1
|
Han B, Dong X, Shi C, Wang Z, Chen J, Li P, Yan W, Zhou Q, Liu Z, Yan L. Genome-wide identification and characterization of Calcium-Dependent Protein Kinase (CDPK) gene family in autotetraploid cultivated alfalfa (Medicago sativa subsp. sativa) and expression analysis under abiotic stresses. BMC PLANT BIOLOGY 2024; 24:1241. [PMID: 39716096 DOI: 10.1186/s12870-024-05993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp. sativa) yet. RESULTS In our study, 38 non-redundant MsCDPK genes were identified from the "XinJiangDaYe" alfalfa genome. They can be divided into four subgroups which is the same as in Arabidopsis and Medicago truncatula, and there were 15, 12,10 and 1 in CDPK I, II, III and IV, respectively. RNA-seq analysis revealed tissue-specificity of 38 MsCDPK genes. After researching the transcriptome data, we found these 38 MsCDPK members responsive to drought, salt, and cold stress treatments. Further analysis showed that the expression of almost all the MsCDPKs is regulated by abiotic stresses. In addition, we chose MsCDPK03, MsCDPK26, MsCDPK31 and MsCDPK36 for RT-qPCR validation which was from CDPK I-IV subgroups respectively. The result showed that the expression of these four genes was significantly induced by drought, salt and cold treatments. The subcellular location experiment showed that these four proteins were all located in nucleus. CONCLUSION In our study, we identified 38 distinct MsCDPK genes within the alfalfa genome, which were classified into four groups. We conducted a comprehensive analysis of various gene features, including physicochemical properties, phylogenetic relationships, exon-intron structures, conserved motifs, chromosomal locations, gene duplication events, cis-regulatory elements, 3D structures, and tissue-specific expression patterns, as well as responses to drought, salt, and cold stresses. These results also provide a solid foundation for further investigations into the functions of MsCDPKs aimed at improving drought tolerance in autotetraploid cultivated alfalfa through genetic engineering.
Collapse
Affiliation(s)
- Bingcheng Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Congcong Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoming Wang
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010070, China
| | - Jiwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Pengzhen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wei Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Lyu H, Chen J, Cao X, Du R, Ma L, Wang N, Zhu Z, Rao J, Wang J, Zhong K, Lyu Y, Wang Y, Lin T, Zhou Y, Zhou Y, Zhu G, Fei Z, Klee H, Huang S. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 2024; 635:647-656. [PMID: 39537922 PMCID: PMC11578880 DOI: 10.1038/s41586-024-08186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit1-4. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality5-7. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited SlCDPK27 and SlCDPK26 knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.
Collapse
Affiliation(s)
- Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jie Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiguo Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Jianglei Rao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Zhong
- Agriculture and Food Standardization Institute, China National Institute of Standardization, Beijing, China
| | - Yaqing Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Harry Klee
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
3
|
Wang XY, Ren CX, Fan QW, Xu YP, Wang LW, Mao ZL, Cai XZ. Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to Sclerotinia sclerotiorum. Int J Mol Sci 2024; 25:6932. [PMID: 39000053 PMCID: PMC11240920 DOI: 10.3390/ijms25136932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Sclerotinia sclerotiorum (Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor genes. Genome-wide identification of genes involved in QDR to Ss is yet to be conducted. In this study, we integrated several assays including genome-wide association study (GWAS), multi-omics co-localization, and machine learning prediction to identify, on a genome-wide scale, genes involved in the oilseed rape QDR to Ss. Employing GWAS and multi-omics co-localization, we identified seven resistance-associated loci (RALs) associated with oilseed rape resistance to Ss. Furthermore, we developed a machine learning algorithm and named it Integrative Multi-Omics Analysis and Machine Learning for Target Gene Prediction (iMAP), which integrates multi-omics data to rapidly predict disease resistance-related genes within a broad chromosomal region. Through iMAP based on the identified RALs, we revealed multiple calcium signaling genes related to the QDR to Ss. Population-level analysis of selective sweeps and haplotypes of variants confirmed the positive selection of the predicted calcium signaling genes during evolution. Overall, this study has developed an algorithm that integrates multi-omics data and machine learning methods, providing a powerful tool for predicting target genes associated with specific traits. Furthermore, it makes a basis for further understanding the role and mechanisms of calcium signaling genes in the QDR to Ss.
Collapse
Affiliation(s)
- Xin-Yao Wang
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
| | - Chun-Xiu Ren
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
| | - Qing-Wen Fan
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China;
| | - Lu-Wen Wang
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
| | - Zhou-Lu Mao
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
| | - Xin-Zhong Cai
- Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.-Y.W.); (C.-X.R.); (Q.-W.F.); (L.-W.W.); (Z.-L.M.)
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Chen L, Hu Y, Huang L, Chen L, Duan X, Wang G, Ou H. Comparative transcriptome revealed the molecular responses of Aconitum carmichaelii Debx. to downy mildew at different stages of disease development. BMC PLANT BIOLOGY 2024; 24:332. [PMID: 38664645 PMCID: PMC11044490 DOI: 10.1186/s12870-024-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.
Collapse
Affiliation(s)
- Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianglei Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
5
|
Yokotani N, Hasegawa Y, Kouzai Y, Hirakawa H, Isobe S. Transcriptome analysis of tomato plants following salicylic acid-induced immunity against Clavibacter michiganensis ssp. michiganensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:273-282. [PMID: 38434116 PMCID: PMC10905565 DOI: 10.5511/plantbiotechnology.23.0711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 03/05/2024]
Abstract
Salicylic acid (SA) is known to be involved in the immunity against Clavibacter michiganensis ssp. michiganensis (Cmm) that causes bacterial canker in tomato. To identify the candidate genes associated with SA-inducible Cmm resistance, transcriptome analysis was conducted via RNA sequencing in tomato plants treated with SA. SA treatment upregulated various defense-associated genes, such as PR and GST genes, in tomato cotyledons. A comparison of SA- and Cmm-responsive genes revealed that both SA treatment and Cmm infection commonly upregulated a large number of genes. Gene Ontology (GO) analysis indicated that the GO terms associated with plant immunity were over-represented in both SA- and Cmm-induced genes. The genes commonly downregulated by both SA treatment and Cmm infection were associated with the cell cycle and may be involved in growth and immunity trade-off through cell division. After SA treatment, several proteins that were predicted to play a role in immune signaling, such as resistance gene analogs, Ca2+ sensors, and WRKY transcription factors, were transcriptionally upregulated. The W-box element, which was targeted by WRKYs, was over-represented in the promoter regions of genes upregulated by both SA treatment and Cmm infection, supporting the speculation that WRKYs are important for the SA-mediated immunity against Cmm. Prediction of protein-protein interactions suggested that genes encoding receptor-like kinases and EF-hand proteins play an important role in immune signaling. Thus, various candidate genes involved in SA-inducible Cmm resistance were identified.
Collapse
Affiliation(s)
- Naoki Yokotani
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshinori Hasegawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
6
|
Wang Z, Zhang Y, Liu Y, Fu D, You Z, Huang P, Gao H, Zhang Z, Wang C. Calcium-dependent protein kinases CPK21 and CPK23 phosphorylate and activate the iron-regulated transporter IRT1 to regulate iron deficiency in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2646-2662. [PMID: 37286859 DOI: 10.1007/s11427-022-2330-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 06/09/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms. Fe availability in the soil is usually much lower than that required for plant growth, and Fe deficiencies seriously restrict crop growth and yield. Calcium (Ca2+) is a second messenger in all eukaryotes; however, it remains largely unknown how Ca2+ regulates Fe deficiency. In this study, mutations in CPK21 and CPK23, which are two highly homologous calcium-dependent protein kinases, conferredimpaired growth and rootdevelopment under Fe-deficient conditions, whereas constitutively active CPK21 and CPK23 enhanced plant tolerance to Fe-deficient conditions. Furthermore, we found that CPK21 and CPK23 interacted with and phosphorylated the Fe transporter IRON-REGULATED TRANSPORTER1 (IRT1) at the Ser149 residue. Biochemical analyses and complementation of Fe transport in yeast and plants indicated that IRT1 Ser149 is critical for IRT1 transport activity. Taken together, these findings suggest that the CPK21/23-IRT1 signaling pathway is critical for Fe homeostasis in plants and provides targets for improving Fe-deficient environments and breeding crops resistant to Fe-deficient conditions.
