1
|
Zhao R, Han HZ, Li SH, Zhang LH, Wang F, Zhang N. Functional identification of AaMYB113 and AaMYB114 from Aeonium arboreum 'Halloween' in model plants. Gene 2024; 927:148699. [PMID: 38880185 DOI: 10.1016/j.gene.2024.148699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Aeonium arboreum 'Halloween', a popular indoor ornamental succulent in China, changes its leaf colour to red on light exposure. However, the underlying molecular mechanisms is still vague. Comparative analysis of transcriptome data from 'Halloween' leaves treated under dark and light conditions revealed two R2R3-MYB transcription factors, AaMYB113 and AaMYB114, that may mediate anthocyanin accumulation. In this study, we cloned the AaMYB113 and AaMYB114 genes, encoding proteins of 279 and 248 amino acids, respectively. Transcriptional activity analysis revealed that AaMYB113 exhibits strong transcriptional activity, in contrast to AaMYB114, which demonstrates minimal activity. Transient expression studies in tobacco leaves demonstrated that AaMYB113 induced red pigmentation, whereas AaMYB114 did not. Subsequent stable overexpression in Arabidopsis thaliana confirmed that AaMYB113, but not AaMYB114, could similarly turn Arabidopsis leaves red. Further stable transformation of AaMYB113 in tobacco affected multiple floral components, including leaves, petals, calyx, flower tubes, and filaments, turning them red. Quantitative real-time PCR (qRT-PCR) assay in leaves of AaMYB113 stably transformed tobacco and Arabidopsis revealed upregulation of anthocyanin biosynthesis-related structural genes and TT8-like transcription factors. Moreover, the dual luciferase analysis confirmed that AaMYB113 can activate the promoters of 'Halloween' anthocyanin synthesis structural genes, AaCHS, AaCHI, AaF3H, AaDFR and AaANS. The above results indicate that AaMYB113 can promote anthocyanin synthesis, while AaMYB114 does not have this function. This study contributes significantly to the limited body of research on the molecular mechanisms of anthocyanin synthesis in succulents, advancing our understanding of how these pathways are regulated in 'Halloween' succulents and potentially other species.
Collapse
Affiliation(s)
- Rong Zhao
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Hao-Zhang Han
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China.
| | - Su-Hua Li
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Li-Hua Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Fang Wang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| | - Nan Zhang
- College of Materials and Biology, Suqian University, Suqian, Jiangsu 223800, China
| |
Collapse
|
2
|
Anum H, Li K, Tabusam J, Saleh SAA, Cheng RF, Tong YX. Regulation of anthocyanin synthesis in red lettuce in plant factory conditions: A review. Food Chem 2024; 458:140111. [PMID: 38968716 DOI: 10.1016/j.foodchem.2024.140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integration Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Said Abdelhalim Abdelaty Saleh
- Horticultural Crops Technology Department, Agricultural & Biological Research Institute, National Research Centre, Giza, Egypt
| | - Rui-Feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| | - Yu-Xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
3
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
4
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Zhou H, He J, Zhang Y, Zhao H, Sun X, Chen X, Liu X, Zheng Y, Lin H. RHA2b-mediated MYB30 degradation facilitates MYB75-regulated, sucrose-induced anthocyanin biosynthesis in Arabidopsis seedlings. PLANT COMMUNICATIONS 2024; 5:100744. [PMID: 37946410 PMCID: PMC10943538 DOI: 10.1016/j.xplc.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Anthocyanins play diverse roles in plant physiology and stress adaptation. In Arabidopsis, the MYB-bHLH-WD40 (MBW) complex has a crucial role in the regulation of anthocyanin synthesis. Here, we report that the R2R3-MYB transcription factor MYB30 and the ubiquitin E3 ligase RHA2b participate in anthocyanin biosynthesis through regulation of the MBW complex. MYB30 was found to negatively regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis seedlings. Expression of multiple genes involved in flavonoid or anthocyanin biosynthesis was affected in the myb30 mutant, and MYB30 directly repressed the expression of MYB75, which encodes a core component of the MBW complex, by binding to its promoter. Moreover, MYB30 physically interacted with MYB75 to inhibit its activity by repressing MBW complex assembly. In addition, sucrose treatment significantly promoted MYB30 degradation via the action of RHA2b. The ubiquitination and degradation of MYB30 were significantly attenuated in the rha2b mutant under high-sucrose treatment, and further analysis showed that MYB75 directly promoted RHA2b expression in response to high sucrose. Our work thus reveals an anthocyanin biosynthetic regulatory module, RHA2b-MYB30, that controls the function of the MBW complex via MYB75. The repression of MYB75 by MYB30 is released by MYB75-induced RHA2b expression, thus ensuring the self-activation of MYB75 when anthocyanin synthesis is needed.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Jiaxian He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510642, China
| | - Yiyi Zhang
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongyun Zhao
- State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China
| | - Xia Sun
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xi Chen
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xinrui Liu
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuan Zheng
- State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475004, China.
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Dong Y, Li M, Cruz B, Ye E, Zhu Y, Li L, Xu Z, Xie DY. Molecular understanding of anthocyanin biosynthesis activated by PAP1 and regulated by 2, 4-dichlorophenoxyacetic acid in engineered red Artemisia annua cells. PLANTA 2023; 258:75. [PMID: 37668683 DOI: 10.1007/s00425-023-04230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Eight promoters were cloned, from which AC and G-box cis-elements were identified. PAP1 enhanced the promoter activity. 2,4-D reduced the anthocyanin biosynthesis via downregulating the expression of the PAP1 transgene. Artemisia annua is an effective antimalarial medicinal crop. We have established anthocyanin-producing red cell cultures from this plant with the overexpression of Production of Anthocyanin Pigment 1 (PAP1) encoding a R2R3MYB transcription factor. To understand the molecular mechanism by which PAP1 activated the entire anthocyanin pathway, we mined the genomic sequences of A. annua and obtained eight promoters of the anthocyanin pathway genes. Sequence analysis identified four types of AC cis-elements from six promoters, the MYB response elements (MRE) bound by PAP1. In addition, six promoters were determined to have at least one G-box cis-element. Eight promoters were cloned for activity analysis. Dual luciferase assays showed that PAP1 significantly enhanced the promoting activity of seven promoters, indicating that PAP1 turned on the biosynthesis of anthocyanins via the activation of these pathway gene expression. To understand how 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin, regulates the PAP1-activated anthocyanin biosynthesis, five different concentrations (0, 0.05, 0.5, 2.5, and 5 µM) were tested to characterize anthocyanin production and profiles. The resulting data showed that the concentrations tested decreased the fresh weight of callus growth, anthocyanin levels, and the production of anthocyanins per Petri dish. HPLC-qTOF-MS/MS-based profiling showed that these concentrations did not alter anthocyanin profiles. Real-time RT-PCR was completed to characterize the expression PAP1 and four representative pathway genes. The results showed that the five concentrations reduced the expression levels of the constitutive PAP1 transgene and three pathway genes significantly and eliminated the expression of the chalcone synthase gene either significantly or slightly. These data indicate that the constitutive PAP1 expression depends on gradients added in the medium. Based on these findings, the regulation of 2,4-D is discussed for anthocyanin engineering in red cells of A. annua.
