1
|
Hohensee L, Scheibner D, Luttermann C, Shelton H, Dorhoi A, Abdelwhab EM, Blohm U. PB1-F2 of low pathogenicity H7N7 restricts apoptosis in avian cells. Virus Res 2024; 349:199444. [PMID: 39089370 PMCID: PMC11386312 DOI: 10.1016/j.virusres.2024.199444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.
Collapse
Affiliation(s)
- Luise Hohensee
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Ash Road, Surrey GU24 0NF, United Kingdom
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| |
Collapse
|
2
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Xia C, Wang T, Hahm B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int J Mol Sci 2024; 25:4677. [PMID: 38731896 PMCID: PMC11083682 DOI: 10.3390/ijms25094677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.
Collapse
Affiliation(s)
- Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Hohensee L, Scheibner D, Schäfer A, Shelton H, Mettenleiter TC, Breithaupt A, Dorhoi A, Abdelwhab EM, Blohm U. The role of PB1-F2 in adaptation of high pathogenicity avian influenza virus H7N7 in chickens. Vet Res 2024; 55:5. [PMID: 38173025 PMCID: PMC10765749 DOI: 10.1186/s13567-023-01257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.
Collapse
Affiliation(s)
- Luise Hohensee
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
- Infection Pathogenesis, TUM School of Life Sciences, Technische Universität München, 85354, Freising, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Ash Road, Surrey, GU24 0NF, UK
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
6
|
Blue-Winged Teals in Guatemala and Their Potential Role in the Ecology of H14 Subtype Influenza a Viruses. Viruses 2023; 15:v15020483. [PMID: 36851697 PMCID: PMC9961055 DOI: 10.3390/v15020483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Wild aquatic birds are considered the natural hosts of 16 HA (H1-H16) and 9 NA (N1-N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies.
Collapse
|
7
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
8
|
Wang Y, Wang J. PB1F2 from Influenza A Virus Regulates the Interaction between Cytochrome C and Cardiolipin. MEMBRANES 2022; 12:795. [PMID: 36005710 PMCID: PMC9414537 DOI: 10.3390/membranes12080795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
PB1F2 is a membrane associated protein encoded by the influenza virus gene in the host. Similar to endogenous pro-apoptotic proteins, it acts on the mitochondria of the host immune cells, inducing apoptosis of the cells. The PB1F2 protein has been demonstrated to facilitate the release of cytochrome c in addition to impairing the integrity of the inner mitochondrial membrane. This investigation focused on how the protein PB1F2 interacted with cardiolipin and cytochrome c. The regulation of PB1F2 on the binding of cytochrome c to cardiolipin in two kinds of in vitro membrane mimics was investigated by biophysical techniques. PB1F2 aids in the dissociation of cytochrome c-cardiolipin complexes in liposomes and nanodiscs. The results provide novel explanations and evidence for how PB1F2 functions as a viral virulence factor by inducing immune cell death.
Collapse
Affiliation(s)
- Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Burnham AJ, Miller JR, Singh I, Billings EA, Rush MA, Air GM, Bour S. Novel isoforms of influenza virus PA-X and PB1-F2 indicated by automatic annotation. Virus Res 2021; 304:198545. [PMID: 34391827 DOI: 10.1016/j.virusres.2021.198545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/02/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
The influenza A virus genome contains 8 gene segments encoding 10 commonly recognized proteins. Additional protein products have been identified, including PB1-F2 and PA-X. We report the in-silico identification of novel isoforms of PB1-F2 and PA-X in influenza virus genomes sequenced from avian samples. The isoform observed in PA-X includes a mutated stop codon that should extend the protein product by 8 amino acids. The isoform observed in PB1-F2 includes two nonsense mutations that should truncate the N-terminal region of the protein product and remove the entire mitochondrial targeting domain. Both isoforms were uncovered during automatic annotation of CEIRS sequence data. Nominally termed PA-X8 and PB1-F2-Cterm, both predicted isoforms were subsequently found in other annotated influenza genomes previously deposited in GenBank. Both isoforms were noticed due to discrepant annotations output by two annotation engines, indicating a benefit of incorporating multiple algorithms during gene annotation.
Collapse
Affiliation(s)
- Andrew J Burnham
- CEIRS Data Processing and Coordinating Center, United States; Gryphon Scientific, United States
| | - Jason Rafe Miller
- CEIRS Data Processing and Coordinating Center, United States; Shepherd University, United States
| | - Indresh Singh
- CEIRS Data Processing and Coordinating Center, United States; J. Craig Venter Institute, United States
| | - Emily A Billings
- CEIRS Data Processing and Coordinating Center, United States; Gryphon Scientific, United States
| | - Margaret A Rush
- CEIRS Data Processing and Coordinating Center, United States; Gryphon Scientific, United States
| | - Gillian M Air
- CEIRS Data Processing and Coordinating Center, United States; University of Oklahoma Health Sciences Center, United States
| | - Stephan Bour
- CEIRS Data Processing and Coordinating Center, United States; Digital Infuzion, United States.