Collapse
Affiliation(s)
- Zhangqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yisong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dali Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhang You
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhenqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
7
|
Khan MA, Cowling WA, Banga SS, Barbetti MJ, Cantila AY, Amas JC, Thomas WJ, You MP, Tyagi V, Bharti B, Edwards D, Batley J. Genetic and molecular analysis of stem rot (Sclerotinia sclerotiorum) resistance in Brassica napus (canola type). Heliyon 2023; 9:e19237. [PMID: 37674843 PMCID: PMC10477455 DOI: 10.1016/j.heliyon.2023.e19237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.
Collapse
Affiliation(s)
- Muhammad Azam Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Wallace A. Cowling
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Martin J. Barbetti
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Aldrin Y. Cantila
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - Junrey C. Amas
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - William J.W. Thomas
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - Ming Pei You
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Vikrant Tyagi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| |
Collapse
|
8
|
Tian S, Liu B, Shen Y, Cao S, Lai Y, Lu G, Wang Z, Wang A. Unraveling the Molecular Mechanisms of Tomatoes' Defense against Botrytis cinerea: Insights from Transcriptome Analysis of Micro-Tom and Regular Tomato Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2965. [PMID: 37631176 PMCID: PMC10459989 DOI: 10.3390/plants12162965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Botrytis cinerea is a devastating fungal pathogen that causes severe economic losses in global tomato cultivation. Understanding the molecular mechanisms driving tomatoes' response to this pathogen is crucial for developing effective strategies to counter it. Although the Micro-Tom (MT) cultivar has been used as a model, its stage-specific response to B. cinerea remains poorly understood. In this study, we examined the response of the MT and Ailsa Craig (AC) cultivars to B. cinerea at different time points (12-48 h post-infection (hpi)). Our results indicated that MT exhibited a stronger resistant phenotype at 18-24 hpi but became more susceptible to B. cinerea later (26-48 hpi) compared to AC. Transcriptome analysis revealed differential gene expression between MT at 24 hpi and AC at 22 hpi, with MT showing a greater number of differentially expressed genes (DEGs). Pathway and functional annotation analysis revealed significant differential gene expression in processes related to metabolism, biological regulation, detoxification, photosynthesis, and carbon metabolism, as well as some immune system-related genes. MT demonstrated an increased reliance on Ca2+ pathway-related proteins, such as CNGCs, CDPKs, and CaMCMLs, to resist B. cinerea invasion. B. cinerea infection induced the activation of PTI, ETI, and SA signaling pathways, involving the modulation of various genes such as FLS2, BAK1, CERK1, RPM, SGT1, and EDS1. Furthermore, transcription factors such as WRKY, MYB, NAC, and AUX/IAA families played crucial regulatory roles in tomatoes' defense against B. cinerea. These findings provide valuable insights into the molecular mechanisms underlying tomatoes' defense against B. cinerea and offer potential strategies to enhance plant resistance.
Collapse
Affiliation(s)
- Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bojing Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanan Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Shasha Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Yinyan Lai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| |
Collapse
|
9
|
Zhang XM, Li JT, Xia Y, Shi XQ, Liu XL, Tang M, Tang J, Sun W, Yi Y. Early and Late Transcriptomic and Metabolomic Responses of Rhododendron 'Xiaotaohong' Petals to Infection with Alternaria sp. Int J Mol Sci 2023; 24:12695. [PMID: 37628875 PMCID: PMC10454523 DOI: 10.3390/ijms241612695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, petal blight disease caused by pathogens has become increasingly epidemic in Rhododendron. Breeding disease-resistant rhododendron is considered to be a more environmentally friendly strategy than is the use of chemical reagents. In this study, we aimed to investigate the response mechanisms of rhododendron varieties to petal blight, using transcriptomics and metabolomics analyses. Specifically, we monitored changes in gene expression and metabolite accumulation in Rhododendron 'Xiaotaohong' petals infected with the Alternaria sp. strain (MR-9). The infection of MR-9 led to the development of petal blight and induced significant changes in gene transcription. Differentially expressed genes (DEGs) were predominantly enriched in the plant-pathogen interaction pathway. These DEGs were involved in carrying out stress responses, with genes associated with H2O2 production being up-regulated during the early and late stages of infection. Correspondingly, H2O2 accumulation was detected in the vicinity of the blight lesions. In addition, defense-related genes, including PR and FRK, exhibited significant up-regulated expression during the infection by MR-9. In the late stage of the infection, we also observed significant changes in differentially abundant metabolites (DAMs), including flavonoids, alkaloids, phenols, and terpenes. Notably, the levels of euscaphic acid, ganoderol A, (-)-cinchonidine, and theophylline in infected petals were 21.8, 8.5, 4.5, and 4.3 times higher, respectively, compared to the control. Our results suggest that H2O2, defense-related genes, and DAM accumulation are involved in the complex response mechanisms of Rhododendron 'Xiaotaohong' petals to MR-9 infection. These insights provide a deeper understanding of the pathogenesis of petal blight disease and may have practical implications for developing disease-resistant rhododendron varieties.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xian-Lun Liu
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
10
|
Miao R, Li M, Wen Z, Meng J, Liu X, Fan D, Lv W, Cheng T, Zhang Q, Sun L. Whole-Genome Identification of Regulatory Function of CDPK Gene Families in Cold Stress Response for Prunus mume and Prunus mume var. Tortuosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2548. [PMID: 37447109 DOI: 10.3390/plants12132548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Calcium-dependent protein kinases (CDPK) are known to mediate plant growth and development and respond to various environmental changes. Here, we performed whole-genome identification of CDPK families in cultivated and wild mei (Prunus mume). We identified 14 and 17 CDPK genes in P. mume and P. mume var. Tortuosa genomes, respectively. All 270 CPDK proteins were classified into four clade, displaying frequent homologies between these two genomes and those of other Rosaceae species. Exon/intron structure, motif and synteny blocks were conserved between P. mume and P. mume var. Tortuosa. The interaction network revealed all PmCDPK and PmvCDPK proteins is interacted with respiratory burst oxidase homologs (RBOHs) and mitogen-activated protein kinase (MAPK). RNA-seq data analysis of cold experiments show that cis-acting elements in the PmCDPK genes, especially PmCDPK14, are associated with cold hardiness. Our results provide and broad insights into CDPK gene families in mei and their role in modulating cold stress response in plants.
Collapse
Affiliation(s)
- Runtian Miao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Mingyu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Zhenying Wen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xu Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Dongqing Fan
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenjuan Lv
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Zhao Y, Mao W, Tang W, Soares MA, Li H. Wild Rosa Endophyte M7SB41-Mediated Host Plant's Powdery Mildew Resistance. J Fungi (Basel) 2023; 9:620. [PMID: 37367556 DOI: 10.3390/jof9060620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Zhang Y, Wang Z, Liu Y, Zhang T, Liu J, You Z, Huang P, Zhang Z, Wang C. Plasma membrane-associated calcium signaling modulates cadmium transport. THE NEW PHYTOLOGIST 2023; 238:313-331. [PMID: 36567524 DOI: 10.1111/nph.18698] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a toxic heavy element for plant growth and development, and plants have evolved many strategies to cope with Cd stress. However, the mechanisms how plants sense Cd stress and regulate the function of transporters remain very rudimentary. Here, we found that Cd stress induces obvious Ca2+ signals in Arabidopsis roots. Furthermore, we identified the calcium-dependent protein kinases CPK21 and CPK23 that interacted with the Cd transporter NRAMP6 through a variety of protein interaction techniques. Then, we confirmed that the cpk21 23 double mutants significantly enhanced the sensitive phenotype of cpk23 single mutant under Cd stress, while the overexpression and continuous activation of CPK21 and CPK23 enhanced plants tolerance to Cd stress. Multiple biochemical and physiological analyses in yeast and plants demonstrated that CPK21/23 phosphorylate NRAMP6 primarily at Ser489 and Thr505 to inhibit the Cd transport activity of NRAMP6, thereby improving the Cd tolerance of plants. Taken together, we found a plasma membrane-associated calcium signaling that modulates Cd tolerance. These results provide new insights into the molecular breeding of crop tolerance to Cd stress.