Collapse
Affiliation(s)
- Yilun Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingzhuo Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Bryanna Cruz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Emily Ye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yue Zhu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics 2023; 24:488. [PMID: 37633914 PMCID: PMC10463391 DOI: 10.1186/s12864-023-09604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
WD40 transcription factors (TFs) constitute a large gene family in eukaryotes, playing diverse roles in cellular processes. However, their functions in the major ornamental plant, Rhododendron simsii, remain poorly understood. In this study, we identified 258 WD40 proteins in the R. simsii genome, which exhibited an uneven distribution across chromosomes. Based on domain compositions and phylogenetic analysis, we classified these 258 RsWD40 proteins into 42 subfamilies and 47 clusters. Comparative genomic analysis suggested that the expansion of the WD40 gene family predates the divergence of green algae and higher plants, indicating an ancient origin. Furthermore, by analyzing the duplication patterns of RsWD40 genes, we found that transposed duplication played a major role in their expansion. Notably, the majority of RsWD40 gene duplication pairs underwent purifying selection during evolution. Synteny analysis identified significant orthologous gene pairs between R. simsii and Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Malus domestica. We also investigated potential candidate genes involved in anthocyanin biosynthesis during different flower development stages in R. simsii using RNA-seq data. Specifically, we identified 10 candidate genes during the bud stage and 7 candidate genes during the full bloom stage. GO enrichment analysis of these candidate genes revealed the potential involvement of the ubiquitination process in anthocyanin biosynthesis. Overall, our findings provide a valuable foundation for further investigation and functional analysis of WD40 genes, as well as research on the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yafang Tang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, 264200, China
| | - Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jingyi Li
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Ang Lyu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Science, Wuhan, 430064, China.
| |
Collapse
|
8
|
Jezek M, Allan AC, Jones JJ, Geilfus CM. Why do plants blush when they are hungry? THE NEW PHYTOLOGIST 2023; 239:494-505. [PMID: 36810736 DOI: 10.1111/nph.18833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies. A range of ecophysiological functions have been attributed to anthocyanins. We discuss the proposed functions and signalling pathways that elicit anthocyanin synthesis in nutrient-stressed leaves. Knowledge from the fields of genetics, molecular biology, ecophysiology and plant nutrition is combined to deduce how and why anthocyanins accumulate under nutritional stress. Future research to fully understand the mechanisms and nuances of foliar anthocyanin accumulation in nutrient-stressed crops could be utilized to allow these leaf pigments to act as bioindicators for demand-oriented application of fertilizers. This would benefit the environment, being timely due to the increasing impact of the climate crisis on crop performance.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jeffrey J Jones
- Department of Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| |
Collapse
|
9
|
Li S, Shen Y, Zheng S, Zhu Q, Cai L, Wang Y, Zhao X. ZjFAS2 is involved in the fruit coloration in Ziziphus jujuba Mill. by regulating anthocyanin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1142757. [PMID: 36968382 PMCID: PMC10036858 DOI: 10.3389/fpls.2023.1142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Fruit color is one of the most important traits of jujube (Ziziphus jujuba Mill.). However, the differences in the pigments of different varieties of Jujube are not well studied. In addition, the genes responsible for fruit color and their underlying molecular mechanisms remain unclear. In this study, two jujube varieties, namely "Fengmiguan" (FMG) and "Tailihong" (TLH), were considered. The metabolites from jujube fruits were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. Transcriptome was used to screen anthocyanin regulatory genes. The gene function was confirmed by overexpression and transient expression experiments. The gene expression was analyzed by quantitative reverse transcription polymerase chain reaction analyses and subcellular localization. Yeast-two-hybrid and bimolecular fluorescence complementation were used to screen and identify the interacting protein. These cultivars differed in color owing to their respective anthocyanin accumulation patterns. Three and seven types of anthocyanins were found in FMG and TLH, respectively, which played a key role in the process of fruit coloration. ZjFAS2 positively regulates anthocyanin accumulation. The expression profile of ZjFAS2 exhibited its different expression trends in different tissues and varieties. Subcellular localization experiments showed that ZjFAS2 was localized to the nucleus and membrane. A total of 36 interacting proteins were identified, and the possibility of ZjFAS2 interacting with ZjSHV3 to regulate jujube fruit coloration was studied. Herein, we investigated the role of anthocyanins in the different coloring patterns of the jujube fruits and provided a foundation for elucidating the molecular mechanism underlying jujube fruit coloration.
Collapse
|
10
|
Zhang X, Zhang L, Zhang D, Su D, Li W, Wang X, Chen Q, Cai W, Xu L, Cao F, Zhang D, Yu X, Li Y. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum. BMC PLANT BIOLOGY 2023; 23:133. [PMID: 36882694 PMCID: PMC9993627 DOI: 10.1186/s12870-023-04143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Li Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Damao Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dingding Su
- Institute of Advanced Agricultural Sciences, Peking University, 262041, Weifang, China
| | - Weidong Li
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
- Hunan Key Laboratory of Innovation and Comprehensive Utilization, 410128, Changsha, China
| | - Xiangfei Wang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Qianru Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Wenqi Cai
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Fuxiang Cao
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dongling Zhang
- Department of Horticulture, University of Georgia, 30602, Athens, GA, USA.
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| | - Yanlin Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| |
Collapse
|
11
|
Metabolite Profiling of Wheat Response to Cultivar Improvement and Nitrogen Fertilizer. Metabolites 2023; 13:metabo13010107. [PMID: 36677032 PMCID: PMC9862063 DOI: 10.3390/metabo13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Both genetic improvement and the application of N fertilizer increase the quality and yields of wheat. However, the molecular kinetics that underlies the differences between them are not well understood. In this study, we performed a non-targeted metabolomic analysis on wheat cultivars from different release years to comprehensively investigate the metabolic differences between cultivar and N treatments. The results revealed that the plant height and tiller number steadily decreased with increased ears numbers, whereas the grain number and weight increased with genetic improvement. Following the addition of N fertilizer, the panicle numbers and grain weights increased in an old cultivar, whereas the panicle number and grain number per panicle increased in a modern cultivar. For the 1950s to 2010s cultivar, the yield increases due to genetic improvements ranged from -1.9% to 96.7%, whereas that of N application ranged from 19.1% to 81.6%. Based on the untargeted metabolomics approach, the findings demonstrated that genetic improvements induced 1.4 to 7.4 times more metabolic alterations than N fertilizer supply. After the addition of N, 69.6%, 29.4%, and 33.3% of the differential metabolites were upregulated in the 1950s, 1980s, and 2010s cultivars, respectively. The results of metabolic pathway analysis of the identified differential metabolites via genetic improvement indicated enrichment in 1-2 KEGG pathways, whereas the application of N fertilizer enriched 2-4 pathways. Our results provide new insights into the molecular mechanisms of wheat quality and grain yield developments.
Collapse
|
12
|
Mi Y, Li Y, Qian G, Vanhaelewyn L, Meng X, Liu T, Yang W, Shi Y, Ma P, Tul-Wahab A, Viczián A, Chen S, Sun W, Zhang D. A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:696-707. [PMID: 36565614 DOI: 10.1016/j.plaphy.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
Collapse
Affiliation(s)
- Yaolei Mi
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Industrial Crop Research Insitute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300, China
| | - Guangtao Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lucas Vanhaelewyn
- Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Deroose Plants NV., Weststraat 129 A, 9940, Sleidinge, Belgium
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengda Ma
- Northwest A&F University, Yangling, 712100, China
| | - Atia Tul-Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - András Viczián
- Laboratory of Photo- and Chronobiology, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou Laboratory for Lingnan Modern Agriculture Science and Technology, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Transcriptome Analysis Reveals the Molecular Regularity Mechanism Underlying Stem Bulblet Formation in Oriental Lily 'Siberia'; Functional Characterization of the LoLOB18 Gene. Int J Mol Sci 2022; 23:ijms232315246. [PMID: 36499579 PMCID: PMC9738039 DOI: 10.3390/ijms232315246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The formation of underground stem bulblets in lilies is a complex biological process which is key in their micropropagation. Generally, it involves a stem-to-bulblet transition; however, the underlying mechanism remains elusive. It is important to understand the regulatory mechanism of bulblet formation for the reproductive efficiency of Lilium. In this study, we investigated the regulatory mechanism of underground stem bulblet formation under different conditions regarding the gravity point angle of the stem, i.e., vertical (control), horizontal, and slanting. The horizontal and slanting group displayed better formation of bulblets in terms of quality and quantity compared with the control group. A transcriptome analysis revealed that sucrose and starch were key energy sources for bulblet formation, auxin and cytokinin likely promoted bulblet formation, and gibberellin inhibited bulblet formation. Based on transcriptome analysis, we identified the LoLOB18 gene, a homolog to AtLOB18, which has been proven to be related to embryogenic development. We established the stem bud growth tissue culture system of Lilium and silenced the LoLOb18 gene using the VIGS system. The results showed that the bulblet induction was reduced with down-regulation of LoLOb18, indicating the involvement of LoLOb18 in stem bulblet formation in lilies. Our research lays a solid foundation for further molecular studies on stem bulblet formation of lilies.