| |
Collapse
|
11
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
12
|
Yu J, Zhao S, Rao H. Whole-genome sequences of two influenza A (H3N2) virus strains isolated from Qinghai, China. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Influenza A virus PB1‐F2 protein: An ambivalent innate immune modulator and virulence factor. J Leukoc Biol 2020; 107:763-771. [DOI: 10.1002/jlb.4mr0320-206r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
|
14
|
Xiao Y, Evseev D, Stevens CA, Moghrabi A, Miranzo-Navarro D, Fleming-Canepa X, Tetrault DG, Magor KE. Influenza PB1-F2 Inhibits Avian MAVS Signaling. Viruses 2020; 12:v12040409. [PMID: 32272772 PMCID: PMC7232376 DOI: 10.3390/v12040409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
RIG-I plays an essential role in the duck innate immune response to influenza infection. RIG-I engages the critical adaptor protein mitochondrial antiviral signaling (MAVS) to activate the downstream signaling pathway. The influenza A virus non-structural protein PB1-F2 interacts with MAVS in human cells to inhibit interferon production. As duck and human MAVS share only 28% amino acid similarity, it is not known whether the influenza virus can similarly inhibit MAVS signaling in avian cells. Using confocal microscopy we show that MAVS and the constitutively active N-terminal end of duck RIG-I (2CARD) co-localize in DF-1 cells, and duck MAVS is pulled down with GST-2CARD. We establish that either GST-2CARD, or duck MAVS can initiate innate signaling in chicken cells and their co-transfection augments interferon-beta promoter activity. Demonstrating the limits of cross-species interactions, duck RIG-I 2CARD initiates MAVS signaling in chicken cells, but works poorly in human cells. The D122A mutation of human 2CARD abrogates signaling by affecting MAVS engagement, and the reciprocal A120D mutation in duck 2CARD improves signaling in human cells. We show mitochondrial localization of PB1-F2 from influenza A virus strain A/Puerto Rico/8/1934 (H1N1; PR8), and its co-localization and co-immunoprecipitation with duck MAVS. PB1-F2 inhibits interferon-beta promoter activity induced by overexpression of either duck RIG-I 2CARD, full-length duck RIG-I, or duck MAVS. Finally, we show that the effect of PB1-F2 on mitochondria abrogates TRIM25-mediated ubiquitination of RIG-I CARD in both human and avian cells, while an NS1 variant from the PR8 influenza virus strain does not.
Collapse
Affiliation(s)
- Yanna Xiao
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
| | - Danyel Evseev
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Chase A. Stevens
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
| | - Adam Moghrabi
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Domingo Miranzo-Navarro
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
| | - Ximena Fleming-Canepa
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
| | - David G. Tetrault
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.); (C.A.S.); (A.M.); (D.M.-N.); (X.F.-C.); (D.G.T.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-780-492-5498
| |
Collapse
|
15
|
Zell R, Groth M, Krumbholz A, Lange J, Philipps A, Dürrwald R. Displacement of the Gent/1999 human-like swine H1N2 influenza A virus lineage by novel H1N2 reassortants in Germany. Arch Virol 2019; 165:55-67. [PMID: 31696308 DOI: 10.1007/s00705-019-04457-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
Abstract
A swine influenza survey was conducted between 2003 and 2015 in Germany. During this period, 8122 snout swabs or other respiratory specimens from pigs of 5178 herds, mainly from Germany, were investigated for the presence of swine influenza A virus (S-IAV). In total, 1310 S-IAV isolates were collected. Of this collection, the complete genome of 267 H1N2 S-IAV isolates was sequenced and phylogenetically analyzed. The data demonstrate the incursion of human-like swine H1N2 viruses (Gent/1999-like) in 2000 and prevalent circulation until 2010. From 2008 onward, a sustained and broad change of the genetic constellation of the swine H1N2 subtype commenced. The Gent/1999-like swine H1N2 viruses ceased and several new swine H1N2 reassortants emerged and became prevalent in Germany. Of these, the upsurge of the Diepholz/2008-like, Emmelsbuell/2009-like and Papenburg/2010-like viruses is notable. The data reveal the importance of reassortment events in S-IAV evolution. The strong circulation of S-IAV of different lineages in the swine population throughout the year underlines that pigs are important reservoir hosts.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.
| | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andi Krumbholz
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Institute of Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Jeannette Lange
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Anja Philipps
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Thermo Fisher Scientific GENEART GmbH, 93059, Regensburg, Germany
| | - Ralf Dürrwald
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany.,Robert Koch Institute, 13353, Berlin, Germany
| |
Collapse
|
16
|
Zhong G, Fan S, Lopes TJS, Le MQ, van Bakel H, Dutta J, Smith GJD, Jayakumar J, Nguyen HLK, Hoang PVM, Halfmann P, Hatta M, Su YCF, Neumann G, Kawaoka Y. Isolation of Highly Pathogenic H5N1 Influenza Viruses in 2009-2013 in Vietnam. Front Microbiol 2019; 10:1411. [PMID: 31293548 PMCID: PMC6603144 DOI: 10.3389/fmicb.2019.01411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
Routine surveillance and surveillance in response to influenza outbreaks in avian species in Vietnam in 2009-2013 resulted in the isolation of numerous H5N1 influenza viruses of clades 1.1.2, 2.3.2.1a, 2.3.2.1b, 2.3.2.1c, and 2.3.4.1. Consistent with other studies, we found that viruses of clade 2.3.2.1c were dominant in Vietnam in 2013 and circulated in the northern, central, and southern parts of the country. Phylogenetic analysis revealed reassortment among viruses of clades 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c; in contrast, no reassortment was detected between clade 2.3.2.1 viruses and viruses of clades 1.1.2 or 2.3.4.1, respectively. Deep-sequencing of 42 of the 53 isolated H5N1 viruses revealed viral subpopulations encoding variants that may affect virulence, host range, or sensitivity to antiviral compounds; virus isolates containing these subpopulations may have a higher potential to transmit and adapt to mammals. Among the viruses sequenced, a relatively high number of non-synonymous nucleotide polymorphisms was detected in a virus isolated from a barn swallow, possibly suggesting influenza virus adaption to this host.
