1
|
Liu Q, Wang S, Wang W, Chen J, Zhu L. Polybrominated diphenyl ethers and polychlorinated biphenyls induced rice "diabetes" by disturbing the transport and decomposition of soluble sugars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124523. [PMID: 38986763 DOI: 10.1016/j.envpol.2024.124523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Halogenated flame retardants in farmlands were observed to inhibit the growth of exposed crops. This study aimed to elucidate the mechanism of inhibition on rice by employing four representative polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). The exposure to these contaminants at 200 nM led to a decrease of 0.63-0.95 fold in rice below-ground biomass and 0.49-0.66 fold in yield, and a corresponding 4%-10% increase in soluble sugars in leaves. PBDEs and PCBs were found to significantly disrupt the synthesis, decomposition, and transport of sugars in leaves, the three pivotal determinants of crop growth. Notably, these compounds promoted a 1.41- to 7.60-fold upregulation of the triose phosphate translocator, significantly enhancing soluble sugar synthesis. Conversely, a 0.45-0.97 fold downregulation was observed for sucrose transporters, thus impeding the leaf-to-shoot efflux of soluble sugars. Furthermore, PBDEs and PCBs were favorably bound to fructose-1,6-bisphosphate aldolase (FBA), inducing its substrate-specific dysfunction in fructose-1,6-diphosphate decomposition (3%-14%). Overall, PBDE and PCB exposure promoted a notable intracellular accumulation of soluble sugars in rice leaves, a typical symptom of plant diabetes, since the intensified synthesis of soluble sugars in leaves and the repressed decomposition and transportation of soluble sugars to other storage organs, thus impeding crop growth. This study provided an insightful understanding of the toxic effects and molecular mechanisms of halogenated flame retardants, highlighting their role in abnormal sugar accumulation and growth inhibition in crops and offering vital information for the risk assessment and administration of these compounds to guarantee the safety of agricultural products.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Valifard M, Fernie AR, Kitashova A, Nägele T, Schröder R, Meinert M, Pommerrenig B, Mehner-Breitfeld D, Witte CP, Brüser T, Keller I, Neuhaus HE. The novel chloroplast glucose transporter pGlcT2 affects adaptation to extended light periods. J Biol Chem 2023; 299:104741. [PMID: 37088133 DOI: 10.1016/j.jbc.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Intracellular sugar compartmentation is critical in plant development and acclimation to challenging environmental conditions. Sugar transport proteins are present in plasma membranes and in membranes of organelles such as vacuoles, the Golgi apparatus, and plastids. However, there may exist other transport proteins with uncharacterized roles in sugar compartmentation. Here we report one such, a novel transporter of the Monosaccharide Transporter Family (MSF), the closest phylogenetic homolog of which is the chloroplast-localized glucose transporter pGlcT and that we therefore term plastidic glucose transporter 2 (pGlcT2). We show, using gene-complemented glucose uptake deficiency of an Escherichia coli ptsG/manXYZ mutant strain and biochemical characterization, that this protein specifically facilitates glucose transport, whereas other sugars do not serve as substrates. In addition, we demonstrate pGlcT2-GFP localized to the chloroplast envelope, and that pGlcT2 is mainly produced in seedlings and in the rosette center of mature Arabidopsis plants. Therefore, in conjunction with molecular and metabolic data, we propose pGlcT2 acts as a glucose importer that can limit cytosolic glucose availability in developing pGlcT2-overexpressing seedlings. Finally, we show both overexpression and deletion of pGlcT2 resulted in impaired growth efficiency under long day and continuous light conditions, suggesting pGlcT2 contributes to a release of glucose derived from starch mobilization late in the light phase. Together, these data indicate the facilitator pGlcT2 changes the direction in which it transports glucose during plant development and suggest the activity of pGlcT2 must be controlled spatially and temporarily in order to prevent developmental defects during adaptation to periods of extended light.
Collapse
Affiliation(s)
- Marzieh Valifard
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anastasia Kitashova
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Rebekka Schröder
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Melissa Meinert
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Denise Mehner-Breitfeld
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany.
| |
Collapse
|
3
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
4
|
Ishimaru T, Parween S, Saito Y, Masumura T, Kondo M, Sreenivasulu N. Laser microdissection transcriptome data derived gene regulatory networks of developing rice endosperm revealed tissue- and stage-specific regulators modulating starch metabolism. PLANT MOLECULAR BIOLOGY 2022; 108:443-467. [PMID: 35098404 PMCID: PMC8894313 DOI: 10.1007/s11103-021-01225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Laser microdissection applied on the developing rice endosperm revealed tissue- and stage-specific regulators modulating programmed cell death and desiccation tolerance mechanisms in the central starchy endosperm following starch metabolism. Rice (Oryza sativa L.) filial seed tissues are heterozygous in its function, which accumulate distinct storage compounds spatially in starchy endosperm and aleurone. In this study, we identified the 18 tissue- and stage-specific gene co-regulons in the developing endosperm by isolating four fine tissues dorsal aleurone layer (AL), central starchy endosperm (CSE), dorsal starchy endosperm (DSE), and lateral starchy endosperm (LSE) at two developmental stages (7 days after flowering, DAF and 12DAF) using laser microdissection (LM) coupled with gene expression analysis of a 44 K microarray. The derived co-expression regulatory networks depict that distinct set of starch biosynthesis genes expressed preferentially at first in CSE at 7 DAF and extend its spatial expression to LSE and DSE by 12 DAF. Interestingly, along with the peak of starch metabolism we noticed accumulation of transcripts related to phospholipid and glycolipid metabolism in CSE during 12 DAF. The spatial distribution of starch accumulation in distinct zones of starchy endosperm contains specific transcriptional factors and hormonal-regulated genes. Genes related to programmed cell death (PCD) were specifically expressed in CSE at 12DAF, when starch accumulation was already completed in that tissue. The aleurone layer present in the outermost endosperm accumulates transcripts of lipid, tricarboxylic acid metabolism, several transporters, while starch metabolism and PCD is not pronounced. These regulatory cascades are likely to play a critical role in determining the positional fate of cells and offer novel insights into the molecular physiological mechanisms of endosperm development from early to middle storage phase.