Collapse
Affiliation(s)
- Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhangqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yisong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhang You
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Arif MAR, Tripodi P, Waheed MQ, Afzal I, Pistrick S, Schütze G, Börner A. Genetic Analyses of Seed Longevity in Capsicum annuum L. in Cold Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1321. [PMID: 36987009 PMCID: PMC10057624 DOI: 10.3390/plants12061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seed longevity is the most important trait in the genebank management system. No seed can remain infinitely viable. There are 1241 accessions of Capsicum annuum L. available at the German Federal ex situ genebank at IPK Gatersleben. C. annuum (Capsicum) is the most economically important species of the genus Capsicum. So far, there is no report that has addressed the genetic basis of seed longevity in Capsicum. Here, we convened a total of 1152 Capsicum accessions that were deposited in Gatersleben over forty years (from 1976 to 2017) and assessed their longevity by analyzing the standard germination percentage after 5-40 years of storage at -15/-18 °C. These data were used to determine the genetic causes of seed longevity, along with 23,462 single nucleotide polymorphism (SNP) markers covering all of the 12 Capsicum chromosomes. Using the association-mapping approach, we identified a total of 224 marker trait associations (MTAs) (34, 25, 31, 35, 39, 7, 21 and 32 MTAs after 5-, 10-, 15-, 20-, 25-, 30-, 35- and 40-year storage intervals) on all the Capsicum chromosomes. Several candidate genes were identified using the blast analysis of SNPs, and these candidate genes are discussed.
Collapse
Affiliation(s)
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | | | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sibylle Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Gudrun Schütze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| |
Collapse
|
14
|
Liu M, Wang C, Xu Q, Pan Y, Jiang B, Zhang L, Zhang Y, Tian Z, Lu J, Ma C, Chang C, Zhang H. Genome-wide identification of the CPK gene family in wheat (Triticum aestivum L.) and characterization of TaCPK40 associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:608-623. [PMID: 36780723 DOI: 10.1016/j.plaphy.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Calcium-dependent protein kinases (CPKs), important sensors of calcium signals, play an essential role in plant growth, development, and stress responses. Although the CPK gene family has been characterized in many plants, the functions of the CPK gene family in wheat, including their relationship to seed dormancy and germination, remain unclear. In this study, we identified 84 TaCPK genes in wheat (TaCPK1-84). According to their phylogenetic relationship, they were divided into four groups (I-IV). TaCPK genes in the same group were found to have similar gene structures and motifs. Chromosomal localization indicated that TaCPK genes were unevenly distributed across 21 wheat chromosomes. TaCPK gene expansion occurred through segmental duplication events and underwent strong negative selection. A large number of cis-regulatory elements related to light response, phytohormone response, and abiotic stress response were identified in the upstream promoter sequences of TaCPK genes. TaCPK gene expression was found to be tissue- and growth-stage-diverse. Analysis of the expression patterns of several wheat varieties with contrasting seed dormancy and germination phenotypes resulted in the identification of 11 candidate genes (TaCPK38/-40/-43/-47/-50/-60/-67/-70/-75/-78/-80) which are likely associated with seed dormancy and germination. The ectopic expression of TaCPK40 in Arabidopsis promoted seed germination and reduced abscisic acid (ABA) sensitivity during germination, indicating that TaCPK40 negatively regulates seed dormancy and positively regulates seed germination. These findings advance our understanding of the multifaceted functions of CPK genes in seed dormancy and germination, and provide potential candidate genes for controlling wheat seed dormancy and germination.
Collapse
Affiliation(s)
- Mingli Liu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chenchen Wang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qing Xu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yonghao Pan
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Bingli Jiang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Litian Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yue Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhuangbo Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
15
|
Xiao K, Qiao K, Cui W, Xu X, Pan H, Wang F, Wang S, Yang F, Xuan Y, Li A, Han X, Song Z, Liu J. Comparative transcriptome profiling reveals the importance of GmSWEET15 in soybean susceptibility to Sclerotinia sclerotiorum. Front Microbiol 2023; 14:1119016. [PMID: 36778863 PMCID: PMC9909833 DOI: 10.3389/fmicb.2023.1119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Soybean sclerotinia stem rot (SSR) is a disease caused by Sclerotinia sclerotiorum that causes incalculable losses in soybean yield each year. Considering the lack of effective resistance resources and the elusive resistance mechanisms, we are urged to develop resistance genes and explore their molecular mechanisms. Here, we found that loss of GmSWEET15 enhanced the resistance to S. sclerotiorum, and we explored the molecular mechanisms by which gmsweet15 mutant exhibit enhanced resistance to S. sclerotiorum by comparing transcriptome. At the early stage of inoculation, the wild type (WT) showed moderate defense response, whereas gmsweet15 mutant exhibited more extensive and intense transcription reprogramming. The gmsweet15 mutant enriched more biological processes, including the secretory pathway and tetrapyrrole metabolism, and it showed stronger changes in defense response, protein ubiquitination, MAPK signaling pathway-plant, plant-pathogen interaction, phenylpropanoid biosynthesis, and photosynthesis. The more intense and abundant transcriptional reprogramming of gmsweet15 mutant may explain how it effectively delayed colonization by S. sclerotiorum. In addition, we identified common and specific differentially expressed genes between WT and gmsweet15 mutant after inoculation with S. sclerotiorum, and gene sets and genes related to gmsweet15_24 h were identified through Gene Set Enrichment Analysis. Moreover, we constructed the protein-protein interaction network and gene co-expression networks and identified several groups of regulatory networks of gmsweet15 mutant in response to S. sclerotiorum, which will be helpful for the discovery of candidate functional genes. Taken together, our results elucidate molecular mechanisms of delayed colonization by S. sclerotiorum after loss of GmSWEET15 in soybean, and we propose novel resources for improving resistance to SSR.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xiao Han
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China,*Correspondence: Jinliang Liu,
| |
Collapse
|
16
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
17
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 2022; 13:996203. [PMID: 36246614 PMCID: PMC9561101 DOI: 10.3389/fgene.2022.996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jiangping Bai,
| |
Collapse
|
19
|
Liu D, Shen Z, Zhuang K, Qiu Z, Deng H, Ke Q, Liu H, Han H. Systematic Annotation Reveals CEP Function in Tomato Root Development and Abiotic Stress Response. Cells 2022; 11:2935. [PMID: 36230896 PMCID: PMC9562649 DOI: 10.3390/cells11192935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide; however, environmental stressors severely restrict tomato growth and yield. Therefore, it is of great interest to discover novel regulators to improve tomato growth and environmental stress adaptions. Here, we applied a comprehensive bioinformatics approach to identify putative tomato C-TERMINALLY ENCODED PEPTIDE (CEP) genes and to explore their potential physiological function in tomato root development and abiotic stress responses. A total of 17 tomato CEP genes were identified and grouped into two subgroups based on the similarity of CEP motifs. The public RNA-Seq data revealed that tomato CEP genes displayed a diverse expression pattern in tomato tissues. Additionally, CEP genes expression was differentially regulated by nitrate or ammonium status in roots and shoots, respectively. The differences in expression levels of CEP genes induced by nitrogen indicate a potential involvement of CEPs in tomato nitrogen acquisition. The synthetic CEP peptides promoted tomato primary root growth, which requires nitric oxide (NO) and calcium signaling. Furthermore, we also revealed that CEP peptides improved tomato root resistance to salinity. Overall, our work will contribute to provide novel genetic breeding strategies for tomato cultivation under adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
20
|