Collapse
Affiliation(s)
- Gongxun Zhong
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tiago J S Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gavin J D Smith
- Duke-NUS Medical School, Singapore, Singapore.,Duke Global Health Institute, Duke University, Durham, NC, United States
| | | | | | | | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Ferreri LM, Ortiz L, Geiger G, Barriga GP, Poulson R, Gonzalez-Reiche AS, Crum JA, Stallknecht D, Moran D, Cordon-Rosales C, Rajao D, Perez DR. Improved detection of influenza A virus from blue-winged teals by sequencing directly from swab material. Ecol Evol 2019; 9:6534-6546. [PMID: 31236242 PMCID: PMC6580304 DOI: 10.1002/ece3.5232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract The greatest diversity of influenza A virus (IAV) is found in wild aquatic birds of the orders Anseriformes and Charadriiformes. In these birds, IAV replication occurs mostly in the intestinal tract. Fecal, cloacal, and/or tracheal swabs are typically collected and tested by real-time RT-PCR (rRT-PCR) and/or by virus isolation in embryonated chicken eggs in order to determine the presence of IAV. Virus isolation may impose bottlenecks that select variant populations that are different from those circulating in nature, and such bottlenecks may result in artifactual representation of subtype diversity and/or underrepresented mixed infections. The advent of next-generation sequencing (NGS) technologies provides an opportunity to explore to what extent IAV subtype diversity is affected by virus isolation in eggs. In the present work, we evaluated the advantage of sequencing by NGS directly from swab material of IAV rRT-PCR-positive swabs collected during the 2013-14 surveillance season in Guatemala and compared to results from NGS after virus isolation. The results highlight the benefit of sequencing IAV genomes directly from swabs to better understand subtype diversity and detection of alternative amino acid motifs that could otherwise escape detection using traditional methods of virus isolation. In addition, NGS sequencing data from swabs revealed reduced presence of defective interfering particles compared to virus isolates. We propose an alternative workflow in which original swab samples positive for IAV by rRT-PCR are first subjected to NGS before attempting viral isolation. This approach should speed the processing of samples and better capture natural IAV diversity. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.3h2n106.
Collapse
Affiliation(s)
- Lucas M Ferreri
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia.,Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Ginger Geiger
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Gonzalo P Barriga
- Laboratory of Emerging Viruses, Virology Program Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Rebecca Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | | | - Jo Anne Crum
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - David Moran
- Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Daniela Rajao
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| |
Collapse
|
18
|
Wang Q, Liu R, Li Q, Wang F, Zhu B, Zheng M, Cui H, Wen J, Zhao G. Host cell interactome of PB1 N40 protein of H5N1 influenza A virus in chicken cells. J Proteomics 2019; 197:34-41. [PMID: 30790688 DOI: 10.1016/j.jprot.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
H5N1 influenza A virus (IAV) causes seasonal epidemics that represent a worldwide threat to public health. IAV relies on host factors for viral replication. PB1 N40 is translated from the fifth starting code (AUG) of PB1 mRNA, which is the product of the ribosomal scan omission. Here, we report the interactome landscape of H5N1 IAV PB1 N40 protein in chicken cells. The interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. We identified 135 proteins as PB1 N40-interacting proteins. GO and Pathway analysis showed that proteins with biological functions such as protein localization and viral transcription and proteins related to signaling pathways of DNA replication and cell cycle were significantly enriched in virus-host interactions, suggesting the potential roles of them in infection with H5N1 IAV. Comparative analysis among H1N1 and H5N1 revealed conservation of the virus-host protein interaction between different subtypes or strains of influenza virus. ARCN1 was identified as a host interacting factor of H5N1 IAV PB1 N40 protein, which is the component of the coatomer. Knockdown of ARCN1 significantly decreased the titer of H5N1 IAV in chicken cells. BIOLOGICAL SIGNIFICANCE: Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PB1 N40 protein and reveal its involvement with dozens of important host genes during the course of IAV infection.
Collapse
Affiliation(s)
- Qiao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Bo Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Animal Nutrition, Beijing, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; School of Life Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
19
|
Machkovech HM, Bloom JD, Subramaniam AR. Comprehensive profiling of translation initiation in influenza virus infected cells. PLoS Pathog 2019; 15:e1007518. [PMID: 30673779 PMCID: PMC6361465 DOI: 10.1371/journal.ppat.1007518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/04/2019] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Translation can initiate at alternate, non-canonical start codons in response to stressful stimuli in mammalian cells. Recent studies suggest that viral infection and anti-viral responses alter sites of translation initiation, and in some cases, lead to production of novel immune epitopes. Here we systematically investigate the extent and impact of alternate translation initiation in cells infected with influenza virus. We perform evolutionary analyses that suggest selection against non-canonical initiation at CUG codons in influenza virus lineages that have adapted to mammalian hosts. We then use ribosome profiling with the initiation inhibitor lactimidomycin to experimentally delineate translation initiation sites in a human lung epithelial cell line infected with influenza virus. We identify several candidate sites of alternate initiation in influenza mRNAs, all of which occur at AUG codons that are downstream of canonical initiation codons. One of these candidate downstream start sites truncates 14 amino acids from the N-terminus of the N1 neuraminidase protein, resulting in loss of its cytoplasmic tail and a portion of the transmembrane domain. This truncated neuraminidase protein is expressed on the cell surface during influenza virus infection, is enzymatically active, and is conserved in most N1 viral lineages. We do not detect globally higher levels of alternate translation initiation on host transcripts upon influenza infection or during the anti-viral response, but the subset of host transcripts induced by the anti-viral response is enriched for alternate initiation sites. Together, our results systematically map the landscape of translation initiation during influenza virus infection, and shed light on the evolutionary forces shaping this landscape.