Collapse
Affiliation(s)
- Tsutomu Ishimaru
- NARO Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- Hokuriku Research Station, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (CARC/NARO), 1-2-1 Inada, Joetsu, Niigata 941-0193 Japan
| | - Sabiha Parween
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, The Philippines
| | - Yuhi Saito
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Takehiro Masumura
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Motohiko Kondo
- NARO Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya, 464-8601 Japan
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, The Philippines
| |
Collapse
|
5
|
Qu A, Xu Y, Yu X, Si Q, Xu X, Liu C, Yang L, Zheng Y, Zhang M, Zhang S, Xu J. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice. J Genet Genomics 2021; 48:695-705. [PMID: 34315684 DOI: 10.1016/j.jgg.2021.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator (GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of OsGPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. OsGPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that AtGPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of OsGPT1 in the tapetum degeneration and pollen development. The divergent functions of OsGPT1 and AtGPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged.
Collapse
Affiliation(s)
- Aili Qu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxing Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Si
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Changhao Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yueping Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mengmeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods 2021; 10:foods10020205. [PMID: 33498368 PMCID: PMC7909431 DOI: 10.3390/foods10020205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigates genetic and environmental variation in starch content and characteristics of 14 French bread cultivars. Understanding the impact of these factors on wheat quality is important for processors and especially bakers to maintain and meet the requirements of industrial specifications. Different traits were evaluated: starch content, distribution of starch granules, percentage of amylose and amylopectin and their molecular characteristics (weight-average molar mass, number-average molar mass, polydispersity and gyration radius). Genetic, environment and their interaction had significant effects on all parameters. The relative magnitude of variance attributed to growth conditions, for most traits, was substantially higher (21% to 95%) than that attributed to either genotype (2% to 73%) or G × E interaction (2% to 17%). The largest environmental contribution (95%) to total variance was found for starch dispersity. The highest genetic influence was found for the percentage of A-type starch granules. G × E interaction had relatively little influence (≈7%) on total phenotypic variance. All molecular characteristics were much more influenced by environment than the respective percentages of amylose and amylopectin were. This huge difference in variance between factors obviously revealed the importance of the effect of growing conditions on characteristics of cultivars.
Collapse
|
7
|
Xi M, Wu W, Xu Y, Zhou Y, Chen G, Ji Y, Sun X. iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:622-635. [PMID: 32717594 DOI: 10.1016/j.plaphy.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Grain chalkiness is a highly undesirable trait that adversely affects rice quality. This chalkiness is easily influenced by the application of chemical nitrogen (N) fertilizer at the late growth stage. However, on the molecular mechanism underlying grain chalkiness caused by late N fertilization is not fully clear. In this study, proteomic differences in expression were determined in developing grains exposed to N topdressing (108 kg N ha-1, N+) and a control (0 kg N ha-1, N0), using the rice variety OM052, which has a high level of chalkiness. A total of 198 differentially expressed proteins (DEPs) were detected between the N+ and N0 treatments, including 9 up-regulated proteins and 189 down-regulated proteins. Of these DEPs, approximately half were associated with carbohydrate metabolism (glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, fermentation and starch metabolism) and N metabolism (protein synthesis, folding, degradation and storage, amino acid synthesis and catabolism). A detailed pathway dissection revealed that multiple metabolic pathways during the grain filling stage were involved in the N-induced grain chalkiness. Reduced abundances of proteins associated with respiratory metabolism and energy metabolism drastically impaired the biosynthesis and deposition of starch in the developmental endosperms, which might be a crucial trigger for the increase in grain chalkiness. The disturbed N metabolism and differential expression of storage proteins up-regulated during the grain filling stage are able to partially explain the occurrence of grain chalkiness in rice.
Collapse
Affiliation(s)
- Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China.
| | - Youzun Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Yongjin Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Gang Chen
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Yalan Ji
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| | - Xueyuan Sun
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, PR China
| |
Collapse
|
8
|
Jr. VMB, Luo J, Li Z, Gidley MJ, Bird AR, Tetlow IJ, Fitzgerald M, Jobling SA, Rahman S. Functional Genomic Validation of the Roles of Soluble Starch Synthase IIa in Japonica Rice Endosperm. Front Genet 2020; 11:289. [PMID: 32300357 PMCID: PMC7142255 DOI: 10.3389/fgene.2020.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/10/2020] [Indexed: 12/02/2022] Open
Abstract
The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in indica accessions compared to japonica lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of japonica-type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules. Shrunken seeds had severely reduced starch content and could not be maintained in succeeding generations. In comparison, the opaque grain morphology was the result of weaker down-regulation of SSIIa which led to an elevated proportion of short-chain amylopectin (DP 6-12) and a concomitant reduction in the proportion of medium-chain amylopectin (DP 13-36). The peak gelatinization temperature of starch and the estimated glycemic score of cooked grain as measured by the starch hydrolysis index were significantly reduced. These results highlight the important role of medium-chain amylopectin in influencing the functional properties of rice grains, including its digestibility. The structural, regulatory and nutritional implications of down-regulated japonica-type SSIIa in rice endosperm are discussed.
Collapse
Affiliation(s)
- Vito M. Butardo Jr.