Dekomah SD, Wang Y, Qin T, Xu D, Sun C, Yao P, Liu Y, Bi Z, Bai J. Identification and Expression Analysis of Calcium-Dependent Protein Kinases Gene Family in Potato Under Drought Stress. Front Genet 2022; 13:874397. [PMID: 35669192 PMCID: PMC9164159 DOI: 10.3389/fgene.2022.874397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are a class of serine/threonine protein kinases encoded by several gene families that play key roles in stress response and plant growth and development. In this study, the BLAST method was used to search for protein sequences of the potato Calcium-dependent protein kinase gene family. The chromosome location, phylogeny, gene structures, gene duplication, cis-acting elements, protein-protein interaction, and expression profiles were analyzed. Twenty-five CDPK genes in the potato genome were identified based on RNA-seq data and were clustered into four groups (I-IV) based on their structural features and phylogenetic analysis. The result showed the composition of the promoter region of the StCDPKs gene, including light-responsive elements such as Box4, hormone-responsive elements such as ABRE, and stress-responsive elements such as MBS. Four pairs of segmental duplications were found in StCDPKs genes and the Ka/Ks ratios were below 1, indicating a purifying selection of the genes. The protein-protein interaction network revealed defense-related proteins such as; respiratory burst oxidase homologs (RBOHs) interacting with potato CDPKs. Transcript abundance was measured via RT-PCR between the two cultivars and their relative expression of CDPK genes was analyzed after 15, 20, and 25 days of drought. There were varied expression patterns of StCDPK3/13/21 and 23, between the two potato cultivars under mannitol induced-drought conditions. Correlation analysis showed that StCDPK21/22 and StCDPK3 may be the major differentially expressed genes involved in the regulation of malondialdehyde (MDA) and proline content in response to drought stress, opening a new research direction for genetic improvement of drought resistance in potato.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Yihao Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Tianyuan Qin
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Derong Xu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- *Correspondence: Zhenzhen Bi, ; Jiangping Bai,
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- *Correspondence: Zhenzhen Bi, ; Jiangping Bai,
| |
Collapse
|
21
|
He YH, Zhang ZR, Xu YP, Chen SY, Cai XZ. Genome-Wide Identification of Rapid Alkalinization Factor Family in Brassica napus and Functional Analysis of BnRALF10 in Immunity to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:877404. [PMID: 35592581 PMCID: PMC9113046 DOI: 10.3389/fpls.2022.877404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Rapid alkalinization factors (RALFs) were recently reported to be important players in plant immunity. Nevertheless, the signaling underlying RALF-triggered immunity in crop species against necrotrophic pathogens remains largely unknown. In this study, RALF family in the important oil crop oilseed rape (Brassica napus) was identified and functions of BnRALF10 in immunity against the devastating necrotrophic pathogen Sclerotinia sclerotiorum as well as the signaling underlying this immunity were revealed. The oilseed rape genome carried 61 RALFs, half of them were atypical, containing a less conserved YISY motif and lacking a RRXL motif or a pair of cysteines. Family-wide gene expression analyses demonstrated that patterns of expression in response to S. sclerotiorum infection and DAMP and PAMP treatments were generally RALF- and stimulus-specific. Most significantly responsive BnRALF genes were expressionally up-regulated by S. sclerotiorum, while in contrast, more BnRALF genes were down-regulated by BnPep5 and SsNLP1. These results indicate that members of BnRALF family are likely differentially involved in plant immunity. Functional analyses revealed that BnRALF10 provoked diverse immune responses in oilseed rape and stimulated resistance to S. sclerotiorum. These data support BnRALF10 to function as a DAMP to play a positive role in plant immunity. BnRALF10 interacted with BnFER. Silencing of BnFER decreased BnRALF10-induced reactive oxygen species (ROS) production and compromised rape resistance to S. sclerotiorum. These results back BnFER to be a receptor of BnRALF10. Furthermore, quantitative proteomic analysis identified dozens of BnRALF10-elicited defense (RED) proteins, which respond to BnRALF10 in protein abundance and play a role in defense. Our results revealed that BnRALF10 modulated the abundance of RED proteins to fine tune plant immunity. Collectively, our results provided some insights into the functions of oilseed rape RALFs and the signaling underlying BnRALF-triggered immunity.
Collapse
Affiliation(s)
- Yu-Han He
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhuo-Ran Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Song-Yu Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
22
|
Deepika D, Poddar N, Kumar S, Singh A. Molecular Characterization Reveals the Involvement of Calcium Dependent Protein Kinases in Abiotic Stress Signaling and Development in Chickpea ( Cicer arietinum). FRONTIERS IN PLANT SCIENCE 2022; 13:831265. [PMID: 35498712 PMCID: PMC9039462 DOI: 10.3389/fpls.2022.831265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are a major group of calcium (Ca2+) sensors in plants. CDPKs play a dual function of "Ca2+ sensor and responder." These sensors decode the "Ca2+ signatures" generated in response to adverse growth conditions such as drought, salinity, and cold and developmental processes. However, knowledge of the CDPK family in the legume crop chickpea is missing. Here, we have identified a total of 22 CDPK genes in the chickpea genome. The phylogenetic analysis of the chickpea CDPK family with other plants revealed their evolutionary conservation. Protein homology modeling described the three-dimensional structure of chickpea CDPKs. Defined arrangements of α-helix, β-strands, and transmembrane-helix represent important structures like kinase domain, inhibitory junction domain, N and C-lobes of EF-hand motifs. Subcellular localization analysis revealed that CaCDPK proteins are localized mainly at the cytoplasm and in the nucleus. Most of the CaCDPK promoters had abiotic stress and development-related cis-regulatory elements, suggesting the functional role of CaCDPKs in abiotic stress and development-related signaling. RNA sequencing (RNA-seq) expression analysis indicated the role of the CaCDPK family in various developmental stages, including vegetative, reproductive development, senescence stages, and during seed stages of early embryogenesis, late embryogenesis, mid and late seed maturity. The real-time quantitative PCR (qRT-PCR) analysis revealed that several CaCDPK genes are specifically as well as commonly induced by drought, salt, and Abscisic acid (ABA). Overall, these findings indicate that the CDPK family is probably involved in abiotic stress responses and development in chickpeas. This study provides crucial information on the CDPK family that will be utilized in generating abiotic stress-tolerant and high-yielding chickpea varieties.
Collapse
Affiliation(s)
- Deepika Deepika
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Nikita Poddar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
23
|
Shu F, Han J, Ndayambaje JP, Jia Q, Sarsaiya S, Jain A, Huang M, Liu M, Chen J. Transcriptomic analysis of Pinellia ternata (Thunb.) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection. Bioengineered 2021; 12:1173-1188. [PMID: 33830860 PMCID: PMC8806331 DOI: 10.1080/21655979.2021.1905325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/25/2022] Open
Abstract
Transcriptome is used to determine the induction response of Pinellia ternata (Thunb.) Breit T2 plus line (abbreviated as PT2P line) infected with Pectobacterium carotovorum. The main objective of the study was to deal with the transcriptome database of PT2P line resistance to soft rot pathogens to provide a new perspective for identifying the resistance-related genes and understanding the molecular mechanism. Results indicated that water soaking and tissue collapse started at 20 h after PT2P line was infected by P. carotovorum. A total of 1360 and 5768 differentially expressed genes (DEGs) were identified at 0 h and 20 h, respectively. After 20 h of infection, growth and development-related pathways were inhibited. Meanwhile, DEGs were promoted the colonization of P. carotovorum pathogens in specific cell wall modification processes at the early infected stage. A shift to a defensive response was triggered at 0 h. A large number of DEGs were mainly up-controlled at 20 h and were substantially used in the pathogen recognition and the introduction of signal transformation cascades, secondary metabolites biosynthesis, pathogenic proteins activation, transcription aspects and numerous transporters. Furthermore, our data provided novel insights into the transcript reprogramming of PT2P line in response to P. carotovorum infestation.
Collapse
Affiliation(s)
- Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jean Pierre Ndayambaje
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Jia
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Archana Jain
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Minglei Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Minghong Liu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
24
|
Li Y, Wang Y, Wu X, Wang J, Wu X, Wang B, Lu Z, Li G. Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [ Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:650157. [PMID: 34025697 PMCID: PMC8137845 DOI: 10.3389/fpls.2021.650157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.