Collapse
|
14
|
Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. PLANT MOLECULAR BIOLOGY 2022; 110:53-68. [PMID: 35723867 DOI: 10.1007/s11103-022-01285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.
Collapse
Affiliation(s)
- Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoyi Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Jiang W, Xia Y, Su X, Pang Y. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana. PLANTA 2022; 256:44. [PMID: 35857143 DOI: 10.1007/s00425-022-03936-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
16
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
17
|
Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Sci Rep 2022; 12:6308. [PMID: 35428824 PMCID: PMC9012755 DOI: 10.1038/s41598-022-10106-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage ‘Xiao Baojian’ grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources.
Collapse
|
18
|
Flores PC, Yoon JS, Kim DY, Seo YW. Transcriptome Analysis of MYB Genes and Patterns of Anthocyanin Accumulation During Seed Development in Wheat. Evol Bioinform Online 2022; 18:11769343221093341. [PMID: 35444404 PMCID: PMC9014723 DOI: 10.1177/11769343221093341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
Plants accumulate key metabolites as a response of biotic/abiotic stress conditions. In seed coats, anthocyanins, carotenoids, and chlorophylls can be found. They have been associated as important antioxidants that affect germination. In wheat, anthocyanins can impart the seed coat color which have been recognized as health-promoting nutrients. Transcription factors act as master regulators of cellular processes. Transcription complexes such as MYB-bHLH-WD40 (MBW) regulate the expression of multiple target genes in various plant species. In this study, the spatiotemporal accumulation of seed coat pigments in different developmental stages (10, 20, 30, and 40 days after pollination) was analyzed using cryo-cuts. Moreover, the accumulation of phenolic, anthocyanin, and chlorophyll contents was quantified, and the expression of flavonoid biosynthetic genes was evaluated. Finally, transcriptome analysis was performed to analyze putative MYB genes related to seed coat color, followed by further characterization of putative genes. TaTCL2, an MYB gene, was cloned and sequenced. It was determined that TaTCL2 contains a SANT domain, which is often present in proteins participating in the response to anthocyanin accumulation. Moreover, TaTCL2 transcript levels were shown to be influenced by anthocyanin accumulation during grain development. Interaction network analysis showed interactions with GL2 (HD-ZIP IV), EGL3 (bHLH), and TTG1 (WD40). The findings of this study elucidate the mechanisms underlying color formation in Triticum aestivum L. seed coats.
Collapse
Affiliation(s)
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, Korea
| | - Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
19
|
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC PLANT BIOLOGY 2022; 22:27. [PMID: 35016620 PMCID: PMC8750800 DOI: 10.1186/s12870-021-03411-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.
Collapse
Affiliation(s)
- Leepica Kapoor
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andrew J Simkin
- School of Biosciences, University of Kent, United Kingdom, Canterbury, CT2 7NJ, UK
| | - C George Priya Doss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramamoorthy Siva
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Jin R, Kim HS, Yu T, Zhang A, Yang Y, Liu M, Yu W, Zhao P, Zhang Q, Cao Q, Kwak SS, Tang Z. Identification and function analysis of bHLH genes in response to cold stress in sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:224-235. [PMID: 34808465 DOI: 10.1016/j.plaphy.2021.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
Basic/helix-loop-helix (bHLH) transcription factors are involved in various metabolic and physiological processes in plants. Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop in China but is highly susceptible to cold stress. However, little information on the bHLH gene family is available, and the function of this family in response to cold stress has not been revealed in sweetpotato. Here, 110 IbbHLHs were identified and classified into 17 categories based on phylogenetic relationships, conserved motifs and gene structure analyses. Except for 5 IbbHLHs, 90 IbbHLHs were putative E-box-binding proteins including 70 IbbHLHs belonging to G-box, whereas 15 IbbHLHs were putative non-E box-binding proteins based on DNA-binding analysis. In total, 37 pairs of segmental duplicated genes and 5 pairs of tandem duplication genes were identified within the IbbHLH gene family. The transcript level of 20 IbbHLHs was regulated by cold stress based on RNA-seq data, and 8 genes were selected for further quantitative real-time PCR (qRT-PCR) analysis. IbHLH8 and IbHLH92 are involved in network interaction with several genes related to abiotic and biotic stresses under cold treatment. IbbHLH79, an ICE1-like gene, was isolated and overexpressed in sweetpotato. The IbbHLH79 protein can activate the CBF (C-repeat Binding Factor) pathway, and IbbHLH79-overexpressing transgenic plants display enhanced cold tolerance. Taken together, these results provide valuable information on the IbbHLH gene family; in addition, several IbbHLHs may regulate cold stress, and the results suggest IbbHLH79 will be useful for molecular breeding of enhanced cold tolerance in sweetpotato.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, South Korea
| | - Tao Yu
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Aijun Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Yufeng Yang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Liu
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Wenhui Yu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng Zhao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Qiangqiang Zhang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Qinghe Cao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, South Korea.
| | - Zhonghou Tang
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China.
| |
Collapse
|
21
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. FRONTIERS IN PLANT SCIENCE 2021; 12:748049. [PMID: 34777426 PMCID: PMC8580863 DOI: 10.3389/fpls.2021.748049] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.
Collapse
|
22
|
Transcriptome and Metabolome Analysis Unveil Anthocyanin Metabolism in Pink and Red Testa of Peanut ( Arachis hypogaea L.). Int J Genomics 2021; 2021:5883901. [PMID: 34395608 PMCID: PMC8363441 DOI: 10.1155/2021/5883901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2021] [Indexed: 01/25/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is an important source of oil and food around the world, and the testa color affects its appearance and commercial value. However, few studies focused on the mechanism of pigment formation in peanut testa. In this study, cultivars Shanhua 15 with pink testa and Zhonghua 12 with red testa were used as materials to perform the combined analysis of transcriptome and metabolome. A total of 198 flavonoid metabolites were detected, among which petunidin 3-O-glucoside and cyanidin O-acetylhexoside in Zhonghua12 were 15.23 and 14.72 times higher than those of Shanhua 15 at the R7 stage, revealing the anthocyanins underlying the red testa. Transcriptome analysis showed that there were 6059 and 3153 differentially expressed genes between Shanhua 15 and Zhonghua 12 in different growth periods, respectively. These differentially expressed genes were significantly enriched in the flavonoid biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways. Integrated analysis of transcriptome and metabolome indicated CHS gene (arahy.CM90T6), F3'H genes (arahy. 8F7PE4 and arahy. K8H9R8), and DFR genes (arahy. LDV9QN and arahy. X8EVF3) may be the key functional genes controlling the formation of pink and red testa in peanut. Transcription factors MYB (arahy.A2IWKV, arahy.US2SKM, arahy.SJGE27, arahy.H8DJRL, and arahy.PR7AYB), bHLH (arahy.26781N, arahy.HM1IVV, and arahy.MP3D3D), and WD40 (arahy.L6JJW9) in the biosynthetic pathway of anthocyanin were significantly upregulated in Zhonghua 12 which may be the key regulatory genes in testa pigment formation. This is a comprehensive analysis on flavonoid metabolites and related genes expression in peanut testa, providing reference for revealing the regulatory mechanism of pigment accumulation in peanut testa.