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jixun Luo
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Zhongyi Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Michael J. Gidley
- Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Melissa Fitzgerald
- School of Agriculture and Food Sciences, Faculty of Science, University of Queensland, St Lucia, QLD, Australia
| | | | - Sadequr Rahman
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- School of Science and the Tropical Medicine and Biology Platform, Monash University, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Ndjiondjop MN, Alachiotis N, Pavlidis P, Goungoulou A, Kpeki SB, Zhao D, Semagn K. Comparisons of molecular diversity indices, selective sweeps and population structure of African rice with its wild progenitor and Asian rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1145-1158. [PMID: 30578434 PMCID: PMC6449321 DOI: 10.1007/s00122-018-3268-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/11/2018] [Indexed: 05/20/2023]
Abstract
The extent of molecular diversity parameters across three rice species was compared using large germplasm collection genotyped with genomewide SNPs and SNPs that fell within selective sweep regions. Previous studies conducted on limited number of accessions have reported very low genetic variation in African rice (Oryza glaberrima Steud.) as compared to its wild progenitor (O. barthii A. Chev.) and to Asian rice (O. sativa L.). Here, we characterized a large collection of African rice and compared its molecular diversity indices and population structure with the two other species using genomewide single nucleotide polymorphisms (SNPs) and SNPs that mapped within selective sweeps. A total of 3245 samples representing African rice (2358), Asian rice (772) and O. barthii (115) were genotyped with 26,073 physically mapped SNPs. Using all SNPs, the level of marker polymorphism, average genetic distance and nucleotide diversity in African rice accounted for 59.1%, 63.2% and 37.1% of that of O. barthii, respectively. SNP polymorphism and overall nucleotide diversity of the African rice accounted for 20.1-32.1 and 16.3-37.3% of that of the Asian rice, respectively. We identified 780 SNPs that fell within 37 candidate selective sweeps in African rice, which were distributed across all 12 rice chromosomes. Nucleotide diversity of the African rice estimated from the 780 SNPs was 8.3 × 10-4, which is not only 20-fold smaller than the value estimated from all genomewide SNPs (π = 1.6 × 10-2), but also accounted for just 4.1%, 0.9% and 2.1% of that of O. barthii, lowland Asian rice and upland Asian rice, respectively. The genotype data generated for a large collection of rice accessions conserved at the AfricaRice genebank will be highly useful for the global rice community and promote germplasm use.
Collapse
Affiliation(s)
- Marie Noelle Ndjiondjop
- M'bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Côte d'Ivoire.
| | - Nikolaos Alachiotis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Alphonse Goungoulou
- M'bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Côte d'Ivoire
| | - Sèdjro Bienvenu Kpeki
- M'bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Côte d'Ivoire
| | - Dule Zhao
- M'bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Côte d'Ivoire
| | - Kassa Semagn
- M'bé Research Station, Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouaké 01, Côte d'Ivoire.
| |
Collapse
|
10
|
Wang Y, Hou J, Liu H, Li T, Wang K, Hao C, Liu H, Zhang X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1497-1511. [PMID: 30753656 PMCID: PMC6411380 DOI: 10.1093/jxb/erz032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 05/19/2023]
Abstract
BRITTLE1 (BT1), responsible for unidirectional transmembrane transport of ADP-glucose, plays a pivotal role in starch synthesis of cereal grain. In this study, we isolated three TaBT1 homoeologous genes located on chromosomes 6A, 6B, and 6D in common wheat. TaBT1 was mainly expressed in developing grains, and knockdown of TaBT1 in common wheat produced a decrease in grain size, thousand kernel weight (TKW), and grain total starch content. High diversity was detected at the TaBT1-6B locus, with 24 polymorphic sites forming three haplotypes (Hap1, Hap2, and Hap3). Association analysis revealed that Hap1 and Hap2 were preferred haplotypes in modern breeding, for their significant correlations with higher TKW. Furthermore, β-glucuronidase (GUS) staining and enzyme activity assays in developing grains of transgenic rice with exogenous promoters indicated that the promoters of Hap1 and Hap2 showed stronger driving activity than that of Hap3. Evolutionary analysis revealed that BT1 underwent strong selection during wheat polyploidization. In addition, the frequency distribution of TaBT1-6B haplotypes revealed that Hap1 and Hap2 were preferred in global modern wheat cultivars. Our findings suggest that TaBT1 has an important effect on starch synthesis and TKW, and provide two valuable molecular markers for marker assisted selection (MAS) in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ke Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Correspondence:
| |
Collapse
|
11
|
Noronha H, Silva A, Dai Z, Gallusci P, Rombolà AD, Delrot S, Gerós H. A molecular perspective on starch metabolism in woody tissues. PLANTA 2018; 248:559-568. [PMID: 30022278 PMCID: PMC6096779 DOI: 10.1007/s00425-018-2954-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/11/2018] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION The elucidation of the molecular mechanisms of starch synthesis and mobilization in perennial woody tissues is of the utmost scientific and agricultural importance. Starch is the main carbohydrate reserve in plants and is fundamental in human nutrition and several industrial processes. In leaves, starch accumulated during the day is degraded throughout the night and the resulting sugars, glucose and maltose, are exported to the cytosol by the specialized transmembrane translocators pGT and MEX, respectively. Nevertheless, the degradation of the starch granule is a complex process not completely elucidated. While the mechanisms of starch mobilization during germination in the dead endosperm of cereal seeds are well described, the molecular and biochemical mechanisms involved in starch storage in the heterotrophic tissues of woody plants and its utilization in spring and winter are still puzzling. It is known that some biochemical steps of starch synthesis are conserved in heterotrophic tissues and in the leaves, but some aspects are particular to sink organs. From an agronomic standpoint, the knowledge on starch storage and mobilization in woody tissues is pivotal to understand (and to optimize) some common practices in the field that modify source-sink relationships, such as pruning and defoliation. Soluble sugars resulting from starch are also pivotal to cold adaptation, and in several fruits, such as banana and kiwifruit, starch may provide soluble sugars during ripening. In this review, we explore the recent advances on the molecular mechanisms and regulations involved in starch synthesis and mobilization, with a focus on perennial woody tissues.