Collapse
Affiliation(s)
- Heather M. Machkovech
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Rimondi A, Gonzalez-Reiche AS, Olivera VS, Decarre J, Castresana GJ, Romano M, Nelson MI, van Bakel H, Pereda AJ, Ferreri L, Geiger G, Perez DR. Evidence of a fixed internal gene constellation in influenza A viruses isolated from wild birds in Argentina (2006-2016). Emerg Microbes Infect 2018; 7:194. [PMID: 30482896 PMCID: PMC6258671 DOI: 10.1038/s41426-018-0190-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
Wild aquatic birds are the major reservoir of influenza A virus. Cloacal swabs and feces samples (n = 6595) were collected from 62 bird species in Argentina from 2006 to 2016 and screened for influenza A virus. Full genome sequencing of 15 influenza isolates from 6 waterfowl species revealed subtypes combinations that were previously described in South America (H1N1, H4N2, H4N6 (n = 3), H5N3, H6N2 (n = 4), and H10N7 (n = 2)), and new ones not previously identified in the region (H4N8, H7N7 and H7N9). Notably, the internal gene segments of all 15 Argentine isolates belonged to the South American lineage, showing a divergent evolution of these viruses in the Southern Hemisphere. Time-scaled phylogenies indicated that South American gene segments diverged between ~ 30 and ~ 140 years ago from the most closely related influenza lineages, which include the avian North American (PB1, HA, NA, MP, and NS-B) and Eurasian lineage (PB2), and the equine H3N8 lineage (PA, NP, and NS-A). Phylogenetic analyses of the hemagglutinin and neuraminidase gene segments of the H4, H6, and N8 subtypes revealed recent introductions and reassortment between viruses from the Northern and Southern Hemispheres in the Americas. Remarkably and despite evidence of recent hemagglutinin and neuraminidase subtype introductions, the phylogenetic composition of internal gene constellation of these influenza A viruses has remained unchanged. Considering the extended time and the number of sampled species of the current study, and the paucity of previously available data, our results contribute to a better understanding of the ecology and evolution of influenza virus in South America.
Collapse
Affiliation(s)
- Agustina Rimondi
- Instituto de Virologia CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), CC25 (1712), Castelar, Buenos Aires, Argentina.
| | - Ana S Gonzalez-Reiche
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Valeria S Olivera
- Instituto de Virologia CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Julieta Decarre
- Instituto de Recursos Biológicos CIRN - Instituto Nacional de Tecnología Agropecuaria (INTA), CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Gabriel J Castresana
- Dirección de Áreas Naturales Protegidas, Organismo Provincial para el Desarrollo Sostenible (O.P.D.S), Gobierno de la provincia de Buenos Aires, General Conesa, Buenos Aires, Argentina
| | - Marcelo Romano
- Centro de Investigaciones en Biodiversidad y Ambiente, Rosario (ECOSUR), Rosario, Santa Fe, Argentina
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ariel J Pereda
- Instituto de Virologia CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), CC25 (1712), Castelar, Buenos Aires, Argentina.,Instituto de Patobiología CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Lucas Ferreri
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Ginger Geiger
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| |
Collapse
|
21
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
22
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
23
|
Hu J, Ma C, Liu X. PA-X: a key regulator of influenza A virus pathogenicity and host immune responses. Med Microbiol Immunol 2018; 207:255-269. [PMID: 29974232 PMCID: PMC7086933 DOI: 10.1007/s00430-018-0548-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
PA-X, a fusion protein belonging to influenza A viruses (IAVs), integrating the N-terminal 191 amino acids of PA gene and the ribosomal frame-shifting product that lengthens out to 41 or 61 amino acids. Since its discovery in 2012, multiple functions have been attributed to this small protein, including a process, where wide-spread protein synthesis in infected host cells is shut down (called host shutoff), and viral replication, polymerase activity, viral-induced cell apoptosis, PA nuclear localization, and virulence are modulated. However, many of its proposed functions may be specific to strain, subtype, host, or cell line. In this review, we start by describing the well-defined global host-shutoff ability of PA-X and the potential mechanisms underlying it. We move on to the role played by PA-X in modulating innate and acquired immune responses in the host. We then systematically discuss the role played by PA-X in modulating the virulence of influenza viruses of different subtypes and host origins, and finish with a general overview of the research advances made in identifying the host cell partners that interact with PA-X. To uncover possible clues about the differential effects of PA-X in modulating viral virulence, we focus on systemically evaluating polymorphisms in PA-X from various viral subtypes and hosts, including avian and human H5N1, H5N6, H9N2, and H7N9 viruses. Finally, we conclude with a proposition regarding the possible future research directions for this important protein.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S, Pleschka S. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems. Front Microbiol 2018; 9:526. [PMID: 29623073 PMCID: PMC5874506 DOI: 10.3389/fmicb.2018.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species.
