion (kaatsu training) induces muscle hypertrophy. A local hypoxic environment facilitates muscle hypertrophy during kaatsu training. We postulated that muscle hypertrophy can be more efficiently induced by placing the entire body in a hypoxic environment to induce muscle hypoxia followed by resistance training.Methods:Fourteen male university students were randomly assigned to hypoxia (Hyp) and normoxia (Norm) groups (n = 7 per group). Each training session proceeded at an exercise intensity of 70% of 1 repetition maximum (RM), and comprised four sets of 10 repetitions of elbow extension and fexion. Students exercised twice weekly for 6 wk and then muscle hypertrophy was assessed by magnetic resonance imaging and muscle strength was evaluated based on 1RM.Results:Muscle hypertrophy was significantly greater for the Hyp-Ex (exercised fexor of the hypoxia group) than for the Hyp-N (nonexercised fexor of the hypoxia group) or Norm-Ex fexor (P < .05, Bonferroni correction). Muscle hypertrophy was significantly greater for the Hyp-Ex than the Hyp-N extensor. Muscle strength was significantly increased early (by week 3) in the Hyp-Ex, but not in the Norm-Ex group.Conclusion:This study suggests that resistance training under hypoxic conditions improves muscle strength and induces muscle hypertrophy faster than under normoxic conditions, thus representing a promising new training technique.
Collapse
|
42
|
Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95:451-62. [DOI: 10.1113/expphysiol.2009.047605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur J Appl Physiol 2009; 108:821-36. [DOI: 10.1007/s00421-009-1292-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
|
44
|
Abstract
The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity through the promotion of anaerobic substrate flux and tighter metabolic control, often at the expense of muscle mass. In seeming contrast, intense physical activity at moderate hypoxia (2500 to 4000 m) modifies this response in both low and high altitude natives through metabolic compensation by elevating local aerobic capacity and possibly preventing muscle fiber atrophy. The combined use of classical morphometry and contemporary proteomic technology provides a highly resolved picture of the temporal control of hypoxia-induced muscular adaptations. The muscle proteome signature identifies mitochondrial autophagy and protein degradation as prime adaptive mechanisms to passive altitude exposure and ascent to extreme altitude. Protein measures also explain the lactate paradox by a sparing of glycolytic enzymes from general muscle wasting. Enhanced mitochondrial and angiogenic protein expression in human muscle with exercise up to 4000 m is related to the reduction in intramuscular oxygen content below 1% (8 torr), when the master regulator of hypoxia-dependent gene expression, HIF-1alpha, is stabilized. Accordingly, it is proposed here that the catabolic consequences of chronic hypoxia exposure reflect the insufficient activation of hypoxia-sensitive signaling and the suppression of energy-consuming protein translation.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
45
|
Weber MA, Krakowski-Roosen H, Schröder L, Kinscherf R, Krix M, Kopp-Schneider A, Essig M, Bachert P, Kauczor HU, Hildebrandt W. Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol 2009; 48:116-24. [PMID: 18607877 DOI: 10.1080/02841860802130001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Cancer-related cachexia is an obscure syndrome leading to muscle wasting, reduced physical fitness and quality of life. The aim of this study was to assess morphology, metabolism, and microcirculation in skeletal muscles of patients with cancer-related cachexia and to compare these data with matched healthy volunteers. METHODS In 19 patients with cancer-induced cachexia and 19 age-, gender-, and body-height-matched healthy volunteers body composition and aerobic capacity (VO(2max)) were analyzed. Skeletal muscle fiber size and capillarization were evaluated in biopsies of the vastus lateralis muscle. The cross-sectional area (CSA) of the quadriceps femoris muscle was measured by magnetic resonance imaging as well as its isokinetic and isometric force. The energy and lipid metabolism of the vastus lateralis muscle was quantified by (31)P and (1)H spectroscopy and parameters of its microcirculation by contrast-enhanced ultrasonography (CEUS). RESULTS Morphologic parameters were about 30% lower in cachexia than in volunteers (body mass index: 20 +/- 3 vs. 27 +/- 4 kg m(-2), CSA: 45 +/- 13 vs. 67 +/- 14 cm(2), total fiber size: 2854 +/- 1112 vs. 4181 +/- 1461 microm(2)). VO(2max) was reduced in cachexia (23 +/- 9 vs. 32 +/- 7 ml min(-1) kg(-1), p=0.03), whereas histologically determined capillary density and microcirculation in vivo were not different. Both concentrations of muscular energy metabolites, pH, and trimethyl-ammonium-containing compounds were comparable in both groups. Absolute strength of quadriceps muscle was reduced in cachexia (isometric: 107 +/- 40 vs. 160 +/- 40 Nm, isokinetic: 101 +/- 46 vs. 167 +/- 50 Nm; p=0.03), but identical when normalized on CSA (isometric: 2.4 +/- 0.5 vs. 2.4 +/- 0.4 Nm cm(-2), isokinetic: 2.2 +/- 0.4 vs. 2.5 +/- 0.5 Nm cm(-2)). CONCLUSIONS Cancer-related cachexia is associated with a loss of muscle volume but not of functionality, which can be a rationale for muscle training.