Collapse
Affiliation(s)
- Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Angélica Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Zhanwu Dai
- UMR EGFV, Bordeaux Science Agro, INRA, Université de Bordeaux, Villenave D'Ornon, France
| | - Philippe Gallusci
- UMR EGFV, Bordeaux Science Agro, INRA, Université de Bordeaux, Villenave D'Ornon, France
| | - Adamo D Rombolà
- Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Serge Delrot
- UMR EGFV, Bordeaux Science Agro, INRA, Université de Bordeaux, Villenave D'Ornon, France
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Vila Real, Portugal.
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
| |
Collapse
|
12
|
Wang H, Zhang Y, Sun L, Xu P, Tu R, Meng S, Wu W, Anis GB, Hussain K, Riaz A, Chen D, Cao L, Cheng S, Shen X. WB1, a Regulator of Endosperm Development in Rice, Is Identified by a Modified MutMap Method. Int J Mol Sci 2018; 19:ijms19082159. [PMID: 30042352 PMCID: PMC6121324 DOI: 10.3390/ijms19082159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
Abnormally developed endosperm strongly affects rice (Oryza sativa) appearance quality and grain weight. Endosperm formation is a complex process, and although many enzymes and related regulators have been identified, many other related factors remain largely unknown. Here, we report the isolation and characterization of a recessive mutation of White Belly 1 (WB1), which regulates rice endosperm development, using a modified MutMap method in the rice mutant wb1. The wb1 mutant develops a white-belly endosperm and abnormal starch granules in the inner portion of white grains. Representative of the white-belly phenotype, grains of wb1 showed a higher grain chalkiness rate and degree and a lower 1000-grain weight (decreased by ~34%), in comparison with that of Wild Type (WT). The contents of amylose and amylopectin in wb1 significantly decreased, and its physical properties were also altered. We adopted the modified MutMap method to identify 2.52 Mb candidate regions with a high specificity, where we detected 275 SNPs in chromosome 4. Finally, we identified 19 SNPs at 12 candidate genes. Transcript levels analysis of all candidate genes showed that WB1 (Os04t0413500), encoding a cell-wall invertase, was the most probable cause of white-belly endosperm phenotype. Switching off WB1 with the CRISPR/cas9 system in Japonica cv. Nipponbare demonstrates that WB1 regulates endosperm development and that different mutations of WB1 disrupt its biological function. All of these results taken together suggest that the wb1 mutant is controlled by the mutation of WB1, and that the modified MutMap method is feasible to identify mutant genes, and could promote genetic improvement in rice.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Peng Xu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Ranran Tu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Shuai Meng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr Elsheikh 33717, Egypt.
| | - Kashif Hussain
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Aamiar Riaz
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| | - Xihong Shen
- Key Laboratory for Zhejiang Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China.
| |
Collapse
|
13
|
Wada H, Masumoto-Kubo C, Tsutsumi K, Nonami H, Tanaka F, Okada H, Erra-Balsells R, Hiraoka K, Nakashima T, Hakata M, Morita S. Turgor-responsive starch phosphorylation in Oryza sativa stems: A primary event of starch degradation associated with grain-filling ability. PLoS One 2017; 12:e0181272. [PMID: 28727805 PMCID: PMC5519062 DOI: 10.1371/journal.pone.0181272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022] Open
Abstract
Grain filling ability is mainly affected by the translocation of carbohydrates generated from temporarily stored stem starch in most field crops including rice (Oryza sativa L.). The partitioning of non-structural stem carbohydrates has been recognized as an important trait for raising the yield ceiling, yet we still do not fully understand how carbohydrate partitioning occurs in the stems. In this study, two rice subspecies that exhibit different patterns of non-structural stem carbohydrates partitioning, a japonica-dominant cultivar, Momiroman, and an indica-dominant cultivar, Hokuriku 193, were used as the model system to study the relationship between turgor pressure and metabolic regulation of non-structural stem carbohydrates, by combining the water status measurement with gene expression analysis and a dynamic prefixed 13C tracer analysis using a mass spectrometer. Here, we report a clear varietal difference in turgor-associated starch phosphorylation occurred at the initiation of non-structural carbohydrate partitioning. The data indicated that starch degradation in Hokuriku 193 stems occurred at full-heading, 5 days earlier than in Momiroman, contributing to greater sink filling. Gene expression analysis revealed that expression pattern of the gene encoding α-glucan, water dikinase (GWD1) was similar between two varieties, and the maximum expression level in Hokuriku 193, reached at full heading (4 DAH), was greater than in Momiroman, leading to an earlier increase in a series of amylase-related gene expression in Hokuriku 193. In both varieties, peaks in turgor pressure preceded the increases in GWD1 expression, and changes in GWD1 expression was correlated with turgor pressure. Additionally, a threshold is likely to exist for GWD1 expression to facilitate starch degradation. Taken together, these results raise the possibility that turgor-associated starch phosphorylation in cells is responsible for the metabolism that leads to starch degradation. Because the two cultivars exhibited remarkable varietal differences in the pattern of non-structural carbohydrate partitioning, our findings propose that the observed difference in grain-filling ability originated from turgor-associated regulation of starch phosphorylation in stem parenchyma cells. Further understanding of the molecular mechanism of turgor-regulation may provide a new selection criterion for breaking the yield barriers in crop production.