Collapse
|
23
|
Molecular Evaluation of Kyoho Grape Leaf and Berry Characteristics Influenced by Different NPK Fertilizers. PLANTS 2021; 10:plants10081578. [PMID: 34451623 PMCID: PMC8401429 DOI: 10.3390/plants10081578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Fertilization, a fundamental aspect of a plant’s life, has been of great concern for agricultural specialists to minimize the yield gap between actual and potential yield. Around the globe, fertilizers with different NPK ratios are being used to attain a better yield of grape. To find the suitable commercially available fertilizer for quality grape production, a 2 years (2017–2018) study was conducted for the evaluation of 10 fertilizers with different NPK ratios. Commercial fertilizers included were Zhanlan (16:16:16), Garsoni (15:15:15), Acron (16:16:16), Norway (21:7:12), Peters 1 (30:10:10), Nutrivant (14:14:30), Peters 2 (20:20:20), UMAX (15:15:15), G2 (20:20:20), and Yara (15:15:15). The fertilizer application rate was 20 g plant−1, and each was applied at L-29, L-33, and L-36 phenological stages. Chlorophylls, carotenoids, macro/micronutrients in leaf, and anthocyanin derivatives in grape peel were evaluated. Expression levels of 24 genes, including nitrogen, phosphorous, potassium, and anthocyanin pathways in leaf, peel, and pulp were validated by qPCR at L-29, L-33, and L-36 stages. Results indicated that Norway (21:7:12) and Peters 1 (30:10:10) increased carotenoids, chlorophylls, and anthocyanins in leaves, while Zhanlan (16:16:16) improved fruit biochemical attributes, and anthocyanin (cyanidin, delphinidin, petunidin, malvidin, peonidin, and pelargonidin contents). However, a better grape yield was obtained by the application of Peters 1 (30:10:10). Potassium pathway genes were upregulated by Nutrivant (14:14:30), phosphorous pathway genes by Peters 2 (20:20:20), and nitrogen pathway genes by Peters 1 (30:10:10), while Nutrivant (14:14:30) upregulated anthocyanin pathway genes and simultaneously enhanced anthocyanin biosynthesis in berry peels. Results of two years’ study concluded that Peters 1 (30:10:10) was proved better to increase yield, while Zhanlan (14:14:30) was superior in improving anthocyanin biosynthesis.
Collapse
|
24
|
Li X, Xiang F, Han W, Qie B, Zhai R, Yang C, Wang Z, Xu L. The MIR-Domain of PbbHLH2 Is Involved in Regulation of the Anthocyanin Biosynthetic Pathway in "Red Zaosu" ( PyrusBretschneideri Rehd.) Pear Fruit. Int J Mol Sci 2021; 22:ijms22063026. [PMID: 33809693 PMCID: PMC8002321 DOI: 10.3390/ijms22063026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/05/2023] Open
Abstract
The N-terminal of Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains an interaction domain, namely the MYB-interacting region (MIR), which interacts with the R2R3-MYB proteins to regulate genes involved in the anthocyanin biosynthetic pathway. However, the functions of MIR-domain bHLHs in this pathway are not fully understood. In this study, PbbHLH2 containing the MIR-domain was identified and its function investigated. The overexpression of PbbHLH2 in ”Zaosu” pear peel increased the anthocyanin content and the expression levels of late biosynthetic genes. Bimolecular fluorescence complementation showed that PbbHLH2 interacted with R2R3-MYB TFs PbMYB9, 10, and 10b in onion epidermal cells and confirmed that MIR-domain plays important roles in the interaction between the MIR-domain bHLH and R2R3-MYB TFs. Moreover, PbbHLH2 bound and activated the dihydroflavonol reductase promoter in yeast one-hybrid (Y1H) and dual-luciferase assays. Taken together these results suggested that the MIR domain of PbbHLH2 regulated anthocyanin biosynthesis in pear fruit peel.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029–87081023
| |
Collapse
|
25
|
An JP, Zhang XW, Liu YJ, Wang XF, You CX, Hao YJ. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1460-1472. [PMID: 33159793 DOI: 10.1093/jxb/eraa525] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/31/2020] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) induces anthocyanin biosynthesis in many plant species. However, the molecular mechanism of ABA-regulated anthocyanin biosynthesis remains unclear. As a crucial regulator of ABA signaling, ABSCISIC ACID-INSENSITIVE5 (ABI5) is involved in many aspects of plant growth and development, yet its regulation of anthocyanin biosynthesis has not been elucidated. In this study, we found that MdABI5, the apple homolog of Arabidopsis ABI5, positively regulated ABA-induced anthocyanin biosynthesis. A series of biochemical tests showed that MdABI5 specifically interacts with basic helix-loop-helix 3 (MdbHLH3), a positive regulator of anthocyanin biosynthesis. MdABI5 enhanced the binding of MdbHLH3 to its target genes dihydroflavonol 4-reductase (MdDFR) and UDP flavonoid glucosyl transferase (MdUF3GT). In addition, MdABI5 directly bound to the promoter of MdbHLH3 to activate its expression. Moreover, MdABI5 enhanced ABA-promoted interaction between MdMYB1 and MdbHLH3. Finally, antisense suppression of MdbHLH3 significantly reduced anthocyanin biosynthesis promoted by MdABI5, indicating that MdABI5-promoted anthocyanin biosynthesis was dependent on MdbHLH3. Taken together, our data suggest that MdABI5 plays a positive role in ABA-induced anthocyanin biosynthesis by modulating the MdbHLH3-MdMYB1 complex. Our work broadens the regulatory network of ABA-mediated anthocyanin biosynthesis, providing new insights to further study the transcriptional regulatory mechanisms behind this process.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
26
|
Ren YR, Zhao Q, Yang YY, Zhang TE, Wang XF, You CX, Hao YJ. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. HORTICULTURE RESEARCH 2021; 8:22. [PMID: 33518703 PMCID: PMC7848006 DOI: 10.1038/s41438-020-00457-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
Nitrogen is an important factor that affects plant anthocyanin accumulation. In apple, the nitrate-responsive BTB/TAZ protein MdBT2 negatively regulates anthocyanin biosynthesis. In this study, we found that MdBT2 undergoes posttranslational modifications in response to nitrate deficiency. Yeast two-hybrid, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with MdGRF11, a 14-3-3 protein; 14-3-3 proteins compose a family of highly conserved phosphopeptide-binding proteins involved in multiple physiological and biological processes. The interaction of MdGRF11 negatively regulated the stability of the MdBT2 protein via a 26S proteasome-dependent pathway, which increased the abundance of MdMYB1 proteins to activate the expression of anthocyanin biosynthesis-related genes. Taken together, the results demonstrate the critical role of 14-3-3 proteins in the regulation of nitrate deficiency-induced anthocyanin accumulation. Our results provide a novel avenue to elucidate the mechanism underlying the induction of anthocyanin biosynthesis in response to nitrate deficiency.