Collapse
Affiliation(s)
- Henning Petersen
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
| | - Mohamed A Tantawy
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Azeem A Iqbal
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Aravind Tallam
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Balachandar Selvakumar
- Max-Planck Laboratory for Heart and Lung Research, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Bera BC, Virmani N, Kumar N, Anand T, Pavulraj S, Rash A, Elton D, Rash N, Bhatia S, Sood R, Singh RK, Tripathi BN. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics 2017; 18:652. [PMID: 28830350 PMCID: PMC5568313 DOI: 10.1186/s12864-017-4063-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. RESULTS The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. CONCLUSIONS Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Collapse
Affiliation(s)
- Bidhan Ch Bera
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Nitin Virmani
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India.
| | - Naveen Kumar
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Taruna Anand
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - S Pavulraj
- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, India
| | - Adam Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Debra Elton
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Nicola Rash
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Sandeep Bhatia
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Richa Sood
- National Institute of High Security Animal Diseases, Hathai Kheda Dam Road, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
26
|
Leymarie O, Meyer L, Tafforeau L, Lotteau V, Costa BD, Delmas B, Chevalier C, Le Goffic R. Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. J Gen Virol 2017; 98:1196-1208. [PMID: 28613140 DOI: 10.1099/jgv.0.000782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors. This allowed us to identify calcium-binding and coiled-coil domain 2 (CALCOCO2, also known as NDP52) as a binding partner of PB1-F2. Binding of PB1-F2 to CALCOCO2 was confirmed by pull-down. Surface plasmon resonance binding experiments enabled us to estimate the dissociation constant (Kd) of the two partners to be around 20 nM. Using bioinformatics tools, we designed a CALCOCO2 interaction map based on previous knowledge and showed a strong connection between this protein and the type I interferon production pathways and the I-κB kinase/NF-κB signalling pathway. NF-κB reporter assays in which CALCOCO2, MAVS and PB1-F2 were co-expressed showed a cooperation of these three proteins to increase the inflammatory response. By contrast, PB1-F2 inhibits the TBK1-dependent activation of an ISRE reporter plasmid. We also demonstrated that the signal transducer TRAF6 is implicated in the enhancement of NF-κB activity mediated by PB1-F2/CALCOCO2 binding. Altogether, this report provides evidence of an interaction link between PB1-F2 and human proteins, and allows a better understanding of the involvement of PB1-F2 in the pathologic process mediated by IAV.
Collapse
Affiliation(s)
- Olivier Leymarie
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Léa Meyer
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lionel Tafforeau
- IMAP Team, Inserm Unit 851, 21, Av. T. Garnier, 69007 Lyon, France.,Present address: Laboratory of Cellular Biology, Research Institute for Biosciences, University of Mons-UMONS, Belgium
| | - Vincent Lotteau
- INSERM U1111, Lyon, France.,CIRI, Centre de Recherche en Infectiologie, Lyon, France.,Université de Lyon, France
| | - Bruno Da Costa
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernard Delmas
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
27
|
Virological Surveillance of Influenza A Subtypes Isolated in 2014 from Clinical Outbreaks in Canadian Swine. Viruses 2017; 9:v9030055. [PMID: 28335552 PMCID: PMC5371810 DOI: 10.3390/v9030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022] Open
Abstract
Influenza A viruses (IAVs) are respiratory pathogens associated with an acute respiratory disease that occurs year-round in swine production. It is currently one of the most important pathogens in swine populations, with the potential to infect other host species including humans. Ongoing research indicates that the three major subtypes of IAV—H1N1, H1N2, and H3N2—continue to expand in their genetic and antigenic diversity. In this study, we conducted a comprehensive genomic analysis of 16 IAVs isolated from different clinical outbreaks in Alberta, Manitoba, Ontario, and Saskatchewan in 2014. We also examined the genetic basis for probable antigenic differences among sequenced viruses. On the basis of phylogenetic analysis, all 13 Canadian H3N2 viruses belonged to cluster IV, eight H3N2 viruses were part of the IV-C cluster, and one virus belonged to the IV-B and one to the IV-D cluster. Based on standards used in this study, three H3N2 viruses could not be clearly classified into any currently established group within cluster IV (A to F). Three H1N2 viruses were part of the H1α cluster.
Collapse
|
28
|
|
29
|
Pinar A, Dowling JK, Bitto NJ, Robertson AAB, Latz E, Stewart CR, Drummond GR, Cooper MA, McAuley JL, Tate MD, Mansell A. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome. J Biol Chem 2016; 292:826-836. [PMID: 27913620 DOI: 10.1074/jbc.m116.756379] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1β maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections.
Collapse
Affiliation(s)
- Anita Pinar
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,the Departments of Molecular and Translational Sciences and
| | - Jennifer K Dowling
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,the Departments of Molecular and Translational Sciences and
| | - Natalie J Bitto
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,the Departments of Molecular and Translational Sciences and
| | - Avril A B Robertson
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4702, Australia
| | - Eicke Latz
- the Institute of Innate Immunity, University Hospital, University of Bonn, Bonn 53127, Germany.,the Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01655.,the German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Cameron R Stewart
- the Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Grant R Drummond
- Pharmacology, Monash University, Clayton, Victoria 3168, Australia
| | - Matthew A Cooper
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4702, Australia
| | - Julie L McAuley
- the Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle D Tate
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,the Departments of Molecular and Translational Sciences and
| | - Ashley Mansell
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, .,the Departments of Molecular and Translational Sciences and
| |
Collapse
|
30
|
Jiang W, Sheng C, Gu X, Liu D, Yao C, Gao S, Chen S, Huang Y, Huang W, Fang M. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication. Sci Rep 2016; 6:35041. [PMID: 27869202 PMCID: PMC5116764 DOI: 10.1038/srep35041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunjie Sheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Yao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Key Laboratory of Tumor Targeted Drug in Guangdong Province, Guangzhou Double Bioproducts Co., Ltd., Guangzhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix. J Virol 2016; 90:8729-38. [PMID: 27440905 PMCID: PMC5021425 DOI: 10.1128/jvi.01384-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria. IMPORTANCE The PB2 subunit of the influenza virus RNA polymerase is a major determinant of viral pathogenicity. However, the molecular mechanisms of how PB2 determines pathogenicity remain poorly understood. PB2 associates with mitochondria and inhibits the function of the mitochondrial antiviral signaling protein MAVS, implicating PB2 in the regulation of innate immune responses. We found that PB2 is imported into the mitochondrial matrix and showed that amino acid residue 9 is a determinant of mitochondrial import. The presence of asparagine or threonine in over 99% of all human seasonal influenza virus pre-2009 H1N1, H2N2, and H3N2 strains is compatible with mitochondrial import, whereas the presence of an aspartic acid in over 95% of all avian influenza viruses is not, resulting in a clear distinction between human-adapted and avian influenza viruses. These findings provide insights into the interplay between influenza virus and mitochondria and suggest mechanisms by which PB2 could affect pathogenicity.