Collapse
Affiliation(s)
- Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Chisato Masumoto-Kubo
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Koichi Tsutsumi
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Hiroshi Nonami
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Haruka Okada
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry-CIHIDECAR, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Kenzo Hiraoka
- Clean Energy Research Center, The University of Yamanashi, Kofu, Yamanashi, Japan
| | - Taiken Nakashima
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Makoto Hakata
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| |
Collapse
|
14
|
Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Sci Rep 2017; 7:41355. [PMID: 28134341 PMCID: PMC5278347 DOI: 10.1038/srep41355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Chloroplast development is an important subject in botany. In this study, a rice (Oryza sativa) mutant exhibiting impairment in early chloroplast development (seedling leaf albino (sla)) was isolated from a filial generation via hybridization breeding. The sla mutant seedlings have an aberrant form of chloroplasts, which resulted in albinism at the first and second leaves; however, the leaf sheath was green. The mutant gradually turned green after the two-leaf stage, and the third leaf was a normal shade of green. Map-based cloning indicated that the gene OsBT1-3, which belongs to the mitochondrial carrier family (MCF), is responsible for the sla mutant phenotype. OsBT1-3 expression was high in the young leaves, decreased after the two-leaf stage, and was low in the sheath, and these findings are consistent with the recovery of a number of chloroplasts in the third leaf of sla mutant seedlings. The results also showed that OsBT1-3-yellow fluorescent protein (YFP) was targeted to the chloroplast, and a Western blot assay using a peptide-specific antibody indicated that OsBT1-3 localizes to the chloroplast envelope. We also demonstrated that OsBT1-3 functions as a unidirectional transporter of adenine nucleotides. Based on these findings, OsBT1-3 likely acts as a plastid nucleotide uniporter and is essential for chloroplast development in rice leaves at the young seedling stage.
Collapse
|
15
|
Lee SK, Eom JS, Hwang SK, Shin D, An G, Okita TW, Jeon JS. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5557-5569. [PMID: 27588462 PMCID: PMC5049399 DOI: 10.1093/jxb/erw324] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Joon-Seob Eom
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Milyang 50424, Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
16
|
Tiwari GJ, Liu Q, Shreshtha P, Li Z, Rahman S. RNAi-mediated down-regulation of the expression of OsFAD2-1: effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC PLANT BIOLOGY 2016; 16:189. [PMID: 27581494 PMCID: PMC5007732 DOI: 10.1186/s12870-016-0881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The bran from polished rice grains can be used to produce rice bran oil (RBO). High oleic (HO) RBO has been generated previously through RNAi down-regulation of OsFAD2-1. HO-RBO has higher oxidative stability and could be directly used in the food industry without hydrogenation, and is hence free of trans fatty acids. However, relative to a classic oilseed, lipid metabolism in the rice grain is poorly studied and the genetic alteration in the novel HO genotype remains unexplored. RESULTS Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO. CONCLUSION Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.
Collapse
Affiliation(s)
- Gopal Ji Tiwari
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia
| | - Qing Liu
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Pushkar Shreshtha
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture & Food, PO Box 1600, Canberra, ACT, 2601, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia.
- Monash University Malaysia Genomics Facility, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
17
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
18
|
Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, Nishizawa NK, Nakazono M, Kondo M. Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase. RICE (NEW YORK, N.Y.) 2015; 8:57. [PMID: 26202548 PMCID: PMC4503711 DOI: 10.1186/s12284-015-0057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/25/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Rice endosperm is composed of aleurone cells in the outermost layers and starchy endosperm cells in the inner part. The aleurone layer accumulates lipids, whereas starchy endosperm mainly accumulates starch. During the ripening stage, the starch accumulation rate is known to be asynchronous, depending on the position of the starchy endosperm. Different physiological and molecular mechanisms are hypothesized to underlie the qualitative and quantitative differences in storage products among developing rice endosperm tissues. RESULTS Target cells in aleurone layers and starchy endosperm were isolated by laser microdissection (LM), and RNAs were extracted from each endosperm tissue in the early storage phase. Genes important for carbohydrate metabolism in developing endosperm were analyzed using qRT-PCR, and some of the genes showed specific localization in either tissue of the endosperm. Aleurone layer-specific gene expression of a sucrose transporter, OsSUT1, suggested that the gene functions in sucrose uptake into aleurone cells. The expression levels of ADP-glucose pyrophosphorylase (AGPL2 and AGPS2b) in each endosperm tissue spatially corresponded to the distribution of starch granules differentially observed among endosperm tissues. By contrast, expressions of genes for sucrose cleavage-hexokinase, UDP-glucose pyrophosphorylase, and phosphoglucomutase-were observed in all endosperm tissues tested. Aleurone cells predominantly expressed mRNAs for the TCA cycle and oxidative phosphorylation. This finding was supported by the presence of oxygen (8 % concentration) and large numbers of mitochondria in the aleurone layers. In contrast, oxygen was absent and only a few mitochondria were observed in the starchy endosperm. Genes for carbon fixation and the GS/GOGAT cycle were expressed highly in aleurone cells compared to starchy endosperm. CONCLUSIONS The transcript level of AGPL2 and AGPS2b encoding ADP-glucose pyrophosphorylase appears to regulate the asynchronous development of starch granules in developing caryopses. Aleurone cells appear to generate, at least partially, ATP via aerobic respiration as observed from specific expression of identified genes and large numbers of mitochondria. The LM-based expression analysis and physiological experiments provide insight into the molecular basis of the spatial and nutritional differences between rice aleurone cells and starchy endosperm cells.