Collapse
Affiliation(s)
- Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qiang Zhao
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Tian-En Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
27
|
Yang F, Li CH, Das D, Zheng YH, Song T, Wang LX, Chen MX, Li QZ, Zhang J. Comprehensive Transcriptome and Metabolic Profiling of Petal Color Development in Lycoris sprengeri. FRONTIERS IN PLANT SCIENCE 2021; 12:747131. [PMID: 34925402 PMCID: PMC8678534 DOI: 10.3389/fpls.2021.747131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/18/2021] [Indexed: 05/16/2023]
Abstract
Lycoris sprengeri (L. sprengeri) is an important ornamental bulbous plant, and its numerous varieties in different color forms are widely planted. Multiple color types of petals in L. sprengeri provide us with possibilities to delineate the complicated metabolic networks underlying the biochemical traits behind color formation in this plant species, especially petal color. In this study, we sequenced and annotated a reference transcriptome of pink and white petals of L. sprengeri and analyzed the metabolic role of anthocyanin biosynthesis in regulating color pigment metabolism. Briefly, white and pink petal samples were sequenced with an Illumina platform, to obtain the reads that could be assembled into 100,778 unique sequences. Sequences expressed differentially between white vs. pink petals were further annotated with the terms of Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and eggNOG. Gene expression analyses revealed the repression of anthocyanin and steroid biosynthesis enzymes and R2R3 MYB transcription factor (TF) genes in white petals compared to pink petals. Furthermore, the targeted metabolic profiling of anthocyanins revealed that color-related delphinidin (Del) and cyanidin (Cy) pigments are lower in white petals, which correlate well with the reduced gene expression levels of anthocyanin biosynthesis genes. Taken together, it is hypothesized that anthocyanin biosynthesis, steroid biosynthesis, and R2R3 MYB TFs may play vital regulatory roles in petal color development in L. sprengeri. This work provides a valuable genomic resource for flower breeding and metabolic engineering in horticulture and markers for studying the flower trait evolution of L. sprengeri.
Collapse
Affiliation(s)
- Feng Yang
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chao-han Li
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu-hong Zheng
- Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
| | - Tao Song
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lan-xiang Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing-zhu Li
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Qing-zhu Li,
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Jianhua Zhang,
| |
Collapse
|
28
|
Wen B, Xiao W, Mu Q, Li D, Chen X, Wu H, Li L, Peng F. How does nitrate regulate plant senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:60-69. [PMID: 33091797 DOI: 10.1016/j.plaphy.2020.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen is an essential macronutrient for plant growth and development and plays an important role in the whole life process of plants. Nitrogen is an important component of amino acids, chlorophyll, plant hormones and secondary metabolites. Nitrogen deficiency leads to early senescence in plants, which is accompanied by changes in gene expression, metabolism, growth, development, and physiological and biochemical traits, which ensures efficient nitrogen recycling and enhances the plant's tolerance to low nitrogen. Therefore, it is very important to understand the adaptation mechanisms of plants under nitrogen deficiency for the efficient utilization of nitrogen and gene regulation. With the popularization of molecular biology, bioinformatics and transgenic technology, the metabolic pathways of nitrogen-deficient plants have been verified, and important progress has been made. However, how the responses of plants to nitrogen deficiency affect the biological processes of the plants is not well understood. The current research also cannot completely explain how the metabolic pathways identified show other reactions or phenotypes through interactions or cascades after nitrogen inhibition. Nitrate is the main form of nitrogen absorption. In this review, we discuss the role of nitrate in plant senescence. Understanding how nitrate inhibition affects nitrate absorption, transport, and assimilation; chlorophyll synthesis; photosynthesis; anthocyanin synthesis; and plant hormone synthesis is key to sustainable agriculture.
Collapse
Affiliation(s)
- Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Qin Mu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Hongyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
29
|
Li G, Qin B, Li S, Yin Y, Zhao J, An W, Cao Y, Mu Z. LbNR-Derived Nitric Oxide Delays Lycium Fruit Coloration by Transcriptionally Modifying Flavonoid Biosynthetic Pathway. FRONTIERS IN PLANT SCIENCE 2020; 11:1215. [PMID: 32903673 PMCID: PMC7438876 DOI: 10.3389/fpls.2020.01215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2020] [Indexed: 05/29/2023]
Abstract
Anthocyanin-derived fleshy fruit pigmentation has become an excellent system for studying the regulatory network underlying fruit ripening and quality. The transcriptional control of anthocyanin biosynthesis by MYB-bHLH-WDR complexes has been well established, but the intermediate signals through which the environmental or developmental cues regulate these transcription factors remain poorly understood. Here we found that nitric oxide (NO) production during Lycium fruit ripening decreased progressively presenting a negative relationship with anthocyanins. After cloning of the nitric reductase (NR) gene from Lycium barbarum (LbNR) plants, we demonstrated that LbNR-derived NO partially inhibited anthocyanin biosynthesis but enhanced proanthocyanidin (PA) accumulation, and delayed fruit coloration. Application of the NO donor, sodium nitroprusside (SNP), produced a similar effect. The endogenous or exogenous NO downregulated the transcripts both of the regulatory genes and the structural genes that related to anthocyanin biosynthesis, while upregulated both of those genes that related to PA biosynthesis. Given there is a significant negative relationship between the levels of anthocyanins and PAs during Lycium fruit ripening, NO not only inhibited anthocyanin de novo biosynthesis but redirected the flavonoid biosynthetic pathway from anthocyanins to PA production. Two types of LrMYB transcription factors of opposite nature, namely anthocyanin-specific and PA-specific, which belong to the R2R3-MYB subfamily and 1R-MYB subfamily, respectively, were identified from L. ruthenicum fruits. It was further found that NO acts by antagonizing the ABA signaling, a phytohormone we have previously shown playing a positive role in Lycium fruit coloration. Our results provided particularly novel information about NO-ABA-anthocyanin interplay during Lycium fruit development and ripening, which may fill a gap between the developmental cues and the transcriptional regulation of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Gen Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Beibei Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shuodan Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zixin Mu
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
TRANSPARENT TESTA GLABRA1, a Key Regulator in Plants with Multiple Roles and Multiple Function Mechanisms. Int J Mol Sci 2020; 21:ijms21144881. [PMID: 32664363 PMCID: PMC7402295 DOI: 10.3390/ijms21144881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
TRANSPARENT TESTA GLABRA1 (TTG1) is a WD40 repeat protein. The phenotypes caused by loss-of-function of TTG1 were observed about half a century ago, but the TTG1 gene was identified only about twenty years ago. Since then, TTG1 has been found to be a plant-specific regulator with multiple roles and multiple functional mechanisms. TTG1 is involved in the regulation of cell fate determination, secondary metabolisms, accumulation of seed storage reserves, plant responses to biotic and abiotic stresses, and flowering time in plants. In some processes, TTG1 may directly or indirectly regulate the expression of downstream target genes via forming transcription activator complexes with R2R3 MYB and bHLH transcription factors. Whereas in other processes, TTG1 may function alone or interact with other proteins to regulate downstream target genes. On the other hand, the studies on the regulation of TTG1 are very limited. So far, only the B3-domain family transcription factor FUSCA3 (FUS3) has been found to regulate the expression of TTG1, phosphorylation of TTG1 affects its interaction with bHLH transcription factor TT2, and TTG1 proteins can be targeted for degradation by the 26S proteasome. Here, we provide an overview of TTG1, including the identification of TTG1, the functions of TTG1, the possible function mechanisms of TTG1, and the regulation of TTG1. We also proposed potential research directions that may shed new light on the regulation and functional mechanisms of TTG1 in plants.