Collapse
|
32
|
James J, Howard W, Iqbal M, Nair VK, Barclay WS, Shelton H. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window. J Gen Virol 2016; 97:2516-2527. [PMID: 27558742 PMCID: PMC5078828 DOI: 10.1099/jgv.0.000584] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness – infectivity, spread and pathogenesis – is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field.
Collapse
Affiliation(s)
- Joe James
- Avian Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, UK.,Faculty of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Wendy Howard
- Faculty of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | - Venugopal K Nair
- Avian Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, UK
| | - Wendy S Barclay
- Faculty of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Holly Shelton
- Avian Viral Diseases Programme, The Pirbright Institute, Pirbright, Surrey, UK
| |
Collapse
|
33
|
N-terminal domain of PB1-F2 protein of influenza A virus can fold into amyloid-like oligomers and damage cholesterol and cardiolipid containing membranes. Biochem Biophys Res Commun 2016; 477:27-32. [DOI: 10.1016/j.bbrc.2016.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022]
|
34
|
Hu J, Mo Y, Gao Z, Wang X, Gu M, Liang Y, Cheng X, Hu S, Liu W, Liu H, Chen S, Liu X, Peng D, Liu X. PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 205:381-95. [PMID: 27289459 PMCID: PMC7086737 DOI: 10.1007/s00430-016-0461-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point’s p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Mo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xin Cheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxing Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu Province, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
35
|
Eng CLP, Tong JC, Tan TW. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses. PLoS One 2016; 11:e0150173. [PMID: 26915079 PMCID: PMC4767729 DOI: 10.1371/journal.pone.0150173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 12/25/2022] Open
Abstract
Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.
Collapse
Affiliation(s)
- Christine L. P. Eng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joo Chuan Tong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of High Performance Computing, Singapore, Singapore
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Koutsakos M, Nguyen THO, Barclay WS, Kedzierska K. Knowns and unknowns of influenza B viruses. Future Microbiol 2015; 11:119-35. [PMID: 26684590 DOI: 10.2217/fmb.15.120] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Influenza B viruses (IBVs) circulate annually along with influenza A (IAV) strains during seasonal epidemics. IBV can dominate influenza seasons and cause severe disease, particularly in children and adolescents. Research has revealed interesting aspects of IBV and highlighted the importance of these viruses in clinical settings. Yet, many important questions remain unanswered. In this review, the clinical relevance of IBV is emphasized, unique features in epidemiology, host range and virology are highlighted and gaps in knowledge pinpointed. Multiple aspects of IBV epidemiology, evolution, virology and immunology are discussed. Future research into IBV is needed to understand how we can prevent severe disease in high-risk groups, especially children and elderly.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| | - Wendy S Barclay
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| |
Collapse
|
37
|
Lee PHY, Bird N, MacKenzie-Kludas C, Mansell A, Kedzierska K, Brown L, McAuley J. Induction of memory cytotoxic T cells to influenza A virus and subsequent viral clearance is not modulated by PB1-F2-dependent inflammasome activation. Immunol Cell Biol 2015; 94:439-46. [PMID: 26667784 PMCID: PMC4890051 DOI: 10.1038/icb.2015.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Expression of the viral virulence protein PB1-F2 during infection has been linked to NLRP3 inflammasome complex activation in macrophages and induction of early inflammatory events enhancing immunopathology during influenza disease. We sought to determine whether PB1-F2-specific NLRP3 inflammasome activation influenced the magnitude and/or robustness of the CD8+ T-cell responses specific for conserved viral antigens and subsequent virus elimination. Using murine heterosubtypic viral infection models, we showed that mice infected with virus unable to produce PB1-F2 protein showed no deficit in the overall magnitude and functional memory responses of CD8+ T cells established during the effector phase compared with those infected with wild-type PB1-F2-expressing virus and were equally capable of mounting robust recall responses. These data indicate that while expression of PB1-F2 protein can induce inflammatory events, the capacity to generate memory CD8+ T cells specific for immunodominant viral epitopes remains uncompromised.