Collapse
Affiliation(s)
- Tsutomu Ishimaru
- />NARO Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- />Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki 305-8686 Japan
- />International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Masashi Ida
- />NARO Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- />Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, 439-0031 Japan
| | - Sakiko Hirose
- />NARO Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- />National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Satoshi Shimamura
- />NARO Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
- />NARO Tohoku Agricultural Research Center (TARC), NARO, Kari-wano, Daisen, Akita 019-2112 Japan
| | - Takehiro Masumura
- />Graduate School of Life and Environmental Science Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522 Japan
| | - Naoko K. Nishizawa
- />Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657 Japan
- />Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-38 Suematsu, Nonoichi, Ishikawa 921-8836 Japan
| | - Mikio Nakazono
- />Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657 Japan
- />Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8601 Japan
| | - Motohiko Kondo
- />NARO Institute of Crop Science, NARO, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
19
|
Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq. PLoS One 2015; 10:e0137168. [PMID: 26355995 PMCID: PMC4565701 DOI: 10.1371/journal.pone.0137168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage.
Collapse
Affiliation(s)
- Hongzheng Sun
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yafan Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yanxiu Du
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
20
|
Luo J, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo VM, Tanner GJ, Colgrave ML, Upadhyaya NM, Tetlow IJ, Emes MJ, Millar A, Jobling SA, Morell MK, Li Z. The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1407-19. [PMID: 25893467 DOI: 10.1007/s00122-015-2515-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/03/2015] [Indexed: 05/26/2023]
Abstract
The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
FASAHAT PARVIZ, RAHMAN SADEQUR, RATNAM WICKNESWARI. Genetic controls on starch amylose content in wheat and rice grains. J Genet 2014; 93:279-92. [DOI: 10.1007/s12041-014-0325-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, Fincher GB, Burton RA. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5033-5047. [PMID: 24052531 DOI: 10.1093/jxb/ert292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.
Collapse
Affiliation(s)
- Kay Trafford
- National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB3 0LE, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C. miRNA regulation in the early development of barley seed. BMC PLANT BIOLOGY 2012; 12:120. [PMID: 22838835 PMCID: PMC3443071 DOI: 10.1186/1471-2229-12-120] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/17/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. RESULTS Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. CONCLUSION Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways.
Collapse
Affiliation(s)
- Julien Curaba
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Andrew Spriggs
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jen Taylor
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Chris Helliwell
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
24
|
|
25
|
Han X, Wang Y, Liu X, Jiang L, Ren Y, Liu F, Peng C, Li J, Jin X, Wu F, Wang J, Guo X, Zhang X, Cheng Z, Wan J. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:121-30. [PMID: 21984651 PMCID: PMC3245461 DOI: 10.1093/jxb/err262] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rice somaclonal mutant T3612 produces small grains with a floury endosperm, caused by the loose packing of starch granules. The positional cloning of the mutation revealed a deletion in a gene encoding a protein disulphide isomerase-like enzyme (PDIL1-1). In the wild type, PDIL1-1 was expressed throughout the plant, but most intensely in the developing grain. In T3612, its expression was abolished, resulting in a decrease in the activity of plastidial phosphorylase and pullulanase, and an increase in that of soluble starch synthase I and ADP-glucose pyrophosphorylase. The amylopectin in the T3612 endosperm showed an increase in chains with a degree of polymerization 8-13 compared with the wild type. The expression in the mutant's endosperm of certain endoplasmic reticulum stress-responsive genes was noticeably elevated. PDIL1-1 appears to play an important role in starch synthesis. Its absence is associated with endoplasmic reticulum stress in the endosperm, which is likely to underlie the formation of the floury endosperm in the T3612 mutant.
Collapse
Affiliation(s)
- Xiaohua Han
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Peng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ximing Jin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HKC, Jobling SA, Morell MK, Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4927-41. [PMID: 21791436 PMCID: PMC3193005 DOI: 10.1093/jxb/err188] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 05/19/2023]
Abstract
The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.
Collapse
Affiliation(s)
- Vito M. Butardo
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
- Grain Quality and Nutrition Centre, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
- Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Melissa A. Fitzgerald
- Grain Quality and Nutrition Centre, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Anthony R. Bird
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Food and Nutritional Sciences, PO Box 10041, Adelaide SA 5000, Australia
| | - Michael J. Gidley
- Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Bernadine M. Flanagan
- Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Oscar Larroque
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
| | - Adoracion P. Resurreccion
- Grain Quality and Nutrition Centre, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Hunter K. C. Laidlaw
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
| | - Stephen A. Jobling
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
| | - Matthew K. Morell
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
| | - Sadequr Rahman
- CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
- CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
| |
Collapse
|
27
|
Zhou LJ, Jiang L, Zhai HQ, Wan JM. [Current status and strategies for improvement of rice grain chalkiness]. YI CHUAN = HEREDITAS 2009; 31:563-72. [PMID: 19586854 DOI: 10.3724/sp.j.1005.2009.00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This paper reviews the current status of correlation between rice chalkiness and other rice quality characters, formative mechanism, and classical and molecular genetics for rice chalkiness. The formation of rice chalkiness proves to be a complicated physiological process and tightly relate to "source-sink" of rice, dynamics of grain filing, biosynthesis and accumulation of starch in endosperm. Rice chalkiness is a complicated quantitative trait, which is controlled by maternal effects, endosperm effects, and cytoplasmic effects. There are some stable quantitative trait loci (QTL) for rice chalkiness on many rice chromosomes. Of them, three genes controlling rice chalkiness, which have an impact on starch synthesis, starch metabolism, and fruit development, have been cloned. But the manipulative network and formative mechanisms of rice chalkiness remain unclear. At present in breeding practice, decrease of rice chalkiness has become one of the main aims in rice quality breeding, especially for indica rice. The direction of genetic research and improvement strategy of rice chalkiness in future were discussed in this review.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Crop Genetics, Nanjing Agri-cultural University, Nanjing, China
| | | | | | | |
Collapse
|
28
|
Fu FF, Ye R, Xu SP, Xue HW. Studies on rice seed quality through analysis of a large-scale T-DNA insertion population. Cell Res 2009; 19:380-91. [PMID: 19223856 DOI: 10.1038/cr.2009.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A rice (Oryza sativa) T-DNA insertion population, which included more than 63 000 independent transgenic lines and 8 840 identified flanking sequence tags (FSTs) that were mapped onto the rice genome, was developed to systemically study the rice seed quality control. Genome-wide analysis of the FST distribution showed that T-DNA insertions were positively correlated with expressed genes, but negatively with transposable elements and small RNAs. In addition, the recovered T-DNAs were preferentially located at the untranslated region of the expressed genes. More than 11 000 putative homozygous lines were obtained through multi-generations of planting and resistance screening, and measurement of seed quality of around half of them, including the contents of starch, amylose, protein and fat, with a nondestructive near-infrared spectroscopy method, identified 551 mutants with unique or multiple altered parameters of seed quality. Analysis of the corresponding FSTs showed that genes participating in diverse functions, including metabolic processes and transcriptional regulation, were involved, indicating that seed quality is regulated by a complex network.