Collapse
|
31
|
Zhao R, Song X, Yang N, Chen L, Xiang L, Liu XQ, Zhao K. Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. PLANT CELL REPORTS 2020; 39:891-907. [PMID: 32333149 DOI: 10.1007/s00299-020-02537-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/30/2020] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Overexpression of CpbHLH1 in Arabidopsis and tobacco resulted in a dramatic decrease in anthocyanin accumulation by repressing the expression of late biosynthesis genes in the flavonoid biosynthesis pathway. Many basic helix-loop-helix (bHLH) transcription factors (TFs) of subgroup IIIf have been characterized as anthocyanin-associated activators in higher plants, but information regarding bHLH TFs that inhibit anthocyanin accumulation remains scarce. In this study, the subgroup IIIf bHLH TF CpbHLH1 from Chimonanthus praecox (L.) was identified as a negative regulator of anthocyanin accumulation. Our results showed that overexpression of CpbHLH1 in model plant species, Arabidopsis and tobacco, resulted in a dramatic decrease in anthocyanin content, whereas the content of proanthocyanidin was little affected. Quantitative RT-PCR (qRT-PCR) assays of the structural genes in the flavonoid biosynthesis pathway revealed that CpbHLH1 inhibits anthocyanin accumulation mainly through repressing the expression of late biosynthesis genes (LBGs). Interactions between CpbHLH1 protein and AtPAP1/NtAN2 protein were detected via yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. This is the first bHLH repressor of anthocyanin biosynthesis identified in dicotyledons. These results can help us better understand the anthocyanin regulatory network in plants and may provide insights into the diverse functions of bHLH proteins.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxi Song
- Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Yang
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry Administration), Southwest Forestry University, Kunming, 650224, China
| | - Longqing Chen
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry Administration), Southwest Forestry University, Kunming, 650224, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaige Zhao
- Key Laboratory of Horticultural Plant Biology (HZAU), MOE, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Zhuang H, Lou Q, Liu H, Han H, Wang Q, Tang Z, Ma Y, Wang H. Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis. Int J Mol Sci 2019; 20:E4387. [PMID: 31500111 PMCID: PMC6769466 DOI: 10.3390/ijms20184387] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/20/2023] Open
Abstract
Purple turnip Brassica rapa ssp. rapa is highly appreciated by consumers but the metabolites and molecular mechanisms underlying the root skin pigmentation remain open to study. Herein, we analyzed the anthocyanin composition in purple turnip (PT) and green turnip (GT) at five developmental stages. A total of 21 anthocyanins were detected and classified into the six major anthocynanin aglycones. Distinctly, PT contains 20 times higher levels of anthocyanins than GT, which explain the difference in the root skin pigmentation. We further sequenced the transcriptomes and analyzed the differentially expressed genes between the two turnips. We found that PT essentially diverts dihydroflavonols to the biosynthesis of anthocyanins over flavonols biosynthesis by strongly down-regulating one flavonol synthase gene, while strikingly up-regulating dihydroflavonol 4-reductase (DFR), anthocyanidin synthase and UDP-glucose: flavonoid-3-O-glucosyltransferase genes as compared to GT. Moreover, a nonsense mutation identified in the coding sequence of the DFR gene may lead to a nonfunctional protein, adding another hurdle to the accumulation of anthocyanin in GT. We also uncovered several key members of MYB, bHLH and WRKY families as the putative main drivers of transcriptional changes between the two turnips. Overall, this study provides new tools for modifying anthocyanin content and improving turnip nutritional quality.
Collapse
Affiliation(s)
- Hongmei Zhuang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qian Lou
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| | - Huifang Liu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Hongwei Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Qiang Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhonghua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China.
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Yanming Ma
- Institute of Genetic Resources, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hao Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
33
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
34
|
Chaves-Silva S, Santos ALD, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. Understanding the genetic regulation of anthocyanin biosynthesis in plants - Tools for breeding purple varieties of fruits and vegetables. PHYTOCHEMISTRY 2018; 153:11-27. [PMID: 29803860 DOI: 10.1016/j.phytochem.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 05/21/2023]
Abstract
Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables.
Collapse
Affiliation(s)
- Samuel Chaves-Silva
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Adolfo Luís Dos Santos
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA; Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Antonio Chalfun-Júnior
- Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lázaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, 6108, Morgantown, WV 26506-6108, USA.
| |
Collapse
|
35
|
Appelhagen I, Wulff-Vester AK, Wendell M, Hvoslef-Eide AK, Russell J, Oertel A, Martens S, Mock HP, Martin C, Matros A. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metab Eng 2018; 48:218-232. [PMID: 29890220 PMCID: PMC6075943 DOI: 10.1016/j.ymben.2018.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins.
Collapse
Affiliation(s)
- Ingo Appelhagen
- John Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR47UH, United Kingdom.
| | - Anders Keim Wulff-Vester
- Norwegian University of Life Sciences, Faculty of Biosciences, Department of Plant Sciences, Fougnerbakken 3, N-1432 Ås, Norway.
| | - Micael Wendell
- Norwegian University of Life Sciences, Faculty of Biosciences, Department of Plant Sciences, Fougnerbakken 3, N-1432 Ås, Norway.
| | - Anne-Kathrine Hvoslef-Eide
- Norwegian University of Life Sciences, Faculty of Biosciences, Department of Plant Sciences, Fougnerbakken 3, N-1432 Ås, Norway.
| | - Julia Russell
- John Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR47UH, United Kingdom.
| | - Anne Oertel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Department of Physiology and Cell Biology, Corrensstraße 3, 06466 Stadt Seeland, OT Gatersleben, Germany; TransMIT GmbH, Project division PlantMetaChem, Kerkrader Str. 3, 35394 Giessen, Germany.
| | - Stefan Martens
- TransMIT GmbH, Project division PlantMetaChem, Kerkrader Str. 3, 35394 Giessen, Germany; Edmund Mach Foundation, Research and Innovation Centre, Department of Food Quality and Nutrition, Via E. Mach, 1 38010 San Michele all'Adige, TN, Italy.
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Department of Physiology and Cell Biology, Corrensstraße 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| | - Cathie Martin
- John Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR47UH, United Kingdom.
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Department of Physiology and Cell Biology, Corrensstraße 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
36
|
Wei S, Li X, Gruber MY, Feyissa BA, Amyot L, Hannoufa A. COP9 signalosome subunit 5A affects phenylpropanoid metabolism, trichome formation and transcription of key genes of a regulatory tri-protein complex in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:134. [PMID: 29940863 PMCID: PMC6020244 DOI: 10.1186/s12870-018-1347-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Trichomes and phenylpropanoid-derived phenolics are structural and chemical protection against many adverse conditions. Their production is regulated by a network that includes a TTG1/bHLH/MYB tri-protein complex in Arabidopsis. CSN5a, encoding COP9 signalosome subunit 5a, has also been implicated in trichome and anthocyanin production; however, the regulatory roles of CSN5a in the processes through interaction with the tri-protein complex has yet to be investigated. RESULTS In this study, a new csn5a mutant, sk372, was recovered based on its altered morphological and chemical phenotypes compared to wild-type control. Mutant characterization was conducted with an emphasis on trichome and phenylpropanoid production and possible involvement of the tri-protein complex using metabolite and gene transcription profiling and scanning electron microscopy. Seed metabolite analysis revealed that defective CSN5a led to an enhanced production of many compounds in addition to anthocyanin, most notably phenylpropanoids and carotenoids as well as a glycoside of zeatin. Consistent changes in carotenoids and anthocyanin were also found in the sk372 leaves. In addition, 370 genes were differentially expressed in 10-day old seedlings of sk372 compared to its wild type control. Real-time transcript quantitative analysis showed that in sk372, GL2 and tri-protein complex gene TT2 was significantly suppressed (p < 0.05) while complex genes EGL3 and GL3 slightly decreased (p > 0.05). Complex genes MYB75, GL1 and flavonoid biosynthetic genes TT3 and TT18 in sk372 were all significantly enhanced. Overexpression of GL3 driven by cauliflower mosaic virus 35S promotor increased the number of single pointed trichomes only, no other phenotypic recovery in sk372. CONCLUSIONS Our results indicated clearly that COP9 signalosome subunit CSN5a affects trichome production and the metabolism of a wide range of phenylpropanoid and carotenoid compounds. Enhanced anthocyanin accumulation and reduced trichome production were related to the enhanced MYB75 and suppressed GL2 and some other differentially expressed genes associated with the TTG1/bHLH/MYB complexes.