Collapse
|
25
|
Zhao P, Liu Y, Kong W, Ji J, Cai T, Guo Z. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase ( CDPK) and CDPK-Related Kinase ( CRK) Gene Families in Medicago truncatula. Int J Mol Sci 2021; 22:1044. [PMID: 33494310 PMCID: PMC7864493 DOI: 10.3390/ijms22031044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.Z.); (Y.L.); (W.K.); (J.J.); (T.C.)
| |
Collapse
|
26
|
Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:772649. [PMID: 34975954 PMCID: PMC8715758 DOI: 10.3389/fpls.2021.772649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
Verticillium dahliae is a soil-borne fungus that causes vascular wilt through the roots of plants. Verticillium wilt caused by V. dahliae is one of the main diseases in cotton producing areas of the world, resulting in huge economic losses. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. Calcium-dependent protein kinases (CDPKs) play a pivotal role in plant innate immunity, including regulation of oxidative burst, gene expression as well as hormone signal transduction. However, the function of cotton CDPKs in response to V. dahliae stress remains unexplored. In this study, 96, 44 and 57 CDPKs were identified from Gossypium hirsutum, Gossypium raimondii and Gossypium arboretum, respectively. Phylogenetic analysis showed that these CDPKs could be divided into four branches. All GhCDPKs of the same clade are generally similar in gene structure and conserved domain arrangement. Cis-acting elements related to hormones, stress response, cell cycle and development were predicted in the promoter region. The expression of GhCDPKs could be regulated by various stresses. Gh_D11G188500.1 and Gh_A11G186100.1 was up-regulated under Vd0738 and Vd991 stress. Further phosphoproteomics analysis showed that Gh_A11G186100.1 (named as GhCDPK28-6) was phosphorylated under the stress of V. dahliae. Knockdown of GhCDPK28-6 expression, the content of reactive oxygen species was increased, a series of defense responses were enhanced, and the sensitivity of cotton to V. dahliae was reduced. Moreover, overexpression of GhCDPK28-6 in Arabidopsis thaliana weakened the resistance of plants to this pathogen. Subcellular localization revealed that GhCDPK28-6 was localized in the cell membrane. We also found that GhPBL9 and GhRPL12C may interact with GhCDPK28-6. These results indicate that GhCDPK28-6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
Affiliation(s)
- Yajie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jinglong Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Hongjie Feng,
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Heqin Zhu,
| |
Collapse
|
27
|
Wang B, Bi Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. FOOD QUALITY AND SAFETY 2021; 5. [DOI: 10.1093/fqsafe/fyab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Postharvest diseases are the primary reason causing postharvest loss of fruits and vegetables. Although fungicides show an effective way to control postharvest diseases, the use of fungicides is gradually being restricted due to safety, environmental pollution, and resistance development in the pathogen. Induced resistance is a new strategy to control postharvest diseases by eliciting immune activity in fruits and vegetables with exogenous physical, chemical, and biological elicitors. After being stimulated by elicitors, fruits and vegetables respond immediately against pathogens. This process is actually a continuous signal transduction, including the generation, transduction, and interaction of signal molecules. Each step of response can lead to corresponding physiological functions, and ultimately induce disease resistance by upregulating the expression of disease resistance genes and activating a variety of metabolic pathways. Signal molecules not only mediate defense response alone, but also interact with other signal transduction pathways to regulate the disease resistance response. Among various signal molecules, the second messenger (reactive oxygen species, nitric oxide, calcium ions) and plant hormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid) play an important role in induced resistance. This article summarizes and reviews the research progress of induced resistance in recent years, and expounds the role of the above-mentioned signal molecules in induced resistance of harvested fruits and vegetables, and prospects for future research.
Collapse
|
28
|
Ma L, Jiang H, Bi Y, Li YC, Yang JW, Si HJ, Ren YY, Prusky D. The Interaction Between StCDPK14 and StRbohB Contributes to Benzo-(1, 2, 3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester-Induced Wound Healing of Potato Tubers by Regulating Reactive Oxygen Species Generation. FRONTIERS IN PLANT SCIENCE 2021; 12:737524. [PMID: 34868121 PMCID: PMC8634758 DOI: 10.3389/fpls.2021.737524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 05/15/2023]
Abstract
Reactive oxygen species (ROS) production is essential for both physiological processes and environmental stress in diverse plants. Previous studies have found that benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH)-inducible ROS were associated with wound healing of potato tubers. Calcium-dependent protein kinases (CDPKs), the important calcium receptors, are known to play a crucial part in plant development and adaptation to abiotic stresses. However, whether CDPK-mediated ROS generation induced by BTH is involved in wound healing is elusive. In this study, we measured Solanum tuberosum CDPKs (StCDPKs) expression using real-time PCR, and it was found that the transcriptional levels of StCDPKs from BTH-treated tissues were significantly induced, among which StCDPK14 presented the most increased level. Subcellular localization results showed that StCDPK14 is located in the nucleus and membrane. The transgenic potato plants and tubers were developed using interference-expression of StCDPK14 by Agrobacterium tumefaciens-mediated transformation. The St respiratory burst oxidase homologs (StRbohs) expression showed a remarkable decrease in StCDPK14 transgenic tubers, notably, H2O2 content and suberin deposition were also significantly declined. To confirm the relationship between StCDPK14 and StRbohB, yeast-two-hybrid and bimolecular fluorescence complementation were used to examine the interaction, and it was shown that StCDPK14 interacted with the specific Ca2 + -binding motif (helix-loop-helix, called EF-hand) of StRbohB N-terminus. The above results unraveled that StCDPK14 functions in ROS generation via interacting with StRbohB during wound healing of potato tubers.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yang Bi,
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huai-Jun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying-Yue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
29
|
Yadav A, Garg T, Singh H, Yadav SR. Tissue-specific expression pattern of calcium-dependent protein kinases-related kinases (CRKs) in rice. PLANT SIGNALING & BEHAVIOR 2020; 15:1809846. [PMID: 32835584 PMCID: PMC7588190 DOI: 10.1080/15592324.2020.1809846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 05/23/2023]
Abstract
Calcium-dependent protein kinases-related kinases (CDPK-related kinases; CRKs) are Ser/Thr kinases that bind with Ca2+/Calmodulin and play crucial roles in signal transduction pathways during plant growth, development, and responses to multiple stresses. In this study, we have studied detailed organ and tissue-specific expression patterns of rice CRK genes. Our organ-specific RT-PCR analyzes show the differential expression pattern of these genes in various organs of rice. Moreover, our RNA-RNA in situ hybridization study in rice stem base containing developing crown root primordia demonstrates that the expression of CRK genes is spatially restricted to the developing crown root primordia, suggesting their putative role in protein phosphorylation-dependent cellular signaling during rice crown root development. Furthermore, organ-specific differentially expression pattern of CRK genes during floral organogenesis further support for the organ-specific cell signaling during organogenesis. Thus, our study provides a developmentally regulated expression pattern of rice CRK genes, though they are broadly expressed and a basic foundation for functional characterizations of CRK gene members to unravel their specific functions during plant growth and development.
Collapse
Affiliation(s)
- Akhilesh Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Tushar Garg
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
- CONTACT : Shri Ram Yadav Department of Biotechnology, Indian Institute of Technology, Roorkee247667, India
| |
Collapse
|
30
|
Crizel RL, Perin EC, Vighi IL, Woloski R, Seixas A, da Silva Pinto L, Rombaldi CV, Galli V. Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa. Sci Rep 2020; 10:11040. [PMID: 32632235 PMCID: PMC7338424 DOI: 10.1038/s41598-020-67957-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are encoded by a large gene family and play important roles against biotic and abiotic stresses and in plant growth and development. To date, little is known about the CDPK genes in strawberry (Fragaria x ananassa). In this study, analysis of Fragaria x ananassa CDPK gene family was performed, including gene structures, phylogeny, interactome and expression profiles. Nine new CDPK genes in Fragaria x ananassa were identified based on RNA-seq data. These identified strawberry FaCDPK genes were classified into four main groups, based on the phylogenetic analysis and structural features. FaCDPK genes were differentially expressed during fruit development and ripening, as well as in response to abiotic stress (salt and drought), and hormone (abscisic acid) treatment. In addition, the interaction network analysis pointed out proteins involved in the ABA-dependent response to plant stress via Ca2+ signaling, especially RBOHs. To our knowledge, this is the first report on CDPK families in Fragaria x ananassa, and it will provide valuable information for development of biofortified fruits and stress tolerant plants.
Collapse
Affiliation(s)
- Rosane Lopes Crizel
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Ellen Cristina Perin
- Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, Universidade Tecnologia Federal do Paraná, Pato Branco, Brasil
| | - Isabel Lopes Vighi
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Rafael Woloski
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Amilton Seixas
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | - César Valmor Rombaldi
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Vanessa Galli
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brasil.