Collapse
Affiliation(s)
- Fang-Fang Fu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science (SIBS), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | |
Collapse
|
29
|
Comparot-Moss S, Denyer K. The evolution of the starch biosynthetic pathway in cereals and other grasses. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2481-92. [PMID: 19505928 DOI: 10.1093/jxb/erp141] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In most species, the precursor for starch synthesis, ADPglucose, is made exclusively in the plastids by the enzyme ADPglucose pyrophosphorylase (AGPase). However, in the endosperm of grasses, including the economically important cereals, ADPglucose is also made in the cytosol via a cytosolic form of AGPase. Cytosolic ADPglucose is imported into plastids for starch synthesis via an ADPglucose/ADP antiporter (ADPglucose transporter) in the plastid envelope. The genes encoding the two subunits of cytosolic AGPase and the ADPglucose transporter are unique to grasses. In this review, the evolutionary origins of this unique endosperm pathway of ADPglucose synthesis and its functional significance are discussed. It is proposed that the genes encoding the pathway originated from a whole-genome-duplication event in an early ancestor of the grasses.
Collapse
|
30
|
Kirchberger S, Tjaden J, Neuhaus HE. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:51-63. [PMID: 18564385 DOI: 10.1111/j.1365-313x.2008.03583.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains a gene (Atbt1) encoding a highly hydrophobic membrane protein of the mitochondrial carrier family, with six predicted transmembrane domains, and showing substantial structural similarity to Brittle1 proteins from maize and potato. We demonstrate that AtBT1 transports AMP, ADP and ATP (but not ADP-glucose), shows a unidirectional mode of transport, and locates to the plastidial membrane and not to the ER as previously proposed. Analysis using an Atbt1 promoter-GUS construct revealed substantial gene expression in rapidly growing root tips and maturating or germinating pollen. Survival of homozygous Atbt1::T-DNA mutants is very limited, and those that do survive produce non-fertile seeds. These observations indicate that no other carrier protein or metabolic mechanism can compensate for the loss of this transporter. Atbt1 RNAi dosage mutants show substantially retarded growth, adenylate levels similar to those of wild-type plants, increased glutamine contents and unchanged starch levels. Interestingly, the growth retardation of Atbt1 RNAi mutant plants was circumvented by adenosine feeding, and was accompanied by increased adenylate levels. Further observations showed the presence of a functional nucleotide salvage pathway in Atbt1 RNAi mutants. In summary, our data indicate that AtBT1 is a plastidial nucleotide uniport carrier protein that is strictly required to export newly synthesized adenylates into the cytosol.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Monophosphate/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Transport, Active
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Mutagenesis, Insertional
- Nucleotide Transport Proteins/genetics
- Nucleotide Transport Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plastids/genetics
- Plastids/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Simon Kirchberger
- Universität Kaiserslautern, Pflanzenphysiologie, Biologie, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
31
|
Huang J, Gogarten JP. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 2008; 8:R99. [PMID: 17547748 PMCID: PMC2394758 DOI: 10.1186/gb-2007-8-6-r99] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/06/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
Phylogenomic analyses of the red alga Cyanidioschyzon merolae shows that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, suggesting an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. Background Ancient endosymbioses are responsible for the origins of mitochondria and plastids, and they contribute to the divergence of several major eukaryotic groups. Although chlamydiae, a group of obligate intracellular bacteria, are not found in plants, an unexpected number of chlamydial genes are most similar to plant homologs, which, interestingly, often contain a plastid-targeting signal. This observation has prompted several hypotheses, including gene transfer between chlamydiae and plant-related groups and an ancestral relationship between chlamydiae and cyanobacteria. Results We conducted phylogenomic analyses of the red alga Cyanidioschyzon merolae to identify genes specifically related to chlamydial homologs. We show that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, with the donor most similar to the environmental Protochlamydia. Such an unusually high number of transferred genes suggests an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. We hypothesize that three organisms were involved in establishing the primary photosynthetic lineage: the eukaryotic host cell, the cyanobacterial endosymbiont that provided photosynthetic capability, and a chlamydial endosymbiont or parasite that facilitated the establishment of the cyanobacterial endosymbiont. Conclusion Our findings provide a glimpse into the complex interactions that were necessary to establish the primary endosymbiotic relationship between plastid and host cytoplasms, and thereby explain the rarity with which long-term successful endosymbiotic relationships between heterotrophs and photoautotrophs were established. Our data also provide strong and independent support for a common origin of all primary photosynthetic eukaryotes and of the plastids they harbor.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
- NASA Astrobiology Institute at Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| |
Collapse
|
32
|
Nozawa A, Nanamiya H, Miyata T, Linka N, Endo Y, Weber APM, Tozawa Y. A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters. PLANT & CELL PHYSIOLOGY 2007; 48:1815-1820. [PMID: 17981875 DOI: 10.1093/pcp/pcm150] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We describe here a novel proteoliposome reconstitution system for functional analysis of plant membrane transporters that is based on a modified wheat germ cell-free translation system. We established optimized conditions for the reconstitution system with Arabidopsis thaliana phosphoenolpyruvate/phosphate translocator 1 (AtPPT1) as a model transporter. A high activity of AtPPT1 was achieved by synthesis of the protein in the presence of both a detergent such as Brij35 and liposomes. We also determined the substrate specificities of three putative rice PPT homologs with this system. The cell-free proteoliposome reconstitution system provides a valuable tool for functional analysis of transporter proteins.