Collapse
Affiliation(s)
- Patricia Hoi Yee Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicola Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Charley MacKenzie-Kludas
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ashley Mansell
- Pattern Recognition Receptors and Inflammation Group, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena Brown
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Vidic J, Richard CA, Péchoux C, Da Costa B, Bertho N, Mazerat S, Delmas B, Chevalier C. Amyloid Assemblies of Influenza A Virus PB1-F2 Protein Damage Membrane and Induce Cytotoxicity. J Biol Chem 2015; 291:739-51. [PMID: 26601953 DOI: 10.1074/jbc.m115.652917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 01/10/2023] Open
Abstract
PB1-F2 is a small accessory protein encoded by an alternative open reading frame in PB1 segments of most influenza A virus. PB1-F2 is involved in virulence by inducing mitochondria-mediated immune cells apoptosis, increasing inflammation, and enhancing predisposition to secondary bacterial infections. Using biophysical approaches we characterized membrane disruptive activity of the full-length PB1-F2 (90 amino acids), its N-terminal domain (52 amino acids), expressed by currently circulating H1N1 viruses, and its C-terminal domain (38 amino acids). Both full-length and N-terminal domain of PB1-F2 are soluble at pH values ≤6, whereas the C-terminal fragment was found soluble only at pH ≤ 3. All three peptides are intrinsically disordered. At pH ≥ 7, the C-terminal part of PB1-F2 spontaneously switches to amyloid oligomers, whereas full-length and the N-terminal domain of PB1-F2 aggregate to amorphous structures. When incubated with anionic liposomes at pH 5, full-length and the C-terminal part of PB1-F2 assemble into amyloid structures and disrupt membrane at nanomolar concentrations. PB1-F2 and its C-terminal exhibit no significant antimicrobial activity. When added in the culture medium of mammalian cells, PB1-F2 amorphous aggregates show no cytotoxicity, whereas PB1-F2 pre-assembled into amyloid oligomers or fragmented nanoscaled fibrils was highly cytotoxic. Furthermore, the formation of PB1-F2 amyloid oligomers in infected cells was directly reflected by membrane disruption and cell death as observed in U937 and A549 cells. Altogether our results demonstrate that membrane-lytic activity of PB1-F2 is closely linked to supramolecular organization of the protein.
Collapse
Affiliation(s)
- Jasmina Vidic
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas,
| | - Charles-Adrien Richard
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Christine Péchoux
- the Génétique Animale et Biologie Intégrative, INRA, UMR1313, Domaine de Vilvert, 78350 Jouy en Josas, and
| | - Bruno Da Costa
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Nicolas Bertho
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Sandra Mazerat
- the Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Sud, CNRS, UMR 8182, 91400 Orsay, France
| | - Bernard Delmas
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| | - Christophe Chevalier
- From the Unité de Virologie et Immunologie Moléculaires, INRA, UR892, Domaine de Vilvert, 78350 Jouy en Josas
| |
Collapse
|
39
|
François M, Schaefer JM, Bole-Feysot C, Déchelotte P, Verhulst FC, Fetissov SO. Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:1-7. [PMID: 25562566 DOI: 10.1016/j.pnpbp.2014.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ghrelin, a hunger hormone, has been implicated in the regulation of stress-response, anxiety and depression. Ghrelin-reactive immunoglobulins (Ig) were recently identified in healthy and obese humans showing abilities to increase ghrelin's stability and orexigenic effects. Here we studied if ghrelin-reactive Ig are associated with anxiety and depression and with the stress-induced cortisol response in a general population of adolescents. Furthermore, to test the possible infectious origin of ghrelin-reactive Ig, their levels were compared with serum IgG against common viruses. METHODS We measured ghrelin-reactive IgM, IgG and IgA in serum samples of 1199 adolescents from the Dutch TRAILS study and tested their associations with 1) anxiety and depression symptoms assessed with the Youth Self-Report, 2) stress-induced salivary cortisol levels and 3) IgG against human herpesvirus 1, 2, 4 and 6 and Influenza A and B viruses. RESULTS Ghrelin-reactive IgM and IgG correlated positively with levels of antibodies against Influenza A virus. Ghrelin-reactive IgM correlated negatively with antibodies against Influenza B virus. Ghrelin-reactive IgM correlated positively with anxiety scores in girls and ghrelin-reactive IgG correlated with stress-induced cortisol secretion, but these associations were weak and not significant after correction for multiple testing. CONCLUSION These data indicate that production of ghrelin-reactive autoantibodies could be influenced by viral infections. Serum levels of ghrelin-reactive autoantibodies probably do not play a role in regulating anxiety, depression and the stress-response in adolescents from the general population.
Collapse
Affiliation(s)
- Marie François
- Nutrition, Gut and Brain Laboratory, Inserm UMR1073, Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76183, France
| | - Johanna M Schaefer
- Department of Child and Adolescent Psychiatry & Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christine Bole-Feysot
- Nutrition, Gut and Brain Laboratory, Inserm UMR1073, Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76183, France
| | - Pierre Déchelotte
- Nutrition, Gut and Brain Laboratory, Inserm UMR1073, Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76183, France
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry & Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sergueï O Fetissov
- Nutrition, Gut and Brain Laboratory, Inserm UMR1073, Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy University, 76183, France.
| |
Collapse
|
40
|
Influenza virus-induced caspase-dependent enlargement of nuclear pores promotes nuclear export of viral ribonucleoprotein complexes. J Virol 2015; 89:6009-21. [PMID: 25810542 DOI: 10.1128/jvi.03531-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral replication cycle. The report provides an intriguing example of how influenza virus exploits cellular structures and regulatory pathways, including intracellular transport mechanisms, to complete its replication cycle and maximize the production of infectious virus progeny.
Collapse
|
41
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|
42
|
Gíria M, Rebelo de Andrade H. Genetic evolution of PB1 in the zoonotic transmission of influenza A(H1) virus. INFECTION GENETICS AND EVOLUTION 2014; 27:234-43. [DOI: 10.1016/j.meegid.2014.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 11/16/2022]
|
43
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
44
|
Krumbholz A, Lange J, Sauerbrei A, Groth M, Platzer M, Kanrai P, Pleschka S, Scholtissek C, Büttner M, Dürrwald R, Zell R. Origin of the European avian-like swine influenza viruses. J Gen Virol 2014; 95:2372-2376. [PMID: 25073465 DOI: 10.1099/vir.0.068569-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979-1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34-46 years (before 2008) depending on the RNA segment and the method of tree inference.