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil.
| |
Collapse
|
31
|
Cao JY, Xu YP, Cai XZ. Integrated miRNAome and Transcriptome Analysis Reveals Argonaute 2-Mediated Defense Responses Against the Devastating Phytopathogen Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2020; 11:500. [PMID: 32411168 PMCID: PMC7201365 DOI: 10.3389/fpls.2020.00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 04/03/2020] [Indexed: 05/29/2023]
Abstract
Argonaute 2 (AGO2)-mediated role in plant defense against fungal pathogens remains largely unknown. In this study, integrated miRNAome and transcriptome analysis employing ago2 mutant was performed to reveal AGO2-associated miRNAs and defense responses against the devastating necrotrophic phytopathogen Sclerotinia sclerotiorum. Both miRNAome and transcriptomes of S. sclerotiorum-inoculated ago2-1 mutant (ago2-Ss) and wild-type (WT-Ss) as well as mock-inoculated ago2-1 mutant (ago2) and wild-type (WT) Arabidopsis plants, were analyzed by sRNA and mRNA deep sequencing. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) of the comparisons WT-Ss/WT, ago2/WT, ago2-Ss/WT-Ss, and ago2-Ss/ago2 were identified. Furthermore, integration analysis for the DEMs and DEGs identified over 40 potential AGO2-dependent Sclerotinia sclerotiorum-responsive (ATSR) DEM-DEG pairs involving modulation of immune recognition, calcium flux, redox homeostasis, hormone accumulation and signaling, cell wall modification and metal ion homeostasis. Data-mining result indicated that most of the DEMs were bound with AGO2. Moreover, Arabidopsis mutant analysis demonstrated that three ROS and redox homeostatasis related DEGs of identified DEM-DEG pairs, GSTU2, GSTU5, and RBOHF contributed to the AGO2-mediated defense against S. sclerotiorum. This work provides genome-wide prediction of miRNA-target gene pairs that are potentially associated with the AGO2-dependent resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Zhejiang Provincial Key Laboratory of Crop Pathogen and Insect Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Zhejiang Provincial Key Laboratory of Crop Pathogen and Insect Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 2020; 21:250. [PMID: 32293256 PMCID: PMC7092525 DOI: 10.1186/s12864-020-6654-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. Results In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as “plant-pathogen interaction” and “plant hormone signal transduction”. Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. Conclusion Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.
Collapse
Affiliation(s)
- Chong Du
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhentong Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
33
|
Rahman H, Wang XY, Xu YP, He YH, Cai XZ. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci Rep 2020; 10:4078. [PMID: 32139792 PMCID: PMC7057975 DOI: 10.1038/s41598-020-61000-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Guanylate cyclases (GCs) are enzymes that catalyze the reaction to produce cyclic GMP (cGMP), a key signaling molecule in eukaryotes. Nevertheless, systemic identification and functional analysis of GCs in crop plant species have not yet been conducted. In this study, we systematically identified GC genes in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of two putative tomato GC genes in disease resistance. Ninety-nine candidate GCs containing GC catalytic center (GC-CC) motif were identified in tomato genome. Intriguingly, all of them were putative protein kinases embedding a GC-CC motif within the protein kinase domain, which was thus tentatively named as GC-kinases here. Two homologs of Arabidopsis PEPRs, SlGC17 and SlGC18 exhibited in vitro GC activity. Co-silencing of SlGC17 and SlGC18 genes significantly reduced resistance to tobacco rattle virus, fungus Sclerotinia sclerotiorum, and bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Moreover, co-silencing of these two genes attenuated PAMP and DAMP-triggered immunity as shown by obvious decrease of flg22, chitin and AtPep1-elicited Ca2+ and H2O2 burst in SlGC-silenced plants. Additionally, silencing of these genes altered the expression of a set of Ca2+ signaling genes. Furthermore, co-silencing of these GC-kinase genes exhibited stronger effects on all above regulations in comparison with individual silencing. Collectively, our results suggest that GC-kinases might widely exist in tomato and the two SlPEPR-GC genes redundantly play a positive role in resistance to diverse pathogens and PAMP/DAMP-triggered immunity in tomato. Our results provide insights into composition and functions of GC-kinases in tomato.
Collapse
Affiliation(s)
- Hafizur Rahman
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yao Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Han He
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Silva F, Guirgis A, von Aderkas P, Borchers CH, Thornburg R. LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J Proteomics 2020; 213:103618. [PMID: 31846763 DOI: 10.1016/j.jprot.2019.103618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.
Collapse
Affiliation(s)
- FredyA Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Adel Guirgis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; Institute of Genetic Engineering and Biotechnology, Menofiya University, Sadat City, Egypt
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Robert Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
35
|
Zhang M, Liu Y, He Q, Chai M, Huang Y, Chen F, Wang X, Liu Y, Cai H, Qin Y. Genome-wide investigation of calcium-dependent protein kinase gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics 2020; 21:72. [PMID: 31973690 PMCID: PMC6979071 DOI: 10.1186/s12864-020-6501-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background Calcium-dependent protein kinase (CPK) is one of the main Ca2+ combined protein kinase that play significant roles in plant growth, development and response to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CPK genes in pineapple. Results Herein, we identified and characterized 17 AcoCPK genes from pineapple genome, which were unevenly distributed across eight chromosomes. Based on the gene structure and phylogenetic tree analyses, AcoCPKs were divided into four groups with conserved domain. Synteny analysis identified 7 segmental duplication events of AcoCPKs and 5 syntenic blocks of CPK genes between pineapple and Arabidopsis, and 8 between pineapple and rice. Expression pattern of different tissues and development stages suggested that several genes are involved in the functional development of plants. Different expression levels under various abiotic stresses also indicated that the CPK family underwent functional divergence during long-term evolution. AcoCPK1, AcoCPK3 and AcoCPK6, which were repressed by the abiotic stresses, were shown to be function in regulating pathogen resistance. Conclusions 17 AcoCPK genes from pineapple genome were identified. Our analyses provide an important foundation for understanding the potential roles of AcoCPKs in regulating pineapple response to biotic and abiotic stresses
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
36
|
Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics 2020; 21:53. [PMID: 31948407 PMCID: PMC6966850 DOI: 10.1186/s12864-020-6475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Feng Ye
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhulong Xiao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
37
|
CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20246120. [PMID: 31817249 PMCID: PMC6941128 DOI: 10.3390/ijms20246120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/26/2022] Open
Abstract
The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.
Collapse
|
38
|
Wang D, Liu YX, Yu Q, Zhao SP, Zhao JY, Ru JN, Cao XY, Fang ZW, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Lan JH. Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses. Int J Mol Sci 2019; 20:E5909. [PMID: 31775269 PMCID: PMC6928923 DOI: 10.3390/ijms20235909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.
Collapse
Affiliation(s)
- Dan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Shu-Ping Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Juan-Ying Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jing-Na Ru
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Xin-You Cao
- National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zheng-Wu Fang
- College of Agronomy, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| |
Collapse
|
39
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
40
|
Baba AI, Andrási N, Valkai I, Gorcsa T, Koczka L, Darula Z, Medzihradszky KF, Szabados L, Fehér A, Rigó G, Cséplő Á. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int J Mol Sci 2019; 20:ijms20143432. [PMID: 31336871 PMCID: PMC6678082 DOI: 10.3390/ijms20143432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.