Collapse
|
46
|
Weber MA, Hildebrandt W, Schröder L, Kinscherf R, Krix M, Bachert P, Delorme S, Essig M, Kauczor HU, Krakowski-Roosen H. Concentric resistance training increases muscle strength without affecting microcirculation. Eur J Radiol 2009; 73:614-21. [PMID: 19144482 DOI: 10.1016/j.ejrad.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 11/13/2008] [Accepted: 12/01/2008] [Indexed: 11/16/2022]
Abstract
PURPOSE While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. MATERIALS AND METHODS Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54+/-9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. RESULTS The significant (P<0.001) increase in CSA (60+/-16 before vs. 64+/-15 cm(2) after training) and in absolute muscle strength (isometric, 146+/-44 vs. 174+/-50 Nm; isokinetic, 151+/-53 vs. 174+/-62 Nm) demonstrated successful training. Neither capillary density ex vivo (351+/-75 vs. 326+/-62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2+/-1.2 vs. 1.1+/-1.1 ml/min/100g; blood flow velocity, 0.49+/-0.44 vs. 0.52+/-0.74 mms(-1)). Also, the intensities of high-energy phosphates phosphocreatine and beta-adenosintriphosphate were not different after training within the skeletal muscle at rest (beta-ATP/phosphocreatine, 0.29+/-0.06 vs. 0.28+/-0.04). CONCLUSION The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at rest.
Collapse
Affiliation(s)
- Marc-André Weber
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol 2008; 105:515-24. [PMID: 19018560 DOI: 10.1007/s00421-008-0928-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 01/08/2023]
Abstract
Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.
Collapse
|
48
|
Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen JL, Aagaard P, Kjaer M. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol (1985) 2008; 105:1454-61. [PMID: 18787090 DOI: 10.1152/japplphysiol.90538.2008] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle mass accretion is accomplished by heavy-load resistance training. The effect of light-load resistance exercise has been far more sparsely investigated with regard to potential effect on muscle size and contractile strength. We applied a resistance exercise protocol in which the same individual trained one leg at 70% of one-repetition maximum (1RM) (heavy load, HL) while training the other leg at 15.5% 1RM (light load, LL). Eleven sedentary men (age 25 +/- 1 yr) trained for 12 wk at three times/week. Before and after the intervention muscle hypertrophy was determined by magnetic resonance imaging, muscle biopsies were obtained bilaterally from vastus lateralis for determination of myosin heavy chain (MHC) composition, and maximal muscle strength was assessed by 1RM testing and in an isokinetic dynamometer at 60 degrees /s. Quadriceps muscle cross-sectional area increased (P < 0.05) 8 +/- 1% and 3 +/- 1% in HL and LL legs, respectively, with a greater gain in HL than LL (P < 0.05). Likewise, 1RM strength increased (P < 0.001) in both legs (HL: 36 +/- 5%, LL: 19 +/- 2%), albeit more so with HL (P < 0.01). Isokinetic 60 degrees /s muscle strength improved by 13 +/- 5% (P < 0.05) in HL but remained unchanged in LL (4 +/- 5%, not significant). Finally, MHC IIX protein expression was decreased with HL but not LL, despite identical total workload in HL and LL. Our main finding was that LL resistance training was sufficient to induce a small but significant muscle hypertrophy in healthy young men. However, LL resistance training was inferior to HL training in evoking adaptive changes in muscle size and contractile strength and was insufficient to induce changes in MHC composition.