Collapse
Affiliation(s)
- Andi Krumbholz
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Jeannette Lange
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Andreas Sauerbrei
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Marco Groth
- Genomanalyse, Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Matthias Platzer
- Genomanalyse, Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Pumaree Kanrai
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Stephan Pleschka
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Christoph Scholtissek
- Institut für Medizinische Virologie, Justus-Liebig-Universität, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Mathias Büttner
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Veterinärstrasse 2, D-85762 Oberschleissheim, Germany
| | - Ralf Dürrwald
- Virale Vakzinen, Geschäftsbereich Tiergesundheit, IDT Biologika GmbH, Am Pharmapark, D-06861 Dessau-Rosslau, Germany
| | - Roland Zell
- Institut für Virologie und Antivirale Therapie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| |
Collapse
|
45
|
Negri P, Choi JY, Jones C, Tompkins SM, Tripp R, Dluhy RA. Identification of virulence determinants in influenza viruses. Anal Chem 2014; 86:6911-7. [PMID: 24937567 PMCID: PMC4116746 DOI: 10.1021/ac500659f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/17/2014] [Indexed: 01/15/2023]
Abstract
To date there is no rapid method to screen for highly pathogenic avian influenza strains that may be indicators of future pandemics. We report here the first development of an oligonucleotide-based spectroscopic assay to rapidly and sensitively detect a N66S mutation in the gene coding for the PB1-F2 protein associated with increased virulence in highly pathogenic pandemic influenza viruses. 5'-Thiolated ssDNA oligonucleotides were employed as probes to capture RNA isolated from six influenza viruses, three having N66S mutations, two without the N66S mutation, and one deletion mutant not encoding the PB1-F2 protein. Hybridization was detected without amplification or labeling using the intrinsic surfaced-enhanced Raman spectrum of the DNA-RNA complex. Multivariate analysis identified target RNA binding from noncomplementary sequences with 100% sensitivity, 100% selectivity, and 100% correct classification in the test data set. These results establish that optical-based diagnostic methods are able to directly identify diagnostic indicators of virulence linked to highly pathogenic pandemic influenza viruses without amplification or labeling.
Collapse
Affiliation(s)
- Pierre Negri
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Joo Young Choi
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Cheryl Jones
- Department
of Infectious Disease, University of Georgia, Athens, Georgia 30602 United States
| | - S. Mark Tompkins
- Department
of Infectious Disease, University of Georgia, Athens, Georgia 30602 United States
| | - Ralph
A. Tripp
- Department
of Infectious Disease, University of Georgia, Athens, Georgia 30602 United States
| | - Richard A. Dluhy
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| |
Collapse
|
46
|
Le TH, Nguyen NTB. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 2014; 3:117-27. [PMID: 25003084 PMCID: PMC4083063 DOI: 10.7774/cevr.2014.3.2.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
47
|
El Zowalaty ME, Bustin SA, Husseiny MI, Ashour HM. Avian influenza: virology, diagnosis and surveillance. Future Microbiol 2014; 8:1209-27. [PMID: 24020746 DOI: 10.2217/fmb.13.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avian influenza virus (AIV) is the causative agent of a zoonotic disease that affects populations worldwide with often devastating economic and health consequences. Most AIV subtypes cause little or no disease in waterfowl, but outbreaks in poultry can be associated with high mortality. Although transmission of AIV to humans occurs rarely and is strain dependent, the virus has the ability to mutate or reassort into a form that triggers a life-threatening infection. The constant emergence of new influenza strains makes it particularly challenging to predict the behavior, spread, virulence or potential for human-to-human transmission. Because it is difficult to anticipate which viral strain or what location will initiate the next pandemic, it is difficult to prepare for that event. However, rigorous implementation of biosecurity, vaccination and education programs can minimize the threat of AIV. Global surveillance programs help record and identify newly evolving and potentially pandemic strains harbored by the reservoir host.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Postgraduate Medical Institute, Faculty of Health, Social Care & Education, Anglia Ruskin University, Chelmsford, Essex, UK
| | | | | | | |
Collapse
|
48
|
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 2014; 185:53-63. [PMID: 24675275 DOI: 10.1016/j.virusres.2014.03.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Influenza A virus is one of the major human pathogens. Despite numerous efforts to produce absolutely effective anti-influenza drugs or vaccines, no such agent has been developed yet. One of the main reasons for this complication is the high mutation rate and the specific structure of influenza A viruses genome. For more than 25 years since the first mapping of the viral genome, it was believed that its 8 genome segments encode 10 proteins. However, the proteome of influenza A viruses has turned out to be much more complex than previously thought. In 2001, the first accessory protein, PB1-F2, translated from the alternative open reading frame, was discovered. Subsequently, six more proteins, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3, have been found. It is important to pay close attention to these novel proteins in order to evaluate their role in the pathogenesis of influenza, especially in the case of outbreaks of human infections with new avian viruses, such as H5N1 or H7N9. In this review we summarize the data on the molecular mechanisms used by influenza A viruses to expand their proteome and on the possible functions of the recently discovered viral proteins.
Collapse
Affiliation(s)
- A V Vasin
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia.
| | - O A Temkina
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - V V Egorov
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - S A Klotchenko
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - M A Plotnikova
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - O I Kiselev
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| |
Collapse
|
49
|
Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88:4877-96. [PMID: 24522919 DOI: 10.1128/jvi.00107-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.
Collapse
|
50
|
Abstract
Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.
Collapse
Affiliation(s)
- B H Janke
- DVM, PhD, Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|