Collapse
Affiliation(s)
- Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Teréz Gorcsa
- Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Lilla Koczka
- Developmental and Cell Biology of Plants, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Zsuzsanna Darula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Katalin F Medzihradszky
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
41
|
Wei C, Zhang R, Yang X, Zhu C, Li H, Zhang Y, Ma J, Yang J, Zhang X. Comparative Analysis of Calcium-Dependent Protein Kinase in Cucurbitaceae and Expression Studies in Watermelon. Int J Mol Sci 2019; 20:ijms20102527. [PMID: 31126008 PMCID: PMC6566760 DOI: 10.3390/ijms20102527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
Both the calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play numerous roles in plant growth, development, and stress response. Despite genome-wide identification of both families in Cucumis, comparative evolutionary and functional analysis of both CDPKs and CRKs in Cucurbitaceae remain unclear. In this study, we identified 128 CDPK and 56 CRK genes in total in six Cucurbitaceae species (C. lanatus, C. sativus, C. moschata, C. maxima, C. pepo, and L. siceraria). Dot plot analysis indicated that self-duplication of conserved domains contributed to the structural variations of two CDPKs (CpCDPK19 and CpCDPK27) in C. pepo. Using watermelon genome as reference, an integrated map containing 25 loci (16 CDPK and nine CRK loci) was obtained, 16 of which (12 CDPK and four CRK) were shared by all seven Cucurbitaceae species. Combined with exon-intron organizations, topological analyses indicated an ancient origination of groups CDPK IV and CRK. Moreover, the evolutionary scenario of seven modern Cucurbitaceae species could also be reflected on the phylogenetic trees. Expression patterns of ClCDPKs and ClCRKs were studied under different abiotic stresses. Some valuable genes were uncovered for future gene function exploration. For instance, both ClCDPK6 and its ortholog CsCDPK14 in cucumber could be induced by salinity, while ClCDPK6 and ClCDPK16, as well as their orthologs in Cucumis, maintained high expression levels in male flowers. Collectively, these results provide insights into the evolutionary history of two gene families in Cucurbitaceae, and indicate a subset of candidate genes for functional characterizations in the future.
Collapse
Affiliation(s)
- Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Ruimin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Chunyu Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Quantitative proteomics analysis reveals resistance differences of banana cultivar 'Brazilian' to Fusarium oxysporum f. sp. cubense races 1 and 4. J Proteomics 2019; 203:103376. [PMID: 31078632 DOI: 10.1016/j.jprot.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases in banana production. Foc is classified into three physiological races. However, the resistance mechanisms of banana against different Foc races are poorly understood. In this study, we performed a comparative proteomics analysis to investigate the resistance mechanisms of 'Brazilian' against Foc1 and Foc4. The proteomes of 'Brazilian' roots inoculated with Foc1 and Foc4 and mock inoculated control at 48 h were analyzed using TMT based quantitative analysis technique. A total of 7325 unique protein species were identified, of which 689, 744, and 1222 protein species were differentially accumulated in Foc1 vs. CK, Foc4 vs. CK, and Foc1 vs. Foc4, respectively. The differential accumulations of candidate protein species were further confirmed by RT-qPCR, PRM, and physiological and biochemical assays. Bioinformatics analysis revealed that the differentially abundance protein species (DAPS) related to pattern recognition receptors, plant cell wall modification, redox homeostasis, and defense responses were differentially accumulated after Foc1 and Foc4 infection, suggesting that 'Brazilian' differed in resistance to the two Foc races. Our study lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level. SIGNIFICANCE: The banana fusarium wilt disease is one of the most destructive disease of banana and is caused by Fusarium oxysporum f. sp. cubense (Foc). Foc is classified into three physiological races, namely, Foc1, Foc2, and Foc4. Among these races, Foc1 and Foc4 are widely distributed in south China and significantly lose yield. Although both physiological races (Foc1 and Foc4) can invade the Cavendish banana cultivar 'Brazilian', they have significant pathogenicity differences. Unfortunately, how the resistance differences are produced between two races is still largely unclear to date. In this study, we addressed this issue by performing TMT-based comparative quantitative proteomics analysis of 'Brazilian' roots after inoculation with Foc1 and Foc4 as well as sterile water as the control. We revealed that the series of protein species associated with pattern recognition receptors, plant cell wall modification, redox homeostasis, pathogenesis, phytohormones and signal transduction, plant secondary metabolites and programmed cell death etc. were involved in the response to Foc infection. Notably, the potential role of lipid signaling in banana defense against Foc are not reported previously but rather unveiled for the first time in this study. The current study represents the most extensive analysis of the protein profile of 'Brazilian' in response to Foc inoculation and includes for the first time the results from comparison quantitative proteomics analysis between plants inoculated with a pathogenic strain Foc4 and a nonpathogenic strain Foc1 of 'Brazilian', which will lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level.
Collapse
|
43
|
Xu M, Liu CL, Luo J, Qi Z, Yan Z, Fu Y, Wei SS, Tang H. Transcriptomic de novo analysis of pitaya (Hylocereus polyrhizus) canker disease caused by Neoscytalidium dimidiatum. BMC Genomics 2019; 20:10. [PMID: 30616517 PMCID: PMC6323817 DOI: 10.1186/s12864-018-5343-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/30/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Canker disease caused by Neoscytalidium dimidiatum is the most serious disease that attacks the pitaya industry. One pathogenic fungus, referred to as ND8, was isolated from the wild-type red-fleshed pitaya (Hylocereus polyrhizus) of Hainan Province. In the early stages of this disease, stems show little spots and a loss of green color. These spots then gradually spread until the stems became rotten due to infection by various strains. Canker disease caused by Neoscytalidium dimidiatum poses a significant threat to pitaya commercial plantations with the growth of stems and the yields, quality of pitaya fruits. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying the pitaya defense response. RESULTS We investigated the host responses of red-fleshed pitaya (H. polyrhizus) cultivars against N. dimidiatum using Illumina RNA-Seq technology. Significant expression profiles of 23 defense-related genes were further analyzed by qRT-PCR. The total read length based on RNA-Seq was 25,010,007; mean length was 744, the N50 was 1206, and the guanine-cytosine content was 44.48%. Our investigation evaluated 33,584 unigenes, of which 6209 (18.49%) and 27,375 (81.51%) were contigs and singlets, respectively. These unigenes shared a similarity of 16.62% with Vitis vinifera, 7.48% with Theobroma cacao, 6.6% with Nelumbo nucifera and 5.35% with Jatropha curcas. The assembled unigenes were annotated into non-redundant (NR, 25161 unigenes), Kyoto Encyclopedia of Genes and Genomes (KEGG, 17895 unigenes), Clusters of Orthologous Groups (COG, 10475 unigenes), InterPro (19,045 unigenes), and Swiss-Prot public protein databases (16,458 unigenes). In addition, 24 differentially expressed genes, which were mainly associated with plant pathology pathways, were analyzed in-depth. CONCLUSIONS This study provides a basis for further in-depth research on the protein function of the annotated unigene assembly with cDNA sequences.
Collapse
Affiliation(s)
- Min Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Cheng-Li Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Juan Luo
- University of Sanya, No.191 Yingbin Avenue Xueyuan Road, Sanya, 572000 Hainan People’s Republic of China
| | - Zhao Qi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Zhen Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Yu Fu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Shuang-Shuang Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| | - Hua Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, No.58 Renmin Avenue, Haikou, 570228 Hainan People’s Republic of China
| |
Collapse
|
44
|
Bredow M, Monaghan J. Regulation of Plant Immune Signaling by Calcium-Dependent Protein Kinases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:6-19. [PMID: 30299213 DOI: 10.1094/mpmi-09-18-0267-fi] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Activation of Ca2+ signaling is a universal response to stress that allows cells to quickly respond to environmental cues. Fluctuations in cytosolic Ca2+ are decoded in plants by Ca2+-sensing proteins such as Ca2+-dependent protein kinases (CDPKs). The perception of microbes results in an influx of Ca2+ that activates numerous CDPKs responsible for propagating immune signals required for resistance against disease-causing pathogens. This review describes our current understanding of CDPK activation and regulation, and provides a comprehensive overview of CDPK-mediated immune signaling through interaction with various substrates.
Collapse
Affiliation(s)
- Melissa Bredow
- Biology Department, Queen's University, Kingston ON K7L 3N6, Canada
| | | |
Collapse
|
45
|
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2019; 10:1314. [PMID: 31681392 PMCID: PMC6813280 DOI: 10.3389/fpls.2019.01314] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.