Collapse
Affiliation(s)
- Akira Nozawa
- Cell-Free Science and Technology Research Center, and The Venture Business Laboratory, Ehime University, Matsuyama, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Alonso AP, Raymond P, Hernould M, Rondeau-Mouro C, de Graaf A, Chourey P, Lahaye M, Shachar-Hill Y, Rolin D, Dieuaide-Noubhani M. A metabolic flux analysis to study the role of sucrose synthase in the regulation of the carbon partitioning in central metabolism in maize root tips. Metab Eng 2007; 9:419-32. [PMID: 17869563 DOI: 10.1016/j.ymben.2007.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 11/23/2022]
Abstract
In order to understand the role of sucrose synthase (SuSy) in carbon partitioning, metabolic fluxes were analyzed in maize root tips of a double mutant of SuSy genes, sh1 sus1 and the corresponding wild type, W22. [U-(14)C]-glucose pulse labeling experiments permitted the quantification of unidirectional fluxes into sucrose, starch and cell wall polysaccharides. Isotopic steady-state labeling with [1-(13)C]-, [2-(13)C]- or [U-(13)C]-glucose followed by the quantification by (1)H-NMR and (13)C-NMR of enrichments in carbohydrates and amino acids was also performed to determine 29 fluxes through central metabolism using computer-aided modeling. As a consequence of the suppression of SUS1 and SH1 isozymes, maize root tips diameter was significantly decreased and respiratory metabolism reduced by 30%. Our result clearly established that, in maize root tips, starch is produced from ADP-Glc synthesized in the plastid and not in the cytosol by sucrose synthase. Unexpectedly, the flux of cell wall synthesis was increased in the double mutant. This observation indicates that, in maize root tips, SH1 and SUS1 are not specific providers for cellulose biosynthesis.
Collapse
Affiliation(s)
- Ana Paula Alonso
- INRA, Université Bordeaux 1, Université Victor Segalen Bordeaux 2, UMR 619 Biologie du fruit, BP 81, 33883 Villenave d'Ornon cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kirchberger S, Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J Biol Chem 2007; 282:22481-91. [PMID: 17562699 DOI: 10.1074/jbc.m702484200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological studies on the Brittle1 maize mutant have provided circumstantial evidence that ZmBT1 (Zea mays Brittle1 protein) is involved in the ADP-Glc transport into maize endosperm plastids, but up to now, no direct ADP-Glc transport mediated by ZmBT1 has ever been shown. The heterologous synthesis of ZmBT1 in Escherichia coli cells leads to the functional integration of ZmBT1 into the bacterial cytoplasmic membrane. ZmBT1 transports ADP-Glc in counterexchange with ADP with apparent affinities of about 850 and 465 mum, respectively. Recently, a complete ferredoxin/thioredoxin system has been identified in cereal amyloplasts and BT1 has been proposed as a potential Trx target protein (Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., and Buchanan, B. B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 2988-2993). Interestingly, we revealed that the transport activity of ZmBT1 is reversibly regulated by redox reagents such as diamide and dithiothreitol. The expression of ZmBT1 is restricted to endosperm tissues during starch synthesis, whereas a recently identified BT1 maize homologue, the ZmBT1-2, exhibits a ubiquitous expression pattern in hetero- and autotrophic tissues indicating different physiological roles for both maize BT1 isoforms. BT1 homologues are present in both mono- and dicotyledonous plants. Phylogenetic analyses classify the BT1 family into two phylogenetically and biochemically distinct groups. The first group comprises BT1 orthologues restricted to cereals where they mediate the ADP-Glc transport into cereal endosperm storage plastids during starch synthesis. The second group occurs in mono- and dicotyledonous plants and is most probably involved in the export of adenine nucleotides synthesized inside plastids.
Collapse
Affiliation(s)
- Simon Kirchberger
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, P. O. Box 3049, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. PLANT, CELL & ENVIRONMENT 2007; 30:310-322. [PMID: 17263776 DOI: 10.1111/j.1365-3040.2006.01617.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes recent advances in this area and explores current data and hypotheses of how the plant Pi status affects the symbiosis. Finally, suggestions of an interrelationship of Pi and nitrogen (N) in the AM symbiosis are discussed.
Collapse
Affiliation(s)
- Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| |
Collapse
|
36
|
Haferkamp I. The diverse members of the mitochondrial carrier family in plants. FEBS Lett 2007; 581:2375-9. [PMID: 17321523 DOI: 10.1016/j.febslet.2007.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Sequencing of plant genomes allowed the identification of various members of the mitochondrial carrier family (MCF). In plants, these structurally related proteins are involved in the transport of solutes like nucleotides, phosphate, di- and tricarboxylates across the mitochondrial membrane and therefore exhibit physiological functions similar to known isoforms from animal or yeast mitochondria. Interestingly, various studies led to the recognition of MCF proteins which mediate the transport of different substrates like folates, S-adenosylmethionine, ADPglucose or ATP, ADP and AMP in plastids.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
37
|
Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). PLANTA 2006; 224:598-611. [PMID: 16552590 DOI: 10.1007/s00425-006-0251-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/30/2006] [Indexed: 05/07/2023]
Abstract
Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6-phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.
Collapse
Affiliation(s)
- Jung-Il Cho
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, 449-701 Yongin, Republic of South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|