Collapse
Affiliation(s)
- L Holm
- Institute of Sports Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cacciani N, Paoli A, Reggiani C, Patruno M. Hypoxia: the third wheel between nerve and muscle. Neurol Res 2008; 30:149-54. [PMID: 18397606 DOI: 10.1179/174313208x281226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Skeletal muscles not only obey carefully all motor commands received via motor nerves from nervous system, but also are ready to modify their structure and function to be more suited to the tasks assigned by nervous system. Thus, nervous system appears as the major modulator of the muscle structure and function. Other factors, however, may interfere with the nerve-muscle partnership and among them, hypoxia plays a pivotal role because skeletal muscles exhibit a great variability of the oxygen fluxes and because hypoxia per se has a powerful influence on muscle fibers. The adaptation of skeletal muscles to nerve-induced activity is particularly evident with low frequency tonic patterns and examples are given by chronic low frequency stimulation and by endurance training. Adaptation includes fiber type transitions towards a slow-oxidative phenotype, increased mitochondrial density and increased capillary/fiber ratio. Hypoxia can trigger some of such changes and this has suggested that low oxygen tension at fiber level might be a mediator, possibly based on HIF and VEGF, of the muscle adaptation to increased contractile activity. Chronic hypoxia can, however, induce opposite modifications, such as a fiber type transition from slow-oxidative to fast-glycolytic and mitochondrial loss. In such conditions, the increased contractile activity can antagonize hypoxia effects. Thus, hypoxia can play a double role in the nerve-muscle relationship, either reinforcing the nerve influence or antagonizing it. This short review aims to re-examine the ambiguous relationships between nerve-induced contractile activity and hypoxic conditions and to suggest possible interpretations of the double role played by hypoxia.
Collapse
Affiliation(s)
- N Cacciani
- Department of Anatomy and Physiology, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
50
|
Weber MA, Krakowski-Roosen H, Hildebrandt W, Schröder L, Ionescu I, Krix M, Kinscherf R, Bachert P, Kauczor HU, Essig M. Assessment of Metabolism and Microcirculation of Healthy Skeletal Muscles by Magnetic Resonance and Ultrasound Techniques. J Neuroimaging 2007; 17:323-31. [PMID: 17894621 DOI: 10.1111/j.1552-6569.2007.00156.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To assess metabolism and microcirculation of healthy skeletal muscle by magnetic resonance (MR) and ultrasound techniques and to compare these data with muscle histology, and anthropometric and blood parameters. METHODS Thirty-four healthy volunteers were selected such that their measured aerobic capacity (VO2max) per body weight ranged between 23 and 66 mL/minute/kg to render a large variability of skeletal muscle capillarization as a result of their different physical activity. We analyzed body composition, blood parameters, and skeletal muscle fiber size and capillarization in biopsies of the vastus lateralis muscle. These data were compared with knee extensor cross-sectional area (CSA) obtained by MR imaging, microcirculation of the vastus lateralis muscle by contrast-enhanced ultrasound (CEUS), and its energy and lipid metabolism measured with 31P and 1H MR spectroscopy. Statistical analysis was performed using Pearson's correlation coefficient and significance was tested at a level of .5%. RESULTS The variable physical activity was reflected in a large variability of vastus lateralis muscle perfusion and metabolism at rest with highest histologic capillarization and CEUS-perfusion values observed in the best-trained volunteers. Levels of high-energy phosphates, such as phosphocreatine, were positively correlated with CSA (r= .5) and histologic fiber size (r= .6 for type IIA and IIX fibers), while phosphocreatine concentration was significantly negatively correlated to myocellular lipids (r=-.6) and trimethyl ammonium containing compounds (r=-.8). Local blood volume measured in vivo with CEUS was positively correlated with several histologic capillarization parameters. CONCLUSIONS Dedicated MR- and CEUS-methods deliver (patho-)physiologic information about capillarization and fiber characteristics of skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases.
Collapse
Affiliation(s)
- Marc-André Weber
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|