Collapse
|
46
|
Xu YP, Lv LH, Xu YJ, Yang J, Cao JY, Cai XZ. Leaf stage-associated resistance is correlated with phytohormones in a pathosystem-dependent manner. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:703-722. [PMID: 29704401 DOI: 10.1111/jipb.12661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/23/2018] [Indexed: 05/20/2023]
Abstract
It has been reported in several pathosystems that disease resistance can vary in leaves at different stages. However, how general this leaf stage-associated resistance is, and the molecular mechanism(s) underlying it, remain largely unknown. Here, we investigated the effect of leaf stage on basal resistance, effector-triggered immunity (ETI) and nonhost resistance, using eight pathosystems involving the hosts Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana and the pathogens Sclerotinia sclerotiorum, Pseudomonas syringae pv. tabaci, P. syringae pv. tomato DC3000, and Xanthomonas oryzae pv. oryzae (Xoo). We show evidence that leaf stage-associated resistance exists ubiquitously in plants, but with varying intensity at different stages in diverse pathosystems. Microarray expression profiling assays demonstrated that hundreds of genes involved in defense responses, phytohormone biosynthesis and signaling, and calcium signaling, were differentially expressed between leaves at different stages. The Arabidopsis mutants sid1, sid2-3, ein2, jar1-1, aba1 and aao3 lost leaf stage-associated resistance to S. sclerotiorum, and the mutants aba1 and sid2-3 were affected in leaf stage-associated RPS2/AvrRpt2+ -conferred ETI, whereas only the mutant sid2-3 influenced leaf stage-associated nonhost resistance to Xoo. Our results reveal that the phytohormones salicylic acid, ethylene, jasmonic acid and abscisic acid likely play an essential, but pathosystem-dependent, role in leaf stage-associated resistance.
Collapse
Affiliation(s)
- You-Ping Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Lin-Hui Lv
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Ya-Jing Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Juan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Jia-Yi Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Xin-Zhong Cai
- State Key Laboratory of Rice Biology, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| |
Collapse
|
47
|
Baba AI, Rigó G, Ayaydin F, Rehman AU, Andrási N, Zsigmond L, Valkai I, Urbancsok J, Vass I, Pasternak T, Palme K, Szabados L, Cséplő Á. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: At CRK1 Regulates Responses to Continuous Light. Int J Mol Sci 2018; 19:ijms19051282. [PMID: 29693594 PMCID: PMC5983578 DOI: 10.3390/ijms19051282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.
Collapse
Affiliation(s)
- Abu Imran Baba
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary.
| | - Gábor Rigó
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Ferhan Ayaydin
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ateeq Ur Rehman
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Norbert Andrási
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Laura Zsigmond
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ildikó Valkai
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - János Urbancsok
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Imre Vass
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Taras Pasternak
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Klaus Palme
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - László Szabados
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
48
|
Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R. Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 2018; 19:108. [PMID: 29385986 PMCID: PMC5793396 DOI: 10.1186/s12864-018-4488-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/17/2018] [Indexed: 09/14/2023] Open
Abstract
Background Ascochyta blight, caused by the fungus Ascochyta lentis, is one of the most destructive lentil diseases worldwide, resulting in over $16 million AUD annual loss in Australia alone. The use of resistant cultivars is currently considered the most effective and environmentally sustainable strategy to control this disease. However, little is known about the genes and molecular mechanisms underlying lentil resistance against A. lentis. Results To uncover the genetic basis of lentil resistance to A. lentis, differentially expressed genes were profiled in lentil plants during the early stages of A. lentis infection. The resistant ‘ILL7537’ and susceptible ‘ILL6002’ lentil genotypes were examined at 2, 6, and 24 h post inoculation utilising high throughput RNA-Sequencing. Genotype and time-dependent differential expression analysis identified genes which play key roles in several functions of the defence response: fungal elicitors recognition and early signalling; structural response; biochemical response; transcription regulators; hypersensitive reaction and cell death; and systemic acquired resistance. Overall, the resistant genotype displayed an earlier and faster detection and signalling response to the A. lentis infection and demonstrated higher expression levels of structural defence-related genes. Conclusions This study presents a first-time defence-related transcriptome of lentil to A. lentis, including a comprehensive characterisation of the molecular mechanism through which defence against A. lentis is induced in the resistant lentil genotype. Electronic supplementary material The online version of this article (10.1186/s12864-018-4488-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahsa Khorramdelazad
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Ido Bar
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.
| | - Paul Whatmore
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Gabrielle Smetham
- Fish Nutrition and Feed Safety, the National Institute of Nutrition and Seafood Research (NIFES), Strandgaten 229, Bergen, 5002, Norway
| | - Vijay Bhaaskaria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 142 University St., Parkville, 3053, VIC, Australia
| | - Yuedong Yang
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Shahla Hosseini Bai
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| | - Nitin Mantri
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, 170 Kessels Rd., Nathan, 4111, QLD, Australia.,Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, 4558, Queensland, Australia
| | - Yaoqi Zhou
- Pangenomics Group, School of Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Rebecca Ford
- Glycomics institute, School of Sciences, Griffith University, 58 Parklands Dr., Southport, Gold Coast, 4215, QLD, Australia
| |
Collapse
|
49
|
Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Singh PK, Ma XN, Long L, Botella JR, Song CP. Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC PLANT BIOLOGY 2018; 18:15. [PMID: 29343239 PMCID: PMC5772696 DOI: 10.1186/s12870-018-1230-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Soil salinization is one of the major environmental constraints to plant growth and agricultural production worldwide. Signaling components involving calcium (Ca2+) and the downstream calcium-dependent protein kinases (CPKs) play key roles in the perception and transduction of stress signals. However, the study of CPKs in cotton and their functions in response to salt stress remain unexplored. RESULTS A total of 98 predicted CPKs were identified from upland cotton (Gossypium hirsutum L. 'TM-1'), and phylogenetic analyses classified them into four groups. Gene family distribution studies have revealed the substantial impacts of the genome duplication events to the total number of GhCPKs. Transcriptome analyses showed a wide distribution of CPKs' expression among different organs. A total of 19 CPKs were selected for their rapid responses to salt stress at the transcriptional level, most of which were also incduced by the thylene-releasing chemical ethephon, suggesting a partal overlap of the salinity and ethylene responses. Silencing of 4 of the 19 CPKs (GhCPK8, GhCPK38, GhCPK54, and GhCPK55) severely compromised the basal cotton resistance to salt stress. CONCLUSIONS Our genome-wide expression analysis of CPK genes from up-land cotton suggests that CPKs are involved in multiple developmental responses as well as the response to different abiotic stresses. A cluster of the cotton CPKs was shown to participate in the early signaling events in cotton responses to salt stress. Our results provide significant insights on functional analysis of CPKs in cotton, especially in the context of cotton adaptions to salt stress.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 People’s Republic of China
| | - Ya-Wei Guo
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Prashant Kumar Singh
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| |
Collapse
|
50
|
Zhang XR, Xu YP, Cai XZ. SlCNGC1 and SlCNGC14 Suppress Xanthomonas oryzae pv. oryzicola-Induced Hypersensitive Response and Non-host Resistance in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:285. [PMID: 29559989 PMCID: PMC5845538 DOI: 10.3389/fpls.2018.00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/19/2018] [Indexed: 05/06/2023]
Abstract
Mechanisms underlying plant non-host resistance to Xanthomonas oryzae pv. oryzicola (Xoc), the pathogen causing rice leaf streak disease, are largely unknown. Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological processes including plant resistance. In this study, functions of two tomato CNGC genes SlCNGC1 and SlCNGC14 in non-host resistance to Xoc were analyzed. Silencing of SlCNGC1 and SlCNGC14 in tomato significantly enhanced Xoc-induced hypersensitive response (HR) and non-host resistance, demonstrating that both SlCNGC1 and SlCNGC14 negatively regulate non-host resistance related HR and non-host resistance to Xoc in tomato. Silencing of SlCNGC1 and SlCNGC14 strikingly increased Xoc-induced callose deposition and strongly promoted both Xoc-induced and flg22-elicited H2O2, indicating that these two SlCNGCs repress callose deposition and ROS accumulation to attenuate non-host resistance and PAMP-triggered immunity (PTI). Importantly, silencing of SlCNGC1 and SlCNGC14 apparently compromised cytosolic Ca2+ accumulation, implying that SlCNGC1 and SlCNGC14 function as Ca2+ channels and negatively regulate non-host resistance and PTI-related responses through modulating cytosolic Ca2+ accumulation. SlCNGC14 seemed to play a stronger regulatory role in the non-host resistance and PTI compared to SlCNGC1. Our results reveal the contribution of CNGCs and probably also Ca2+ signaling pathway to non-host resistance and PTI.
Collapse
Affiliation(s)
- Xuan-Rui Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xin-Zhong Cai,
| |
Collapse
|