Collapse
Affiliation(s)
- Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui China
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
| | - Xiang Li
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Margaret Y. Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
| | - Biruk A. Feyissa
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| |
Collapse
|
37
|
Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 Repeat Protein from Camellia sinensis Regulates Anthocyanin and Proanthocyanidin Accumulation through the Formation of MYB⁻bHLH⁻WD40 Ternary Complexes. Int J Mol Sci 2018; 19:ijms19061686. [PMID: 29882778 PMCID: PMC6032167 DOI: 10.3390/ijms19061686] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/02/2022] Open
Abstract
Flavan-3-ols and oligomeric proanthocyanidins (PAs) are the main nutritional polyphenols in green tea (Camellia sinensis), which provide numerous benefits to human health. To date, the regulatory mechanism of flavan-3-ol biosynthesis in green tea remains open to study. Herein, we report the characterization of a C. sinensis tryptophan-aspartic acid repeat protein (CsWD40) that interacts with myeloblastosis (MYB) and basic helix-loop-helix (bHLH) transcription factors (TFs) to regulate the biosynthesis of flavan-3-ols. Full length CsWD40 cDNA was cloned from leaves and was deduced to encode 342 amino acids. An in vitro yeast two-hybrid assay demonstrated that CsWD40 interacted with two bHLH TFs (CsGL3 and CsTT8) and two MYB TFs (CsAN2 and CsMYB5e). The overexpression of CsWD40 in Arabidopsis thaliana transparent testa glabra 1 (ttg1) restored normal trichome and seed coat development. Ectopic expression of CsWD40 alone in tobacco resulted in a significant increase in the anthocyanins of transgenic petals. CsWD40 was then coexpressed with CsMYB5e in tobacco plants to increase levels of both anthocyanins and PAs. Furthermore, gene expression analysis revealed that CsWD40 expression in tea plants could be induced by several abiotic stresses. Taken together, these data provide solid evidence that CsWD40 partners with bHLH and MYB TFs to form ternary WBM complexes to regulate anthocyanin, PA biosynthesis, and trichome development.
Collapse
Affiliation(s)
- Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China.
| | - Hua Hou
- School of Life Science, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Wei Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
38
|
Ni X, Xue S, Iqbal S, Wang W, Ni Z, Khalil-Ur-Rehman M, Gao Z. Candidate genes associated with red colour formation revealed by comparative genomic variant analysis of red- and green-skinned fruits of Japanese apricot ( Prunus mume). PeerJ 2018; 6:e4625. [PMID: 29740511 PMCID: PMC5937475 DOI: 10.7717/peerj.4625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/24/2018] [Indexed: 11/29/2022] Open
Abstract
The red-skinned fruit of Japanese apricot (Prunus mume Sieb. et Zucc) appeals to customers due to its eye-catching pigmentation, while the mechanism related to its colour formation is still unclear. In this study, genome re-sequencing of six Japanese apricot cultivars was carried out with approximately 92.2 Gb of clean bases using next-generation sequencing. A total of 32,004 unigenes were assembled with an average of 83.1% coverage rate relative to reference genome. A wide range of genetic variation was detected, including 7,387,057 single nucleotide polymorphisms, 456,222 insertions or deletions and 129,061 structural variations in all genomes. Comparative sequencing data revealed that 13 candidate genes were involved in biosynthesis of anthocyanin. Significantly higher expression patterns were observed in genes encoding three anthocyanin synthesis structural genes (4CL, F3H and UFGT), five transcription factors (MYB–bHLH–WD40 complexes and NAC) and five anthocyanin accumulation related genes (GST1, RT1, UGT85A2, ABC and MATE transporters) in red-skinned than in green-skinned Japanese apricots using reverse transcription-quantitative polymerase chain reaction. Eight main kinds of anthocyanin s were detected by UPLC/MS, and cyanidin 3-glucoside was identified as the major anthocyanin (124.2 mg/kg) in red-skinned cultivars. The activity of UDP-glucose flavonoid-3-O-glycosyltransferase enzyme determined by UPLC was significantly higher in all red-skinned cultivars, suggesting that it is the potential vital regulatory gene for biosynthesis of anthocyanin in Japanese apricot.
Collapse
Affiliation(s)
- Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Song Xue
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanxu Wang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Khalil-Ur-Rehman
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Zhu Y, Peng Q, Li K, Xie DY. Molecular Cloning and Functional Characterization of a Dihydroflavonol 4-Reductase from Vitis bellula. Molecules 2018; 23:E861. [PMID: 29642567 PMCID: PMC6017708 DOI: 10.3390/molecules23040861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023] Open
Abstract
Vitis bellula is a new grape crop in southern China. Berries of this species are rich in antioxidative anthocyanins and proanthocyanidins. This study reports cloning and functional characterization of a cDNA encoding a V. bellula dihydroflavonol reductase (VbDFR) involved in the biosynthesis of anthocyanins and proanthocyanidins. A cDNA including 1014 bp was cloned from young leaves and its open reading frame (ORF) was deduced encoding 337 amino acids, highly similar to V. vinifera DFR (VvDFR). Green florescence protein fusion and confocal microscopy analysis determined the cytosolic localization of VbDFR in plant cells. A soluble recombinant VbDFR was induced and purified from E. coli for enzyme assay. In the presence of NADPH, the recombinant enzyme catalyzed dihydrokaempferol (DHK) and dihydroquercetin (DHQ) to their corresponding leucoanthocyanidins. The VbDFR cDNA was introduced into tobacco plants via Agrobacterium-mediated transformation. The overexpression of VbDFR increased anthocyanin production in flowers. Anthocyanin hydrolysis and chromatographic analysis revealed that transgenic flowers produced pelargonidin and delphinidin, which were not detected in control flowers. These data demonstrated that the overexpression of VbDFR produced new tobacco anthocyanidins. In summary, all data demonstrate that VbDFR is a useful gene to provide three types of substrates for metabolic engineering of anthocyanins and proanthocyanidins in grape crops and other crops.
Collapse
Affiliation(s)
- Yue Zhu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City 416000, China.
- Department of Plant Biology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA.
| | - Qingzhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City 416000, China.
| | - Kegang Li
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City 416000, China.
| | - De-Yu Xie
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, No. 120 Ren Min Nan Lu, Jishou City 416000, China.
- Department of Plant Biology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA.
| |
Collapse
|
40
|
Zhao F, Li G, Hu P, Zhao X, Li L, Wei W, Feng J, Zhou H. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci Rep 2018; 8:2721. [PMID: 29426907 PMCID: PMC5807450 DOI: 10.1038/s41598-018-21136-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 12/03/2022] Open
Abstract
As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics for the diploid woodland strawberry Fragaria vesca. In addition, transcription profiles of 113 orthologous bHLH genes from various tissues were analyzed for the cultivar 'Benihoppe', its white-flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening, as well as those under either the ABA or Eth treatment. Both the RT-PCR and qRT-PCR results show that seven selected FabHLH genes (FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98) are responsive to the fruit anthocyanin biosynthesis and hormone signaling according to transcript profiles where three color modes are observed for strawberry's fruit skin and flesh. Further, prediction for the protein interaction network reveals that four bHLHs (FabHLH25, FabHLH29, FabHLH80, FabHLH98) are involved in the fruit anthocyanin biosynthesis and hormone signaling transduction. These bioinformatics and expression profiles provide a good basis for a further investigation of strawberry bHLH genes.
Collapse
Affiliation(s)
- Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Liangjie Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China
| | - Wei Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayue Feng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
- Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China.
| |
Collapse
|
41
|
Jezek M, Zörb C, Merkt N, Geilfus CM. Anthocyanin Management in Fruits by Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:753-764. [PMID: 29297687 DOI: 10.1021/acs.jafc.7b03813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant's nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Nikolaus Merkt
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin , Albrecht-Thaer-Weg 1, 14195 Berlin, Germany
| |
Collapse
|
42
|
Li Y, Shan X, Zhou L, Gao R, Yang S, Wang S, Wang L, Gao X. The R2R3-MYB Factor FhMYB5 From Freesia hybrida Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1935. [PMID: 30666265 PMCID: PMC6330306 DOI: 10.3389/fpls.2018.01935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
The flavonoids are important and nourishing compounds for plants and human. The transcription regulation of anthocyanin and proanthocyanidin (PA) biosynthesis was extensively studied in dicot compared with monocot plants. In this study, we characterized the functionality of an R2R3-MYB gene FhMYB5 from the monocotyledonous flowering plant of Iridaceae, Freesia hybrida. Multiple sequence alignment and phylogenetic analysis implied that FhMYB5 was clustered into grapevine VvMYB5b subclade. Correlation analysis indicated that the spatio-temporal expression patterns of FhMYB5 coincided well with anthocyanin and PA accumulations in Freesia per se. Furthermore, transient transfection assays in Freesia protoplasts revealed that the late flavonoid biosynthetic genes (e.g., DFR and LDOX) were slightly up-regulated by FhMYB5 alone, whereas both early and late biosynthetic genes were significantly activated when FhMYB5 were co-infected with either of the two IIIf clade bHLH genes, FhTT8L and FhGL3L. Moreover, these results were further confirmed by co-transfection of FhMYB5 with either of the bHLH genes aforementioned into protoplasts expressing GUS reporter gene driven by Freesia promoters. In addition, the overexpression of FhMYB5 in tobacco and Arabidopsis could also significantly up-regulate the expression of genes participating in the general flavonoid pathway. In conclusion, FhMYB5 was proved to function in the general flavonoid pathway in Freesia. The results implied a function conservation of flavonoid biosynthesis related MYB regulators in angiosperm plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Liudi Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology Northeast, Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
- *Correspondence: Li Wang, Xiang Gao,
| |
Collapse
|
43
|
Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci Rep 2017; 7:5786. [PMID: 28724949 PMCID: PMC5517572 DOI: 10.1038/s41598-017-04092-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 11/25/2022] Open
Abstract
The basic helix-loop-helix (bHLH) proteins are a large family of transcription factors that control various developmental processes in eukaryotes, but the biological roles of most bHLH proteins are not very clear, especially in tomato. In this study, a PRE-like atypical bHLH gene was isolated and designated as SlPRE2 in tomato. SlPRE2 was highly expressed in immature-green fruits, moderately in young leaves, flowers, and mature-green fruits. To further research the function of SlPRE2, a 35 S:PRE2 binary vector was constructed and transformed into wild type tomato. The transgenic plants showed increased leaf angle and stem internode length, rolling leaves with decreased chlorophyll content. The water loss rate of detached leaves was increased in young transgenic lines but depressed in mature leaves. Besides, overexpression of SlPRE2 promoted morphogenesis in seedling development, producing light-green unripening fruits and yellowing ripen fruits with reduced chlorophyll and carotenoid accumulation in pericarps, respectively. Quantitative RT-PCR analysis showed that expression of the chlorophyll related genes, such as GOLDEN 2-LIKE and RbcS, were decreased in unripening 35
S:PRE2 fruit, and carotenoid biosynthesis-related genes PHYTOENE SYNTHASE1A and ζ-CAROTENE DESATURASE in ripening fruit were also down-regulated. These results suggest that SlPRE2 affects plant morphology and is a negative regulator of fruit pigment accumulation.
Collapse
|
44
|
Zhang Y, Liu Z, Liu J, Lin S, Wang J, Lin W, Xu W. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. PLANT CELL REPORTS 2017; 36:557-569. [PMID: 28275852 DOI: 10.1007/s00299-017-2102-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianping Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Weifeng Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
45
|
He X, Li Y, Lawson D, Xie DY. Metabolic engineering of anthocyanins in dark tobacco varieties. PHYSIOLOGIA PLANTARUM 2017; 159:2-12. [PMID: 27229540 DOI: 10.1111/ppl.12475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
In this study, we investigate the metabolic engineering of anthocyanins in two dark tobacco crops (Narrow Leaf Madole and KY171) and evaluate the effects on physiological features of plant photosynthesis. Arabidopsis PAP1 (production of anthocyanin pigment 1) gene (AtPAP1) encodes a R2R3-type MYB transcript factor that is a master component of regulatory complexes controlling anthocyanin biosynthesis. AtPAP1 was introduced to Narrow Leaf Madole and KY171 plants. Multiple transgenic plants developed red/purple pigmentation in different tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of six pathway genes were increased two- to eight-fold in AtPAP1 transgenic plants compared with vector control plants. Dihydroflavonol reductase and anthocyanidin synthase genes that were not expressed in wild-type plants were activated. Spectrophotometric measurement showed that the amount of anthocyanins in AtPAP1 transgenic plants were 400-800 µg g-1 fresh weight (FW). High-performance liquid chromatography (HPLC) analysis showed that one main anthocyanin molecule accounted for approximately 98% of the total anthocyanins. Tandem MS/MS analysis using HPLC coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry identified the main anthocyanin as cyanidin 3-O-rutinoside, an important medicinal anthocyanin. Analysis of photosynthesis rate, chlorophylls and carotenoids contents showed no differences between red/purple transgenic and control plants, indicating that this metabolic engineering did not alter photosynthetic physiological traits. This study shows that AtPAP1 is of significance for metabolic engineering of anthocyanins in crop plants for value-added traits.
Collapse
Affiliation(s)
- Xianzhi He
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Darlene Lawson
- Department of Research and Development, R. J. Reynolds Tobacco Company, Winston-Salem, NC, 27102, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
46
|
Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. FRONTIERS IN PLANT SCIENCE 2016; 7:197. [PMID: 27047496 PMCID: PMC4804130 DOI: 10.3389/fpls.2016.00197] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
|
47
|
Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis) Based on Transcriptome Sequencing. PLoS One 2015; 10:e0136439. [PMID: 26301713 PMCID: PMC4547809 DOI: 10.1371/journal.pone.0136439] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Red-fleshed kiwifruit (Actinidia chinensis Planch. ‘Hongyang’) is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of ‘Hongyang’ from seven developmental stages using Illumina sequencing. We mapped 39–54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement.
Collapse
|
48
|
Wang J, Wang Y, Yang J, Ma C, Zhang Y, Ge T, Qi Z, Kang Y. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:708-21. [PMID: 25494721 DOI: 10.1111/jipb.12320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 05/07/2023]
Abstract
Anthocyanin accumulation is a common phenomenon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starvation-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpressing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initially identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. [Correction added on 6 August 2015, after first online publication: "RND3" corrected to "RHD3".].
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Ju Yang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chunli Ma
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Ying Zhang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Ting Ge
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Zhi Qi
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Kang
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
49
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
50
|
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. TRENDS IN PLANT SCIENCE 2015; 20:176-85. [PMID: 25577424 DOI: 10.1016/j.tplants.2014.12.001] [Citation(s) in RCA: 936] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
Collapse
Affiliation(s)
- Wenjia Xu
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Christian Dubos
- INRA and Centre National de la Recherche Scientifique (CNRS) SupAgro-M, Université Montpellier 2 (UM2), Biochimie et Physiologie Moléculaire des Plantes, 2 place Viala, 34060 Montpellier CEDEX 1, France.
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|